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Executive Summary
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Very recently inclusion problems were investigated as a generation of equilibrium prob-
lems, in order to include a wide class of problems in diverse field such as variational in-
equalities, vector optimization, game theory, fixed point and coincidence point problems,
the Nash equilibrium problem, complementarity problems, trffic equtibria, etc. [6, 8, 9].
It should be noted here that the term “variational inclusion” is understood in different
ways in several recent papers. In [5, 10] it means simply multivalued variational inequali-
ties. Variational inclusion problems in [1, 3, d] are problems of finding zeroes of maximal
monotone mappings. In this note the terminology is similar to [6, 8, 9].

As for the stabile results investigated on the convergence of the sequence of map- pings,
there are some results for the vector optimization, vector variational inequality prob-
lems and vector equilibriurmn problems with a sequence of sets converging in the sense
of Painlevé-Kuratowski (see e.q., (9, 10, 13, 16, 211, In [13], Huaneg discussed the conver-
gence of the approximate efficient sets to the efficient sets of vector-valued and set-valued
optimization problems in the sense of Painlevé-Kuratowski and Mosco. In [10], Fang et al.
investigated the Painlevé-Kuratowski convergence of the solution sets of the perturbed
set-valued weak vector variational inequality problems. In [16], Lalitha and Chatterjee in-
vestigated the Painlevé-Kuratowski set convergence of the solution sets of a nonconvex
vector optimization problem. In [21], Peng and Yang investigated the Painlevé-Kuratowski
set convergence of the solution sets of the perturbed vector equilib- rium problems without
monotonicity in real linear metric spaces. Very recently, Li et al. [17] concerned with the
stability for a generalized Ky Fan inequality when it is perturbed by vector-valued bifunc-
tion sequence and set sequence. By continuous convergence of the bifunction sequence
and Painlevé-Kuratowski convergence of the set sequence, they established the Painleve-
Kuratowski convergence of the approximate solution mappings of a family of perturbed
problems to the corresponding solution mapping of the original problem.

On the other hand, in [3], Anh et al. introduced and studied the parametric gen- eralized
guasivariational inclusion problem (QVIP) which contains many kinds of prob- lems such
as generalized quasivariational inclusion problems, quasioptimization problems, quasiequi-
librium problems, quasivariational inequalities, complementarity problems, vec- tor min-
imization problems, Nash equilibria, fixed-point and coincidence-point problems, traffic
networks, etc. It is well-known that a quasioptimization problem is more general than an
optimization one as constraint sets depend on the decision variable as well. It is investi-
gated in [3] the semicontinuity properties of solution maps to (QVIP). However, there are
few results to obtain the well-posedness concerned with some special cases of (QVIP) (see,
for example, [2, 21] and the references therein).

Maotivated by the work reported in above, this paper we aim to establish some results for
the solution set of a variational inclusion problem with setvalued mapping and we study
Painlevé-Kuratowski convergence of the solution sets with a sequence of mapping con-
verging continuously and sequence of set converging in the sense of Painlevé-Kuratowski.
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2.1 To study the solution set of a variational inclusion problem with set valued map-
ping
2.2 To tudy Painlevé-Kuratowski convergence of the solution sets with a sequence

of mapping converging continuously and sequence of set converging in the sense of
Painlevé-Kuratowski.
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3.1 35N13anidunnside
3.1.1 Find bocks and publications about the solution set of a variational inclusion
problem with set valued mapping
3.1.2 To study the solution set of a variational inclusion problem with set valued
mapping
3.1.3 To tudy Painlevé-Kuratowski convergence of the solution sets with a se-

quence of mapping converging continuously and sequence of set converging
in the sense of Painleve-Kuratowski,

'/ \ .
3.2 ﬁmummmimaamﬁwﬁaga : Department of Mathematics, Faculty of science,
Naresuan university
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4.1 sLegamInisite : 19
4.2 BHUNITAMIUIUABDALATINNG Y

* 1st Months
Find books and publications about to study the solution set of a variational
inclusion problem with set valued mapping

¢ 2nd-3rd Months
Investigate and analyze the sufficient conditions for the solution set of a varia-
tional inclusion problem with set valued mapping

+ 4th-5th Months
Investigate and analyze the sufficient conditions for the solution set of a varia-
tional inclusion problem with set valued (Cont.)

+ 6th Months
Report the progress of the project to NU

+ Tth-8th Months
We shall give the appropriate and sufficient conditions for the Painlevé-Kuratowski
convergence of the solution sets with a sequence of mapping converging con-
tinuously and sequence of set converging in the sense of Painlevé-Kuratowski.

« 9th-11th Months '
Prove the Painleve-Kuratowski convergence of the solution sets with a sequence
of mapping converging continuously and sequence of set converging in the sense
of Painlevé-Kuratowski.

+ 12th Months
Write the paper and submit for publication in the 15l journal. - Report the com-

~ pleted project to NU. - ' B ) -
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Abstract

In this paper, by proposing a new type of Generalized C -guasiconvexity for the set-
valued mappings and using the nonlinear scalarization function £ and its properties,
without assumption of monotonicity and boundedness, some existence results of the
solutions for the symmetric vector equilibrium problems and symme’fric scalar equilibrium
problems are established. Moreover, the convexity of solution sets is also investigated.

Finally, sorme examples in order to support our results are provided.
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CHAPTER 1

INTRODUCTION

In 1994, the equilibrium problem was proposed in Blum and Oettli [8].Then it
has been intensively studied and extended. After that, more general equilibrium
problems (see [8, 7]) have been extended to the case of vector-valued bifunctions,
namely, vector equilibrinm problems, which provides a unified model of sev-
eral classes of problems, including, vector variational inequality problems, vec-
tor complementarity problems, vector optimization problems and vector saddle

point problems, and so on (see, for example, [4, 6, 26, 25, 22, 12]).

The system of vector equilibrium problems, which is a family of equilib-
rium problems for vector-valued bifunctions defined on a product set was intro-
duced in 2000, by Ansari et al.[5]. Furthermore, its applications in vector opti-
mization problems and Nash equilibrium problem for vector-valued functions
were presented by the authors, Nowadays, it is well known that the system of
equilibrium problems, systems of vector variational inequalities, system of vec-
tor variational-like inequalities, system of optimization problems, fixed point
problems and several related topics as special cases (see more [5, 2, 3, 15, 13, 27,

28, 30, 31, 32]) contained in the system of vector equilibrium problems.

On the other hand, the symimetric vector equilibrium problem which is a
generalization of the equilibrium problem has been studied by many authors. A
main topic of current research is to establish existence theorems (see, for exam-
ple, [20, 16, 24, 18]). Another important topic is to study the topological prop-
erties of the solution sets, as it provides the possibility of continuously moving

from one solution to any other solution.

Recently, reducing a vector optimization problem to a scalar optimiza-



tion problem is a useful approach for analyzing it. The classical scalarization
approaches using linear functionals have been already used for studying the ex-
istence of solutions of symmetric vector equilibrium problems (see [19, 36]). On
the other hand, nonlinear scalarization functions play a vital role in this reduc-
tion. The nonlinear scalarization function ¢,, which was commonly known as
the Gerstewitz function in the theory of vector optimization [11, 33], have been
used to studying many vector optimization problems. It is well known that the
nonlinear scalarization function ¢, has many good properties, such as continuity,
sublinearity, convexity, (strict) monotonicity and so on. These properties have
been fully exploited in the literature to deal with various nonconvex problems
with vector objectives, such as existence of solutions, gap functions, duality, vec-
tor variational principles, well-posedness, vector minimax inequalities and vec-
tor network equilibrium problems. However, to the best of our knowledge, there
is no paper dealing with the existence theorems for the symmetric vector equi-
librium problem by using a nonlinear scalarization method. So, it is natural to

raise and give an answer to the following question :

Question : Can one establish existence theorems for the symmetric vector equi-

librium problem by using a nontinear scalarization method ?

Motivated by the works mentioned above, by proposing a new type of C-
quasiconvexity for a set-valued mapping together with using a nonlinear scalar-
ization function and its properties, without assumption of monotonicity and
boundedness, some existence results of the solutions for the symmetric vec-
tor equilibrium problems and symmetric scalar equilibrium problems are estab-
lished. Moreover, the convexity of solution sets are investigated. Finally, some

examples in order to support our results are provided.



CHAPTER 2

PRELIMINARIES

Throughout this paper, let X, Y, E and Z be real Hausdorff topological vector
spaces. Let A C X and B C E be nonempty closed convex subsets, F : A X B x
A —2¥and G: A x B x B — 2% be two set-valued mappings. Let C C Y and
P C Z be two closed convex pointed cones with intC # @ and intP # @. Let Y*
and Z* be the topological dual spaces of Y and Z, respectively. Let C* and P* be

the dual cones of C and P, respectively, that is,
C'={feY :{f,y) >0, forally € C}

and

P*={geZ:{g,y) >0, forally € P}.

The two symmetric vector equilibrium problems under our consideration

are as follows: (SVEP;) : find (x,y) € A x B such that

F(x,y, —intC), Vue€ A,
() £ (—intC), v svip,
G(x,y,v) € (—intP), Vv e B,
and (SVEDP,) : find (x,y) € A x B such that
F(x,y,u) N {—intC) = @, Yu € A,
(x,y,u) N (—intC) i (SVED,)
G(x,y,v) N (—intP) =@, Vve B.

Itis clear that the solution set of (SVEP,) is a subset of (SVEP,). It is remark that
(SVEP,) is a special problem of the symmetric multivalued vector quasiequilib-
rium problems studied by Anh and Khan [1]. They obtained some sufficient
conditions for the solution existence in topological vector spaces. However, in
this paper, we will discuss for the solution existence by utilizing the nonlinear

scalarization method. - S ~ L



Remark 2.1 (Special cases). (i) IC=P,f:AxB-—Yandg: AxB —Z

are two single-valued mappings,

F(x,y,u) = {F(u,y) - f(x9)}, V(xy,u) € Ax Bx A

and
G{x,y,v) = {g(x,v) — g(x,y)}, V(x,y,v) € AX B x B,

then the problem (SVEP;) reduces to the single-valued symmetric vector

equilibrium problem considered by [20, 16, 18]:

(i) If G = 0 and F{x,y,u) = {f(x,u)} for any (x,y,u) € A x B x A, then the
problem (SVEP,) is the equilibrium problem which was considered and

studied by many authors (for example [21, 10, 5, 7]);

(iif) If G = 0 and T is a mapping from A to L(X,Y) where L(X,Y) denotes
the space of all continuous linear operators from X to Y, and F(x,y,u) =
{{Tx,u —x)} for any (x,y,u) € A x B x A, then the problem (S5VEP,} is
the classic vector variational inequality problem which was introduced by

Giannessi [21].

Now, we are going to recall the nonlinear scalarization fuction ¢ : Y —

R, where g € intC, as follows:

Definition 2.2. [12, 33] Given a fixed point g € intC, the nonlinear scalarization

function g, : ¥ — R is defined by

Za(y) =min{t ¢ R:y € tg — C}.

In the special case of Y = R/,C = R} and g = (1,1,...,1) € intR',, the

nonlinear scalarization function can be expressed in the following equivalent



form [12, Corollary 1.46]

& (y) = max{y:}, Yy = (y1,y2, ..., y1) € R.

1<i<]

The following results express some useful propetties of the nonlinear scalariza-

tion function (.

Lemma 2.3. [12, Proposition 1.43] For any fixed g € intC, y € Y and 7 € R. Then

(i) &p(y) <r &y €rg—intC(ie, Cq(y) >rey¢rg— intC);
(i) (y) <reyerg-C;
(iil) &;(y) =r <y € rq — 3C, where dC denotes the boundary of C;
(iv) &4(rg) =7
(v) &4 is continuous, positive homogeneous, subadditive and convex on Y;

(vi) &, is monotone (i.e, yo — y1 € C = §;(y1) < &4(y2)) and strictly monotone
(i.e,yo —y1 € —intC = &p(y1) < Cyly2)) (see [12, 33]).

The property (i) of Lemma 2.3 will play a vital role in scalarization. In
fact, as the definition of ¢;, the property (iv) of Lemma 2.3 could be strengthened
to that

Cqly+rg) =Gy) +r, VyeY, reR (2.1)

For any g € intC, the set C4 defined by

Cli={y" eC:{y"q) =1}

is a weak*-compact set of Y* (see [12]). In addition, for the forms of {; which
were used in [29, Proposition 2.2] and [12, Corollary 2.1], the following equiva-

lent form of ¢, can be deduced from both of them.



Proposition 2.4. [9, Proposition 2.2] Let 4 € intC. Then fory € Y, &,(y) =

maXyecs (y*; y) .

Proposition 2.5. [9, Proposition 2.3] {, is Lipschitz on Y, and its Lipschitz con-
stant is
1
L:= sup |y*] € {—,4—00) :
yect 14l

The following Example can be found in [[9], Example 2.1].

Example 2.6. (i} In the scalar case of Y = R and C = IR, the Lipschitz constant
of §gis L = 7 (g > 0). Then,

1E,(x) — &) = %ix ~yl

forall x,y € R and g > 0.
() Y =R?and C = {(y1,10) € R?: }y1 < y» < 21} Take g = (2,3) € intC.
Then,

C' = {(y1,¥2) € R:2y1 + 32 = 1,1 € [-0.1,2]}.

Then, Lipschitz constant is L = sup ||y*|} = [|(=2,1)]| = /5. Hence,
yredt

|84(y) — ‘;’q(y’” = \/§|y -yl
forally,y € R.

Definition 2.7. Let X and Y be real Hausdorff topological vector spaces. A set-

valued mapping T : X — 2V is said to be

(i) closed if its graph
Gr{T)={{x,y) €eXxY:yeTx)}

isclosedin X x Y;



(i) upper semicontinuous (u.s.c) if, for every x ¢ X and every open set V satisfy-

ing T(x) C V, there exists a neighborhood U of x such that

r(u) = | T) € V;
yel

(iii) lower semicontinuous (Ls.c)if, forany x € X,y € T(x) and any neighborhood
V of y, there exists a neighborhood U of x such that
T(z)NV #0@
forallz € U.

Lemma 2.8, [34] A set-valued mapping T : X — 2¥ is lower semicontinuous
at x € X if and only if, for any net {x;} such that x; — x and y € T(x), there
exists a net {y;} with y; € T(x;) such thaty; — v.

Now we recall some concepts related to the C-convexity for the set-valued
mapping.
Definition 2.9. [36] Let T : A — 2" be a set-valued mapping, where A is a

nonempty convex subset of X. T is said to be

(i) C-convex if for every zq,zp € Aand t € [0,1],
£0(z1) + (1 —8)T(22) C T(tz; + (1 —#)zp) + C.
(ii) C-guasiconvex if for every z1,z, € A and t € [0,1], either
T(z1) € T(tz1 + (1 — £)z2) + C;

or

T(Zg) C T(le + (1 — f)Zg) + C.

In this paper, we introduce a new type of C-quasiconvexity for the given

set-valued mapping which is a generalization of both C-convexity and C-quasiconvexity.



Definition 2,10, Let T : A — 2Y be a set-valued mapping, where A is a
nonempty convex subset of X. Then T is said to be Generalized C-quasiconvex

if for every z1,zp € D and ¢ € [0,1], either

T(z1) () (T(tz1 + (1 t)2) + C) # @
or

T(z2) () (T(le +(1—1)z) + c) £ Q.

Remark 2.11. It can be seen from the above definition that every C-quasiconvex
mapping is a generalized C-quasiconvex mapping. However, the converse does

not hold in general which can be found in Example 3.10 in Section 3.

The following lemma plays a key role in results reported in many works

(for examples [36, 12]). Furthermore, we need it in the sequel.

Lemma 2.12. [14] Let {X;};c; be a family of nonempty convex sets where each

X; is contained in a Hausdorff topological vector space E;. Let X = [ [ X;. For
icl
eachi € I, let P : X —» 2%i be a set-valued mapping such that

(i) foreachi € I, Pi(x) is convex forall x = (x;);cs;
(i) foreachx ¢ X, x; & P;(x);
(iii) foreachy; € X;, P7 (y;) = {x € X : Pi(x) D {y;}} isopenin X;

(iv) foreachi € I, there exist a nonempty compact subset N of X and a nonempty
compact convex subset B; of X; such that foreachx € X\ N, thereisani € [

satisfying P;(x) N B; # .

Then there exists x € X such that P;(x) = @ foralli € I.



CHAPTER 3

MAIN RESULTS

3.1 Symmetric vector equilibrium problems

In this section, we present the scalar symmetric equilibrium problems which are
equivalent to the symmetric vector equilibrium problems (SVEP1) and (SVEP,).
The relationships between the solution sets and the existence results for them

were established.

For any q € intC and 4' € intP, we also consider the following scalar

symmetric equilibrium problems: (SSEP;(¢)): find (x, 1) € A x B, such that

{ Vue A Fze F(x,y,u):8q(z) 2 0, (SSEPy(2))
Vo € B,Jw € G(x,y,v) : {y(w) 2 G
and (SSEP»(()) : find (x,y) € A x B, such that
gq(P(xJ ,u)) TRy, Vu €A, (SSEP,(2)
Cp(G(x,y,v)) CRy, YveB

We denote the solution sets of (SVEP;), (SVEP,), (SSEP;(&)) and (SSEP»(¢)) by
S1, 52, S1(¢) and S»({), respectively.

Before we give the existence of solutions for (SVEP;) and (SVEP;), we
first need the following simple fact which illustrates the relationship between

the solution sets S; and 51({).

Lemma 3.1. For any fixed 4 € intC and ¢’ € intP, the following assertion is

valid:
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Proof. Firstly, we assume that (x/, ') € S;. Hence for any u € A, there exists
z € F(x',y/, u) such that
z & —intC.

Similarly, for any v € B, there exist w € G(x, 3/, v) such that
w ¢ —intP.

So, it follows from Lemma 2.3 (i) that for any (u,v) € A X B, there exists (z, w)
such that
Gq(z) = 0and ¢y (w) > 0.

Therefore, we immediately get that (x/,y") € 51(¢). Conversely, assume that
(x',y") € 51(&), then we can prove that (x',') € S by using Lemma 2.3 with the

reverse way of above part. d

Theorem 3.1. Let A C X and B C E be nonempty convex subsets, let C C Y and
P C Z be closed convex pointed cone with g € intC # @ and ¢’ € intP # @.
Suppose F : AxBx A — 2V and G : A x B x B — 27 are two set-valued

mappings satisfying the following conditions:

(i) foreach (x,y) € A x B, F{x,y,x) NC £ @, and G(x,y,y) NP # &;

(ii) foreach (x,y) € A x B, F(x,y,-)is C—quasiconvex on A as well as G(x, y, )

is P—quasiconvex on B;

(iii} for each u € A, F(-,-, ) is lower semicontinuous on A X B and for each

v € B, G(,-,v) is lower semicontinuous on A x B;

(iv) there exists nonempty compact convex sets Dy C A and D; C B such
that for each (x,¥) € (A x B) \ (D1 x Dy), there exist x’ € Dj such that
F(x,y,x") C —intC or i € Dy such that G(x,y,y’) € —intP.

Then the set S; is nonempty. : -
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Proof. For each (x,y) € A x B, defineP; : AxB —2%and P,: Ax B — 2B

as follow:

Pi(x,y) ={uec A:Vz e F(x,y,u),8(z) € Ry}
and

Py(x,y) ={v € B:Yw € G(x,y,v),iy(w) ¢ R }.

We will show that P; and P, satisfy all conditions of Lemma 2.12. Firstly, we
prove that Py{x,y) and P;(x,y) are convex for all (x,y) ¢ A x B. Suppose on
the contrary that for some (x,y) € A x B, Py(x,y) is not convex. Then there exist
t1,t2 € [0,1] with #; +#, = 1and uy, up € Py(x,y) such that tyu; -+ taus & Pi(x,y).
This means that

&q(z) € Ry, Iz € F(x,y, by + totn).
By assumption (ii), we have either

F(x,y,u1) C F{x,y, tiu1 + touz) + C,
or

F(x,y,up} C F(x,y, tiuy + taug) +C.

Hence, we get either

Cq(Fx,y,u1)) C Co(F(x,y, tiug + thug)) + £4(C) S Ry,

or
Ca(F(x,y,u2)) C Gp(F(x,y, trug + baun)) + &4(C) € Ry,

which contradicts uy, up, € Py(x,y). Similarly, we can show that P,(x,y) is con-

vex.

Next, we want to verify condition (ii) of Lemma 2.12, in fact we have to

show that for each (x,y) € A x B, x & Py(x,y) and y ¢ Px(x,y). Foreach (x,y) €
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A X B, it follows from assumption (i) that F(x,y, x) NC # @ and G(x,y,y) NP £
@. Thus, there exists (z,w) € F(x,y, x) x G(x,y,y) such that

q(z) € Ry and g’,‘q:(w) cRy.
Invoking the definitions of P;(x,y)} and P»(x,y), we have

x¢ Pi(x,y) and y¢& D(x,y).

To prove condition (iii) of Lemma 2.12, assume that (1, v) € A x B, Note

that
(Pl(w) ={(xy) € AxB: Tz e F(xyu) st &lz) CRY}Y. @D

Let {(x;,1:)} € (7' (w)° with (x;,3:) — (x0,%0). As F(xo,yo,u) # @, we
choose zg € F(xg, yo, ). By Lemma 2.8, there exists anet {z;} C F(x;,y;,u) such

that z; — zo. Hence, by using the continuity of £, we get

gq (zi) — gq(zﬂ)-

The condition (3.1) yields that &,(zo) > 0. Therefore, (xo,¥0) € (P Yu))e and
so (P 1(1))¢ is closed. Thus, we have that P, (1) is open on A. Similarly, we
can prove that P; ' (v) is open on B. This completes the proof of condition (iii) of

Lemma 2.12.

Finally, we have to show that condition (iv) of Lemma 2.12 holds. By
assumption (iv), there exists nonempty compact set D1 x Dy € A x B such that
for any (x,y) € (A x B)\ (Dy x D»), there exits x' € Dy such that F(x,y,x') C
—intC or y' € Dj such that G(x,y,y’) C —intP. Therefore, for each (z,w) €
F(x,y,x") x G(x,y,y"),64(z) € Ry, or (;'qr(w) ¢ R,. So, we immediately obtain,
by the definitions of P;{x,y) and Py(x, y), that x' € Pi(x,y) ory’ € Pa(x,y). This

completes the proof of the condition (iv) of Lemma 2.12.
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Consequently, the set-valued mappings P; and P, satisfy all conditions

given in Lemma 2.12. So, there exists (%, 7) € A x B such that
P(x,7) =@ and DB(x79)=0.

Then, for each (#,v) € A X B, there exists (z,w) € F(%,i,u) x G(%,%,v) such
that

5q(z) € Ry and (w) € Ry
Therefore, we have (%,7) € 5;(C). Using Lemma 3.1, we conclude that 51 is

nonempty. O

Remark 3.2. Comparing Theorem 3.1 and the results obtained in Anh and Khan
[1], we can see that the main difference is that our techniques is based on the uti-
lizing the nonlinear scalarization method while the mentioned work employed
the relaxed quasiconvexities of the multi-valued mappings F(-,y, ) and G(, x, ")

as the main tools.

Now, we give the following example to illustrate Theorem 3.1.

Example 3.3. Let X = Y = Z = R, A = B = [(,1],C = P = R;. and define
the mappings F : AXxBx A — 27 and G : A x Bx B — 2% by, for any
(x,yu) ¢ AxBxAand (x,1,v) € Ax B xB,

F(x,y,u) = [x —u,u] and G(x,y,v) = [y — v,7].

It is clear that (i) given in Theorem 3.1 is satisfied. To establish the assumption
(i) of Theorem 3.1, let i1, up € A and t1,tr € [0, 1] with £ + f = 1. Assume that

11 < uy, then for each z € F(x, vy, 1),
x—u; <z < Uy
Then, we can get that

- X —Hup— bty <z < fug + by,
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which means
F(x,y, ul) C P(x,y, 111 + tzuz) - P(x,y, f1uq + fguz) +C

and so F(x,y, ) is C-quasiconvex on A. By the same fashion, we can show that

G(x,y,-) alsois P-quasiconvex on B.

Next, we prove the assumption (jii) of Theorem 3.1. Let u € A be arbitrary
fixed. Let (x',y") € A x B,z € F(x',v/, u) and U be any neighborhood of z. Then,

for each (x, y) in a neighborhood [x’, 1] x B of (x/,y'), we have
Flx,y,u) = [x—u,u] D [x' —u,u.

Thus, F(x,y,u) U 2 {z} £ @, ¥(x,y) € [x',1] x B and so the first statement of
assumption (iii) of Theorem 3.1 is true. Similarly, we can check that the second

one is also true.

Finally, take Dy = [§,1] € A and D, = (3,1} C B. Then, for each {(x,y) €
(A x B)\ (D1 X Dy}, thereexitx' =1 € Dy and ' = 1 € D, such that

P(xry!xf) - [x -1, 1] and G(x,y,y’) = [y -1, 1]
Thus, we have
F(x,y,%') C [~1,0) C —intC and P(x,y, ') C [1,0) C —intP,

for all (x,y) € (A x B)\ (Dy x D). The assumption (iv) of Theorem 3.1 is

proved.
Now, we will show that S; # @. Taking (x,y) = (1,1) € A x B leads to
F(x,y,u) =F(1,1,u) =[1—u,u,

and

G(xy,v) = G(L,1,0) = [1-0,0],
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which respectively follows that
F(1,Lu) =1 —uu] € —intRy = —intC, Yu € A,

and

G(1,1,u)=[1-99] € —intRy = —intP, Vv € B.

This yields (1,1) € 5. L

We give the following examples to show that all of the assumptions of

Theorem 3.1 are essential and cannot be dropped.

Example 3.4. (Assumption (i) of Theorem 3.1 is essential.) Let X =Y = Z =
R,A = B = [0,1],C = P = Ry and define the mappings F: Ax Bx A — 2¥

andG: AxBxB—2Zas

F(x,y,u) = (~u A %,u) and G(x,y,v) = (-v — %,v).

Firstly, to show that assumption (i) does not hold, take x = y = 0. So, we have
that

Flx,5,x) N C = F(0,0,0) NRy = (5,0 R, =@

and

G(x,4,y) NP = G(0,0,0)NR,. = (—%,0) R, = ®.

We can verify all of the other assumptions of Theorem 3.1. However, the problem
SVEP; has no solution, i.e. 5{(F,G) = @ since for each (x,y) € A X B, there
exists (u,v) = (0,0) € A x B such that

F(x,y,u} = F(x,y,0) = (—%,0) C —intR4 = —intC,

and

G(x,y,v) = G(x,y,0) = (—%,0) C —intR, = —intP.

The reason is assumption (i) of Theorem 3.1 is violated.
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Example 3.5. (Assumption (ii) of Theorem 3.1 is essential) Let X = Y = Z =
R,A =B =[0,1],C = P = Ry and define the mappings F : A x Bx A —3 2Y
andG: A x B xB— 2%by

(1
{5}: U=x,

(—u—1,u—1], otherwise,
\

Flx,y,u) = <

and

(1
{_ }’ U= yr
G (x_, y, ’(')) e 2
1 (—v—1,v—1], otherwise.
Itis clear that assumptions (i), (iii) and (iv) of Theorem 3.1 are satisfied. However,

assumption (ii) of Theorem 3.1 is violated. Indeed, letx =y = 3, t = %, =1

and us; = 0. So, we have that
F(x,y,u1) = F(
F(x,y,up) = F(
and
111 1
F(x,y, a4+ fzuz) = P(EI 57 E) = {E}
Thus, we have that
F(x,y,u1) € F(x,y, f1u1 + tauz) + C,
and
F(x,y,u2) € F(x,y, tiu1 + fauz) + C.
Note that $;(F,G) = @. Since for each (x,y) € A x B, there exists (u,v) =
(0,0) € A x B such that
F(x,y,u) =(-2,-1] € —intR} = —intC,
and
G(x,y,v) = (—2,—1] C —intR,. = —intP.

Thus, assumption (ii) of Theorem 3.1 cannot be dropped. O
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Example 3.6. (Assumption (iii) of Theorem 3.1 is essential} Let X = Y = Z =
R,A = B = [-1,1},C = P = R; and define the mappings F: Ax Bx A — 2Y

and G: AXBxXB— 2% as

{x —u}, x <0,
F(x,y,u) =
[— %, %), otherwise,

and

— Ut < 0,
G(xr y, U) = {y } y
1 [— %; 5),  otherwise,
To show that assumption (iii) of Theorem 3.1 is not satisfied, take x' = y' =
0,u = 1. Then, we have F(x',y',u) = {—1}. Letz € F(x',y', u), then (_%’_%) is

a neighborhood of z. Thus, for each neighborhood V of (¥, ') we have

A5 aH 11
=30V =137310133) =2,

for all (x,y) € Vwithx > x' = 0. In fact, it is not hard to show that all of
other assumptions in Theorem 3.1 are satisfied, especially assumption (i) and
(ii}, which are clear by the definitions of F and G. However, S1(F,G) = @. For
each (x,y) € A x B, consider the following two cases:

if x <0, then F(x,y, 1) = {x —u} € —intR, Vu € (0, 1],

if x > 0, then F(x,y,u) — [—%,%) C —intR,Vu € [-1,0]. The reason is as-

sumption (iii) of Theorem 3.1 is dropped. O

Example 3.7. (Assumption (iv) of Theorem 3.1 is essential) Let X = ¥ = Z =
R,A = B = [0,1],C = P = Ry and define the mappings F : Ax Bx A — 2¥
and G: A x Bx B — 2% as

(—xu—x,xu), x=y#0,

F(x,y,u) =
[-1,xu), otherwise,
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and
(—yv—-yyv), x=y#0,
G(x,y,v) =
[-1,yv), otherwise.
We can show that almost all of the assumptions of Theorem 3.1 are satisfied,
unless assumption (iv). To show that assumption (iv) of Theorem 3.1 is violated,

for any nonempty compact set D; x Dy € A x B, we take (x,y) = (1,1) ¢
(A x B)\ (D1 X Dy). Then, for each (x',y) € (D1 x Dy), we have

Flx,y,x") = (—=x' = 1,x") € —intRy,
Gy y') =(-y - Ly) € —intR,.

Then, the problem SVEP; has no solution since for each (x,y) € A x B, there

exists (u,0) = (0,0) ¢ A X B, such that

{

(—x,0) C —intRy, x=y#0,
F(x,y,u) =
[-1,0) € —intR,, otherwise,
and .
(—y,0) € —intRy, x=y#0,
G(x,y,v) = <
[-1,0) C —intlRy, otherwise.
\
Hence, assumption (iii) of Theorem 3.1 is essential. L

Now we shall discuss about a link between the solution sets S; and S(J)

for (SVEP).

Lemma 3.8. For any fixed g4 € —intC and ¢4’ € —intP,
Sy = 5,(¢).

Proof. Firstly, we assume that (x, ') € S3(F, G), which means

F(x', v, u)n(—intC) =@, forallu € A,



19

and

G(x',y,v)N{(—intP) = @, forallv € B.

So, by Lemma 2.3 we obtain that for any (i,v) € A x B,
z ¢ —intC and w ¢ —intP

for all (z,w) € F(x',y',u) x G(x',y’,v). So, it follows that, for any pair (u,v) €
A X B,
Cq(z) € Ry and §g(w) € Ry

forall (z,w) € F(x',y',u) x G(x',y',v). Therefore, we get by the definition of ¢,
and Gy that
G(F(x',y, u)) SRy, Vu e A

and

qu(G(x',y',v)) C Ry, Vv e B.

Hence (¥/,y') € S;(Z). Conversely, assume that (¥/,') € 53(¢), then we can
prove that (x/, ') € S, by using the same argument given in the proof of Lemma

2.3. (]

Now a result on existence of solutions of the (SVEP,) is verified by making

use of the nonlinear scalarization function.

Theorem 3.2, Let A C X and B C E be nonempty convex subsets, let C C Y and
P C Z be closed convex cones with q € intC # @ and q' € intP # @. Suppose
F:AxBxA-——2Vand G: A x Bx B — 27 are two set-valued mappings which

satisfy the following conditions :

(i) foreach (x,y) € A x B,F(x,y,x) C Cand G(x,y,y) C P;

(ii) for each (x,y) € A x B,F(x,y, ") is generalized C-quasiconvex on A as well as

G(x,y, -) is generalized C-quasiconvex on B
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(iii) for each (x,y,u) € A X B x A with F(x,y,u) N —intC # @,
z € F(x,y,u) = z—C C —initC,
and also for each (x,y,v) € A X B x Bwith G(x,y,v) N —intP # @,
w € G(x,y,v) = w—P C —intP;
(iv) for each u € A, F(-,-,u)} is lower semicontinuous on A x B and for each v €
B, G{(-, -, v) is lower semicontinuous on A X B;

(v) there exists nonempty compact convex sets D1 € A and Dy C B such that for
each (x,y) € (A x B)\ (D1 x Da), there exist x' € Dy such that F(x,y,x') N
—intC # D ory' € D, such that G(x,y,y') N —intP # Q.

Then the solution set Sy is nonemty.

Proof. Let the set-valued mappings P; : Ax B —3 2% and P, : A x B — 2B be
defined by, for any (x,y) ¢ A x B,

Pi(xy) ={u € A:§y(F(xy,u)) £ R+ }
and
Py(x,y) = {ve B &y(Glx,y,0)) L R, }.
We first show that P; and P, satisfy all the conditions given in Lemma 2.12.
Firstly, we prove that Pi(x,y), Pa(x,y) are convex for all (x,y) € A x B. Assume

on the contrary that P;(x,y) is not convex. Then there exist #1,£, € [0,1] with

t1+ty = land uy, uy € Py(x,y) such that tjug -+ taus € Pi(x,y), which gives that
r:q(P(x, Y, bug + tzuz)) CRy.
By assumption (ii), we have either

,P,(x,', y,ul)ﬂ (Fr(x,y, tlm +7t727u2) —|— C) + D,
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or
F(x,y,u2) () (F(x,y, huy + tauz) + C) # O.
It follows that, there is z € F(x, y, #1141 + tau2) such that either

z=1z—¢ 32z € F(x,y,uy), Ic€ C

or

z=12y—c, 3z € F(x,y,up), I’ € C
Thus, by assumption (iii), we have either
8q(2) = Eglz1 —¢) <0,

or
Ea(z) =&z — ') <.

This contradicts to ty1q + fatg & Py(x,y). Similarly, we can show hat Py(x,y) is
convex.

Next, we verify condition (ii) of Lemma 2.12. In fact, we have to show
that x € Py(x,y) and y & Po(x,y). Let (x,y) € A X B. By assumption (i), for each
(z,w) € F(x,y,x) X G(x,y,y). Thissays z € Cand w € P, and s0

z & —intC and w ¢ —intP.
Hence, by Lemma 2.3 (i), we get that
Zy(z) € Ry and {(w) € Ry
for all (z,w) € F(x,y,x) X G{(x,y,y), which means
E4(F(x,,%) C Ry and &p(F(x,y,7)) C Ry.
It follows that, for all (x,y) € A x B,

x ¢ Pi(x,y) and y¢ Pa(xy)
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To verify condition (iii) of Lemma 2.12, assume that (#,v) € A x B. Note

that
(P0) = {(ry) € Ax B &y(F(xy,1) SRy }.

Let {(x;,y:)} € (P7 (w))° with (x;, ;) — (x0,40). By assumption (iv), for
each zg € F(xg,yo,u), there exist z; € F(x;,y;,u) such that z; — z¢. Since
Co(F(xi, ¥i u)) € Ry, §g(2i) € Ry. By the continuity of ¢;, we get ¢4(z0) € Ry..
As zp is an arbitrary, we obtain £, (F (xg, yo, #)} € Ry Thus (xo,y0) € Py (w))e,
and so (P} (u))° is closed. Hence, we have that P|” Y(u) is open on A. Similarly,
we can prove that P, Y{v) is open on B. Finally, we have to show that condi-
tion(iv) of Lemma 2.12 is satisfied. By assumption (v), there exist nonempty
compact sets Dy x Dy € A x B such that for any (x,y) € (A x B)\ (D1 x Dy),
there exists ¥’ € Dj such that F(x,y,x') N —intC # @ or there exits ¥ € D,
such that G(x,y,y') N —intP #£ @. Thus, for any (x,y) € (A x B)\ (D1 x
D5}, we obtain that Z;(F(x,y,x')) € Ry, forsome x’ &€ Dy or {3(G(x,y,¥')) &
R4, for somey’ € Ds. So, we immediately obtain by the definition of P;(x,y)
that

x' € P(x,y), for some x" € Dg

or

y' € Py(x,y), for somey’ € Ds.

Therefore, we proved condition (iv) of Lemma 2.12 and so Pj and P satisfy all
conditions of Lemma 2.12. Hence, we can conclude that there exists {(%,7) €
A x B such that

Pi(z,7) =@ and P(%,7) =00

This means there exists (%, ) € A x B such that
gq(F(frg:u)) C ]R-{—; Yue A

and

¢y (G(z,7,v)) SRy, Vv EB.
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Therefore (%, ) € Sp(¢)} and so by Lemma 3.1 we completes the proof that S; is
nonempty. O

Remark 3.9. Comparing Theorem 3.2 and the results obtained in Anh and Khan
[1] and Lemma 2.3 in Zhong, Huang and Wong [36], we can see that the main dif-
ference is that our techniques is based on the utilizing the nonlinear scalarization
method. Further, the C-quasiconvexity of the mapping F(x,y, ) and G(x, y, -) are
weakened by generalized C-quasiconvexity. Hence, Theorem 3.2 can be applica-
ble in the following situation while the aforecited results do not work as in the

following example.

Example 3.10. [et X =Y =7 =R, A = B = (0,1],C = P = R and define the
mappings F: AXBx A —2'and G: Ax Bx B — 2% as

(v, u+1), u<x;
F(x,y,u) =
[—u,1), x<u

and

v,v+1), v<y;
= ( ) y
[-v1), y<wo.

Firstly, we show that F is not C-quasiconvex. Taking x = 1,17 = 1,u = 0, and

b=t = %, we have the following relations

F(x,y,u0) = (0,1) ¢ (%,Jroo)

13
= (E, 5) +]R+ = F(x,y, Hug + tgug) +C

and

1
P(x,y,ul) = [_1,1) ,¢_ (§,+oo) = F(x,y, tug + taup) + C.

Hence, F is not C-quasiconvex. However, all assumptions given in Theorem
3.2 are satisfied. Firstly, it is clear that the assumption (i) given in Theorem 3.2

is satisfied. Next, we shall establish the assumption (ii}. To this end, for fixed -
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(x,¥) € AX B, letuy,up € Aand #,# € [0,1] with 1 + o = 1. Assume that
#1 < tp. Then, we have the following three cases :

Casel: If u; < ur < x,then fiq + toup < up < xand
F(x,y,uz) N (P(x,y, tig + toto) + C)

= (uz,ug + 1) M (t1u1 + ki, —|—00) 75 @.

Case Il : If 11 < x < up, then we have either t1uq + foup > x or f1u1 +

trus < x. Thus, we have either

F(x,y,u2)N (P(x,y, by + faup) 4 C)

= [—up, 1) N [—tuy — fatta, +00) # @,

or

F(x,y,u2)N (F(x, y, iy + bug) + C)

= [—up, 1) N (t11y + taup, +-00) £ @,
Case II1: If x < uy < g, then tuq + t21p > x, and hence

F(x,y,u2) N (F(x,y, tru 4 baun) + C) = [—up, 1Y N [—tuy — toltp, +00) # O.

Hence, we have that F is generalized C-quasiconvex. Similarly, we can show that

G is generalized C-quasiconvex.

In order to verify assumption (iii), notice that for each element u € A,
F(x,y,u) N —intC # @ if u > x. Assume that z € F(x,y,u), then z also belongs
[—u,1) C [-1,1). It is not hard to see that z — C C —intC. Similarly, we can show

that G also satisfies this assumption.

Next, to verify assumption (iv) of Theorem 3.2, let (x",y") € A x B and
z € F(x',y', u).
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CaseI:Ifu < x/,thenz € (x',x' +1). Let U be arbitrary neighborho

=

z. For each (x,y) belongs to neighborhood (u, x'] x B of (x/,y"), we have E
1 ah 92
Flx,y,u) 2 (¥, 2 1), Vx € (u,x'].

Hence,F(x,y,u)NU £ @, Y{(x,y) ¢ (4,x'] x B.

Case Il : If u > x', then z € {—u, 1). Let U be arbitrary neighborhood of z.
For each (x,y) belongs to neighborhood [x',1] x B of (x’,y'), we have

E(x,y,u)=[-u1)>z

Hence, F(x,y,u) N U # @, ¥(x,y) € [x',1] x B. Therefore, F{(-, -, u) satisfies the

condition (iv) on A. Similarly, G(, -, v) satisfies the condition (iv) on B.

Finally, we show that the assumption (iv) of Theorem 3.2 holds, take Dy =
[3.1] C Aand D, = [},1] C B. Then, for cach element (x,y) belongs (A x B) \
(D x Dy), thereexitx’ =1 € Dy and i = 1 € D5 such that

F(x,y,x') 0 =intC = [—1,00) N —intR} = [-1,0) # 2.

Therefore, all assumptions in Theorem 3.2 are satisfied. In fact, if is easy to see

that (1,1) € 5,.

3.2 Convexity of the solution set of Symmetric Vector Equilib-

rium Problem.

In this section we study the convexity of the solution set S;. The sufficient con-
ditions for the convexity of S; were established. Now, we recall the following

useful features, which lead us to obtain our results in the sequel.
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Definition 3.11. [17] Let K be a subset of a topological vector space E. A set-
valued mapping F : K — 2F\ {@} is said to be a KKM-mapping if for any
{x1,22,.., 20} CK,

"
CO{xly X2 ey xﬂ} g U F(xl)’
i=1

where 2F \ {@} stands for the family of all nonempty subsets of E, while the

notion co{xy, X2, ...xy } denotes the convex hull of {x1, x9, ..., x» }.

The following well- known lemma plays vital role in our results in this

section.

Lemma 3.12. [17] Let K be a subset of a topological vector space E. A set-valued
mapping F : K — 2% be a KKM-mapping with closed values in K. Assume

that there exists a nonempty compact convex subset B of K such that (] F(x) is

xcB
compact. Then,

(] F(z) # .

xeK

Theorem 3.3. Let A C X and B C E be nonempty convex subsets, let C C Y and
P C Z be closed convex pointed cone with g € intC # @ and ¢’ € intP # @.
Suppose F : AxBx A — 2¥ and G : A x B x B — 27 are two set-valued

mappings which satisfy the following conditions:

(i) foreach (x,y) € A x B,F(x,y,x) C Cand G(x,y,y) C P;

(ii) for each (x,y) € A x B, F(x,y,) is C— convex on A as well as G(x,¥,} is

P— convex on B.

(iii) for each u € A, F(-, -, u} is lower semicontinuous on A X B and for each

v € B, G(-,-,v) is lower semicontinuous on A X B;

(iv) there exists nonempty compact convex set D; x Dy € A X B and compact

set My x M € A x B such that for each (x,y) € (A x B) \ (M; x My),
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there exist {x',y') € Dy x Dy such that F(x,y,x") N —intC # @ or y’ € Dy
such that G(x,1,y¥'} N —intP # @.

Then, the solution set S{(¢) is a nonempty compact subset of A x B. Furthermore,

S, is convex.

Proof. letg € —intC, and 4’ € —intP. Define a set-valued mapping T: A X B —
A X Bby

T(z,w) = {(1,y) € A% B G(F(x,%,2)) C Ry, Ey(G(x,y,0)) € Ry}

Note that 53(¢) = (]  T(z w). We assert that the set-valued mapping T
{zw)eAxB
fulfils all the assumptions of Lemma 3.12. Firstly, we will show that is a KKM-

mapping. Suppose on the contrary, then there exists a subset { (x1, 1), ..., (¥n, yn) }

of A x Band (z,w) € A x B such that

(2, ) € co(xa,y)son (v PN L) T
=1

Hence, there exist a4, ..., &, € IRy such that

-

A
a;=1 and (z,w) =) w(x;,v)
L\ i-1

T

Thus, foralli = 1,2, ..., n, we have

Go(F(z,w,x:)) € Ry or $(Glz,w,y:)) & Ry (32)

By assumption (ii), the C-quasiconvexity and P-quasiconvexity of F and G are

tulfilled respectively, and so
F(z,w,x;) C F(z,w,z) +C, forsomei=12,..,n,

and

G(z,w,y;) € G(z,w,w) +C, forsomei=12,..,n



28

Hence, there isi € {1,2,...,,n} such that

C(F(z,w,x;}) C Eq(F(z,w,2)) +64(C) TRy,

and

CyG(zw, 1) € 8g(Glzw,w)) + g (C) C Ry
This contradicts 3.2, and so T is a KKM mapping. Next, we will show that for
each (z,w) € A x B, the set T(z, w) is closed. Let (z,w) € A X Band {(z; w;)} €

T(z, w) be a net converges to (zy, wy). Since (z;, w;) € T(z, w) for all i, we have
gq(F(z,-,w,-,z)) - ]R.|_ and é’qr(G(z,-,w,-, ZU)) (_: IR+,Vi.

Let (h1,h2) € Cq(F(z1,w2,2)) % § (G (21, ws, w)). Then there exists the pair (z, w3) €

F(zy,ws,2) X G(z1,wa, w) such that
(b1, h2) = (Gq(22), g (w3))

By assumption (iii), there is (t;,s;) € F(z;, w;, z) X G(z;, w;, w) such that

(ti,81) — (z2,w3).
Since (#;, s;) € F(z;, w;, z) X G(z;, w;, w) for all i, we have

&y(t:) = 0and ¢y (s;) > 0 forall i.

Therefore, by the continuity of &, and &}, we get

hy > 0and hy > 0.

Since (f11, hy) is atbitrary element belongs to &, (F(z1,w2,2)) x ¢y (G(21, w2, w)),
we get

Cq(F(z1,w,2)) SRy and §pr(G(z1, w2, w)) C Ry.

Hence, (z1,w;) € T{z,w) and so T(z, w) is closed for any (z,w) € A x B.Now, all
the assumptions of Lemma 3.12 are fulfilled and so S,() is nonempty. Further,

it follows from assumption (iv) that

S$(8) € My x My,
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and so it completes the proof that Sz({) is a nonempty compact subset of AxB.
By Lemma 3.8, Sy is also nonempty and compect. Finally, the C-convexity of
F(x,y,+) on A and the P-convexity of G(x,y, ) on B imply the set T(z,w) is
convex for all (z,w) € A x B. Hence, the set 52(£) is convex (The intersection
of the convex sets is convex.). Therefore, by Lemma 3.8, S; is also convex. This

completes the proof. O



CHAPTER 4

CONCLUSION

The following results are all results of this research:

1. Let A € X and B C E be nonempty convex subsets, let C € Yand P C Z
be closed convex pointed cone with g € intC # @ and ¢’ € intP # @.
Suppose F : AxBx A — 2¥ and G : A X Bx B — 2% are two set-

valued mappings satisfying the following conditions:

(i) foreach (x,y) € AX B, F(x,y,x)NC # @, and G(x,y,y) NP # &;
(ii) for each (x,y) € A x B,F(x,y, ) is C—quasiconvex on A as well as
G(x,y,) is P—quasiconvex on B;
(iii) for each u € A, F(:,-,u) is lower semicontinuous on A X B and for

eachv € B, G(+,-,v) is lower semicontinuous on A x B;

(iv) there exists nonempty compact convex sets D; C A and D C B such
that for each (x,y) € (A x B)\ (D1 x Dy), there exist x' € D; such
that F(x, vy, x") C —intC or y’ € Dy such that G(x,y,y') C —intP.

Then the set 5; is nonempty.

2. Let A C X and B € E be nonempty convex subsets, let C C Yand P C Z
be closed convex cones with g € intC # @ and ¢’ € intP # @. Suppose
F:AxBxA — 2¥and G : Ax Bx B — 2% are two set-valued

mappings which satisfy the following conditions :
(i) foreach (x,¥) € A x B,F(x,y,x) C Cand G(x,y,y) C P;
(ii) for each (x,y) € A x B,F(x,y,) is generalized C-quasiconvex on A

as well as G(x,y, -) is generalized C-quasiconvexon B
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(iii) for each (x,y, 1) € A x B x A with F(x,y,u) N —intC # @,
z € Flx,y,u) = 2z—-CC —intC,
and also for each (x,y,v) € A x B x B with G(x,y,v) N —intP # @,
w € G(x,y,v) = w—P C —intP;

(iv) for each u € A, F(:,-,u) is lower semicontinuous on A x B and for

eachv € B, G(-, -, v) is lower semicontinuous on A X B;

(v) there exists nonempty compact convex sets Dy € A and D, C B
such that for each (x,y) € (A x B)\ (D; x Dy), there exist x’ € D
such that F(x,y,x') N —intC # @ or y € D; such that G(x,y,y') N
—intP # .

Then the solution set 5; is nonemty.

. Let A € X and B C E be nonempty convex subsets,letC C Yand P C Z
be closed convex pointed cone with g € intC # @ and 4' € intP # @.
Suppose F : AxBx A — 2¥ and G : A x Bx B — 27 are two set-

valued mappings which satisfy the following conditions:

(i) foreach (x,y) € A x B,F(x,y,x) CCand G(x,y,y) C P;

(ii} foreach (x,¥) € A x B, F(x,y,-}is C— convexon A as wellas G(x,y, )

is P— convex on B.

(iii) for each u € A, F(;,-, 1) is lower semicontinuous on A X B and for

eachv € B, G(-,-,v) is lower semicontinuous on A X B;

(iv) there exists nonempty compact convex set Dy x Dy € A X B and com-
pact set M3 x My C A x B such that for each (x,y) € (A x B) \ (M x
M3), there exist (x','} € Dy x D5 such that F(x,y,x") N —intC s @
or i € D, such that G(x,y, ¢ ) N —intP # @.
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Then, the solution set S3({) is a nonempty compact subset of A X B. Fur-

thermore, Sy is convex.
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ABsTRACT. In this paper, by proposing a new type of Generalized
C-quasiconvexity for the set-valued mappings and using the nonlin-
ear scalarization function £; and its properties, without assumption of
monotonicity and boundedness, some existence results of the solutions
for the symmetric vector equilibrium problems and symmetric scalar
equilibrium problems are established. Moreover, the convexity of solu-
tion sets is also investigated. Finally, some examples in order to support
our results are provided.
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continuity.
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1. Introduction

In 1994, the equilibrium problem was proposed in Blum and Oettli
[8]. Then it has been intensively studied and extended. After that, more
general equilibriumn problems (see [8, 7]) have been extended to the case
of vector-valued bifunctions, namely, vector equilibrium problems, which
provides a unified model of several classes of problems, including, vector
variational inequality problems, vector complementarity problems, vector
optimization problems and vector saddle point problems, and so on (see, for
example, [4, 0, 26, 25, 22, 12]).

The system of vector equilibrium problems, which is a family of equilib-
rium problems for vector-valued bifunctions defined on a product set was
introduced in 2000, by Ansari et al.[5]. Furthermore, its applications in vec-
tor optimization problems and Nash equilibrium problem for vector-valued
functions were presented by the authors. Nowadays, it is well known that
the system of equilibrium problems, systems of vector variational inequal-
ities, system of vector variational-like inequalities, system of optimization
problems, fixed point problems and several related topics as special cases
(see more [, 2, 3, 15, 13, 27, 28, 30, 31, 32]) contained in the system of
vector equilibrium problems.

Date: Received: | Accepted: .
*Corresponding author.
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On the other hand, the symmetric vector equilibrium problem which is a
generalization of the equilibrium problem has been studied by many authors.
A main topic of current research is to establish existence theorems (see,
for example, [20, 16, 24, 18]). Another important topic is to study the
topological properties of the solution sets, as it provides the possibility of
continuously moving from one solution to any other solution.

Recently, reducing a vector optimization problem to a scalar optimization
problem is a useful approach for analyzing it. The classical scalarization
approaches using linear functionals have been already used for studying the
existence of solutions of symmetric vector equilibrium problems (see [19,
36]). On the other hand, nonlinear scalarization functions play a vital role in
this reduction. The nonlinear scalarization function &;, which was commonly
known as the Gerstewitz function in the theory of vector optimization [11,
33], have been used to studying many vector optimization problems. It
is well known that the nonlinear scalarization function £, has many good
properties, such as continuity, sublinearity, convexity, (strict) monotonicity
and so on. These properties have been fully exploited in the literature
to deal with various nonconvex problems with vector objectives, such as
existence of solutions, gap functions, duality, vector variational principles,
well-posedness, vector minimax inequalities and vector network equilibrium
problems. However, to the best of our knowledge, there is no paper dealing
with the existence theorems for the symmetric vector equilibrium problem
by using a nonlinear scalarization method. So, it is natural to raise and give
an answer to the following question :

Question : Can one establish existence theorems for the symmetric vector
equilibrium problem by using a nonlinear scalarization method ?

Motivated by the works mentioned above, by proposing a new type of
C-quasiconvexity for a set-valued mapping together with using a nonlinear
scalarization function and its properties, without assumption of monotonic-
ity and boundedness, some existence results of the solutions for the symmet-
ric vector equilibrium problems and symmetric scalar equilibrium problems
are established. Moreover, the convexity of solution sets are investigated.
Finally, some examples in order to support our results are provided.

2. PRELIMINARIES

Throughout this paper, let X,Y,F and Z be real Hausdorff topological
vector spaces. Let A C X and B C E be nonempty closed convex subsets,
F:AxBxA—2 and G: Ax B x B — 2% be two set-valued mappings.
Let C CY and P C Z be two closed convex pointed cones with intC' #
and intP # . Let Y* and Z* be the topological dual spaces of Y and Z,
respectively. Let C* and P* be the dual cones of C and P, respectively, that
is,

C*={feY" : {(f,y) =20, forally € C}
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and
P ={ge Z":{g,y) =0, for all y € P}.

The two symmetric vector equilibrium problems under our consideration
are as follows: (SVEP) : find (z,y) € A x B such that

F(z,y, —int(), VYu € A,
(SVEP,) {G&iggému& Voe B

and (SVEP;) : find (z,y) € A x B such that

Flz,y,u)N(—intC) =B, Vu € A,
G(z,y,v) N (—intP) =0, Vve B.

It is clear that the solution set of (SVEPy) is a subset of (SVEP1). It is
remark that (SVEP,) is a special problem of the symmetric multivalued vec-
tor quasiequilibrium problems studied by Anh and Khan [1]. They obtained
some sufficient conditions for the solution existence in topological vector
spaces. However, in this paper, we will discuss for the solution existence by
utilizing the nonlinear scalarization method.

(SVEP,)

Remark 2.1 (Special cases). (i) fC =P, f: AxB > Y and g: A X
B — Z are two single-valued mappings,

F(a:,y,u) o {f(u,'y) il f(a':,'y)}, V(;E,'l :u) EAXBxA
and
G(a:,'y,v) - {Q(CIJ,’U) —g(:c,y)}, V(ﬂ:,'y,?)) € Ax Bx B,

then the problem (SVEP3) reduces to the single-valued symmetric vec-
tor equilibrium problem considered by [20, 16, 18]:

(ii) If G = 0 and F(z,y,u) = {f(z,u)} for any (z,y,u) € A x B x A, then
the problem (SVEP,) is the equilibrium problem which was considered
and studied by many authors (for example {21, 10, 5, 7]);

(iii) If ¢ = 0 and 7" is a mapping from A to L{X,Y) where L{X,Y) de-
notes the space of all continuous linear operators from X to Y, and
F(z,y,u) = {{Tz,u — z)} for any (z,y,u) € A x B x A, then the
problem (SVEI,) is the classic vector variational inequality problem
which was introduced by Giannessi [21].

Now, we are going to recall the nonlinear scalarization fuction &, : ¥ — R,
where g € intC, as follows:

Definition 2.2. [12, 33] Given a fixed point g € intC, the nonlinear scalar-
ization function §; : ¥ — R is defined by

§g(y) =min{t e R:y € tg — C}.
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In the special case of Y = R}, C = ]Rﬂ_ and ¢ = (1,1,...,1) € intRﬂr, the
nonlinear scalarization function can be expressed in the following equivalent
form [12, Corollary 1.46]

_ , _ !
&ly) = frslggl{yz},\f’f (W1, y2, .., 5) ERY

The following results express some useful properties of the nonlinear scalar-
ization function &;.
Lemma 2.3. [12, Proposition 1.43) For any fixed ¢ € intC, y € YV and
r € R. Then

@) &) <r e ycrg—intC (ie, &y) = r & y ¢ rg— intC);

(il) &y) <r e ycrg—C;

(iif) &(y) =7 @y € rg — OC, where 8C denotes the boundary of C;

(iv) &4(rq) =75

(v) &, is continuous, positive homogencous, subadditive and convex on Y;
(vi) &, is monotone (i.e., y2 1 € C = &(y1) < &(y2)) and strictly

monotone (i.e., y2 — y1 € —intC = &,(y1) < &q(y2)) (see [12, 33)).

The property (i) of Lemma 2.3 will play a vital role in scalarization.
In fact, as the definition of &, the property (iv) of Lemma 2.3 could be
strengthened to thal

(2.1) Slutrg) =&y)+n, VWyeY,reR
For any g € intC', the set C'9 defined by
Ct={y"eC": {y"q) =1}
is a weak*-compact set of Y* (see [12]). In addition, for the forms of &,

which were used in [29, Proposition 2.2] and [12, Corollary 2.1], the following
equivalent form of §, can be deduced from both of them.

Proposition 2.4. [9, Proposition 2.2] Let ¢ € intC. Then for y € Y,
£o(y) = maxyreca (Y™, y).

Proposition 2.5. |9, Proposition 2.3| £ is Lipschitz on ¥, and its Lipschitz
constant is

1
L:= sup ||y*| € [—,+oo) .
yreca llell

The following Example can be found in [[9], Example 2.1].

Example 2.6. (i) In the scalar case of Y =R and C = Ry, the Lipschitz
constant of £ is L = % (¢ > 0). Then,

a(a) — &)] = gl .

forall z,y € R and ¢ > 0.
(i) £Y =R? and C = {(31,32) €R? : Jyn < wp < 2y} Take ¢ = (2,3) €
intC. Then,

C? = {(y,y2) €R: 2y -+ 3y = 1,31 € [-0.1,2)}.
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Then, Lipschitz constant is L = sup [|y*| = [[(-2,1)| = V5. Hence,
yreCe

1€q(y) — gq(y’” = \/E[y -,
for all 4,9/ € R.
Definition 2.7. Let X and Y be real Hausdorfl topological vector spaces.
A set-valued mapping T': X — 2Y is said to be
(i) closed if its graph
Gr(T)={(z,y) € X xY :y € T(z)}
is closed in X x Y;

(i) upper semicontinuous (u.s.c) if, for every z € X and every open set V
satislying T'(xz) C V, there exists a neighborhood U of z such that

TW) = | T cV;
yel/
(ill) lower semicontinuous (l.s.c) if, for any € X,y € T(z) and any neigh-
borhood V of 4, there exists a neighborhood U of x such that
TNV #§
for all z € U.
Lemma 2.8, [34] A set-valued mapping T : X — 2% is lower semicontinuous

at @ € X if and only if, for any net {z;} such that z; = z and y ¢ T(z)
there exists a net {y;} with y; € T'(z;) such that y; — y.

3

Now we recall some concepts related to the C-convexity for the set-valued
mapping.
Definition 2.9. [36] Let 7': A — 2V be a set-valued mapping, where A is
a nonempty convex subset of X. 1" is said to be
(i) C-conveg if for every 21,2 € A and t € [0,1],
tT(zl) + (1 — t)T'(z2) C T(tzl + (1 —t)z)+ C.
(ii) C-quasiconves if for every 21,23 € A and ¢ € [0, 1], either
T(z1) CT({tz1 + (1 —t)z) + C;
or
T(z2) STtz + (1 —t)za) + C.

In this paper, we introduce a new type of C-quasiconvexity for the given
set-valued mapping which is a generalization of both C-convexity and C-
quasiconvexity.

Definition 2.10. Let 7' : A — 2¥ be a set-valued mapping, where A is
a nonempty convex subset of X. Then T is said to be Generalized C-
quasiconvex if for every zj,29 € D and ¢ € [0, 1), either

(=) (T(tz1 (1= t)m) + O) £ 0;
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or

T(22) n (T(tZ1 + (1 —t)z) + C) £ 0.

Remark 2.11. It can be seen from the above definition that every C-
quasiconvex mapping is a generalized C-quasiconvex mapping. However,
the converse does not hold in general which can be found in Example 3.12
in Section 3.

The following lemma, plays a key role in results reported in many works
(for examples (36, 12]). Furthermore, we need it in the sequel.

Lemma 2.12. [14] Let {X;}ier be a family of nonempty convex sets where
each X; is contained in a Hausdorff topological vector space E;. Let X =
H X;. Foreach i € I, let P, : X — 2%+ be a set-valued mapping such that
iel

(i} for each i € I, Py(z) is convex for all = (2i)ier;

(ii) for each z € X, z; & Pi(x); \

(iti) for each y; € Xi, Pl (w:) = {z € X : Py(x) 2 {v:}} is open in X;;

(iv) for each i € I, there exist a nonempty compact subset N of X and a
nonempty compact convex subset B; of X; such that foreachz € X \N,
there is an i € I satisfying Pi(z) N B; # 0.

Then there exists € X such that Py(z)} =0 for all ¢ € 1.

3. SYMMETRIC VECTOR EQUILIBRIUM PROBLEMS

In this section, we present the scalar symmetric equilibrium problems
which are equivalent to the symmetric vector equilibrium problems (SVEP1)
and (SVEP2). The relationships between the solution sets and the existence
results for them were established.

For any ¢ € intC and ¢’ € intP, we also consider the following scalar
symmetric equilibrium problems: (SSEP,(¢)): find (z,y) € A x B, such

that
(SSEP(£)) { Vu € 4,32 € F(z,y,u) : €(z) 2 0,

Vo € B, 3w ¢ Gla,g,v) : Eplt) > 0
and (SSEP3(€)) : find (z,y} € A x B, such that

£(Fl3,w)) TRy, Vu€ 4,
(SSEP2(0)) { £y(Glz,4,0) C Ry, WweB.
We denote the solution sets of (SVEP1 ), (SVEP3), (SSEP; (¢)) and (SSEP2(¢))
by Sy, Sz, S1(€) and S3(¢), respectively.
Before we give the existence of solutions for (SVEP;) and (SVEP3), we
first need the following simple fact which itlustrates the relationship between
the solution sets S; and S (€).

Lemma 3.1. For any fixed q € intC and ¢’ € intP, the following assertion
is valid:
S1 =51(8).
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Proof. Firstly, we assume that (z’,3) € S;. Hence for any u € A, there
exists z € F(z',y/,u) such that

z ¢ —intC.
Similarly, for any v € B, there exist w € G(z/,y',v) such that
w ¢ —intP.
So, it follows from Lemma 2.3 (i) that for any (u,v) € A x B, there exists
(z,w) such that
£q(2) 2 0 and &y (w) > 0.
Therefore, we immediately get that (z,y") € S51(§). Conversely, assume that

(z',y") € 81(£), then we can prove that (2/,y') € Sy by using Lemma 2.3
with the reverse way of above part. O

Theorem 3.2. Let 4 € X and B C F be nonempty convex subsets, let

C CY and P C Z be closed convex pointed cone with g € intC' # @ and

¢ €intP £ 0. Suppose F: AxBxA—92 and G:AxBxB— 2% are

two set-valued mappings satisfying the following conditions:
(i} for each (z,y) € A x B, F(z,y,2)NC +# 0, and G(z,y,y) NP #6;

(ii) for each (z,y) € A x B, F(z,y,-) is C'—quasiconvex on A as well as
G(z,y,') is P—quasiconvex on B;

(iii) for each uw € A, F(:,-,u) is lower semicontinuous on A x B and for each
v € B, G(,-,v) is lower semicontinuous on A x B;

(iv) there exists nonempty compact convex sets 1)1 C A and Dy C B such
that for each (z,y) € (4 x B)\ (D x Ds), there exist 2’ € D such
that F(z,y,2') C —intC or ¢ € Dg such that G(z,y,y’) C —~intP.

Then the set S; is nonempty.

Proof. For each (x,y) € Ax B, define P, : AxB =24 and Py : AxB — 28
as follow:

Pi(e,y) = {u € 4:Vz € Flo,y,w),6(2) £ R}
and
Py(z,y) ={ve B:Vwec Gz, y,v), {y(w) ¢ Ry }.

We will show that P; and P satisfy all conditions of Lemma 2.12. Firstly, we
prove that Pi(z,y) and Pa(z,y) are convex for all (z,y) € A x B. Suppose
on the contrary that for some (z,y) € A x B, Pi(z,y) is not convex. Then
there exist t1,t2 € [0,1] with & + &3 = 1 and u,ug € Pi(z,y) such that
t1ug +taug ¢ Pi(z,y). This means that

£q(2) € Ry, 3z € F(z,y, tiur + taua).
By assumption (ii), we have either

F(Cﬂ,y, “'1) C F(:E,y, t1uy + t2u2) + G:

or
F(:an;u?) c F(.’B,y,tl'h'q + t2’u‘2) + C.
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Hence, we get either

gq(F(wsy’ul)) - {q(F(SC, Y, tiul + tg’uz)) + gq(C) C R+,
or

§q(F(z,y,u2)) C &g(F(z,y, trun + taug)) +£4(C) C Ry,
which contradicts uy,uz € P1(x,y). Similarly, we can show that Pa(z,y) is
CONVEX.

Next, we want to verify condition (ii) of Lemma 2.12, in fact we have to
show that for each (z,y) € Ax B, z ¢ Pi(z,y) and y ¢ Pa(z,y). For each
(z,y) € A x B, it follows from assumption (i) that F(z,y,z) N C # @ and
G(z,y,y) N P # . Thus, there exists (z,w) € F(z,y,z) x G(z,y,y) such
that

£,(z) e Ry and £(w) € Ry.
Invoking the definitions of Pi(z,y) and Pa(z,y), we have

z ¢ Pi(z,y) and y¢ Py(z,y)

To prove condition (iii) of Lemma 2.12, assume that (u,v) € A x B. Note
that

(3.1) (P;l(u))° = {(z,9) €Ax B3z € Fz,y,u) st &(z) € R}

Let {(muyl)} C (Pl_l(u))c with (:Ei)yi) 1l (wo,yo)- As F(xﬂayﬂ}u) :I'é @) we
choose zg € F(zg,y0,u). By Lemma 2.8, there exists a net {z;} C F(z;, ¥, u)
such that z; — 2. Hence, by using the continuity of £, we get

€q(zi) — &gl20).

The condition (3.1) yields that &,(z0) > 0. Therefore, (z0,30) € (P; ' (u))°
and so (P !(u))® is closed. Thus, we have that P["(u) is open on A. Simi-
larly, we can prove that £ 1(1}) is open on B. This completes the proof of
condition (iii) of Lemma 2.12.

Finally, we have to show that condition (iv) of Lemma 2.12 holds. By
assumption (iv), there exists nonempty compact set Dy x Dy € A x B such
that for any (z,y) € (A x B) \ (D1 x D), there exits ' € Dy such that
F(z,y,2") € —intC or ¥ € Dy such that G(z,y,v') € —intP. Therefore,
for each (z,w) € F(z,y,2') x G(z,4,¥'),&(2) & Ry, or {y(w) ¢ Ry, So,
we immediately obtain, by the definitions of Pi(z,y) and Pi(z,y), that
z' € Pi(z,y) or ¥ € Py(z,y). This completes the proof of the condition (iv)
of Lemma 2.12.

Consequently, the set-valued mappings P; and P, satisfy all conditions
given in Lemma 2.12. So, there exists (Z,y) € A x B such that

Pi(%,5) =0 and Py(%,7) =0

Then, for each (u,v) € A x B, there exists (z,w) € F(Z,¥,u) X G(Z,¥,v)
such that
£,(z) e Ry and &y (w) € Ry.
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Therefore, we have (z,y) € 51(£). Using Lemma 3.1, we conclude that S; is
nonempty. |

Remark 3.3. Comparing Theorem 3.2 and the results obtained in Anh and
Khan [1], we can see that the main difference is that our techniques is based
on the utilizing the nonlinear scalarization method while the mentioned work
employed the relaxed quasiconvexities of the multi-valued mappings ¥'(-,y, )
and G(:,z,-) as the main tools.

Now, we give the following example to illustrate Theorem 3.2.

Example 3.4. Let X =Y = Z =R A=B=10,1,C = P = Ry and
define the mappings F: Ax Bx A — 2Y¥ and ¢ : A x B x B — 2% by, for
any {z,y,u) € Ax B x A and (z,y,v) € Ax B x B,
F(z,y,u) = |z~ u,u] and G(z,y,v) = [y — v, v].
It is clear that (i) given in Theorem 3.2 is satisfied. To establish the assump-
tion (ii) of Theorem 3.2, let uy,ug € A and t1,ty € [0,1] with ¢; +£3 = 1.
Assume that u; < ug, then for each z € F(z,y, u1),
T—u Sz < U,
Then, we can gel that
T — b —toug < z < tiug + tauy,
which means
F("’E!y: ul) c F(i?,'y, t1ug + t2u2) C F(:B:y)tlul + t‘ZUZ) +C

and so F(z,y,") is C-quasiconvex on A. By the same fashion, we can show
that G{(=z,y, ) also is P-quasiconvex on B.

Next, we prove the assumption (iii) of Theorem 3.2. Let u € A be arbi-
trary fixed. Let (2,y") € Ax B,z € F(z',y',u) and U be any neighborhood
of z. Then, for each (z,y) in a neighborhood [z, 1] x B of (z',%'), we have

F(z,y,u) = [z - u,u] 2 [¢' — u,u].
Thus, F(z,y,u}NU 2 {z} # 0, V(z,v) € |2/, 1] x B and so the first statement
of assumption (iii) of Theorem 3.2 is true. Similarly, we can check that the
second one is also true.

Finally, take Dy = [%,1] C Aand Dy = [%,1] C B. Then, for each
(z,9) € (A x BY\ (Dy x Dy), there exit 2’ = 1 € Dy and ' = 1 € Dq such
that :

F(:I:,y,ﬂ:’) = [LE - 1:1] and G(I.L‘,'y,'y’) = [y -1, 1]
Thus, we have
F(z,y,2") € [~-1,0) C —intC and P(z,3,%") C [-1,0) C —intP,

for all (z,y)} € (A x B)\ (D1 % Dy). The assumption (iv) of Theorem 3.2 is
proved.
Now, we will show that 81 # (. Taking (z,y) = (1,1) € A x B leads to

F(m:ylu) = F(lalau) = [1 _u!u])



10 A. P. FARAJZADEH, R. WANGKEEREE, AND J. KERDKAEW

and
G(ZU,'y,'U) = G(l:' 1:1’1) = [1 - U:U]:
which respectively follows that
F(1,1,u) =[1—wu] € —intRy = —intC, Yu € A,
and
G(1,1,u) = [1 —v,v] € —intR} = —intP, Vv € B.
This yields (1,1) € 5. O

We give the following examples to show that all of the assumptions of
Theorem 3.2 are essential and cannot be dropped.

Example 3.5. (Assumption (i) of Theorem 3.2 is essential.) Let X =
Y=2=RA=DB=][0,1],C =P =R, and define the mappings ¥ :
AxBxA—2  andG: Ax Bx B — 2% as

F(z,y,u) = (—u— %,u) and G(z,y,v) = (—v — %,v),

Firstly, to show that assumption (i) does not hold, take z =y = 0. So, we
have that

1

F(ﬂ?,y,ﬂ]‘) NnC = F(0,0,0) ﬂ]RJr 5 (—5,0) ﬂR+ = m
and )

G(miy!y) NP = G(O,U,O) NRy = (“5,0) NRy = 0.
We can verify all of the other assumptions of Theorem 3.2. However, the
problem SVEP; has no solution, i.e. S1(F,G) = @ since for each (z,y) €
A x B, there exists (u,v) = (0,0) € A x B such that

F(z,y,u) = F(z,y,0) = (—%,0) C —intlR; = —intC,
and 1

G(z,y,v) = G(z,y,0) = (—5,0) C —intRy = —intP.
The reason is assumption (i) of Theorem 3.2 is violated.

Example 3.6. (Assumption (ii) of Theorem 3.2 is essential} Let X =Y =
Z=R,A=B=0,1],C = P =R, and define the mappings F: A x B X
A2 and G: Ax Bx B — 2% by

1
F(:c,y,u) _ {5}: U=z,
(—u-1,u—1], otherwise,
and
{z}, =
Gz, y,v)=¢ 2" =u

(—v—-1,u—1], otherwise.
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Tt is clear that assumptions (i}, (iii) and (iv) of Theorem 3.2 are satisfied.
However assumption (ii) of Theorem 3.2 is violated. Indeed, let z = y =
1 Jt=1 5, w1 = 1 and uy = 0. So, we have that

F(malynul) :F(H a 1) = (—2:1]a

F(a:,y,uz):F(l 1 2.0 =(-1,0]

and 111, 1
Pz, y, tiuy + tauz) = F(2 5 2) {5}-
Thus, we have that
F(ﬂ%y; U1) ,¢_ F(a:! Yy, tug + t2'b!.2) + C)
and
F(m‘ly’ U"Z) fq F(,‘I!,’y, tiur + t2u2) o C.
Note that S;(F,G) = 0. Since for each (z,y) € A x B, there exists (u,v) =
(0,0) € A x B such that ‘
F(z,y,u) = (-2,-1] C —intR} = —intC,
and
G(z,y,v) =(—2,—1] C —intR} = —intP.
Thus, assumption (ii) of Theorem 3.2 cannot be dropped. O
Example 3.7. (Assumption (iii) of Theorem 3.2 is essential) Let X =Y =
Z =RA =B =[-1,1,C = P = R; and define the mappings F :
AxBx A2 andG:AxBxB— 2% as

F(z,y,u) = {{m uh, . 250,

[-1 515 otherwise,
and
v v} y <0,
G(-T, Y, U) = { , ¥
- 5, 5),  otherwise,

To show that assumption (iii) of Theorem 3.2 is not satisfied, take z’ =
i = 0,u = 1. Then, we have F(z',y/,u) = {—1}. Let z € F(z',y/, u), then
(—2,-3) is a neighborhood of z. Thus, for each neighborhood V' of (z',3')

we have
3 1

1 11
(-5 —5)NV (—— —5)N[=5:3) =0

for all (z,y) € V withz>2'=0.In fact, it is not hard to show that all of
other assumptions in Theorem 3.2 arc satisfied, especially assumption (i) and
(i), which are clear by the definitions of F' and G. However, $1(F,G) = 0.
For each (z,y) € A x B, consider the following two cases:

if z <0, then F(z,y,u) = {z — u} C —intRy,Vu € (0,-1],

if z > 0, then F(z,y,u) = [-3,%) C —intRy,Vu € [ 1,0]. The reason is
assumption (iil) of Theorem 3.2 is dropped. L
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Example 3.8. {Assumption (iv) of Theorem 3.2 is essential) Let X =Y =
Z=R,A=B=[0,1],C = P =R, and define the mappings I : A X B X
A-2Y and G: Ax Bx B 2% as

F(w,y,u)={

(—wu—:c,:cu), 113:'3)'7&0,
[-1,zu), otherwise,
and
G(.’L‘,y,v) _ (—yv—y,yv), :L':y?éO,
[~1,yv), otherwise.

‘We can show that almost all of the assumptions of Theorem 3.2 are satisfied,
unless assumption (iv). To show that assumption (iv) of Theorem 3.2 is
violated, for any nonempty compact set Dy X Dy C A x B, we take (z,y) =
(1,1) € (A x B)\ (D1 x Dg). Then, for each (2,y) € (D1 x Dy), we have

F(:Ev Y, :Bf) = (_wl AL, CEI) ’,(Z —int]R_,_,
Glz,yy) = (-y' — L) € —intR,.

Then, the problem SVEIP’| has no solution since for each (z,y) € A x B,
there exists (u,v) = (0,0) € A x B, such that

= C —intR = 0
Fla,y,u) = (—z,0) C .mt 4+, T y% ~
[-1,0) € —intRy,  otherwise,
and
o C —intR S 0
G(ﬂ?,’y,'l})Z ( ylo) = .lllt -+ z y7"_ ’
i—1,0) € —intR,y,  otherwise.
Hence, assumption (iii) of Theorem 3.2 is essential. O

Now we shall discuss about a link between the solution sets Sy and Sa(£)
for (SVEP3).

Lemma 3.9. For any fixed g € —intC and ¢’ € —intP,
Sz = 82(¢).
Proof. Firstly, we assume that (z,y') € So(F, ), which means
F(z' v, u) N (—intC) =@, forallue A,
and
G(z',y',v) N (—~intP) =0, forallve B.
So, by Lemma 2.3 we obtain that for any (u,v) ¢ A x B,
z ¢ —intC and w ¢ —intP
for all (z,w) € F(z',y',u) x G{z',y',v). So, it follows that, for any pair
{u,v) € A x B,
£q(2) € Ry and £y (w) € Ry
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for all {z,w) ¢ F(2',v',u) x G{z',y/,v). Therefore, we get by the definition
of &, and £, that

EAF( Yy, u) CRy, Vue A

and
(G, Y, v)) C Ry, Yo € B.
Hence (2, y") € S3(£). Conversely, assume that (z',y") € S2(£), then we can

prove that (z,y') € Sy by using the same argument given in the proof of
Lemma 2.3. |

Now a result on existence of solutions of the (SVEP) is verified by making
use of the nonlinear scalarization function.

Theorem 3.10. Let A C X and B C E be nonempty convex subsets, let
C CY and P C Z be closed convez cones with g € iniC # § and ¢ €
intP £ 0. Suppose F: Ax Bx A —=2Y and G: Ax B x B — 272 are two
set-valued mappings which satisfy the following conditions :

(i) for each (z,y) € Ax B, F(z,y,2) C C and G(z,y,y) C P;

(ii) for each (z,y) € Ax B, F(x,y,-) is generalized C-quasiconvex on A as

well as G(z,y,+) is generalized C-quasiconver on B

(iii) for each (z,y,u) € A X B x A with F(z,y,uw) N —iniC £ 0,

z € Fz,y,u) =z C C —iniC,
and also for each (z,y,v) € A x B x B with G(z,y,v) N —intP # 6,
w € Gz, y,v) = w— P C —intP;

(iv) for each u € A, F(-,-,u) is lower semicontinuous on A X B and for
each v € B, G(,,v) is lower semicontinuous on A X B;

(v) there extsts nonempty compact conver sets Dy € A and Dy C B such
that for each (x,y) € (Ax B)\ (D1 X D), there ezxist ' € D1 such that
F(z,y, YN —intC # O or v € Dy such that G(z,y, 3/} N —intP #£ .

Then the solution sef Sy is nonemty.

Proof. Let the set-valued mappings P, : Ax B-— 24 and P,: Ax B — 27
be defined by, for any (z,y) € A x B,

Pl(:csy) = {’UL € A: Eq(F("Eiy’u)) ,¢— RJr}
and

Py(w,y) = {v € B: {(G(z,y,v)) L R+}-
We first show that P and Py satisfy all the conditions given in Lemma 2.12.
Firstly, we prove that Pi(z,y), P2(z,y) are convex for all (z,y) € A x B.
Assume on the contrary that Pj(z,y) is not convex. Then there exist ¢1,12 €
[0,1] with ¢; +¢2 = 1 and uy,uy € P (=z,y) such that tyu1 + tous ¢ Pi(z,y),
which gives that

Eq(Fz,y, tiur + taug)) CRy.
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By assumption (ii), we have either

F(z,y,u1)() (F(iﬂ,y,tlul + taug) + 0) # 0,
or
F(z,y,ug) ﬂ (F(:ﬂ,y, tiug + toug) + C') # 0.
It follows that, there is z € F\(z,y, f1u1 + {aug) such that either
z=2z—c, Iz € F(z,y,u1), e € C
or
z=29—¢, dzp € F(2,y,u2), 3¢ € C
Thus, by assumption (iii), we have either

€q(z) = §(z1 — ¢) <0,
or

€q(2) = &gz — ) < 0.
This contradicts to fyuy +taus ¢ Pi(z,y). Similarly, we can show hat Py (z, y)
is convex.

Next, we verify condition (ii) of Lemma 2.12. In fact, we have to show

that = ¢ Pi(z,y) and y ¢ Pa(z,y). Let (z,3) € A x B. By assumption (i),
for each (z,w) € F(z,y,z) x G(z,y,y). This says z € C and w € P, and so

z ¢ —intC and w ¢ —intP.
Hence, by Lemma 2.3 (i), we get that
Eq(z) € Ry and £qf (w) e Ry
for all (z,w) € F(z,y,2) x G(z,y,y), which means
€q(F(z,y,7)) SRy and Ey(F(z,y, 7)) SRy
It follows that, for all (z,y) € 4 x B,

x ¢ Pi(z,y) and  y¢ Pz,y).

To verify condition (iii) of Lemma 2.12, assume that {u,v) ¢ A x B, Note
that

(P;l(u))c = {(m,y) € Ax B &(F(z,u,u) SR, }.

Let {(zi,9:)} € (P} (w))® with (zi,%) — (z0,¥0). By assumption (iv}),
for each zp € F(xo,vo,u), there exist z; € F(z;, 4,u) such that z; — 2.
Since & (F(z;,yi,u)) © Ry, &(z) € Ry, By the continuity of §;, we get
£4(z0) € Ry. As zg is an arbitrary, we obtain & (F(zo,y0,u)) C Ry. Thus
(zo,70) € (P ()¢, and so (P (u))° is closed. Hence, we have that Py w)
is open on A. Similarly, we can prove that P, () is open on B. Finally, we
have to show that condition(iv) of Lemma 2.12 is satisfied. By assumption
(v), there exist nonempty compact sets D1 x Dy C A x B such that for any
(z,y) € (A x B)\ (D1 X D2), there exists 2’ € D such that F(z,y,z') N
—intC £ O or there exits ¥/ € Dy such that G(z,y,v’) N —intP # §. Thus,
for any (z,7) € (A x B) \ (D1 x Dy), we obtain that &(F(z,y,2)) &
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Ry, for some 2’ € Dy or £(G(x,y,¥')) € Ry, for some y' € Dy. So, we
immediately obtain by the definition of Pj(z, %) that

x' € Pi(z,y), for some 2’ € Dy

or
v € Py(z,y), for some ¥ € Ds.
Therefore, we proved condition (iv) of Lemma 2.12 and so P| and P; satisfy

all conditions of Lemma 2.12. Hence, we can conclude that there exists
(Z,7) € A x B such that

P(z,4)=0 and P(z,y) =0
This means there exists (i,ﬂ) ¢ A x B such that
E(F(z,gu) CRy, Vue A
and
£r(G(T,7,v)) C Ry, Vv e B.

Therefore (Z,7) € S2(€) and so by Lemma 3.1 we completes the proof that
Sy is nonempty. |

Remark 3.11. Comparing Theorem 3.10 and the results obtained in Anh
and Khan [1] and Lemma 2.3 in Zhong, Huang and Wong [30], we can see
that the main difference is that our techniques is based on the utilizing the
nonlinear scalarization method. Further, the C-quasiconvexity of the map-
ping F(z,y,-) and G{z,y,) are weakened by generalized C-quasiconvexity.
Hence, Theorem 3.10 can be applicable in the following situation while the
aforecited results do not work as in the following example.

Example 3.12. Let X =Y = Z =R,A= B =[0,1,C = P = Ry and
define the mappings F': A x B x A —2¥ and G: AxBxB =27 as

< r
(PO (wy,u+ 1}, u < x;
[—'U.-, 1): T < U
and
< .
G('T’!y)t"): (v,v+1), U_y’
[—v,1), ¥y <wv.

Firstly, we show that £ is not C-quasiconvex. Taking z = %, up = Liug =0,
and ] =ty = %, we have the following relations

1
Fo, ) = (O, € (5,+0)
13
= (5: 5) + Ry = F(z,y, trug + taug) + C

and

1
F(z,y,m) =[-1,1) ¢ (E,-I—oo) = F(z,y, tius + taug) + C.
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Hence, F is not C-quasiconvex. However, all assumptions given in Theorem
3.10 are satisfied. Firstly, it is clear that the assumption (i) given in Theorem
3.10 is satisfied. Next, we shall establish the assumption (ii). To this end,
for fixed (z,y) € A x B, let ug,us € A and #1,¢2 € [0,1] with #; +43 = 1.
Assume that u; < us. Then, we have the following three cases :

Case I: Ifu; < up <z then tyuy + taug < up < ¢ and

F(:’Ei 'y:'U'Z) n (F(ZE, Y, 1wy + t2u2) + O)

= (’U,z, thy + 1) N (t1u1 + touo, +00) 7& 0.
Case II : If w3 < 2 < ug, then we have ecither tju) + fauz > z or

t1u1 + toua < z. Thus, we have either
Fla,y,u) N (F(:s,y, t111 + tous) + C)

=3 [_u2; 1) N [_tlul — laug, +OO) :/'é 01
or
F(z,y,u) N (F(m,y,tlul + tausg) + C)

= [—ug, 1) N (t1u1 + taug, +oo) # B,
Case IIT : If z < uy < ug, then tyuy + f2ue > z, and hence

F(z,y,uz)N (F(5E1 y, trug +iaun) + 0) = [—ug, 1) N[—t1u1 — taug, +00) # 0.

Hence, we have that I is generalized C-quasiconvex. Similarly, we can show
that G is generalized C-quasiconvex.

In order to verify assumption (iii), notice that for each element u € A,
F(z,y,u) N —intC # 0 if u > z. Assume that z € F(z,y,u), then z also
belongs [—u, 1) C [—1,1). It is not hard to see that z—C € —intC. Similarly,
we can show that & also satisfies this assumption.

Next, to verify assumption (iv) of Theorem 3.10, let (z',y') € A x B and
ze F(d ¢ u)

Case I : If u < 2, then 2 € (a’, 2" +1). Let U be arbitrary neighborhood
of z. For each (z,y) belongs to neighborhood (u,z'] x B of (z,4'), we have

Flz,y,u) 2 (2,2 +1), Vz € (u,z].

Hence, I'(z,y,u) NU £ 0, Y(z,y) € (u,2] x B.
Case IT : If u > &', then z € [—u,1). Let U be arbitrary neighborhood
of z. For each (z,y) belongs to neighborhood [z, 1] x B of (z',%'), we have

Flz,y,u) = [-u,1) 3 z.

Hence, F(z,y,u) NU #£ 0, ¥(z,y) € [¢/,1] x B. Therefore, F(,,u) satisfies
the condition (iv) on A. Similarly, G(., -, v} satisfies the condition (iv) on B.

Finally, we show that the assumption (iv) of Theorem 3.10 holds, take
D1 = [3,1] C A and Dy = [3,1] C B. Then, for each element (z,y) belongs
(A x B)\ (Dy x Dy), there exit ' =1 € D1 and y' = 1 € Dg such that

F(z,y,2") N —intC = [~1,00) N —intRy. = [-1,0) # 0.
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Therefore, all assumptions in Theorem 3.10 are satisfied. In fact, it is easy
to see that (1,1) € S..
(]

4. CONVEXITY OF THE SOLUTION SET OF SYMMETRIC VECTOR
EQUILIBRIUM PROBLEM.

In this section we study the convexity of the solution set Sy. The sufficient
conditions for the convexity of Sy were established. Now, we recall the
following useful features, which lead us to obtain our results in the sequel.

Definition 4.1. [17] Let K be a subset of a topological vector space K. A
set-valued mapping F : K — 2% \ {0} is said to be a KKM-mapping if for
any {z1,29,...,2,} C K,

n
20| S TINGE UF(M),
i=1
where 27\ {} stands for the family of all nonempty subsets of F, while the
notion co{x1, %2, ..., } denotes the convex hull of {z1,z3, ..., %5}

The following well- known lemma plays vital role in our results in this
section.

Lemma 4.2. [17] Let K be a subset of a topological vector space E. A
set-valued mapping F' : K — 2% be a KKM-mapping with closed values in
K. Assume that there exists a nonempty compact convex subset B of K

such that ﬂ F(z) is compact. Then,
el

ﬂ F(z) # 0.
zC i
Theorem 4.3. Let A C X and B € FE be nonempty convex subsets, let
C CY and P C Z be closed convex pointed cone with ¢ € intC # @ and
g eintP#0. Suppose F: Ax Bx A—2¥ and G: Ax Bx B — 2% are
two set-valued mappings which satisfy the following conditions:
(i) for each (z,y) € A x B, F(z,y,z) C C and G(z,y,y) C P;
(ii) for each (z,y) € A X B, F(z,y, ) is C— convex on A as well as
G(z,y, ) is P— convex on B.
(iii) for each u € A, F(:,-,u) is lower semicontinuous on A X B and for
each v € B, G{(-,-,v) is lower semicontinuous on A x B;
(iv) there exists nonempty compact convex set Dy x Dy € A X B and
compact set M; x My € A x B such that for each (z,y) € (A X
B)\ (M1 x Ma), there exist (z/,y') € Dy x Dy such that F(z,y,z') N
—intC' # B or ' € Dy such that G(z,y,7') N —intP # 0.
Then, the solution set S2(£) is a nonempty compact suhset of A x B. Fur-
thermore, S is convex.
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Proof. let ¢ € —intC, and ¢’ € —intP. Define a set-valued mapping 7' :
Ax B> Ax Bby

T(z,w) = {(z,y} € AX B : &(F(z,u,2)) € Ry, &g(Glz,y,w)) € Ry}

Note that Sa2(€) = ﬂ T(z,w). We assert that the set-valued map-
(zw)EAXB

ping T fulfils all the assumptions of Lemma 4.2, Firstly, we will show that

is a KKM-mapping. Suppose on the contrary, then there exists a subset

{(z1,y1); -, (Tn,yn)} of A x B and (z,w) € A x B such that

(z,w) € co{(@1,51)s ons (Tny ¥n) } \ U T(2i, yi)-

Hence, there exist ay, ..., @, € R4 such that

Za,—l and (z,w) = Za1mz;yz

Thus, for all i = 1,2, .oy 1, we have

(4.1) Eg(Flzyw,z:)) € Ry or &u(Glz,w,u)) € Ry
By assumption (ii), the C-quasiconvexity and P-quasiconvexity of F' and G
are fulfilled respectively, and so
F(z,w,2;) C F(z,w,2)+C, forsomei=1,2,..,n
and
G(z,w,y:) C G(z,w,w) + C, forsome¢=12,..,n
Hence, there is i € {1,2,...,n} such that
‘£Q(F(z!wsmi)) C fq(F(z,w, z)) +'£Q(C) C Ry,
and
G({(z,w,9:)) C € (G(z, w,w)) + & (C) € Ry
This contradicts 4.1, and so T is a KKM mapping. Next, we will show that
for each (z,w) € A x B, the set T'(z,w) is closed. Let (2,w) € A x B and
{(zi;,w;)} C T(z,w) be a net converges to {z1,wa). Since (z,w;) € T(z, w)
for all 7, we have
5q(F(Zi: Wi, Z)) - IR-I- and £q'(G(zi| 'LU;',,’bU')) C R—F:Vi'
Let (hq, ha) € &,(F (21, w2, 2)) x £ (G (21, w2, w)). Then there exists the pair
{(29,w3) € F'(21,ws,2) X G(z1,ws,w) such that
(M, ha) = (€qlz2), Eg (w3)).
By assumption (iii), there is (t;, 8:) € F{2;,w;, 2} x G(z;, w;, w) such that
(ti,8:) = (22, ws).
Since (t;, ;) € F(z;,w;, z) X G(z;,w;, w) for all 4, we have
£q(t) > 0 and &y (s;) = 0 for all 4.
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Therefore, by the continuity of £, and &, we get
hy >0 and hy > 0.

Since (hy, hy) is arbitrary element belongs to &,{F (21, wa, z)) xEy (G (21, wa, w)),
we get

£ (F(z1,w0,2)) CRy and £y(G(z1,wa,w)) C Ry
Hence, (z1,w) € T(z,w) and so T{z,w) is closed for any (z,w) € A x B.
Now, all the assumptions of LLemma 4.2 are fulfilled and so S3(§) is nonempty.
Further, it follows from assumption (iv) that

SQ(E) Q ﬁ.{] x MQ,

and so it completes the proof that S2{(£) is a nonempty compact subsct of
A x B. By Lemma 3.9, S; is also nonempty and compect. Finally, the C-
convexity of I'(z,y, ) on A and the P-convexity of G(z,y, ) on B imply the
set T'(z,w) is convex for all (z,w) € A x B. Hence, the set S2(£) is convex
(The intersection of the convex sets is convex.). Therefore, by Lemma 3.9,
S, is also convex. This completes the proof. O

5. CONCLUSIONS

In this paper, we considered the problems (SVEP;), (SVEP,), (SSEP1(£))
and (SSEP5(&)). By introducing the new type of C-quasiconvexity for a set-
valued mapping and using a nonlinear scalarization function §; and its prop-
erties, we obtianed some existence results of the solutions for the symmetric
vector equilibrium problems and symmetric scalar equilibrium problems. In
fact, our studying is without assumption of monotonicity and boundedness.
Moreover, the convexity of solution sets are investigated. Finally, some ex-
amples in order to support our results are provided.
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