CHAPTER V

CONCLUSION

In this thesis, we have the following result.

1. For nonzero $a_0, a_1, a_2 \in \mathbb{C}$, and nonzero tripotent matrices $T_0, T_1, T_2 \in M_n(\mathbb{C})$ satisfying the commutativity property, let A be their linear combination of the form

$$A = a_0 T_0 + a_1 T_1 + a_2 T_2. (3.2.1)$$

The matrix A is tripotent if and only if one of the following conditions holds:

(a)
$$a_0 = 1, a_1 = -1, a_2 = -1$$
 or $a_0 = -1, a_1 = -1, a_2 = 1$ and
$$T_0^2(T_1 - T_2) = T_0(T_1 - T_2)^2 = -T_0^2(T_1 - T_2),$$

(b)
$$a_0 = 1, a_1 = -2, a_2 = 4$$
 or $a_0 = -1, a_1 = -2, a_2 = 4$ and $T_0^2(T_1 - 2T_2) = (T_1 - 2T_2) = T_0(T_1 - 2T_2)^2$,

(c)
$$a_0 = 2, a_1 = -2, a_2 = 1$$
 or $a_0 = -2, a_1 = -2, a_2 = 1$ and
$$T_0^2(T_2 - T_1) = T_0 = T_0(T_2 - T_1)^2,$$

(d)
$$a_0 = 1, a_1 = 1, a_2 = 1$$
 or $a_0 = -1, a_1 = 1, a_2 = 1$ and
$$T_0^2(T_1 + T_2) = -T_0(T_1 + T_2)^2,$$

(e)
$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 4$ or $a_0 = -1$, $a_1 = 2$, $a_2 = 4$ and $T_0^2(T_1 + T_2) = (T_1 + T_2) = -T_0(T_1 + T_2)^2$,

(f)
$$a_0 = 2$$
, $a_1 = 2$, $a_2 = 1$ or $a_0 = -2$, $a_1 = 2$, $a_2 = 1$ and
$$T_0^2(2T_1 + T_2) = -T_0 = -T_0^2(2T_1 + T_2),$$

(g)
$$a_0 = \frac{1}{2}$$
, $a_1 = \frac{1}{4}$, $a_2 = \frac{1}{4}$ or $a_0 = -\frac{1}{2}$, $a_1 = \frac{1}{4}$, $a_2 = \frac{1}{4}$ and
$$T_0^2(\frac{1}{2}T_1 + \frac{1}{2}T_2) = (\frac{1}{2}T_1 + \frac{1}{2}T_2), T_0(\frac{1}{2}T_1 + \frac{1}{2}T_2)^2 = T_0,$$

$$a_0 = \frac{1}{2}, a_1 = -\frac{1}{4}, a_2 = \frac{1}{4} \text{ or } a_0 = -\frac{1}{2}, a_1 = -\frac{1}{4}, a_2 = \frac{1}{4} \text{ and}$$

$$T_0^2(\frac{1}{2}T_1 - \frac{1}{2}T_2) = (\frac{1}{2}T_1 - \frac{1}{2}T_2), T_0(\frac{1}{2}T_1 - \frac{1}{2}T_2)^2 = T_0.$$

- 2. Let c_1 and c_2 be nonzero complex number. Let A and B be nonzero complex matrices and $c_1A + c_2B = C$ satisfy $A^3 = A$, $B^s = B$, AB = BA, $A \neq B$, and $C^2 = C$. Then $B^2 = B$ or $B^3 = B$.
- 3. If one of A or B or C is idempotent (or tripotent) and the combination A, B and C is idempotent (or tripotent), then the others matrices must be idempotent (or tripotent).
- 4. Let A_1, \ldots, A_n be t_1, \ldots, t_n -potent respectively. If combination of A_1, \ldots, A_n is idempotent and one of A_1, \ldots, A_n is idempotent (or tripotent) and the combination A_1, \ldots, A_n is idempotent, then A_1, \ldots, A_n each the other matrices must be idempotent (or tripotent).