CHAPTER 111

A MODIFICATION OF FITZGERALD’S CHARACTERIZATION

Fitzgerald [12] proved that an irreducible polynomial
P(z} = pr + Pt &+ + poz® € Fyla]

of degree k > 1 is primitive if and only if g(z) = (71 — 1}/(z — 1)P(z) has
exactly ¢"1(¢g — 1) — 1 non-zero terms. Fitzgerald’s result is interesting in both
its statement and proof. The proof starts by equating and cleverly rearranging
the coefficients in g(z)F(z) = (z¢"~1 — 1)/(z — 1). This leads to a linear recurring
sequence over a finite field and the result follows by suitably appealing to the known

results about the number of occurrences of elements in such a sequence.

3.1 Main result and proof

We modify Fitzgerald’s technique by noting that the number of
coefficients in g(z) can be considerably reduced, at least for large q, by replacing
the factor © — 1 with £2-1 —1, which is the product of all monic linear polynomials,
excluding z, over F, and clearly divides 21 — 1. Yet the new quotient now has
an extra non-polynomial term, which reveals its more general structure. Analyzing
this structure enables us to deal with the arising additional difficulties. Our main

theorem reads:
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Theorem 3.1.1. Let P(z) = pp + Pe-1% + - - + poz® € Fofa] be irreducible over ¥y

and of degree k> 2. Letm=¢* -1, t =24, y = 9 and

o) = o Lipry = HO)+

P(y) ’
where H(y) = €pop + 61y + - -+ ey * " € Folyl. Then P(x) is primitive over
¥, if and only if the number of non-zero terms in H(y), considered as polynomial

in y over By, is equal to ¢~ (q — 1) — 1 — N, where N is the number of non-zero
g

terms in the finite sequence €y g41,Et—kt2s--->Em—~1,Em which is defined by

e

1
En=Tu— 9 Piftnmi (=010, k1)
=1

where empty sum is interpreted as 0, and

k
5t+n:1“”ZPz'€t»§an-é (?’L= 1,2,...,m—t).

=1
Proof. Equating the coefficients of y*~* in

Pl gt et = (D Py o+ pot) (e By o ey T

+ (ro 1y + o Ty

Y A

Y ; pi€L + poge = 1,

Y . Pr1q + D282 + Pr-a€s + -+ pogs = 1,

yt"(k“} : DRe1 -+ Pr_ife + Pe—263 + A+ Pt = 1,

?JH . DrElk F Pk—1Et-k41 + Pk-2El-k+2 + -+ Dol = 1,
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ko t—(t—F)

Yy =y ¢ DkEi—2k + Pb-1Et~2k41 + Dh—2€s—2k42 + = + Po&i—k = 1,

gt = R (e ket + Pe16t-2k42 + Profeakis + 1o+ Preeg) +Th-1 = 1,

T (PrEi-t + Dh—1E1—kt1 + Pb2fi-kaa + -+ + Di—t ki) + Tet = 1,
y! =yt k=) (PrEtmtmt + Pr—1Et—k) + 711 =1,
t—(t—k-+k)

W=y s DeEik + 70 = 1.

In general, we get

Sopg=1 (I1=1,2...,t—k) (3.1.1)
it-j=l
and
S opeitra=1 (I=t—k+1Lt—k+2...,1. (3.1.2)

itj=l
We can, without loss of generality, choose pg == 1. The strategy now is to think

of the two finite sequences {py = 1,...,p;} and {rg,...,7e_1} as given fixed and
extend the finite sequence {g,...,5,.4} to an infinite linear recurring sequence
satisfying (3.1.1) and (3.1.2). Note first that (3.1.1) uniquely determines the
values of £4,..., & 4. Rewriting (3.1.1) and using it to define further values of ;

(i>t—k), we get
k

Enth = — Zpi€n+kmz' +1 (n2>1). {3.1.3)

)

We view (3.1.3) as an (infinite) linear recurring sequence whose initial values
€1,E2,. .., E—i are, as mentioned above, computed from (3.1.1). Taking the difference

of two consecutive terms, we get a homogeneous recurrence (of order k)

ke 1
Entk+l " Entk = ~Pi€nsk + Z(’Pz‘ ~ Dit1)Entk-i + Prtn,
i=1
ie.
k-1
Enthtt = (1 — pr)engn + Z(pi — Dit1)Entk—i + PkEn- (3.1.4)

i=1
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We claim that the characteristic polynomial, f(y), of the homogeneous

sequence (3.1.4) is (y — 1)P(y). This follows immediately from

f@) =9 — (1 -p)y* ~ 1 —p2)y*™" ~ - = (Pr—1 — PE)Y — P&

= (y — DP(y).

Now consider a homogeneous linear recurring sequence, of order & — 1, with

characteristic polynomial P(y),

Mtk = ~Pifntk—1 ~ P2llnth-2 = * = Pkl (3.1.5)

with initial values ny,17,.. ., 7 yet to be determined.

We next claim that there is a non-zero L and a choice of 9y, %g,. .., 0 in Fy
such that &; = n; + L holds for all ¢ >> 1. To verify this claim, we recall some basic
results. For a monic polynomial of positive degree f(z) € F,lz], let S(f(z)}) denote
the vector space (over ) of all homogeneous linear recurring sequences in ¥, with
characteristic polynomial f(z). Since P(y) is a non-constant monic, irreducible

polynomial of degree > 2, from Theorem 2.1.17, it is well-known that

S(Pw) + Sy —1)=5((y ~ )PW).
Further, a sequence is in S(y — 1) if and only if 5,4, = s, for all n, i.e., if and
only if it is a constant sequence. Let this sequence be s, = L for all n. Since the
sequence (3.1.5) is in S(P(y)), and the sequence (3.1.4) is in S((y — 1)P(y)) by
the earlier claim, there is a choice of 7,7, ..., 7 in Fy, with (1,) € S(P(y)), for

which

(61362}537“ ) = (ni:n%n.’h--') + (311 52,83, - ) = (7?1 +L: 2 +L1773 +L:"'):

and the claim is verified. Next, we show that L # 0. Substituting the values of 7,

into (3.1.5), we get

k
ehar— L= —piler — L) — -~ peley = L) = L(py + -+ +Pe) = D Di€Lahis

2=1
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and using (3.1.3), we deduce
e = L(L+pr+pr+- o +pe) e — L
implying that L # 0.

We now return to ensure that the extended (infinite) sequence {g;} so
constructed as in (3.1.3), using (3.1.1), satisfies (3.1.2). Putting n = ¢ — 2k +1in

(3.1.3) and matching it with (3.1.2), we must take

Etiopl = —PLEt—k = P2Etk—1 = * — Pift-2htt + 1 = Tt

Putting n = t — 2k + 2 and matching it with (3.1.2), we must take

Epkts = —D1Ei—k1l — P2Ei—k T PkEiL-2k+2 + 1 =712 — P1Et-k+1-

In general, we must take

k—m—1
Epem = T — Z Dift—m—i (m‘:ﬁ,l,,kwl)
=1
Since the characteristic polynomial of (3.1.5), P(y), is irreducible over F, and
P(0) # 0, the sequence {;} is periodic with least period ¢ = ord (P), from
Theorem 2.1.13, and so the sequence g; = 1m; + L, in (3.1.4), is also periodic with

the same least period e.

For b € Ty, let Z,(b) be the number of occurrences of b in one least period
of the sequence (3.1.5), and define Z.(b) similarly. Since —L = 7; — & for all
i > 1, then Z.(0) = Z,(—L). Since P(y) is irreducible over F, with degree &, by
Theorem 2.1.14, ¢ = ord(P) | {¢" — 1) = m. Now (&1, €,...) being periodic with
least period e, shows that the finite set €1,62,...,6n covers h = m/e full periods.
The fact, Theorem 2.1.6, that the irreducible polynomial P(y) considered here is
primitive if and only if e = ord(P) = ¢* — 1 is then equivalent to P(y) is primitive

if and only if h = 1.
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Assume that P(y) is primitive, i.e. h = 1. Clearly, we may choose the initial
values 71, 7, . . . , i, Dot all zero. Since (71,7, . . .) is a homogeneous linear recurring
sequence in F, with primitive characteristic polynomial P(y) and non-zero initial
values, it is a maximal period sequence in F,, by Definition 2.1.15. By a well-known

result, Definition 2.1.18,

y

gt ifb+£0,
Zy(b) = <
gl —1 ifb=0.

\
Using &; — L = ;, we consequently get
f

gk! if b # L,
Z(b) = 4

g1~ 1 if sl
\
Since L # 0, we have Z,(0) = ¢"~!, and so the number of zero terms among
€1,E2,...,8m 18 hZ(0) = Z.(0) = ¢*'. Thus the number of non-zero terms

AMONE &1,69, ..., Em 15 M~ ¢* 71 = ¢" (g — 1) — 1. Consequently, the number of

non-zero terms in H(y) is equal to ¢* (g —1) =1 —N.

On the other hand, suppose that the number of non-zero terms in H(y) is

¢* (g — 1) — 1 = N but P(=) is not primitive over IF;. Then s > 2 and o

m — hZ.(0) = the number of non-zero terms among €1,€z,...,€m

= the number of non-zero terms among €4, €2, ..., &tk
+ the number of non-zero terms among & g1, Et—-k+2y -« 1 &m
= the number of non-zero terms of H{y) + N
=¢g"1(g-1) -1,
which implies hZ.(0) = ¢*~1. But he = m = ¢* — 1, which is a contradiction and

the theorem is proved. (i

Immediate from the proof of the theorem is another, perhaps simpler,

characterization.
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Corollary 3.1.2. An irreducible polynomial P(z) = pp-+pe—1T-t-- pattat €
F, [} is primitive if and only if the finite sequence €1, €2,--.; €m, SO defined as in

the theorem, contains no two (identical) periodic subsequences.

We end this section with two further remarks.

gt =11
{(z-1) Pz}

and @%ﬁ’l—w = Gy} = G@T) = =01 ip our theorem have the same

() (2= T-1)P(s?"7)

numerator. Yet, the denominator of G(az?") is of higher degree, so the

1. Both the starting expressions g(z) = in Fitzegerald’s theorem

number of terms to be counted in G(z9~!) is fewer than that in g(z).
2. Although in our theorem, we additionally have to determine the number
of non-zero terms, N, in the finite sequence &1, Et—k+2> -2 Eme this is generally

not difficult because of their explicitly given form.

3.2 Examples

We give in this section a few examples in order to compare the number of

coefficients involved in our main theorem with that of Fitzgerald.

Example 3.2.1. Take g =k =3 and P (z) = 2* + 22 +1, which is irreducible over

F,. Here m = 26,1 =13,pp = 1, p1 =0,pp=2,p3 = 1.

Using Fitzgerald’s result, we compute

5
x4t -1

) =
9%) = G 1P
=2 4 g 20 4 gt 4 2018 4 2210 4 2210 o3 4 222 + 22t + 2210

42?2?42t 422t + 2+ 1,

which has ¢¥~}(g — 1) — 1 = 17 non-zero terms, and so P(z) is primitive over Fy.
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On the other hand, using our theorem, we compute

13_1
(y — 1My® +2y+1)
2y* —y

9 8 .7 i 5 3 2
et 22 2 L
WPty 2y 2y 2y Aoyt

G(z%) = G(y) =

Here H(y) =1° +® + 2" +1° +24° +2¢° + 92y? + 1 has 8 non-zero terms. Next
we determine the finite sequence

il =EN =2, Epkp2 =ER =2 E3=2, fu4= 1, eis=1, €16=0,

erp=1, c5=0, e19=2, e=0, en =0, en=2, ey = L, em=0,

Eg = 0, Em = E28 = 0,
and so N = 9. The number of non-zero terms in H (y) is then equal to
¢ g—1)—1- N =181~ 9 =38, showing that P(z) is primitive over F.
Example 3.2.2. Take ¢ = 5,k = 2 and P(z) = 2?2 + 3z + 3, which is irreducible
over F,. Here m = 24,1 = 6,pp = 1,p1 = 3,p2 = 3.

Using Fitzgerald’s result, we compute

- %
gl -1

) = e
9@ = P
_ 2 g 327 4 4gt® b4t 4 40 + 2215 + 3™ + 2 4x'? 2t 4 2

4 348 4 227 4+ 28 4+ 20° + 220 + 45 + 327 + 2,
which has g*~1(g — 1) — 1 = 19 non-zero terms, and so P(z) is primitive over Fg.

Using our result, we compute
61 4y +1
G(z') = Gly) = g T T
(=) ) (y — D{y? +3y+3) 4 v YT ¥3y+3

Here H(y) = y* -+ 3y” + 4y has 3 non-zero terms. We now determine
Epkt]l = E5 = 4, Et—fp2 —E6 = 4, Er = 2, Eg = 3, £q = 1, £ = 4, Ei11 — 1,

gp=1, £13=0, €1a=3, €15=2, €16 =1, rr=2, €18=2, €r9=4,

€20 =3, €91 =0, €2 =2, 23 =0, em = €24 =0,
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and so N = 16. The number of non-zero terms in H(y) is equal to a1 g—1) -
1— N =20—1— 16 = 3, showing that P(z) is primitive over F,.
Example 3.2.3. Take ¢ = 7,k = 2 and P(z) = z? + x + 6, which is irreducible

over F,. Here m = 48,t =8,pp = 1,p1 = 1,pg = 6.

Using Fitzgerald’s result, we compute

A |
99) = G 1Pw)

= o1 4 22" 4 62 + dz?! 4 3080 4 22% 4 207 + 2% + 20% + 32 + 5%
462 4 2 4227 4 627 4 4 4 30 4 202 + 207 + o + 2570 + 3418
4 5ol 4 6% 4+ 213 4 20t + 620 + 4o + 32 + 237 + 22° + 2° + 22
+ 32% + 5z + 6,
which has 36 non-zero terms and 36 # 41 = ¢"'(¢ — 1) — 1, and so P(z} is not

primitive over ;. Using our result, we compute

=1 2y + 4
(y — )(y?*+y +6) Yy +y+6

Here H(y) = y° + 2¢° + 6y> + 4y + 3 has 5 non-zero terms. We now determine

G(z%) = G(y) = =1+ %P+ 67+ dy + 3+

gr=1 =0, g3=2, e4=6, g5 =4, g =3, e7=2, g2,
Eo=1 c10=2, en=0, 12=3, e3=5, g14=06, €= 0, €16 =0,
ern=1 =0, e19=2, £=6, em =4, en=3, em=2, em=2
gos =1, €26 =2, ey =0, €23=3, €0=5, =6, en =0, e = 0,
Esa=1, €34 =0, e35=2, €36=6, €3y =4, €33=3, =2, €0 =2
en=1lew=2 ep=0, cua=3, €55=5, es=6, e =0, =0,
and so N = 31. The number of non-zero terms in H (y) is not equal to ¢*~'(g—1) -
1— N = 42—1—31 = 10, showing that P(z) is not primitive over F,. Alternatively,

we note that the finite sequence €, €2, .., &m contains three identical subsequences

{1,0,2,6,4,3,2,2,1,2,0,3,5,6,0,0} and so by the corollary, P(x) is not primitive.





