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Executive Summary

The aim of this note is to establish the characterization of nonemptiness and boundedness
of the solution set of equilibrium problem with stably pseudomonotone mappings. Our result
extends and improves recent results in literature for monotone equilibrium problems.

Lemma: Let K be a nonempty, closed, and convex subset of a real reflexive Banach space
X. suppose that f satisfies the conditions ( f1)-(f1). Then for any given £ € K* the solution of
the problem x € K is a solution of the problem

find z € K such that f(z,y) — ({,y—2) >0, Vy € K (0.0.1)
if and only if it is a solution of the problem
find x € K such that f(y,z) — ({,2 —y) <0, Vy e K (0.0.2)

In addition, if K is bounded, then S and S are solvable.

Theorem : Let K be a nonempty, closed, and convex subset of a real reflexive Banach
space X with int K* # (). Suppose that f satisfies the conditions ( fy)-(fs). Then the following
statements are equivalent:

1. 8% is a nonempty and bounded.
2. 8P is a nonempty and bounded.
3 Frt

Remark : Theorem 3 discusses the characterization of nonemptiness and boundedness for
SP and SP, which is more general than the result in Thearem 3.1 of [7] in the case that f is
relaxed to the stably pseudomonotone mapping.
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Abstract

The aim of this note is to establish the characterization of nonemptiness and boundedness of the
solution set of equilibrium problem with stably pseudomonotone mappings. Our result extends
and improves recent results in literature for monotone equilibrium problems.
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Chapter 1

Introduction

Let KX be a nonempty, closed and convex subset of a real reflexive Banach space X and let
f: K x K — RU {400} be a bifunction. The equilibrium problem [1] is to find Z € K such
that

flz, 1) >0, Vye K (EP)
and its dual problem is to find & € I such that
fly,z) <0, Vy € K. (DEP)

The solutions sets to (EP) and (DEP) are denoted by S* and S, respectively.

It is well known that the equilibrium problem provides a unified model of several classes
of problems, including variational inequality problems, complementarity problems, optimization
problems. There are many papers which have discussed the existence solution to the equilibrium
problem (see [1, 3, 4, 2] and references therein). In order to solve the problem when K is
unbounded, many authors studies the coercive assumption. Strict feasibility condition [5, 6] is
one of the most useful tool to characterize the nonemptiness and boundedness for the solution
set of variational inequality problem. Recently, the concept of strict feasibility was extended to
equilibrium problem by Hu and Fang [7]. They proved prove that under suitable conditions, the
monotone equilibrium problem has a nonempty and bounded solution set if and only if it is

strictly feasible.
Motivated and inspried by Huand Fang [7] and the idea of stable pseudomonotonicity in [8, 9],

the purpose of this paper is to establish the characterization of nonemptiness and boundedness
of the solution set of equilibrium problems with stably pseudomonotone mappings.

Let K be a nonempty, closed and convex subset of a real reflexive Banach space X with
dual space X*. The dual cone I{* of K is defined as

K*={fcX {2} >0, Vo K}

The barrier cone barr K of K is defined as

barr K := {f € X" sup(€,2) < +oo} :

zeK

It is well-known that — K™ C barr I. The asymptotic cone of K, denoted by K, is defined

by
Ky :={de X :3\, — 0,3z, € K with Ay — d},

where “—"means weak convergence. It is known that, for given z € K,

Ko ={deX:z+tde K, ¥Vt > 0}.

1



2 CHAPTER 1. CHAPTER 1 : INTRODUCTION

The following interesting results can be founded in [10, 6].

Let K be a nonempty, closed and convex subset of a reflexive Banach space X. Then K is
well-positioned if and only if int(barr K) # ). Furthermore, if K is well-positioned, then there
is no sequence {z,} C K with ||lz,|| — oo such that z,, /||z,|| — 0.

Let K be a well-positioned, closed, convex subset of a real reflexive Banach space X and
{A,} be a decreasing sequence of closed convex subsets of K with A := N2, A, nonempty
and bounded. Then A, is bounded for some n.

Let K be a well-positioned, closed, convex subset of a real reflexive Banach space X, h :
K — R U {400} be a proper convex lower semicontinuous function, and 71,72 € R with
71 < 1q. If the level set {& € K : h(z) < 1} is nonempty and bounded, then so is the set
{x e K : h(z) <r}.

The concepts of feasibility and strict feasibility for equilibrium problems can be introduces
by means of asymptotic cone.

We say that (EP) (or (DEP)) is feasible [11] if the set Fx = {z € K : f(z,z +d) >
0, Yd € Ky} # . We say that (EP) (or (DEP)) is strictly feasible (7] if the set Fg : {x € K :
flz,z+d) >0, Vd € K, \{0}}.

A bifunction f : K x K — R U {+0c0} is said to be monotone on K, if Vz,y € K,
f(z,y) + f(y,z) < 0; pseudo-monotone on [, if Va,y € K, f(z,y) > 0 = f(y,z) < 0.
A pseudomonotone bifunction f is said to be stably pseudomonotone on K wrt. U C X%,
dueto [9, 8],ifVa,y € KandVu* € U, f(z,y) — (§y—2) 2 0= f(y,2) — (§,2 —y) <0
It is well-known that every monotone mapping is a stably pseudomonotone mapping.

The following example illustrate that the converse inclusion may not be true.

Example 1. Let X = Rwith X* =R and K = [3,4]. Define f : K x K — RN {400} by
f(z,y) =y(x—y), Vx,y € K. (1.0.1)
Then f is stable pseudomonotone on K w.rt. [1,2] but not monotone.

Proof. We first show that f is stable pseudomonotone on K w.rt. [1,2]. For any z,y € K and
£e[L,2]If

= (-6 -2).
Theny —xz > 0,since z — & > 0forall z € K and & € [1,2]. It then follows that

fly,2)—§z—y) = z(z—y)-&—y)
= (@=&)z—-y <0

Hence, f is stable pseudomonotone on K wurt. [1,2].
Finally, it easily seen that f is not monotone. Indeed, for any z,y € K

f@y) + fy,2) =yly—2) +a(@—y) = (- y)* > 0.

We collect the following well-known KKM-Fan lemma.
[12] Let M be a nonempty, closed and convex subset of X and F': M —» 2M be a set-valued
map. Suppose that for any finite set {1, ..., 2, } € M, one has



L conv{zy,..., 2.} C UL, F(z;) (e, Fis a KKM map on M);
2. F(z)is closed for every x € M; and

3. F(2) compact for some z € M.

Then [ ), Fi2) # 0.
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Chapter 2 !
Main results

In this section, we present the characterization of the solution for (EP) and (DEP).
Before proving our results, we list the following assumptions hold.

(f1) Forany z € K, f(z,2) > 0

fle +tly—z),x)

(f2) Forany z,y € I and « € {0, 1], lima—4 ; = —f(z,y).

(f3) Forany z € K, the map y — f(x,y) is convex and lower semicontinuous.
(f4) f is stably pseudomonotone on K w.rt. I{*.

The following lemma shows that under suitable conditions, the solution set of (EP) and (DEP)
are the same.

Lemma 2. Let K be a nonempty, closed, and convex subset of a real reflexive Banach space
X. suppose that f satisfies the condlitions ( f1)-(f1). Then for any given & € K* the solution of
the problem x € K is a solution of the problem

find 2 € K such that f(z,y)—(§,y—2) >0, Vy € K (2.0.1)
if and only if it is a solution of the problem

find x € K such that f(y,z) —{{,z—y) <0, Yy e K (2.0.2)
In addition, if K is bounded, then S* and SP are solvable.

Proof. Let 2 be a solution of (2.0.1). Then f(z,y) — (£, ¥y — x) > 0 Vy € K. By condition (fy),
x is a solution of (2.0.2). Conversely, let 2 be a solution of (2.0.2). Then f(y,z) — (£, —y) =
0Vy € K. Forany z € K, set z; ;== + t(z — z), forany ¢ € (0,1). Then z, € K, because of
the convexity of K. It follows from ( f1) that

fla, z) {6z —z) = H¢ 2 — 2).

Condition ( f3) give that — f(z,2) < (§,2 — z). Hence, x solve (2.0.1).
Next, we prove that S¥ and S are nonempty provided that K is bounded. Define F,G :
K — 2K by

Fly)={ze K: f(z,y) 20}, Vye Kand G(y) ={z € K : f(y,z) <0}, Vy € K.

5
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Then, G(y) is closed, convex and compact for all € K. It follows from Lemma 1 that

() Fly) =) G #0.

yek yekK

Then there exists 7 € I which solve (EP) and (DEP). O []

Theorem 3. Let I be a nonempty, closed, and convex subset of a real reflexive Banach space
X with int K* # (. Suppose that f satisfies the conditions (f1)-(f1). Then the following
statements are equivalent:

1. S is a nonempty and bounded.
2. 8P is a nonempty and bounded.

3. Fr #8

Proof. It follows from Lemma 2, (i) < (i) in the case where £ = 0. Define a function g :
K x K* — Rby

g(x,€) :=sup fy,2) — (&2 — y)’ Vz € K,£€ K*.
yeK max{1, [|y||}

It follows from (f3) that g(, &) is convex and lower semicontinuous function and g(z) > 0 for
all z € K and £ € K*. Define the set A := {z € K : g(z) < 0}. Then by Lemma 1, A is

nonempty, closed and convex set. Clearly, A is the solution set of (DEP). By Lemma 2, A is also
the solution set of (EP). Let & € int K*. For every positive integer n, define

—

W= {’L € K:g(z,0) < %(f',(c)} .

Then {A4,} is a decreasing sequence as n — 4oco of closed and convex subsets of K and
A =2, A;. Notice that barr K has a nonempty interior, then K is well-positioned.
(ii) = (iii) Suppose that A is nonempty and bounded. It follows from Lemma 1 that there exists

1
ng such that A, is nonempty and bounded. Setting r := ¢ (zg, —§’> for some 29 € A,,. We
n

/|

then have r > 0. We now consider the following set Cp := {:z: € K:g(z,0) < —(£2) + 7‘}.
Mo

Then by Lemma 1, Cj is nonempty and bounded. After calculating we have, for any y € K,

1
Fli,4 f(y’”")"<n_of’”'"y>_1 (Gr—y) _1

max{L, lyll} max{1, [[y||} - nomax{L[lyll} ~ no

(& ),

1 1
because of ¢ € int K*. Thus g(z,0) — g (az, n—é’) < —(¢, ), and so the set
g o

is nonempty, closed, convex and bounded.
Set
Ki=fpeK:|zg| £} i=12..



and

1
Hy,2) = (&2 =)
gi(z) = sup
@ e L Tl
Then g;(x) is convex and lower semicontinuous on bounded subset K; for all # € N and

gi(xz) > 0for all z € K;. For every i € N, it follows from the prove in Lemma 2 that there are
1

z; € K such that f(y, 2;) — — (&', @; — y) <0, Yy € K;. This implies that g;(x;) = 0. Define
N

D; :={z € K : gi(z) < r}. Itis not hard to check that {D;}$, is a decreasing sequence

of nonempty, closed and convex subsets of K and C' = (2, D;. Since C'is nonempty and

bounded, it follows from Lemma 1 that there exists iy, € N such that D, is nonempty and

bounded. Then there exists a positive integer L such that sup,ep, [|Z[l < L and i < L. since

gu(zr) =0,2, € D, C Dy, and so z, € K7,

Foranyy € K and t € (0,1), setting y, := (1 — t)a; +ty € K, we have y, = z, as
t — +0. It follows from linearity that, forall y € K

[y, @r) N 1

, Vo e X.

1
Flye, z1) — =K 2=y} <0 = =X,z —y) <0
N ¢ Mo
. \ /7
By (fs), we have f(zr,y) > —(&,y —ay) forally € K.
(2N
1
For any d € K\ {0}, we known that 2, +d € K, and so f(zp, 2z, +d) > —{(¢',d) > 0,

o

since £ € int K(*. Therefore, x, € F}.

(i) = (i) Suppose that Fi # (. Then there exists xg € K such that f(zq,z¢ + d) >
0, Vd € K, \{0}. Setting D == {x € K : f(zg,2) < 0}. It is not hard to check that D is
nonempty, closed and convex. We claim that D is bounded. If not, there exists z,, € D with
|z ]| = 4oo. Without loss of generality, we can suppose that @, /|2, || = d € K. Since K
is well-positioned, from Lemma 1 we have d # 0. It follows from @, € D that f(zg, z,) < 0.
Since f is convex and lower semicentinuous at second variable, it follows that

. 1
f(@o, 20 + d) < liminf f (:L‘U, To + —(x, — ZL‘O)> <0,

a_¥es [l
which contradicts 2y € F5 . Thus D is nonempty, convex and weak compact. Define
D,:={z€eD: f(z,z) >0}, Vz€ K.
Thus
€S’ & ren,exD,.

Define
D,={zeD: f(z,2) <0, Vz € K}.

Then D), is nonempty, closed and convex. By a similar argument as in the proof of Lemma 2,

we can show that
Meer D), =MexD,.

For any finite set {z;: 1 =1,2,...,n} C K, let M = conv{D U {2, z3,...,2,}}. It is known
that M is weakly compact. By Lemma 2, there exists £ € M such that

fly,&) <0, Yy € M.



8 CHAPTER 2. MAIN RESULTS

From 2y € D C M, we have f(xp,2) < 0and so £ € D. Furthermore, we have
f(Zi,.'fJ) pd 07 1= 1,2,.--,71,

because z; € M. Therefore & € N, D, , and so {D), : z € K} has the finite intersection
property. Since D is weakly compact, we get S¥ = M,ex D, = Nyex D), # 0. Then S is
nonempty. Since D is bounded and ST = N,ex D, C D, we have S* is bounded. The proof
is complete. U ]

Remark 4. Theorem 3 discusses the characterization of nonemptiness and boundedness for 57
and P, which is more general than the result in Theorem 3.1 of [7] in the case that f is relaxed
to the stably pseudomonotone mapping.
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Abstract

The aim of this note is to establish the characterization of nonemptiness and bounded-
ness of the solution set of equilibrium problem with stably pseudomonotone mappings.
Our result extends and improves recent results in literature for monotone equilibrium
problems.

Keywords: Equilibrium problem, Strict feasibility, Stably pseudomonotone mappping,.

1. Introduction

Let K be a nonempty, closed and convex subset of a real reflexive Banach space X
and let f: K x K - RU {+co} be a bifunction. The equilibrium problem [1] is to find
& € K such that

f(Z,y) >0, Vye K (EP)

and its dual problem is to find Z € K such that
fly,z) <0, ¥y e K. (DEP)

The solutions sets to (EP) and (DEP) are denoted by S¥ and SP, respectively.

It is well known that the equilibrium problem provides a unified model of several
classes of problems, including variational inequality problems, complementarity prob-
lems, optimization problems. There are many papers which have discussed the existence
solution to the equilibrium problem (see [1-4] and references therein). In order to solve
the problem when XK is unbounded, many authors studies the coercive assumption. Strict
feasibility condition [5, 6] is one of the most useful tool to characterize the nonemptiness
and boundedness for the solution set of variational inequality problem. Recently, the
concept of strict feasibility was extended to equilibrium problem by Hu and Fang [7].
They proved preve that under suitable conditions, the monotone equilibrium problem
has a nonempty and bounded solution set if and only if it is strictly feasible.

®This research was supported by Naresuan University.
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Email addresses: preechasilpp@gmail.com (P. Preechasilp), rabianw@nu.ac.th (R. Wangkeeree).
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2

Motivated and inspried by Hu and Fang [7] and the idea of stable pseudomonotonicity
in [8, 9], the purpose of this paper is to establish the characterization of nonemptiness
and boundedness of the solution set of equilibrium problems with stably pseudomonotone
mappings.

2. Preliminaries

Let K be a nonempty, closed and convex subset of a real reflexive Banach space X
with dual space X*. The dual cone K* of K is defined as

K*:={te X*:({£2) >0, Vo c K}.

The barrier cone barr I of K is defined as

barr K := {f € X" isupfé,z) < +oo} .
zeK
It is well-known that —K™ C barr K. The asymptotic cone of K, denoted by K, is
defined by
Ko :i={de X : 3\ — 0,3 € K with Apap — d},

where “—”means weak convergence. It is known that, for given 2 € K,
Ket={d€e X :z+tde K, Vt> 0}.
The following interesting results can be founded in [6, 10].

Lemma 2.1. Let K be a nonempty, closed and convex subset of a reflexive Banach space
X. Then K is well-positioned if and only if int(barr K) # 0. Furthermore, if K is well-
positioned, then there is no sequence {z,} C K with ||z,| — o0 such that z,/||xa| — 0.

Lemma 2.2. Let K be a well-positioned, closed, convex subset of a real reflexive Banach
space X and {A,} be a decreasing sequence of closed convex subsets of K with A :=
N, A, nonempty end bounded. Then A, is bounded for some n.

Lemma 2.3. Let K be a well-positioned, closed, convex subset of a rveal reflexive Banach
space X, h : K — R U {+co} be a proper convex lower semicontinuous function, and
r1,72 € R with r1 < ry. If the level set {x € K : h(z) < r1} is nonempty and bounded,
then so is the set {z € I : h(z) < ra}.

The concepts of feasibility and strict feasibility for equilibrium problems can be in-
troduces by means of asymptotic cone.

We say that (EP) (or (DEP)) is feasible [11] if the set Fx :={z € K : f(z,z+d) >
0, Vd € K} # 0. We say that (EP) (or (DEP)) is strictly feasible [7] if the set
Fr:{z e K: f(z,z+d) >0, Vd € K, \{0}}.

A bifunction f : K x K — RU {+co} is said to be monotone on K, if Y,y € K,
f(z,y)+ f(y,z) €0, pseudo-monotone on K, ifVa,y € K, f(z,y) 2 0= f(y,z) <0.
A pseudomonotone bifunction f is said to be stably pseudomonotone on K w.r.t.
U C X*, due to [8, 9], if Va,y € K and Vu* € U, f(z,y) — &,y —2) > 0= f(y,z) —
{€,x—y) < 0. It is well-known that every monotone mapping is a stably pseudomonotone
mapping.

The following example illustrate that the converse inclusion may not be true.
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Example 2.4. Let X =R with X* =R and K = [3,4]. Define f : K x K — RN {+o0}
by
fl@y) =yl@—y), Yo,y e K. (2.1)

Then f is stable pseudomonotone on K w.r.t. [1,2] but not monotone.
Proof.  We first show that f is stable pseudomonotone on K w.r.t. [1,2]. For any
x,y € K and € € [1,2], If
0< flzy)—ly—2) = yly—=2)-&y—2)
= (- —2)
Then y —x > 0, since z — € > 0 for all z € K and £ € [1,2]. It then follows that
fyz) - Er—y = zlz-—y) =a—-y)
= (z-8@~-y) <0

Hence, f is stable pseudomonotone on KX w.r.t. [1,2].
Finally, it easily seen that f is not monotone. Indeed, for any z,y € K

fl@y) + f(y,2) = yly ~ @) + (e ~y) = (v —y)* 2 0.
We collect the following well-known KKM-Fan lemma,

Lemma 2.5. [12] Let M be a nonempty, closed and convex subset of X and F: M —» 2M
be a set-valued map. Suppose that for any finite set {z1,...,2m} C M, one has

(i) conv{zi,...,2m} C UL, Flz:) (i.e., F is a KKM map on M);

(ii) F(x) is closed for every z € M; and

(iii) F(z) compact for some x € M.

Then Npear F (@) # 0

3. Main results

In this section, we present, the characterization of the solution for (EP) and (DEP).
Before proving our results, we list the following assumptions hold.

(f1) For any z € K, f(z,z) > 0.

e +t(?i )L T

(fs) For any x € K, the map y — f(z,y) is convex and lower semicontinuous.
(fs) [ is stably pseudomonotone on K w.r.t. K*.

(f2) For any z,y € K and o € [0, 1], lima—y 40

The following lemma shows that under suitable conditions, the solution set of (EP)
and (DEP) are the same.
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Lemma 3.1. Let K be a nonempty, closed, and convex subset of a real reflexive Banach
space X. suppose that f satisfies the conditions (f1)-(fs). Then for any given £ € K*
the solution of the problem x € K is a solution of the problem

find z € K such that f(z,y) — £,y —2) =20, Vye K (3.1)
if-and-only if it-is-a-solution of the problem

find z € K such that f(y,z) —{{,z—y) <0, Vye K (3.2)
In addition, if K is bounded, then S* and SP are solvable.

Proof. Let & be a solution of (3.1). Then f(z,y) — (£, ¥y —x) > 0Vy € K. By
condition (f4), = is a solution of (3.2). Conversely, let & be a solution of (3.2). Then
fly,z) —{{,x—y) > 0Vye K. Forany z € K, set z := x+t(z —a), for any ¢ € (0,1).
Then z; € K, because of the convexity of I{. It follows from (f;) that

flaztsz) < (& x— 2e) =€, @ — 2).

Condition (f2) give that —f(z,z) < (£, 2 — z). Hence, z solve (3.1).
Next, we prove that S and ST are nonempty provided that K is bounded. Define
F,G: K — 2% by

Fy)={ze K: f(z,y) 20}, Vye K and G(y) ={x € K : f(y,z) <0}, Vy € K.

Then, G(y) is closed, convex and compact for all z € K. It follows from Lemma 2.5 that

() Fw)y= ) G #0.

yeK yekK
Then there exists T € K which solve (EP) and (DEP). O

Theorem 3.2. Let K be a nonempty, closed, and convex subset of a real reflexive Banach
space X with int K* # 0. Suppose that [ satisfies the conditions (f1)-(f1). Then the
following statements are equivalent:

(i) ST is a nonempty and bounded.
(ii) SP is a nonempty and bounded.
(iif) Ft # 0.

Proof. It follows from Lemma 3.1, (i) < (ii) in the case where £ = 0. Define a function
g: KxK*—= Rby

g, &) == sup fly,2) — (&2 —y)

, Vee K, £ € K™
SUD = max(, [} ¢

It follows from (f3) that g(-, ) is convex and lower semicontinuous function and g(z) > 0
for all z € K and £ € K*. Define the set A := {2 € K : g(z) < 0}. Then by Lemma
2.5, A is nonempty, closed and convex set. Clearly, A is the solution set of (DEP). By
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Lemma 3.1, A is also the solution set of (EP). Let £’ € int K*. For every positive integer
n, define

Ay i {1 € K : g(2,0) < %({',m)}.

Then {A,} is a decreasing sequence as n — +o0 of closed and convex subsets of K and
A= ﬂ:’il A;. Notice that barr K has a nonempty interior, then K is well-positioned.
(ii) = (iil) Suppose that A is nonempty and bounded. It follows from Lemma 2.2

that there exists ng such that A, is nonempty and bounded. Setting r := g (zo, %5’ )
for some 2y € A,,. We then have r > 0. We now consider the following set Cy :=

zeK:g(z0) < %(5,:1:) + 7. Then by Lemma 2.3, Cj is nonempty and bounded.
After calculating we ?wve, for any y € K,

1
f(,2) f(’“”“‘)”<%f””“y> 1 )N 1

(L, W Al ABL BT o S Lo =

1
o

b

because of ¢’ € int K*. Thus g(z,0) — g (:E, —l—f’) < —{(¢', ), and so the set
o

Ci:={zc K g (33, if’) <r}cCo

Mo

is nonempty, closed, convex and bounded.

Set
9 R e K[ <98, =142, .
and
\ flyna) = (el )
N R 2 ) =9

Then g;(=) is convex and lower semicontinuous on bounded subset K; for all i € N and
gi{xz) = 0 for all z € K. For every i € N, it follows from the prove in Lemma 3.1 that

1
there are @; € K; such that f(y,a;) — —{(,2; —y) <0, Yy € K;. This implies that
g

gi{z;) = 0. Define D; := {z € K : §;(z) < r}. It is not hard to check that {D;}$2; is
a decreasing sequence of nonempty, closed and convex subsets of K and C' = ﬂf’il D;.
Since C' is nonempty and bounded, it follows from Lemma 2.2 that there exists iy € N
such that D;, is nonempty and bounded. Then there exists a positive integer L such
that sup,¢p, |z < L and ip < L. since gi,(x1) =0, z, € Dy, C D, and so 2, € K.

For any y € K and ¢t € (0, 1), setting y; := (1 — t)zp, +ty € K, we have y; — z, as
t — 0. It follows from linearity that, for all y € K

Fywz)

Flon) — oo mr —up <0 T g0y - ) <0

1
ng

1
By (fs), we have f(2,y) > ?(E’,y —xp) forally € K.
0



| —

For any d € K,,\{0}, we known that 21, +d € K, and so f(2,zr+d) = —(&,d) > 0,

3

0
since & € int K*. Therefore, xy, € Ff.

(iii) = (i) Suppose that F;f # 0. Then there exists z € K such that f(zg,20 +d) >
0, Vd € K, \{0}. Setting D := {& € I{ : f(wg,x) < 0}. It is not hard to check that D is
nonempty, closed and convex. We claim that D is bounded. If not, there exists x,, € D
with ||z, || = +oo. Without loss of generality, we can suppose that z, /||z,| = d € K.
Since K is well-positioned, from Lemma 2.1 we have d # 0. It follows from z, € D that
f(z0,2,) <0. Since f is convex and lower semicontinuous at second variable, it follows

that i
f(zo, 20 +d) <liminf f (:Eo,ﬂ‘)o + —— (2, — fl)[))) <0,
n—od n ”

||
which contradicts 2y € F E . Thus D is nonempty, convex and weak compact. Define
Dot flg ¢ Dt(Treyeil), Viz adls
Thus
Tc SP & T ENerD,.

Define
Dl ={z eD\[(%e) 2 0Vz € K}.

Then D! is nonempty, closed and convex. By a similar argument as in the proof of
Lemma 3.1, we can show that

M:ex D, = Nyek D;.

For any finite set {z; : ¢ = 1,2,...,n} C K, let M = conv{D U {z1,23,...,2,}}. It is
known that M is weakly compact. By Lemma 3.1, there exists & € M such that

fy,2) <0, Yy e M.

From xgp € D C M, we have f(xo,2) <0 and so & € D. Furthermore, we have

f(zi:i') i | T o A

!

because z; € M. Therefore & € N}_, D, , and so {D’, : z € K} has the finite intersection
property. Since D is weakly compact, we get S¥ = N e D, = Nyex D), # . Then S¥
is nonempty. Since D is bounded and S¥ =N, D, C D, we have 87 is bounded. The
proof is complete. O

Remark 3.3. Theorem 3.2 discusses the characterization of nonemptiness and bound-
edness for S¥ and SP, which is more general than the result in Theorem 3.1 of [7] in
the case that f is relaved to the stably pseudomonotone mapping.
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