

REFERENCES

- Aytug, H., Khouja, M. & Vergara, F.E. (2003). Use of genetic algorithms to solve production and operations management problems: a review. <u>International Journal of Production Research</u>. 41(17), 3955-4009.
- Beamon, B.M. (1998). Supply chain design and analysis: Models and methods.

 International Journal of Production Economics, 55, 281-294.
- Box, G.E.P. & Liu, P.T. (1999). Statistics as a catalyst to learning by scientific method part 1-an Example. <u>Journal of Quality Technology</u>. 31, 1-15.
- Cox, J.F. & Blackstone, J.H. (1998). <u>APICS Dictionary (9th ed.)</u>. APICS-The Educational Society for Resource Management.
- Chipperfield, A. et al. (n.d.). Genetic Algorithm Toolbox User's Guide. Department of Automatic control and systems engineering University of Sheffield, User's Guide Version 1.2.
- Chopra, S. & Meindl, P. (2004). <u>Supply Chain Management (2nd ed.)</u>. Pearson Education.
- Gen, M. & Cheng, R. (1997). <u>Genetic Algorithms and Engineering Design</u>. John Wiley & Sons.
- Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Massachusetts.
- Harland, C.M. (1996). Supply chain management: Relationships, chains and networks.

 British Journal of Management, 7, 63-80.
- Hicks, C. (2004). A genetic algorithm tool for designing manufacturing facilities in the capital good industry. <u>International Journal of Production Economics</u>, 90, 199-211.
- Kvanli, A.H., Guynes, C.S. & Pavur, R.J. (1995). Introduction to Business Statistics (4th ed.). West, Minneapolis.
- Montgomery, DC., (1997). <u>Design and analysis of experiments (4th ed.)</u>. John Wiley and Sons.

- Montgomery, DC. & Runger, G.C. (1999). <u>Applied Statistics and Probability for Engineers (2nd ed.)</u>. John Wiley and Son, New York.
- Montgomery, DC. (2001). Design and Analysis of Experiments. John Wiley and Sons.
- Nozick, L.K. & Turnquist, M.A. (2000). Case Study: Inventory, transportation, service quality and the location of distribution centers. <u>European Journal of Operational Research</u>. 129 (2001), 362-373.
- Patrick, D. T. O'Connor. (1991). <u>Practical Reliability Engineering (3rd ed.)</u>. John Wiley & Sons Ltd. Third edition revised.
- Pongcharoen, P. (2001). <u>Genetic Algorithms for production scheduling in capital goods</u> industries. A thesis submitted for the degree of Doctor of Philosophy.
- Pongcharoen, P. et al. (2001). Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry. <u>Journal of Applied Statistics</u>. 28(3&4), 441-455.
- Pongcharoen, P. et al. (2002). Determining optimum genetic algorithm parameters for scheduling the manufacturing and assembly of complex products. International Journal of Production Economics. 78(3), 311-322.
- Pongcharoen, P., Hicks, C. & Braiden, P.M. (2004). The development of genetic algorithms for the finite capacity scheduling of complex products, with multiple levels of product structure. European Journal of Operational Research, 152, pp.215-225.
- Pongcharoen, P. & Promtet, W. (2004). Exploring and determining genetic algorithms parameters through experimental design and analysis. International Conference on Computers and Industrial Engineering. Jeju, Korea, 33.
- Pongcharoen, P., khadwilard, A. & klakankhai, A. (2005). Optimising logistics chain network using genetic algorithms. <u>International Conference on Production</u>

 <u>Research.</u> 18.
- Ryan, B., Joiner, B. & Cryer, J. (2005). Minitab Handbook (5th ed.). Updated for release 14th, Curt Hinrichs.

- Simchi-Levi, D., Kaminsky, P. & Simchi-Levi, E. (2003). <u>Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies (2nd ed.)</u>. Singapore: McGraw-Hill.
- Stephen, J.C. (2002). MATLAB Programming for Engineers (2nd ed.). The Math Works.
- Syarif, A., Yun, Y. & Gen, M. (2002). Study on multi-stage logistics chain network: a spanning tree-based genetic algorithm approach. <u>Computers & Industrial Engineering</u>. 43, 299-314.
- Tilanus, B. (1997). Information system in logistics and transportation. Elsevier, Amsterdam.
- Wang, Y.Z. (2003). Using genetic algorithm methods to solve course scheduling problems. Expert Systems with Applications. 25, 39-50.
- Winston, W.L. (1991). Operations Research: Applications and Algorithms (2nd ed.).

 PWS-kENT Publishing Company.
- What'sBest!. (2004). Lindo Systems, Inc. Retrieved on April, 2004 from: http://www.lindo.com.
- Zhou, G., Min, H. & Gen, M. (2002). The balanced allocation of customers to multiple distribution centers in the supply chain network: a genetic algorithm approach.

 Computers & Industrial Engineering. 43, 251-261.
- Zhou, G., Min, H. & Gen, M., (2003). A genetic algorithm approach to the bi-criteria allocation of customers to warehouses. <u>International Journal of Production</u>
 <u>Economics</u>. 86, 35-45.