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Abstract

In this study, we formulate an age-structured cholera model with four partial
differential equations describing the transmission dynamics of human hosts and one ordinary
differential equation representing the bacterial evolution in the environment. We conduct
rigorous analysis on the trivial (disease-free) and non-trivial (endemic) equilibria of the
system, and establish their existence, uniqueness, and stability where possible. Meanwhile,
we perform an optimal control study for the age-structured model and seek effective
vaccination strategies that best balance the outcome of vaccination in reducing cholera
infection and the associated costs. Our modeling, the human hosts with explicit age

structure, and the age-dependent vaccination as a disease control measure.

Keyword: Cholera model, Disease control, Stability, Optimal control, Age-structured
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Chapter 1

Introduction

Cholera is an acute enteric infection caused by the ingestion of bacterium Vibrio
cholerae present in faecally contaminated water or food. Primarily linked to insufficient
access to safe water and proper sanitation, its impact can be even more dramatic in areas
where basic environmental infrastructures are disrupted or have been destroyed. Coun-
tries facing complex emergencies are particularly vulnerable to cholera outbreaks.

Massive displacement of IDPs or refugees to overcrowded settings, where the pro-
vision of potable water and sanitation is challenging, constitutes also a risk factor. In
consequence, it is of paramount importance to be able to rely on accurate surveillance
data to monitor the evolution of the outbreak and to put in place adequate intervention
measures Coordination of the different sectors involved is essential, and WHO calls for
the cooperation of all to limit the effect of cholera on populations.

Cholera is characterized in its most severe form by a sudden onset of acute watery
diarrhoea that can lead to death by severe dehydration. The extremely short incubation
period - two hours to five days - enhances the potentially explosive pattern of outbreaks,
as the number of cases can rise very quickly. About 75% of people infected with cholera
do not develop any symptoms. However, the pathogens stay in their faeces for 7 to
14 days and are shed back into the environment, possibly infecting other individuals.
Cholera is an extremely virulent disease that affects both children and adults. Unlike
other diarrhoeal diseases, it can kill healthy adults within hours. Individuals with lower
immunity, such as malnourished children or people living with HIV, are at greater risk of
death if infected by cholera.

1.1 THE CAUSE OF THE CHOLERA DISEASE

Vibrio cholerae, the bacterium that causes cholera, is usually found in food or wa-
ter contaminated by feces from a person with the infection. Common sources include:
* Municipal water supplies.
* Ilce made from municipal water.
« Foods and drinks sold by street vendors.

« Vegetables grown with water containing human wastes.



* Raw or undercooked fish and seafood caught in waters polluted with sewage.
When a person consumes the contaminated food or water, the bacteria release a toxin
in the intestines that produces severe diarrhea.lt is not likely you will catch cholera just

from casual contact with an infected person.

1.2 SYMPTOMS

Cholera is an extremely virulent disease that can cause severe acute watery di-
arrhoea. It takes between 12 hours and 5 days for a person to show symptoms after
ingesting contaminated food or water. Cholera affects both children and adults and can
kill within hours if untreated.

Most people infected with V. cholerae do not develop any symptoms, although
the bacteria are present in their faeces for 1-10 days after infection and are shed back
into the environment, potentially infecting other people.

Among people who develop symptoms, the majority have mild or moderate symp-
toms, while a minority develop acute watery diarrhoea with severe dehydration. This can
lead to death if left untreated.

1.3 TREATMENT

Cholera is an easily treatable disease. The majority of people can be treated suc-
cessfully through prompt administration of oral rehydration solution (ORS). The WHO/
UNICEF ORS standard sachet is dissolved in 1 litre (L) of clean water. Adult patients may
require up to 6 L of ORS to treat moderate dehydration on the first day.

Severely dehydrated patients are at risk of shock and require the rapid adminis-
tration of intravenous fluids. A 70 kg adult will require at least 7 L of intravenous fluid,
plus ORS during their treatment. These patients are also given appropriate antibiotics to
diminish the duration of diarrhoea, reduce the volume of rehydration fluids needed, and
shorten the amount and duration of V. cholerae excretion in their stool.

Mass administration of antibiotics is not recommended, as it has no proven effect
on the spread of cholera and contributes to increasing antimicrobial resistance.

Rapid access to treatment is essential during a cholera outbreak. Oral rehydration
should be available in communities, in addition to larger centres that can provide intra-
venous fluids and 24 hour care. With early and proper treatment, the case fatality rate

should remain below 1%.



1.4 PREVENTION

Measures for the prevention of cholera mostly consist of providing clean water and
proper sanitation to populations who do not yet have access to basic services. Health
education and good food hygiene are equally important. Communities should be re-
minded of basic hygienic behaviours, including the necessity of systematic hand-washing
with soap after defecation and before handling food or eating, as well as safe preparation
and conservation of food. Appropriate media, such as radio, television or newspapers
should be involved in disseminating health education messages. Community and reli-
gious leaders should also be associated to social mobilization campaigns.

In addition, strengthening surveillance and early warning ereatly helps in detecting
the first cases and put in place control measures, Conversely, routine treatment of a
community with antibiotics, or mass chemoprophylaxis, has no effect on the spread of
cholera, can have adverse effects by increasing antimicrobial resistance and provides a

false sense of security.



Chapter 2

Basic Concepts

In this chapter, we will present some interesting mathematical models that de-
scribes the cholera dynamics. We will start with an early compartmental model that
includes only a few state equations. The more complicated cholera model then will be
studied. Finally, we will present and carefully study our model. Then, we will extend

the model and explore strategies to control an cholera outbreak.

21 C. T. Codeco [2]

The model proposed here is an extension of Capasso’s model , used to describe
the 1973's cholera epidemics in Italy. In Capasso’s version, two equations describe the dy-
namics of infected people in the community and the dynamics of the aquatic population
of pathogenic bacteria. In our formulation, the dynamics of the susceptible population is

included since | wish to study long term dynamics . The mathematical model is :

% = n(H - 8) — a\(B)S,
dl ’

% =i (L/\(B)S *71,

dB

=\ B(nb — mb) + el

The diagram of this model is represented as follows:



A(B)

nb-mb B
—

Figure 2.1: SIBS

Table 1  Biological meaning of all parameters and state variables

Parameter | Biological meaning

H Total human population

n Human birth and death rates (day™!)

a Rate of exposure to contaminated water (day™?)

k Concentration of V. cholerae in water that yields 50%

chance of catching cholera (cells/ml)

T Rate at which people recover from cholera (day ")

nb Growth rate of V. cholerae in the aquatic environment (day™")

mb Loss rate of V. cholerae in the aquatic environment (day ™)

e Contribution of each infected person to the population of V. cholerae

in the aquatic environment (cell /mlday"person=1)




2.2 D. M. Hartley, J. G. Morris Jr. and D. L. [4]

We have extended the Codeco model to incorporate a state of hyperinfectivity.
In this modified model, infections() are caused by ingesting water contaminated with
ByHl vibrios per ml or By, non-HI vibrios per ml. Ingestion of HI vibrios occurs at the
rate By while ingestion of non-Hl vibrios occurs at the rate 3;, When By equals £, the
probability of ingestion resulting in disease is 0.5, and similarly for By, and kL.In other
words, the models assume that the relationship between infection rates and the density
of cholera is described by a saturating function %.Vibrios in the HI state decay into a
state of lower infectivity (“non-HI”) at the rate x. Cases shed Hl V.cholerae into the
aquatic environment at a rate £ and cases cease to be infectious at the rate y.Non-Hl
vibrios shed into the aquatic environment lose viability at the rate d L.These ideas are

expressed in terms of the following set of differential equations:

dS : B] N BH
— = N -f,——— — ByS——+—,
dt N =P grPPay S
dl - By, H
— = B S—— —(y+b)],
dt ‘L5L+BIJ+ﬁH kg + By (P}+ ) J
dR
— = ~] - bR,
dit '
(L'BH
= &I — By,
di 3 XDH
15 i
NN XBy — 0By,
dt

The diagram of this model is represented as follows:



., ™ (R I [_rJ R

173

Figure 2.2: SIRB,

Table 2 Biological meaning of all parameters

Parameter | Biological meaning

BL Rate of drinking LI V.cholerae

By Rate of drinking HI V.cholerae

Kl Non-HI V.cholerae infectious concentration (1C5p)

KH HI'V.cholerae infectious concentration (IC5)

b Natural human birth and death rate

X Rate of decay from hyper-to reduced infectiousness

'3 Rate of contribution to HI V.cholerae in aquatic environment
or, Net death rate of non-Hl vibrios in the environment

¥ Rate of recovery from cholera




2.3 J. Wang, C. Modnak : [6]

Let S(t), I(t) and R(t) denote the susceptible, the infected, and the recovered
human population sets, respectively. The total population N = S + I + R is assumed
to be a constant, which is a reasonable assumption for a relatively short period of time
and for low-mortality diseases such as cholera. Let also B denote the concentration of
the vibrios in the environment (e.g., contaminated water). The cholera model devel-
oped in is a combined system of human populations and the environmental component
(SIR — B), with the environment-to-human transmission represented by a logistic (or,
Michaelis-Menten type) function and the human-to-human transmission by the standard
mass action law. We now extend this model by adding vaccination, treatment and water
sanitation. We assume these controls are implemented continuously; specifically, we
make the following assumptions:

» Vaccination is introduced to the susceptible population at a rate of ©(t), so that v(¢)S(t)
individuals per time are removed from the susceptible class and added to the recovered
class.

*Therapeutic treatment is applied to the infected people at a rate of a(t), so that a(t)I(t)
individuals per time are removed from the infected class and added to the recovered
class.

« Water sanitation leads to the death of vibrios at a rate of w(t).

As a result, we obtain the following dynamical system:

dS B

CAL a1l b | .

T = BN = BS — ST — s < 0(1)S,
dl B

i NN A\ S ) — a(t)],
= 5 SH B + Bn (v+p)] —a(t)],
dB R

— = £] — —w(t)B

dt ¢ o =T

d

d—? = v — pR+a(t)] + v(t)S,

The diagram of this model is represented as follows:
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Ficure 2.3: SIRB.

Table 3 Biological meaning of all parameters
Parameter | Biological meaning
N Total population
I Natural human birth and death rate
K Concentration of V.cholerae in environment
04 Rate of recovery from cholera
¢ Rate of human contribution to V.cholerae
) Death rate of vibrios in the environment
e Ingestion rate from the environment
B Ingestion rate through human-human interaction

Theorem 2.1. (STABILITY PROPERTIES OF A LINEAR SYSTEM)

Consider the linear system (3.19), and for each eigenvalue \ of A, suppose that my

denotes the algebraic multiplicity of A and dy the geometric multiplicity of .

Then :

(a) The system is asymptotically stable if and only if A is a stability matrix; that is,

every eigenvalue of A has a negative real part.

(b) The system is neutrally stable if and only if

e every eigenvalue of A has a nonpositive real part, and

o8
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e at least one eigenvalue has a zero real part, and dy = m,, for every eigenvalue

A with a zero real part.
(c) The system is unstable if and only if
e some eigenvalue of A has a positive real part, or

e there is an eigenvalue \ with a zero real part and dy < m,.

NOTE : (1) Suppose all the eigenvalues of A have nonpositive real parts. One can prove
that if all eigenvalues having zero real parts are distinct, then the origin is neutrally stabel.

(2) Also, if every eigenvalue of A has a positive real part, then the system is completely
unstable.

Proposition 2.2. (THE ROUTH TEST) All the roots of the polynomial a(\) (with real co-
efficients) have negative real parts precisely when the eiven conditions are met.

o A+ a1\ + ag 1 all the coefficients are positive ;

e NN+ a\+ a3 all the coeffients are positive and ayas > as ;

o M+ a1 A3+ ap\? + az\ + ay: all the coefficients are positive, ayas > as and

t1Q9a3 > (1,12(1-4 -+ (132.



Chapter 3
Mathematical Model

3.1 Our proposed model

As a start, we develop a PDE-ODE coupling system to describe the age-dependent cholera
dynamics. We assume that the total human population is divided into four classes: sus-
ceptible, infected, vaccinated, and recovered. Let S(a,t),!(a,t),V(a,t), R(a,t) de-
note, respectively, the number of susceptible, infected, vaccinated, and recovered hu-

mans at age a and time . Let B(¢) be the concentration of vibrios in the contaminated
B(t)

B(t)+x

model the force of infection from the environment, where k is the half saturation con-

environment at time ¢. We employ a saturation incidence in the form of (a) to

centration of environmental vibrios. Susceptible individuals become infected as a result
of ingesting bacteria at rate 3(a). Moreover, u(a) is the natural mortality rate. We further
assume that susceptible individuals are vaccinated at an age-specific rate w(t), with a
vaccine efficacy 1 — ¢ (we assume that the parameter o is independent of age). Infected
individuals are treated and subsequently enter the recovered class at a rate v(a). In-
fected individuals contribute to vibrios in the aquatic environment at an age-dependent
rate ar(a) and virbios have a reduction rate 14, which includes the natural death and other
means of the removal of the pathogen in the environment. Since the case fatality rates
for cholera generally are very low (at or below 1%), we assume that the cholera-induced
mortality can be neglected in this study. All these parameters take positive values.
Based on these assumptions, the dynamics of the disease transmission are described

by the following equations:
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Z§F§=—ﬂ@§§%§@ﬂﬁww+MMW@ﬂ, (1)
‘gé * % = 5(@%%(5(&1 t) +oV(a,1)) = (v(a) + p(a))(a,t),  (3.2)
Bt B wOS@) - i@ V@) - Vs, 63
o+ 2 (@10, t) - u(a)R(a,), 6.0

£%Q=i£wamﬂijw—m@ﬂﬂﬂ. (3.5)

Cholera does not transmit vertically from mothers to children and newborns will
appear in the recovered class. Thus, we choose the following non-negative initial and

boundary conditions for our system:

S(0,t) = 1(0,2) = V(0,t) = 0, R(0,1) = /i nfb(a)(S(a,t) + I(a,t) + R(a,t) + V(a,t))da;
0
5(a,0) = So(a), I(a,0) = Ip(a), V(a,0) = Vo(a), R(a,0) = Ry(a), B(0) = By,(3.6)

where b(a) is the fecundity function. The initial age distributions are assumed to be
known, and their values become zero beyond some maximum age.

Let P(a,t) = S(a,t)+ I(a,t) + R(a,t) + V(a,t). It is straightforward to observe
that

oP 0P
—= | iy 7T % 3.7
%0 + 5 wul(a)P(a,t), (3.7
P(0, t):/ b(a)P(a,t)da, (3.8)
0
P(a,0) = Fy(a), (3.9)

where Iy(a) = So(a) + Iy(a) + Ro(a) + Vo(a). Further, let by = foi nfb(a)Py(a)da. As
t — oo,

P(a,t) — boexp— /Oa w(T)dT =: Py(a).

>t S(a,t) Ia) oy Viat
(a) Pala)' ™" Pxla)

The original system can then be reduced to the following

s{a,t) =

Jiat) =

N
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e+ 51 = () Gl ) — (ofa) + @)s(o D),
g_; i g% = 5((1)%)(—2?(3(@, 1) +ov(a,t)) - v(@)i(at), (310
% + %‘ti —aalela. = oﬁ(a)g(%v(a, 0),
o O (@100 - (@Rl 1), (310
dB(t)

0 -/ "~ (@i, ) Pro(a)da — pu(t)B(D).

The model (3.10) with the initial and boundary conditions is well-posed.
We proceed to analyze the dynamics of our cholera model described in system (3.10).

For ease of presentation, we let x = 1 (through a normalization) in this section. Introduce

(a) = exp{— / (T)dr}.

Eo(s°(a), %(a), v"(a), B®) = (F.,(a),0, /0 ) w(Q)F.,(¢)dc, 0) (3.12)

It is easy to obtain that

is the disease-free (or, infection-free) equilibrium of the system.

To investigate the stability of the steady-state age distributions, we write

s(a,t) = s%a) 4+ §(a, t),i(a, t) = i°a) +i(a, 1),
v(a,t) =v°(a) + 9(a,t), B(t) = B + B(t), (3.13)

for some small perturbations §,, & and B. Substitute these into our system, we obtain

d3(a,t s(a,t BY 1 5
S(Ba. L (Bt ) - *ﬁ(a)(BO—HS(a’t) * (B° + 1)28"(6&)5’(15)) e,
(3.14)
e (“ ) — 5(0) g (510, 1) + 05(a, ) + B(a)%(sh(ﬂ,t) +ov(a, ) B() -~
(3.15)
auf()i, B, v(;;t) = w(a)é(a,t) — 0B(a) (Boijlﬁ(a, t) + (BU—}H?SO(a)E(t)),
(3.16)

I

/ o(aYi(a, ) P (a)de — s B, (3.17)
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with the initial and boundary conditions

3.2 Optimal treatments

In this section, we will use the following theorem to apply optimal control theory
to seek cost effective treatment programs for our medel.
Pontryagin’s Maximum Principle

These conclusions can be extended to a version of Pontryagin’s Maximum Principle.

Theorem 3.1. if u*(t) and z*(t) are optimal for problem (3.1){3.6), then there exists a

piecewise differentiable adjoint variable A(t) such that
H(t, 2% (1), u(t), A1) < H(t, z*(t), u*(£),A(2))
for all control u at each time t, where the Hamiltonian H is
0 = f(&,2(t),u(t)) + M)g(t, x(t), ult)),

and

OH(t, z*(t), u* (L), \(t))
Oz

Theorem 3.2. Suppose that f(t, z,u) and g(t, «, u) are both continuously differentiable

) 2 , A(#1) = 0.

functions in thier three arsuments and concave in u. Suppose u* is an optimal control
for problem (3.1)(3.6), with associated state x*, and \ a piecewise differentiable function
with A > 0 for all t. Suppose forall ty <t < &

0= H,(t,2*(t),w*(2), A(t)).

Then for all controls u and each ty < t < t;, we have

H(t, 2™ (), u(t), A(t)) < H(t,z*(t), u*(t), A(¢)).

In this section, we extend our study to an age-structure model to investigate the
impact of different ages on cholera dynamics and the corresponding control strategy as

follows:
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g = POGoL S - @) ta@)S@n, G
Bt = A5 0~ B G V() - @V (@), 619
5 = PO (800 + oV(a,t) - (a) + pa) (e, 1520
a2 — S(@)I(at) - na)R(a, ), G21)

““jf) E /nm(r(a)f(a,t)dag 1(8)B(2) (3.22)

where initial conditions are

S(n,0) = Sp(a)=0n=1,2,+-,A,

V(n,0) = Vy(a) >0

I(n,0) = Iy(a)>0;n=1,2,-+ A,

R(n,0) = Rola) >0
B(0) = By(t)>0;te(0,7).

and boundary conditions of the system are

S(0, 4\ =B8NP

V(0,) ¥ D: 0NN R

I0,t) = 0,0<t<T,

R(0,t) = foc b(a)(S(a,t) + I(a,t) + R(a,t) +V(a,t))da;0 <t < T.
0

The natural dorain for this system is
Q={(e,1)0<a<A0<t<T} (3.23)

where T' > ( is the final time and A > 0 is the maximum age under consideration.

The presence of age-dependent control makes equilibrium analysis of the system
(3.18)- (3.22) difficult, as the system becomes non-autonomous and the disease dynamics
now depend on the control profile. We consider the system on a time interval [0, 71 for

some 1" > 0. The control set is defined as

I'= {¢(a: t)|0 S (?,,)((L, t) S ¢ma:n}: (324)
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where ¢,,q, denotes the upper bound for the effort of vaccination. The bound reflects
practical limitation on the maximum rate of control that can be implemented in a given
time period.

We aim to minimize the total number of infections and the cost of control over the

time interval [0,77]; i.e.,

T A
min ] f (a1(a)I(a,t) + az(a)p(a, t)S(a,t) + asz(a)p®(a, t))dadt  (3.25)

o(a,t)el’

where a1(a), az(a) and az(a) are appropriate cost parameters, generally depending on
the age a. Quadratic terms are introduced to account for nonlinear costs potentially aris-
ing at high intervention level. The minimization process is subject to the partial differential
equations in (3.18)-(3.22), which we now refer to as the state equations. Correspondingly,
the unknowns S, V, I, R and B are now called the state variables, in contrast to the
control variable ¢. Our goal is then to determine the optimal control, ¢*(a, t), so as to

minimize the objective functional in (3.25).

We first note that the control set I' is closed and convex, and the integrand of the
objective functional in (3.25) is also convex. Meanwhile, our model is linear in the con-
trol variable. Hence, based on the standard optimal control theorems, we obtain the

following theorem.

Theorem 3.3. There exists ¢*(a,t) € I' such that the objective functional in (3.25) is

minimized!.

To proceed, we will use the Pontryagin’s Maximum/Minimum Principle to seek the
optimal control solution. This approach introduces the adjoint functions and represents
an optimal control in terms of the state and adjoint functions, thus transferring the prob-
lem of minimizing the objective functional into minimizing the Hamiltonian with respect
to the control.

We define the adjoint functions Ag, Ay, A1, Ar, and Ag associated with the state
equations for S, V, I, R, and B, respectively. We then form the Hamiltonian, H, by mul-
tiplying each adjoint function with the right-hand side of its corresponding state equation,

and adding each of these products to the integrand of the objective functional. As a
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result, we obtain

H(a,t) = ai(a)l(a,t)+ az(a)dp(a,t)S(a,t) + as(a)d*(a,t) (3.26)
+,\S[—B(a)£(2—h (a,t) — (¢(a,t) + p( ))S(a,t)] (3.27)
B(t

) Y(a,t)— ,(a)V(a,t)] (3.28)

v [cb(a, t)S(a,t) — of(a )B(t) + K

+A\; [B(Q)B(E:)(?r i‘_{'(S(a, t) +oV(a,t)) — (v(a) + u(a))l(a, t)q3.29)
B [’y(a)](a, t) — u(a)R(a, t)J (3.30)
s [ / ” a(a)I(a,)da — ;z;,(t)B(t)] . (3.31)

To achieve the optimal control, the adjoint functions must satisfy

oH

_((/\S)f + 61'1(/\S)n) = %1 (3.32)
—((Av)e +ai(Av)q) = % (3.33)
~(Oit i) = 57, 330
(Ot o)) = 28 335)
—d;f = %. (3.36)
These yield
B(2)
—((As)e + a1(\s)a) = ag(a)g(a,t) — /\S(ﬁ(“)B(t) Z + (¢(a,t) + p(a))) (3.37)
+AB(a) EB)( ) -+ Avd(a,t) + Ar(0,t)b(a), (3.38)
(Ot (i) = M) 52 Do A (ola) e @) 639
+Ar(0,t)b(a), (3.40)
—((A)i+a1(Ar)a) = ai(a) — Ar(v(a) + p(a)) + Ary(a) (3.41)
+Ar(0,8)b(a) + Aga(a), (3.42)
—((Ar)t +a1(Ar)a) = —Arp(a)+ Ag(0, t)b(a), (3.43)
A
VE — Apult) + H) f B(a)(AsS — Ar(S + V) + Avo13da)
0

where
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with boundary conditions

)\g(a,T) == 0; )\V((l, T) = 0,

fora € (0, A) and

)\S(A,t) = 0; Av(A, t) = 0,
/\I(A, t) = 0; /\R(A, t) = 0,
As(T) =0,

fort € (0,7) and where

1 ¢in2 ((“’15)77) 15 <a< 45
N/ o 30

0 otherwise

The characterization of the optimal control is

$*(a,t) = max{0, min(¢(a,t), dmaz)] (3.45)
where X { "
Ag — Ay — @ y [
Ha, 1) :( S v — as(a))S(a, ) (3.46)
2([-3
and ¢mam = Q.7.

To summarize, our optimal control problem consists of the state system (3.18)4(3.22)
with initial conditions, the adjoint equations (3.37)-(3.44) with the transversality condi-
tions, and equation (3.45) to characterize the optimal control. Such a problem has to
be solved numerically, we apply the forward finite difference in time and space to solve
the state equations and backward in time and space to solve the adjoint equations in an

iterative manner.

To carry out the numerical simulation, we list the values for various transmission rates
in the state equations (3.18)4(3.22) in Table 3.1. We first assign the set of values (with ap-
propriate units) to the cost parameters in (3.25) as a; = 500,a; = 1 and a3 = 1. We

also set the upper bound of the rate for vaccination ¢,,q, = 0.7.

Fig. 3.1(a) shows the total infection of all age curves for the model without vaccination

(solid line), i.e., ¢(a, t) = 0, and that with the optimal vaccination implemented (dashed
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line). We clearly see that the number of infections has been significantly reduced due to
the vaccine. Fig. 3.1(b) and (c) show the infection curves of different ages for the model
with vaccination control and without vaccination control, respectively; the results show
age-dependent control has the impact in reducing number of infections. Fig. 3.1(d) and
Fig. 3.2 show the profile of vaccination control in its optimal balance. We observe that
the vaccination rate starts at its maximum value and remain at that level for a number

of days before decreasing to lower levels of strength.

Table 3.1: Model parameters and values

Parameter Symbol  Value
Maximum age A 72
Mortality rate It 0.01619/365 /day
Ingesting vibrios rate 8 0.075 /day
Death rate for vibrios i 1/30 /day
Vaccine efficacy 1 —o O

Rate of human contribution to V.cholerae o 0.8 /day
Half saturation rate K 10° /day
Recovery rate iy 1/5/day
Time T 100 days
Age A 72 years

Other parameter values are listed as follows: Ingesting vibrios rate age-dependent,

’

0 0<a<?2
0.03a — 0.06 2<a<’
Bla) =10 X ¢ —0.0169a 4+ 0.2683 7<a <15 (3.47)
0.006a — 0.075 15<a<25
k—O.UOlGa +0.1152  otherwise

and

450a 0<a<?2
S(a,0) = (3.48)
—0.38198a? + 17.08376¢ + 867  otherwise
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with
I(a,0) = 0.025(a, 0)

and
B(0) =0.001x

As can be naturally expected, the cost of vaccination directly affect the strength and
duration of the vaccination in its optimal balance. For demonstration, we now assume
that the linear and quadratic capita costs for vaccination are increased to ay = 100 and
az = 1000. Fig. 3.3 (a) shows that the total number of infections for the model with vac-
cination is higher than that the previous set of cost parameters. Also, Fig.3.3 (d) shows the
shorter duration of vaccination of all ages can be implemented compared to the previous
set of cost parameters. In addition, some ages such as 50 and 60 years old cannot get

vaccinated for this set of parameters; that is the vaccination rates for both ages are zeroes.

Now we turn to investigate only a higher quadratic cost parameter, i.e., we set a; =
900, a2 = 1 and a3 = 100. Fig. 3.8 shows that with higher quadratic cost, the duration of
vaccination is shorter, however, due to small population, the total number of infectious

looks the same as the first set of parameters.

In our simulations show that the cost parameters are related to the duration and
strength of the vaccination control, however, in our numerical simulations we have as-
sumed that the cost parameters are constants for all ages. In fact, in reality, costs could

be varies for different ages which we hope to overcome this in our future work.
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Chapter 4

Conclusions

In this paper, we have presented a mathematical model for control problem of
cholera. We have studied in both theoretical and numerical ways, in order to observe the
effect of rate of vaccination and the efficiency of other controls on the spread control of
disease .

The model explains two feasible points of equilibrium, namely, the epidemic equi-
librium and the endemic equilibrium. The stability of these two feasible points of equilib-
rium are controlled by the threshold number Ry. If Ry is less than one, then the disease
dies out and the epidemic equilibrium Ry is stable. If Ry is greater than one, then the
disease persists and the disease free equilibrium is unstable. We have the values is based
on the theory of Rj,.

In addition, we have deployed controls to investigate strategies to reduce numbers
of infectious CHOLERA people. The optimal control study is applied to seek numerical
simulations along with analysis. The results show that with strategically deployed four
controls; vaccination, treatment, sanitation and pesticide of flies, the number of infectious

cholera prople can be reduced significantly.



(1]

(2]

(4]

(5]

(7]

(8]

(9]

[10]

[11]

REFERENCES

B. Buonomo , A simple analysis of vaccination strategies for Rubella, Math. Biosci.
Eng. 8 (2011), 677-687.

C. T. Codeco , Endemic and epidemic dynamics of cholera: the role of the aquatic

reservoir,BMC Infectious Diseases 1 (2001), 1.

D.A. Sack , M. Cadoz , Cholera vaccines., In Plotkin AS, Orenstein WA Vaccines
Philadelphia: WB Saunders Co; 1999.

D. M. Hartley, J. G. Morris Jr. and D. L. Smith, Hyperinfectivity: A critical element in
the ability of V. cholerae to cause epidemics? , PLoS Medicine 3 (2006), 0063-0069.

E. Asano, L. J. Gross, S. Lenhart and L. A. Real, Optimal control of vaccine distribution

in a rabies metapopulation model, Math. Biosci. Eng. 5 (2008), 219-238.

J. Wang, C. Madnak, Modeling cholera dynamics with controls,Canadian Applied
Mathematics Quarterly, 19, (2011), 255-273.

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission,Math. Biosci.
180 (2002), 29-48.

R. L. M. Neilan, k. Schaefer, H. Gaff, K. R. Fister and S. Lenhart, Modeling optimal
intervention strategies for cholera,Bull. Math. Biol. 72 (2010), 2004- 2018.

R.M. Anderson , R.M. May, Infectious diseases of humans,Oxford: Oxford University
Press; 1991,

R. M. Nisbet and W. S. C. Gurney, Modeling Fluctuating Populations,John Wiley &
Sons, New York, 1982.

S. Liao and J. Wang, Stability analysis and application of a mathematical cholera
model, Math. Biosci. Eng. 8 (2011), 733-752.



29

[12] TK. Sengupta, RK. Nandy, S. Mukhopadyay, R.H. Hall, V. Sathyamoorthy, A.C. Ghose,
Characterization of a 20-k Da pilus protein expressed by a diarrheogenic strain of
non-01/non-0139 Vibrio cholerae, FEMS Microbiol Letters. 1998:160:183-189. doi:
10.1016/S0378-1097(98)00012-3.

[13] V. Capasso and S.L. Paveri-Fontana, A mathematical model for the 1973 cholera
epidemic in the european mediterranean region, A mathematical model for the

1973 cholera epidemic in the european mediterranean region
(14] World Health Organization web page: www.who.org.

[15] Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith and J. G. Morris Jr., Estimating
the reproductive numbers for the 2008-2009 cholera outbreaks in Zimbabwe, Proc.
Nat. Acad. Sci. 108 (2011), 8767-8772.



Output fildarnlasens

1. lerarudfiusilunsasisnnsunnei
Li-Ming Cai, Chairat Modnak, Jin Wang, “An age-structured model for cholera control
with vaccination,” Applied Mathematics and Computation, vol. 299, Article ID 127, 13
pages, 2017. DOIL:http://dx.doi.org/10.1016/j.amc.2016.11.013 (Impact Factor 1.345

(2015))



AMMARUIN

Usenausme
1. HAUARLNLUTANTIBINSUILIEIR 1509

An age-structured model for cholera control with vaccination



Applied Mathematics and Computation 299 (2017) 127-140

Contents lists available at ScienceDirect

Applied Mathematics and Computation

EI. SEVIER journal homepage: www.elsevier.com/locate/ame

An age-structured model for cholera control with vaccination” @Cmm
Li-Ming Cai®*, Chairat Modnak", Jin Wang®

* Department of Mathematics, Xinyang Normal University, Xinyang 464000, PR China
bDepartment of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
Department of Mathematics, University of Tennessee at Chattanooga, Chattancoga, TN 37403, USA

ARTICLE INFO ABS*LRKCT
Keywords: We formulate an age-structured chelera model with four partial differential equations de-
Cholera model scribing the transmission dynamics of human hests and one ordinary differential equation

Age-structure
Stability
Optimal vaccination strategies

representing the bacterial evolution in the environment. We conduct rigorous analysis on
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1. Introduction

Although regarded as one of the oldest known diseases, cholera remains a serious public health burden in those regions
where poverty and poor sanitation are prevalent. The causing agent for cholera is the bacterium Vibrio cholerae, which is
typically transmitted to human hosts through ingesting contaminated water and food [31]. The main symptom of cholera
infection is profuse watery diarrhea that can lead to dehydration, drop in blood pressure, kidney failure, and possible death
within days if not promptly treated. In recent years, a number of cholera outbreaks have taken place in Africa, South Asia,
and South America, with annually 3-5 million cases of infection estimated by the World Health Organization (WHO) [41].

Current intervention methods for cholera include antibiotics, rehydration therapy, vaccination, and water sanitation. An-
tibiotic treatment for cholera is credited for saving a large number of lives, though the administration of antibiotics can
quickly lead to bacterial resistance [26]. Oral rehydration using salt water, while unable to prevent cholera infection, is ex-
tremely effective for preventing death. Water sanitation, as well as improvement of infrastructure for water and hygiene, are
ultimately the most useful means to combat cholera, but such control measures could be highly expensive, time consuming,
and may not be available in an emergency setting of cholera outbreak. Vaccination has long been regarded as a cost-effective
approach for cholera prevention, and has recently renewed interest for use in the course of a cholera epidemic [22]. In par-
ticular, WHO conditionally recommended the deployment of cholera vaccines in cholera emergency settings [43]. In Haiti,
cholera vaccines were used with success during the recent cholera outbreak after a major earthquake in 2010 [33].
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There are, however, many important questions that remain to be answered in the design of control strategies against
cholera [18]. For example, what would be the most effective means to reduce the morbidity and mortality, and what would
be the optimal balance between the effects and costs of the control measures? In particular, recent studies [25,31] have
shown that the susceptibility, disease risk and severity, and transmission of cholera among human hosts vary significantly
by ages. As an example, it has been observed that while young children and some older people are most vulnerable to
cholera, newborns seem to be protected against the infection from maternally derived immunity and the antibodies in
breast milk [17]. Consequently, a concern of public health administration is whether age-based vaccination protocols can
effectively reduce the infection and slow the spread of cholera, while limiting the costs of the control. To address the issue,
we need a deep understanding of cholera dynamics, especially the details of age-structured transmission pattern.

Mathematical modeling, analysis, and simulation for infectious diseases have long provided useful insight toward better
understanding of disease mechanisms and more effective prevention and control of disease outbreaks. Particularly, a large
number of mathematical studies have been devoted to cholera (see, e.g., [2,5,8,9,14,20,23,28-30,36-40]). Among these, how-
ever, very few are concerned with age-structured dynamics of cholera. Alexanderian et al. proposed a model to investigate
the impact of ages on the spread of cholera epidemics [1]. Brauer et al. analyzed an age-of-infection cholera model which
includes both the infection age of human hosts and the biological age of pathogen [4]. Recently, Fister et al. formulated an
age-structured model [15] that incorporates the effect of vaccination, with a distinction between symptomatic and asymp-
tomatic infections among human hosts. Despite these efforts, detailed analysis of age-structured cholera dynamics has not
been conducted, partly due to the complexity of the mathematical models.

The main objectives of this paper are to improve our present knowledge in cholera dynamics related to age structures,
to mathematically clarify the concern in the design of age-based vaccination protocols, and to explore optimal vaccination
strategies for cholera. To that end, we propose an age-structured cholera model that consists of four partial differential
equations (PDEs) and one ordinary differential equation (ODE). We then conduct rigorous analysis on the equilibria of the
system, including both trivial (disease-free) and non-trivial (endemic) equilibria, and establish their existence, uniqueness,
and stability wherever possible. We next perform an optimal control study for the age-structured model and seek an optimal
balance between the outcome of vaccination and the associated costs.

The remainder of this paper is organized as follows. In Section 2, we present our age-structured model as a mixed PDE-
ODE system, with necessary notations and assumptions. In Section 3, we conduct a careful analysis for the disease-free (or,
infection-free) equilibrium, and prove its existence, uniqueness, and local and global stabilities. Furthermore, we establish
the existence and uniqueness of the endemic equilibrium. In Section 4, we construct and analyze an age-based optimal
control model in terms of vaccination. We conduct extensive numerical simulations for the optimal vaccination solutions
under different scenarios. Finally, we conclude the paper with some discussion in Section 5.

2. Formulation of the model

As a start, we develop a PDE-ODE coupled system to describe the age-dependent cholera dynamics. We assume that the
total human population is divided into four classes: susceptible, infected, vaccinated, and recovered. Let S(t, a), I(t, a), V¢,
a), R(t, a) denote, respectively, the age-densities of the susceptible, infected, vaccinated, and recovered parts of the human
population, where a denotes age and time ¢ denotes time. Let B(t) be the concentration of vibrios in the contaminated
environment at time t. We employ a saturation incidence [9,32] in the form of ﬁ(”)ﬁﬁ(ﬂx to model the force of infection
from the environment, where « is the half saturation concentration of environmental vibrio.

Transmission of cholera usually stems from the waterborne bacteria Vibrio cholerae, and therefore the infection occurs
as a result of an effective contact between a susceptible individual and the pathogenic vibrios, reflected by the contact rate
p(a). It is well known that improvements in water supply, sanitation, food safety and community awareness of disease risks
are the best means of preventing cholera. In addition, WHO [41] has suggested that oral cholera vaccines with demon-
strated safety and effectiveness have recently become available. The deployment of cholera vaccines, through immunizing
populations at higher risk of infection, provides an effective tool to complement those traditional measures against cholera
outbreaks. Thus, we further assume that susceptible individuals are vaccinated at an age-specific rate Yr(a), with a vaccine
efficacy 1 — o (where o € (0, 1] ). Infected individuals are treated and subsequently enter the recovered class at a rate y(a).
ft(a) is the natural mortality rate of human population, Infected individuals contribute to vibrios in the aquatic environment
at an age-dependent rate «(a) and vibrios have a reduction rate g, which includes the natural death and other means of
the removal of the pathogen in the environment. Since the case fatality rates for cholera generally are very low (at or below
1%) [42], we assume that the cholera-induced mortality can be neglected in this study. All these parameters take positive
values. The variables, parameters and their biological interpretations are given in Table 1 and a flow diagram of the model
is depicted in Fig. 1.

Based on these assumptions, the dynamics of the disease transmission are described by the following equations:

asgt, L + asg‘;a) = _'B(")—i(ls(t a) — (¥ (a) + p(a))s(e, a),

B(t) +«
dit,a) 9I(t,a) B(t)
TR Pt ﬁ(a)Bm o (5S¢, a) +oV(t,a)) — (v (a) + p(a)I(t, a),
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Table 1
Model variables, parameters and their units.
Variables  Description Units
S(t, a) Concentration of susceptible humans at age a and time ¢ "’iﬁ
i(t, a) Concentration of infected humans at age a and time ¢ H"T':f"‘
Wt, a) Concentration of vaccinated humans at age a and time ¢t "'“f"qq’,—"‘
R(t, a) Concentration of recovery humans at age a and time ¢ ”“%_J,‘
B(t) Concentration of vibrios in the environment at time ¢ Cells/ml
Bla) Ingestion rate of vibrios at age a 1/day
Y(a) Vaccination rate at age a 1/day
1(a) Natural mortality rate at age a 1/day
y(a) Recovery rate at age a 1/day
a(a) Rate of human contribution to vibrios at age a 1/day
4 Half-saturation concentration Cells/ml
o The reduction of vaccine efficacy None
b(a a
P fsiea) L Jina) Y@ [Rta)
[ Tee = !
1a) fé af) a) H(a)
B(t)
L I —
ya oB@

T | V{t,a) [ Ha)

Fig. 1. The flow diagram of the model (2.1).

v (e, av(t, B
‘(jt a) + ;n ﬂ) =L},(n)S(La)—Uﬁ(a)ig(r)(—%V(t.ﬂ)—ﬂ(ﬂ)V(f,ﬂ).
AR(t,a) OR(t.a)
= + = y{a)i(t, a) — u(a)R(t, a),
dB(t ®
% =fu a(a)i(t, a)da — p,B(L). (2.1)

We assume that all individuals are born susceptible and unvaccinated. The boundary and initial conditions for system
(2.1) are given by

S$(t,0) = fmb(a)(S(f. a) + I(t, a) + R(¢,a) + V(t,a))da,
1]
I(¢,0) = V(t,0) =R(t,0) = 0, S(0,a) =Sp(a), I(0,a) =Iy(a),
V(0,a) = Vp(a), R(0,a)=Ry(a), B(O) = B. (2.2)

where b(a) is the age-specific per capita fertility rate. The initial age distributions are assumed to be known, and their values
become zero beyond socme maximuim age.

Remark 1. We notice that Alexanderian et al. [1] also proposed an age-structured dynamical system for cholera. Like the
model of Alexanderian et al.,, we have employed a saturation incidence here to model the force of infection from the envi-
ronment, However, we have also added a vaccinated compartment, and vaccinated individuals can be re-infected due to the
imperfect vaccination efficacy. Hence, our model leads to cholera dynamics that are substantially different from those of the
model by Alexanderian et al. Additionally, the authors of [ 1] did not analyze the disease threshold, whereas we will perform
a detailed study of the threshold dynamics, characterized by the reproductive number, in next section.

Let P(t, a) = S(t, a) + I(t,a) + R(t,a) + V(t, a). It is straightforward to observe that

aP(t,a) dP(t,a)
2t + 5a = —u(a)P(t, a),

P(0,1) = f " ba)P(t, a)da,
P(0,a) = Fo(a),

(2.3)
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This is the standard age-structured Mckendrick-Von Foerster equation [21]. The following hypotheses are necessary for ana-
lyzing this problem:

b(a) € L*(0, 0), b(a) = 0 in [0, o), b= sup b(a),

ae[0,~c)
je(a) € L1 [0, 00), f2(a) > 0 in [0, c0), f p(a)da = co.
0

Using methods in the book [21], we assume that the net reproductive rate of the population is equal to unity and that
the total population is at an equilibrium. This means that

oo a
0
Thus,
a
P(a,t) = Po(a) = by exp{ff (r)dr), forallt,
0

Therefore, for system (2.1), we chose the following the initial data
So(a@) =0, Ip(a) >0, Vy(a)>0. Ry(a) > 0.
So(a) +lo(a) + Ro(a) + Vo(a) = P (a),
which yields the relation:
by — fo P<(a)da
fof’k‘ e—fo (n)dr g’
It is assumed that the recovered class R(t, a) are no longer active in the disease transmission. Hence the dynamics of R(t, a)
does not affect the evolution of S(t, a),K(t, a), V(t, a), B(t), we may omit the equation for R(t, a) when we study the dynamics

of the disease.
By introducing the following fractions:

_S(t,a) . ~I(t,e) Vi, a)
=p.@ [[{C L iceer
we investigate the following normalized system
((0s(t,a) ds(t a) /i B(t) B
‘at 3a = ﬂ(ﬂ}mS(f\ﬂ) Lff(ﬂ)S(f.ﬂ).
di(t,a)  di(t,a) B(t) :
T s 9a —ﬂ(ﬂ)m(s([ﬂ)JrUU(fsﬂ))—V(ﬂ)l(tsﬂ)~
d ad B(t 24
8—:+-égzyﬂr(a)s(t,a)—aﬁ(a)BT)(j—Ku(t,a). (24)
% =f a(a)i(t, a)Py(a)da — j1pB(¢),
dt 0
[5(£,0) =1, i(t,0) = v(t,0) =0, s(0,a) =s(a),i(0,a) =i%a), (0, a) = 1°(a).

The model (2.4) with the initial and boundary conditions (2.2) is well-posed and can be applied by the Banach contraction
mapping principle. The proof is similar to that in Ref. [1].

3. Dynamics of the modei
3.1. Equilibria and the reproduction number

We first analyze the dynamics of our cholera model described in system (2.4). For ease of presentation, we let ¥ =1
(through a normalization) in this section. Introduce

Fy(a) =exp {—fou w(t)dr ]
It is easy to obtain that
Eo(s°(a),1(a), 1 (a), B°) = (f,,, (@),0, j;a U (0)Fy (9):19,0) (3.1)

is the disease-free (or, infection-free) equilibrium of system (2.4).



L-M. Cai et al./Applied Mathematics and Computation 299 (2017) 127-140 131

Next, we investigate the existence of the endemic equilibrium in system (2.4). In fact, let (s*(a),i*(a), v*(a), B*) be any
endemic equilibrium of system (2.4). Thus we have

ds*(a) B(a)B* .
= —( B +‘Jf(ﬂ))5 (a),

da
du,;;a) = ¥ (a)s'(a) - ﬁ( )B TV (@),
HyB* = [) a(a)i* (a)Px (a)da. =

Consequently, we find that

s'(a) = exp|foﬂ (";({:? + w(r))dr’,

PODB' (5 1) + o0 (m)) exp {—fﬂ }’(f)df]d'?-
-

Bay= B +1

v'(a):£a¢(£)s~(s)ex[){—[ A(x)E dr}dé.

B+ 1

and

- _L.[la(a)f?x(ﬂ)/ ﬁ(;‘) h(B‘ J])EXP[—[ }/(‘[)dr}d)}dﬂ
:f = B Ct(ﬂ)P (a)h(B*, n) exp{- f}/(‘{)dl’}dﬂdl)
0 7 Hif &
=: H(B*),
(s* M +ov ()

exp{joa (fi}(rjli + !,ff(r))dr]
a é * a ¥
+f0 W(E)exp{~f0 (f;?ﬁ +t,"/(t))d~f}exp{fLE (Uf;ET:}i dr}dé. (34)

From (3.4), it is clear to see that H(B*) is a strictly decreasing function of B* with H(0) = %y(i). Hence, the equation has a
unique positive root B* provided that

Il

where, h(B*, n)

‘Ha(l.b)——f la(a)ﬂ(n)h(ﬂ‘ r})]EXP' j (V(r))dr}P (a)dadn > 1.

Using (3.3), we conclude that system (2.4) has a unique positive endemic equilibrium (s*(a), i*(a), v*(a), B*) as long as

Ro(Y) > 1.

Thus, we have established the following result

Theorem 3.1. System (2.4) always has the disease-free equilibrium Ep; system (2.4) has a unique endemic equilibrium
(s*(a).i*(a), v*(a), B*) as long as NRo(y¥) > 1.

Remark 2. 9tg(1/) can be regarded as the net reproduction number, introduced by Diekmann and coworkers [12], for our
cholera model.
If there is no vaccination, we have v (a) = 0 and the v equation can be dropped. Denote Mg = N (0), and we obtain

%y = %f;f[a(a)ﬁ(g)}exp{_[t (y(r))dt}Pm(a)dadt.

Note that s%(a) + o19(a) < 1 for all a > 0. Hence, No(¥) = Dg. This implies that when 9ty = % (0) > 1 (i.e., the reproductive
number is greater than one in the absence of vaccination), a vaccination program can be used to reduce the reproductive
number 9Ng(¥) to values below one. On the other hand, it can be easily verified that in the absence of age dependence,
No(r) is reduced to Hp = % representing the basic reproduction number of the corresponding ODE system (up
to a normalization factor). For our PDE system (2.4), however, the age structures of the model parameters, the initial host
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distributions, and the components of the disease-free equilibrium, all play a role in shaping the reproduction number NRol(yr).
Therefore, 9o(1/) can provide important information in controlling or eliminating the disease.

3.2, Stability analysis

In this section, we establish the stability results associated with the disease-free equilibrium, presented in (3.1). We first
prove the following result

Theorem 3.2. If %tg(Y) < 1, then the disease-free equilibrium Eq is locally asymptotically stable; if 9ig(W) > 1, Eg is unstable.
Proof, To investigate the stability of the steady-state age distributions, we write

s(t,a) = s%(a) +5(t, ), i(t,a) = i°(a) +i(t, ),
v(t, a) = 1°(a) + T(t,a), B(t) = B® + B(r), (3.5)

for some small perturbations S, i, ¥ and B. Substituting (3.5) into system (2.4) and neglecting the nonlinear terms, we
obtain

é).’c‘gt,a) 4 'S“(g,ﬂa) - B )( -5(t.a) + ﬁsU(a)'B"(t)) — ¥ (a)s(t, a),
a?((,;a) +T(g'aﬂ) = fé((,a)BD (5(t,a@) +0T(t,a)) + (B‘ff:)z(S“(a)+mf°(ﬂ)J§(f) -y @i(t, @),
i)'ﬁg}tr,a) +ﬁ(;.aa) _ vl a)_aﬁ(a)( Tt 0) + s (Bo T @iw),
% - j; a(@)i(t, a)Px (@)da — ;B B

with the initial and boundary conditions

5(0, a) = so(a) - 5°(a), i(0, @) = ip(a) — °(a), D(O, @) = wp(a) — 1°(a),
B(0) = Bp—B°, §(t,0) =i(t,0) = ¥(t,0) =

Following the work of Castillo-Chavez et al. [7], we restrict to perturbations in separable form given by

§(t, a) = §(a)e™, i(t,a) = i(a)e™,
U(t,a) = d(a)e™, B(t) = Be™, (3.7)

where B is a constant, Substituting (3.7) into system (3.6), we obtain

- 30 )
d—z(-:—) :f(l-v B> +v(a))s(a) (Bf(a:)z (a)B,

0
di@ _ p(@ps G(a) + o (N B (°(@) + o 1°(@)B — (A + y(@)i(a),

Tda T B+ B+ 1)2
D .
u(a) = Y (a)s(a) — ( ‘B( ) )t( - (Bfiﬂz)zso(a)ﬂ‘
S .
b= fo a(@)i(a)P., (a)da. (3.8)
System (3.8) yields
5@ =8 gy | ﬁ(n)s”(n)exp{ [ B8 +¢(r))dr}dn,

v(a)—f (P €)sé) - Bﬂ(g)sol()i))exp[~f (Jwﬁmﬂ) }dé

(3.9)
f(a)=f [ﬁ(“BD(s'(c)ma(c)n Lit9) (S”(é')+ov°(§))B]EXPI f(uy(r))dr]

1

BO+1 (BO+1)2

T fu a(@)i(a@)P., (a)da.
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Notice that BY = 0 and B # 0 in (3.9). Thus we obtain

1
A+

| - fxa(a)falﬁ(i;)(s"(s‘)+rrv°(é’))]exp[fa(l+y(‘r))df}d‘fpx(“)d“
0 0 ¢

_ 1 X oo o 0 B a
= —“MJJ £ [ (@B Q) + ot (;))lexp{ fz(uy(r))dr]r’m(a)dadc

=1 G(\) (3.10)

Here we denote the right-hand side of Eq. (3.10) by G()). Obviously, we have G(0) = Mo ().

It is clear to see that G(A) is a continuous function of X, When ). is real and A > 0, G(A) is strictly decreasing with A,
and G(A) > 0 as & — oo. Thus if 9tg(¥) > 1, Eq. (3.10) has a positive real root for A, and E, is unstable,

If ®g(¥) < 1, a real root of Eq. (3.10) can only be negative; i.e., A < 0. Now let A = x + iy be a complex root. Substituting
it into Eq. (3.10), we find that the real part x = Re(}.) satisfies the following equation

x_+_ o o0 a
= _(X+ub;:b+y2fo f; [a((tl)l-'f((,“)(sﬂ(g‘)+mr°(g'))[exp[f(r (x+ }/(T))d'[}cosy(ag)Pm(ﬂ)dadé" (3.11)

Since cosy(a—¢) <1 and W’:r;)‘z‘;—yf) < )%“b it follows from (3.11) that

] oo poo % B ’0 = ’ )
H“bfo j; e (@B () +ov® (L)) exp| f((x+y(r))dr]&(a)dﬂdc 1.

Comparing this result with Eq. (3.10), we immediately see x < 0. Therefore, if YMolih) < 1, the disease-free equilibrium is
locally asymptotically stable. [

Theorem 3.3. If fto(¥) < 1, the disease-free equilibrium Eq is globally asymptotically stable.

Proof. By integrating system (2.4) along the characteristic lines, we have

_ J B(t —a+1) a
s(t,a) =exp {—fo ﬁ(r)mdt’ exp [fg i,ff(r)dt}. t > a, (3.12)
which yields
s(t,a) <exp {fﬂ w(r)dt}, t>a. (3.13)
0

Similarly, from the second and third equations in system (2.4), we obtain that

i(t,a) = 1 %:—?(s(r—ajté,z?wrov(ta+E,E))exp{—j; y(t)dr}d&, [>aq,
u(t.a):j; w(c)s(r‘ajug“{)exp(af( ﬁ(r)%dr}dc, t>a. (3.14)

From (3.13) and the second equation in (2.14), we have

a rL
u(t,a)sfn w({)exp{jo w(r)dr}d.’;, t > a. (3.15)

Substituting the first equation of (3.14) into system (2.4), we obtain

9'% =]l;ma(a)f’.x(a)|: Oﬂﬁs(é)_l?‘fiﬂsf;:‘i)(s(r—a+$.€)+at:(t_a+g,§)) exp [_[5 Y(T)dT]df}dﬂ—MB(f)

: " BEIBE—a-+) J
S.L a(a)P,,G(a)l: ; m(exp[—fo y'/(r)dt}
£ 4 a
+J./(; w(g)exp{ﬁj; gb(r)dr]d;)exp j;y(r)dr}dé]da—ubB(t)

= [~ BE)B(Et—a+§) £
:j; . mﬁa(a)Pm(a)(exp{_j; ,;,(r)dr]

13 ¢ a
+of !!/(g)exp{—f ;b(r)dr}dg‘;) exp f y(r)dr}dadg ~ B (3.16)
0 0 13
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It can be easily shown that limsup,_, . B(t) < +co. Using the inequality

B(t—a+§&) 29
B(t)(B(t —a+£&)+1) =

and the result from (3.16), we obtain that
a‘B(t)

< o (Mo (W) — 1)B(0). (317)

Thus, when 9to(r) < 1, from (3.17), we have B(t) — 0 as t — oco. Therefore, using Eqs. (3.12) and (3.14) and the continuity
of the function B(t), it is now straightforward to obtain that

lim s(t,a) =s"(a) limv(t,a) =1%(a), limi(t, a) =
[—o0 t—>oo t—x
We have thus established the global asymptotic stability of the disease-free equilibrium. O

Remark 3. Although the stability of the endemic equilibrium has not been resolved yet, our analysis and results presented
in this section indicate that when 9ig(¥) > 1, a cholera outbreak will take place, and the disease will potentially persist. A
critically important question, then, is how to effectively control cholera, and how to achieve the disease control with typi-
cally limited resources. Given that 9ts(1) strongly depends on the age structures of the host population, any cost-effective
disease control measure shall take into account the age factors.

4. Optimal vaccination study

We now turn to an optimal control study of our age-structure cholera model and explore effective strategies for vaccina-
tion deployment in order to contain a cholera outbreak. We will allow the vaccination rate in our model to be both age- and
time-dependent, offering more flexibility in strategic design of cholera vaccination policy in practical application. In particu-
lar, we will investigate the interplay of several factors, including the inherent age structures of a given host population, the
objective of reducing total infections, and the costs of implementing vaccination, in shaping an optimal vaccination strategy.

Throughout this section, we will mostly rely on numerical simulation in our study due to the complexity of the optimal
control model. Nevertheless, there have been a few standard results regarding the existence, uniqueness and optimality
property of the optimal control solution. Interested readers can look into [3,10,11,13,1G] and references therein for more
details.

4.1. Optimal control formulation

For convenience of discussion and numerical implementation, we re-write system (2.1) as

as(t,a) | _ ds(t.a) B(t)
TR T\ | AT T

e .

WD 028Dy a)sa) o plar 2L
al(t,a) df(t a)

S(t,a) — (¥ (t, a) + p(@))S(¢, a),

B(t)
B(t) +

V(t, a) — u(a)v(t, a),

3 T = fi(a )BU)Jr (S(t,a) +oV(t,a)) — (¥ (a) + p(a)iit, a),
9 OR(t,
R‘.(;r‘ L dR(g{ﬂ YD _ v @It TSN ORE D),
iB A
(d(:) fo a(a)it, a)da — ppB(L), (4.1)

where the constant o is introduced to balance the possibly different units between time and age; for example, a; = 1/365
if we have time t in days and age @ in years. We have also re-written the vaccination rate by ¥ (t, a), a function depend-
ing on both age and time. In addition, we have replaced the upper limit of the integral with respect to age, for practical
consideration, by a finite number A > 0.

The initial and boundary conditions for the system (4.1) are provided in Eq. (2.2). Indeed, we have also studied another
type of boundary conditions by putting all newborns into the recovered class [1]. We find that on the time scale of a typical
cholera outbreak (several months te a year), the two types of boundary conditions yield very similar results.

For our study, we consider this system on an age range [0, A] and a time interval [0, T] for some T > 0. The control set
is defined as

I'= (¥ (t.a) € L¥[(0,A) x (0, )] |0 < ¥ (t, ) = Ymar), (4.2)

where ¥ max denotes the upper bound for the effort of vaccination. The bound reflects practical limitation on the maximum
rate of vaccination that can be implemented within a given population in a given time period.
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We aim to minimize the total number of infections and the costs of the control over the time interval |0, T]; i.e.,

T A
min f f layI(t, @) + a0 (t, a)S(t, @) + az 2 (¢, a)]dadt. (4.3)
v(tael Jo Jo

where aj, a3 and a3 are appropriate cost parameters, Quadratic terms are introduced to account for nonlinear costs poten-
tially arising at high intervention level. The minimization process is subject to the differential equations in (4.1), which we
now refer to as the state equations. Correspondingly, the unknowns S, V, I, R and B are now called the state variables, in
contrast to the control variable . Our goal is then to determine the optimal control, ¥*(t, a) in terms of age and time, so
as to minimize the objective functional in (4.3).

Following the framework in [3,13], we construct the optimal control model through the combination of the state equa-
tions, the adjoint equations, and the optimality condition. We determine the adjoint equations by first introducing the sen-
sitivity functions. Let us denote F = (5,V, I, R, B) and define the solution map: W — F =F (). Based on results in 3], such
a map is differentiable and the sensitivity functions are defined by the Gateaux derivative:

Q5. Qv. Q1 Qr. Qs) = lim w

for I(a, t) € L=[(0, A) x (0, T)]. Consequently, the sensitivity functions satisfy the following equations:

B(t) ) kS(t,a)
(Qs)e +a1(Qs)a = —ﬁ(ﬂ)m@; - ﬁ(ﬂ)WQﬂ —ji(a)Qs — L‘U(t a)Qs — I(t, a)Qs,
(Qv)e +a1(Qu)a = —Uﬂ(ﬂ)rf)(r_:—ka = Uﬁ(ﬂ)wk(*‘:)(:_f(—))z% + W (t,a)Qs +1(t, a)Qs — (a)Qy, (44)
. B S(t, V(,

(@ + 1@ = B@ gyt @t a@) + By CEDINED o (@) 4 e
(Qr)e +1(QR)a = ¥ (0)Q — 2(a)Qg,

dQp rA

5 = / a(a)Qrda — 11,Qp, (4.4)

where the subscripts t and a refer to the partial derivatives with respect to time and age, respectively. Next, we introduce the
adjoint variables As, Ay, Aj, Ag and Ap, corresponding to the state variables S, V, I, R and B, respectively. The adjoint system
(which the adjoint variables have to satisfy) is then derived by using the adjoint operator associated with the sensitivity
equations presented above, together with appropriate transversality conditions and boundary conditions.

Specifically, the adjoint system is given by

~(Osh+ a1 (As)s) = (o) - As(ﬁ(a) T s u(a)))
B
+AB(@) g 2 A (. 0) + (1, 0)b(a),
(et anO)e) = 2B g~y (oﬁ(a)B—(t% o (a)) +25(t,0)b(@),

~(e+e1(0)a) = ar — iy @) + (@) + gy (@) + As(0, £)b(@) + Aper (@),
—((AR)e + a1 (Ar)a) = —hgie(a) + As(0, £)b(a),

_dag
dr

Il

A
—Aaity(t) — H(r)f B(@)(sS — X,(S+ V) + o V)da, (4.5)
[+]

where

;71 UM

(B(t) +x)*
The transversality conditions are

As(T,a) = Ay (T.a) = A(T, a) = Ag(T,a) = Ag(T) =0,
for a € (0, A), and the boundary conditions are

As(t,A) = Ay (t,A) = Ai(t, A) = Ag(t,A) =0,

for t € (0, T).
The characterization of the optimal control follows from standard optimality procedure, and the existence and uniqueness
of the optimal solution are established from Ekeland's principle [13]. Specifically, the optimality condition is found as

I[I*(t, ﬂ) = maxlo’ mm(a(f: a)‘ l.rfmﬂx)]- (46)
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Table 2

Model parameters and values.
Parameter Symbol  Value Source
Maximum age A 72 years [
Natural mortality rate (a) 0.01619/365/day  [15]
Reduction rate for vibrios Iy 1/30/day [9]
Vaccine efficacy 1-0 0.7 [43]
Rate of human contribution to vibrios  «(a) 8 cells/(day- ml)  [9]
Half-saturation concentration K 105 cells{ml [24]
Recovery rate y(a) 1/5/day 120)
Maximum vaccination rate Wi 70%/day Assumed
Time frame T 100 days Assumed

where

W(t,a) = (As — Ay — a3)S(t, @)

2(13

(4.7)

is determined through differentiation of the objective functional with respect to the control.

4.2. Numerical settings

Our optimal control problem consists of the state system (4.1), the adjoint system (4.5), and Eq. (4.6) to characterize
the optimal control. Such a problem has to be solved numerically, due to the strong nonlinearity and the coupling between
the state and adjoint equations. Since our main interest here is the biological finding, we have applied first-order finite
difference methods to solve the PDEs involved, for simplicity in numerical set-up and ease of code development.

Our numerical approach is based on an extension of the forward-backward sweep method [27], originally proposed
for ODE optimal control simulation. Our numerical procedure consists of the following steps: first, the state equations in
(4.1) are solved using a method based on forward difference in time and backward difference in age, with an initial guess for
the control variable. Second, the adjoint equations in (4.5) are solved by backward difference in time and forward difference
in age, using the solutions of the state equations. Next, the control is updated with the new values of the state and adjoint
solutions. This process is then repeated until the convergence is achieved,

To carry out the numerical simulation, we list the values for various model parameters in Table 2,

We have conducted the numerical simulation using a Matlab code. We have found that with a time stepsize of 0.01
and age stepsize of 0.1, it takes about 30-40 min for a typical simulation on a personal computer with MS Windows 10
Professional 64-bit operating system, 1.90GHz CPU, and 4.00 GB RAM.

We use the age-dependent contact rate (i.e., rate of ingesting vibrios from the contaminated environment) proposed in
[15]:

0, O0<a<2,
0.3a- 056, 2<a=<,

B(a) = { —-0.169a +2.683, 7 <a <15, (4.8)
0.06a — 0.75, 15 <a < 25,

—0.016a + 1.152, otherwise.

This formula assumes that newborns are protected from maternally derived immunity and the antibodies in breast milk,
up to two years. It is also assumed that older people have smaller chances of catching the vibrios than younger people, due
to their relatively lower levels of activities (which may include, among others, working or playing near aquatic environments,
collecting water for household use, and preparing food) than those of the younger people. The rate of contacting vibrios is
assumed to decrease as the age increases (for a > 25),

Meanwhile, the initial age distributions are prescribed by

(0, a) = 450a, O0<a=<2,
*7/ 7 1-0.38198a2 + 17.08376a + 867, otherwise

and
1(0, a) = 0.025(0, a), B(0) = 0.001« .

In addition, the fecundity function b, in units of years, is modeled as [1]:

i [ 2 a—15 j
b(a) _ gslﬂ ((T)ﬂ'), 15<a< 45; (4.]0)
0,

otherwise.
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Fig. 2. The total numbers of infected individuals with and without vaccination. The parameter values are @, = 500, a; = 1 and a3 = 1 for the case with
low vaccination costs, @) = 500, a; = 10 and a3 = 100 for the case with moderate vaccination costs, and a; = 500, a, = 100 and a; = 1000 for the case
with high vaccination costs. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article,)

Based on this formula, we have f(fb(a)da =3 for any A > 45. It is assumed that on average, each woman in a given host
population attacked by cholera (typically in a developing country) will give birth to 3 children during the age frame 15 < a
< 45,

4.3. Simulation results

As can be naturally expected, the costs of vaccination have strong impact on the optimal control strategy. Thus we have
considered three different scenarios in our numerical simulation.

The first scenario we are concerned with is @; > a,,a3; that is, reducing the number of the infected cases carries a much
higher weight than that for the costs of the control in the objective functional (4.3). For illustration, we assign the values of
the parameters as a; = 500, a; = 1, and a3 = 1. The second scenario we are interested in has increased vaccination costs.
For demonstration, we consider the case with a; =500, a; = 10 and a4 = 100. The third scenario we consider is a case with
very high vaccination costs at both the linear and nonlinear levels. For illustration, we set ay = 500, a; = 100 and a3 = 1000.
In what follows, we refer to these three cases as scenarios with low, moderate, and high vaccination costs, respectively.

Fig. 2 compares the total infections of all ages for the case without vaccination (shown in black solid line); i.e, ¥(0,a) =
0, and those with the optimal vaccination strategy implemented under the three different parameter settings (with low,
moderate, and high vaccination costs, respectively). We clearly see that, compared to the case with no vaccination, the
number of infections has been reduced for all the three vaccination scenarios. The improvement is most significant for the
case with low vaccination costs (shown in blue dashed line), where the peak value of the outbreak has been reduced from
9000 to 4000. The pattern is similar to the scenario with moderate costs (shown in red dash-dotted line), though it can be
noticed that the peak value of the infection curve (about 4200) is slightly higher than that in the first case (about 4000),
due to the weakened vaccination strength associated with the increased costs. For the third scenario that comes with high
vaccination costs (shown in green dotted line), we see a notably higher disease peak (slightly above 5000), owing to the
high costs that would limit the strength and duration of the vaccination.

Fig. 3 display the infection curves of several different ages for the cases without and with vaccination. We observe clear
age variations from all these graphs. When there is no vaccination deployed; i.e., ¥(0,a) = 0, the age group with a = 10
exhibits the highest infection numbers among all those shown in Fig. 3(a), whereas those with @ =1 and a = 60 show the
lowest infections. This pattern is consistent with the age-based contact rate prescribed in (4.8). With the optimal vaccination
strategy implemented at low costs, shown in Fig. 3(b), we can see significant reduction of the number of infected individuals
for most age groups, except for a =1 where the infection risk is extremely low even without vaccination. Fig. 3(c) shows
the infection curves of these different ages with optimal vaccination implemented at moderate costs. Again we see similar
pattern with that in Fig. 3(b). One exception is the age group, a = 60, where the improvement from vaccination is rather
moderate under this optimal control strategy. Fig. 3(d) shows the infection curves with high vaccination costs, and we can
observe the following: (1) most age groups still exhibit reduced infections (of varied degrees) from the vaccination, and
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the reduction is especially notable for those groups with higher infection risks such as a =5, 10, 30 (see Fig. 3(a)); (2) a
few other age groups, especially those with lower disease risks such as a = 40, 50, 60, appear to be receiving insufficient
vaccination and thus not benefiting much from the current control strategy, a trade-off that is made to accommodate the
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very high costs of the control.
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In addition, Fig. 4 shows the profile of the vaccination rate in its optimal balance for the case with low vaccination costs,
in both three-dimensional and two-dimensional views. Such plots are natural reflections of the time- and age-dependent
dynamics of our cholera model. We observe that the optimal vaccination rate varies with ages, yet, for almost all ages, the
vaccination rate starts at its maximum value and remain at that level for a number of days before decreasing to lower levels
of strength. Eventually the vaccination rate at all ages settles at 0.

5. Conclusions

We have presented an age-structured model to investigate the impact of ages on cholera epidemics and endemism, and
to explore optimal vaccination strategies against cholera. The model is a nonlinear system with mixed PDEs and ODEs where
both the mathematical analysis and optimal control simulation are nontrivial. We have rigorously proved the existence and
uniqueness of the disease-free and endemic equilibria of the model, and established the basic reproduction number, Ng(1),
as a threshold for the age-structured disease dynamics: when Bo(¥) < 1, the disease-free equilibrium is both locally and
globally asymptotically stable, so that cholera will die out; when Mg(¥) > 1, the disease-free equilibrium becomes unstable,
and there exists a unique endemic equilibrium, indicating the outbreak, and potential persistence, of cholera.

We have also formulated and studied an age-based optimal control model in terms of vaccination, with extensive nu-
merical simulation. Our numerical results show that vaccination can significantly reduce the disease prevalence and slow
the spread of the infection, that optimal vaccination protacols are strongly dependent on ages and costs, and that strategic
deployment of vaccination can effectively balance the gains and costs of the intervention. More specifically, the selection
of optimal vaccination depends on several factors. First, the relative weights between the outcome (i.e., the reduction of
infected cases) and the costs (ie., the expenses related to the vaccination deployment) have to be balanced. Thus, with
low costs of the control, the disease outbreak can be contained at a low level, while with increased costs, the reduction of
infections will be discounted. Meanwhile, the specific age structures of the host population, involving the age distribution
and time evolution, the age-dependent susceptibility, and the age-based contact pattern, etc., will have strong impact on
the optimal control. Furthermore, we mention that another approach for optimal vaccination analysis is to reduce the re-
productive number of the epidemic model through a vaccination strategy that minimizes the costs [6,19,35]. Compared to
this approach, our optimal control model is more computationally oriented, which allows us to explicitly incorporate many
different factors for a systematic investigation.

A limitation in this study is that our model has only considered the indirect (or, environment-to-human) transmission
route, while several previous studies [29,34,36,37] have shown that direct (or, human-to-human) route also plays an im-
portant role in shaping cholera epidemics and endemism. Incorporating both transmission pathways into the age-structured
model will possibly yield more insight into the complex cholera dynamics, but will also necessitate some non-trivial changes
of the analysis presented in this work. In addition, our model and optimal control study have focused on vaccination as the
disease control measure. Other intervention methods, such as antibiotics and water sanitation, can be added to the model
and investigated in a similar way. A modeling framework incorporating such a holistic intervention approach might be able
to provide more realistic guidance on cholera control to public health administrations,
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