CHAPTER 1V

LENGTHS, PERIODS AND EXPANSIONS OF
ELEMENTS WRITTEN WITH RESPECT TO A DIGIT SYSTEM

Scheicher and Thuswaldner [20] proposed a new digit system for elements in
a polynomial ring of two indeterminates over a polynomial ring of one indeterminate.
In this chapter, we propose to answer the following questions.

1. Given 7 € R \ {0} with finite y-adic representation, find its length.

2. Given r € R \ {0} with ultimately periodic, but not finite, .y—adic
representation, find its period.

3. For a given 7 € R\ {0} having a periodic y-adic representation, find a
necessary and sufficient condition for r to have a prescribed period.

4. For p(z,y) not being a DS-polynomial, what kind of expansions their

elements can have.

4.1 Elements of finite lengths

In this section, bounds for elements of finite lengths are determined.

Theorem: 4.1.1. Let p(z,y) = ¥ + byay™ ' -+ - + by — bp € Folz,yl,
b; € Fylz], By :=deghy, B = max;y, o1 degh;, Assume that B < By, By >0.
Lifr=c+cayt - +cay" € R\ {0}, ¢ €F,yz], thenr has a finite

y-adic representation of length

< . L
L(T) — Ggﬁtgl L(C;y )a

where L{T) denotes the length of the y-adic representation of T € R having o

finite expansion.
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II. Let ¢ € Fy[z] \ {0}. If degc < By, then L(c) = 1. If degc = B, then
L{ic)=n+1.
III. Let ¢ € Fylz) \ {0}, C :=degc. If C > By, then

C—By+1+4B] . . C—By+1
< - i == PR — ——
L(C) _H1+max{[ B, ]n 73 3=0,1, ’[ B, — B

where [w] denotes the least integer greater than or equal to w € R.

IV. For eachr = cg + 1y + - + eyt € R\ {0}, we have

Q- Bo+1+jB L Q—By+1
< Ny . — JUE -, Sk
L(T) _n+maX{[ Bo n—yp 5 J 0,1, 3 B, - B

where Q = maXggi<y—1 degc;.

Proof. 1. Since p(z,y) is a DS-polynomial, each monomial ¢yt and r have unique
finite y-adic representations and the result follows immediately from the fact that

the length of the sum of two representations is not greater than the longer.

IL Let 7@ = ¢ € B fx] \ {0} be such that degc < By. If degc < By, then

c € N and 7© has a finite y-adic representation of length 1. If degc = By, then

rO = ¢ = foby + dy (7o € Fg \ {0}),

0 T

== T~gb1 =5 Tﬂ’:gbz'y M = f(]b mlyn—2 -+ ﬁ]yn—l.

Note that deg (7ob;) < Bg and 7oby = (0)by + dy. Thus

7-(2) _ T(l) —_ dl

= figbg + - -+ - Fobu_1y™ ™ + Foy™ >,

where, as before, deg (7ob2) < By and Foby = (0)bg + da. Proceeding in the same

manner, we finally reach
r = Foby_y +Foy, 1 =

which gives r#+1) = 0, showing that () has a finite y-adic representation of length

7 1.




22

II1. Using the division algorithm and (2.2.1), we get
PO == Fabo + do = dg + To (y"+b len-—l +...+b1y) \

where deg?, = C — By and so deg(fob;) < C — By + B. The strategy is to
reduce the degrees (in z) of the coefficients Fob; until all coefficients belong to N.
Clearly we need to consider only the term with the highest possible power of y
and deg (7ob;), called the highest term for short, which in this case is of the form

max {ﬁ]yn, 'Fobiynml} .

If we perform this reduction again, the two terms in the last maximum

become
oy = y* (Fi'bo + dy) = yn'(di 4 7 (y" YT R 511/))
and
Fobiy™ ! =y (Frbg + dy) =y (di + 7 (y" + byt b+ bly)) .
After two reductions, the highest term is thus of the form §

n 21 n—2
max {agy™, a1y™!, ay™ 7’}

where we use the generic coefficients a; € ¥ [z] with
degag < C — 2By, degay < C —2By+ B, deguy < — 2B+ 2B.
Préceeding in the same manner, after j reductions the highest term is of the form
max {aoy’™, a1y, aay’™%,..., a7},

where degag < C — jBy, degay < C — jBy+ B, degag < C —jBy+2B,...,
degaj < C “"“j"Bo +jB

For j = [glgfi—l-], the first term in the max {.} cannot be further reduced

and gives the highest power of ¥ as {G;gfﬂ] 7.
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For j = {9“—303—”2"«1&1, the second term in the max {.} cannot be further

reduced and gives the highest power of y as [—O—“—Q%%ﬁ“ﬁ] n— 1.

For j = [gﬁgﬂgabﬂ], the third term in the max{.} cannot be further

reduced and gives the highest power of y as [Q—%‘W] n—2.

Finally, for j = [C;%M], ie, j = [%{Eﬂ#], the last term in the

max {.} cannot be further reduced and gives the highest power of y as [%’3}%—1] -
[c C—Bo+l +1]
By—B
IV. This is immediate from I and I1L 3
A weaker bound, with respect to n, than that in Theorem 4.1.1 IV can

also be obtained based on the work of Scheicher and Thuswaldner, which runs as

follows:

Proposition 4.1.2. Fachr = ¢g + iy + <+ + Con ™t € R\ {0} has e finite

y-adic representation of length not exceeding {Q + (n — 1)B +1} n.

Proof. Recall from Lemma 2.2.1 that each ¥ € R\{0} has a unique representation

10 = o9 gt 1= (9,0, 1),
whose coefficients can be transformed uniquely to another sequence, ( ﬁ ), sgu), &“)) R

via
[{]
1';.0) = Eegg)bi+j
i=1
with 7‘(0) (0) eFfz} (j=0,1,...,n—1)and 7 := (5(0) 9. ., e, is called

the e-representation of +(®. The map (Téﬁ),'rgﬂ}, . ’?_1(%0_}1) ( (0),6‘(?0}, a(ae))
3 £

is a bijection. Inductively, for one cycle we get

P = ()




where
max deg 6?} < max (deg gf.‘” ~1).
P

[ PO ;) So3 P

Continuing for another cycle, we get

o (09, e, ),

where
@ < 0 _
iﬂﬂrgﬁ).c‘ n dege]’ < i irlxizfn(deg E; 2).

Iterating for M := max;—; __, deg 520) times, we arrive at

T(Mn) — (EgMn)’ EEMn-—l), "\ ’Eg(Mﬂ-I)n—H))E

with {0 LM M) being constant, and so

rr((ﬂaﬁi—l)n} . (6(1(M+1)n)’ gg(M-i-l)n—-l), — ;5gMﬂ+1))s ) (0’ 0’ . )O)a
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Hence, each 1@ € R \ {0} has a finite y-adic representation of length < (M +1)n.

Tt remains to show that M < @+ (n — 1)B. From Lemima 2.2.1, we have

n
Ty = Z&'ibi_;.j (j = 0,1,...,71—*- 1)
i=1

where r;,&; € Fyjz]. Solving for £;, we get

£1 = Tyot, €2 = Tn-2—Eibp_1, €3 =Tn-g — E1bn—3 — Eabn-y,

and generally,

j-1
£ = Tp—j — Zgibn-—j—l»i (j=12,... , 1},
i=1

where the summation is taken to be 0 should the upper limit of the sum is 0.

Observe that

dege; = degrn..1 < @Q,

deg g5 = deg (T2 — g1by—1) £ Q@ + B,

degeg = deg (r,—3 — €100 ~ E9bn_1) < @ + 2B,

and the desired result follows easily by induction.
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Finnoauo

The following example shows that the bound in Theorem 4.1.1 IV is sharp.

Example 4.1.3. Let

p(z,y) = 1 + (&® + 22 + 1)y + 22° + 2% + z)y — (2° + 22° + z + 1) € B, 9.
Take

r = (2234 1) + (27 + 220+ 2+ o+ 2y + (200 +22° + 3T +2° + 25+ 1)y’ € R\{0},

so that B = 3, By =5, @ = 9. The bound for the length obtained from Theorem
4.1.1 IV is 10, while that obtained in Proposition 4.1.2 is 48. Here the y-adic

representation is

r= (22t + 1) + (& + 20° + 20% + o + 2y + (22 + 25° + 2% + )y’ + (22" + 2}y’
4 (200 + 22° + 22 + 2yt + (& + 22 + 2)y° + (a* + 2% + (227 + 20+ 1)y’

+ (22° + 2% 4+ 1)y° + 24,

which is of length 10.

Specializing the DS-polynomial p(z, y) to be monic of degree 1 in y, we get
a particularly attractive result, which is exactly the special case treated in {16],

relating length with the usual base representation.

Corollary 4.1.4. Let p(x,y) = v — by € Flz,y], by € Fylxl, degby > 0. Each
r = c € R\ {0} has a finite y-adic representation of length k, where k denoltes
the length of ¢ considered as a polynomial in x written with respect to the base by.
Furthermore, k = 1 + [%J, where C = degc and || denotes the usual integer

value function.

Proof. In this case we have R = F [z] and ¢ = r® = dy+ dyy + - - + d_1y* " has

a finite y-adic representation of length k if and only if the following division steps
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hold
rO = ¢ =l = Feby + dy
Pk = iy = 1Y = Feibo + diy
r&) = .
This merely says that the base by representation of ¢ is (dyy di—o ... dy do)y,,

which has length k. The value of the length & follows easily from the above division

algorithm. £

The next example illustrates the finding of Corollary 4.1.4.
Example 4.1.5. Let p(z,y) = y — (2% + 2z + 1) € Fsfz, y], so that By = 3. Take
r=c=2z%+2" +2° +22° + o+ 2 € F3z} \ {0},
so that C = 8. The division algorithm gives

928 + 27 4+ 25 + 205 + o4+ 2= (2% 4+ &' +26° + 2)(a® + 22 4 1) + (2® + 2),
2915+t + 93 o= (20 +z+V(® + 22+ 1) + (227 + 2+ 2),

252 + z+ 1 = (0)(=® + 2z + 1) + (2% + 5+ 1),
yielding the base by representation as

c= (20 + 3+ 1)(z® + 20+ 1) + 2% + x + 2)(z° + 20 + 1) + (&® +2)

= (z? +2) +(22% + z + 2y + (22" + z + 1)y,

which is also its y-adic representation. The length is k =3 =1 |}].
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4.2 Periods of periodic representations

In this section, we keep the same notation as in the first section, in particular,

B = maX;=,. n—1degb;, By :=degby. Assume that
B = By > 0.

Here, each element r € R\ {0} has an ultimately periodic y-adic representation
with period denoted by Per(r). This is equivalent to the fact that the sequence

U, = {rO, rO @, =10 s ultimately periodic with period Per(r).

Theorem 4.2.1. Let plz,y) = y" + byt + -+ 4+ by — by € Fylz,yl,
B = max;.;, o1 degh;, By :=degby. Assume that B = By > (.
LIfr=c+ay+t- -+cay™t € R\ {0}, ¢; € Fz], then the sequence

U, is ultimately periodic with period
Per(r) < Lem.{Per(¢); 0 <1< n—1},

where l.c.m. refers to the least common multiple.
IL If r = ¢ € Fy[z]\ {0} and C < By where C := degc, then the sequence U,
is finite, which may also be interpreted as ultimately periodic with period Per(c) = 1.
II If r = c € F,[z]\ {0} and C > By where C':= degc, then the sequence

U, is ultimately periodic with period

Per(c) < q(Cﬁul)n-—zBe 1.

Proof. 1. This follows immediately from the fact that the sum of ultimately periodic
sequences is ultimately periodic with period less than or equal to the least common

multiple of Per{cy), Per(c1), ..., Per(ca-1)-

II. We have in this case r = ¢ = (0)by + dy, and so r(V) = ﬂ%ﬂ = ),

which implies that r(®} = 0 for all n > 1.
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III. Carrying out the first few steps of the Scheicher-Thuswaldner’s

construction in the preliminaries, we get

r® = ¢ = Foby + dg = dg + 7o (b1y+-'-+b Lyl -i~yn)
= dg + y {Foby + Tobay + -~ + Fobp_1y™ 2 + o™ ) (= do + yr™V)
= do + y ((Fibo + dy) + Fobay + -+ + Fobp-1y™ 2 + Foy™ ™)
= do + dqy + y (F1bo -+ Fobay -+ <+ + + Fobaosy™ ™ + o™ ™)
=do + diy + yT1(y);

where Ti(y) := Fibo + Fobay + - -+ + Fobu1y™ % + Foy™ ',
= dg + dyy +y (1 (Byy + -+ + baay™ ™+ ") + Fobay + - -+ + Fobnoay™ ™ + oy )
= dy + dvy + y* ((Fiby + Foba) + (Frba +Toba)y + -+ + (Fibny + Fo)y™ % + Py
(=do + diy -+ y'r™)
= dy + doy + 4% ((Fabo + da) + (Frby + Tobs)y + - + (Fiba1 + Fo)y™ 2+ iy )
= do + dry + day? + v (Fabo + (Fiba + Foba)y + - - + (Fibny + o)y + Py )
=dg -+ dyy + day® + ¥ T2(y),

where T5(1) := Fabg + (Fiba + Fobs)y + - -+ 4 (Fibai + Fo)y™ % 4 Fry

degﬂ- < C -~ BO and deg(f‘obﬁ) < C - Bo +B=C.

Continuing this procedure, the expressions representing Ty (y), T5(y), .. . are of the
form

Agbg + Aty + Agy® + oo+ Ap oy + Ay (4.2.1)
where A; € F,[z] are subject to the constraints
max {deg Ag,deg A, } < C — By, max{degAy,...,deg A, »} <C.

Since the sequence I, is infinite, the polynomials Ap,..., As.1 are not all zero.
Consequently, the number of possible expressions in (4.2.1), which is also the largest

possible value of Per(c), is not greater than {g¢~o+1)” ()" 1. a
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From the proof of Theorem 4.2.1, we obtain two further remarks.
(i) From the proof of Part Il and the results of the first two parts, we easily

deduce that the pre-period of any element
r=cot eyt + eyt € R\{0}, Ci:=dege (i=01,...,n— 1),
is at most
Le.m. {max (¢@+0%=2% —1,1); i=0,1,...,n— 1}

(i) In the proof of Part I, since Ay, ..., A, 5 are sums of polynomials in
F,{z] whose shapes are difficult to determine exactly, it is unlikely that the bound
on the period so obtained is best possible. However in some simple cases, such
as when n = 2, a best possible bound can be attained as shown in the following

proposition.

Proposition 4.2.2. Let p(z,y) = 3> + biy — by € Folz,y], ri=c € F, iz} \ {0},
C = dege, By i=deghy, B :=degh. If C = By = B, then the sequence U, s

wltimately periodic with period Per(c) < (g — 1)%.

Proof. Here, by = by +y?. Carrying out a few steps of construction as in the proof

of Theorem 4.2.1, we get

O = ¢ = by + dg = do + Fo(bry +47) = do + y (Fobs + Toy)
= dy + 4y (Fibp + di) + Foy) = do +dry +y (7100 -+ Toy)

= do + diy + yTi(y), where Ti(y) = 71bo +Toy,

= dy + dyy + day® + 37 (Fabo + F1y)

= dy + diy + doy/® + ¥ Ta(y), where T5(y) = fabo + 11y

" The general expressions for T1(y), Ta(y), . - - are of the form sho+1ty; s,t € F,\{0}.

Consequently, Per(c) < (g — 1)~ O
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The following example shows the sharpness of the bound in Proposition

4.2.2.

Example 4.2.3. Let p(z,y) = v° + (2% + 3 + )y — (¢* + 2) € Pz, y]. Take
7@ =¢=722+1. Then C = By = B and

PV = (2 tz+1) 4y, P =G +2)+y, =" +2)+y=r?

The sequence I, is ultimately periodic with period 1 = (¢ — 1)%.

4.3 Periodic representations with a prescribed period

In this section, we first derive necessary and sufficient conditions for the
sequence I/, to be purely periodic with prescribed period 7 > 1. We again keep

the same notation as in the first section.

Theorem 4.3.1. Let plz,y) = y" ++ boory® Lok -0+ biy — by € Folz,yl,

By = deg by, B := maxi=,. n—1degh;, and
o= @ e 0 4 Oy Ot e R {0}

Assume that By = B. Then the sequence U, is purely periodic of period # > 1 if

and only if
TS]L = Fretbyotis + Frgbn-ts2 + o+ Fobptyn + Tﬁaw (1=1,2,...,n)

where 7; are as defined in (2.2.2)-(2.2.5); by, =1, and ij,r}O) are taken to be O

should j = n.
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Proof. fm <mn, thenletn=n+j (€ N). By (2.2.3) and (2.2.4), we have
rm = p§ 4 Pyt iy 4 i) gt
= (fw_lbl o+ Faaby + - o+ Foby + rﬁ,}”) 4
+ (Faotby + Froabyan + oo+ Fobuin + )y
+ ('Fa‘r-—lbﬂ-l + Frogbjps + o0 F{}bv;-{»j)yj +oee
-+ ('F':r—lbnwl + Fﬂwzbﬂ) y* 4+ (Fﬂ~1bn)ynml-

If # > n, using (2.2.4) we have

T(ﬂ-) = (Fﬂ_lbgl A Fpobg 4+ -+ ?:ﬁm.nbn) S (fﬂ_ﬂ)z + 'Fﬂwzbg + -+ fﬂ_n+1bn)y

_.5_ PR + (F'H—Ib ¥ § + Fﬂ'wzbﬂ) yn—‘z + (fﬂ‘”lbn) yn"”io

The result follows from equating the coefficients of the powers of y in r® =" 0O

fmmediate from Theorem 4.3.1 and Remark (i) after Theorem 4.2.1 ist
Coroilary- 4.3.2. Let the notation be as in Theorem 4.8-1 and let C; := deg rz(-g)
(i=0,1,...,n~ 1). The sequence U, is ultimately periodic of period m 2 1 if and
only if there is an index
s < lLem. {ma,x (q(c""'l)““w“ -1, 1) ci=0,1,...,n— 1}
such that

TSEE = f.‘i“{"‘]r—‘lbn-“lﬁ-l + fg+7r—-2bnw£+2 + T + ‘Fsbn_..[.*_ﬂ‘ "{"' Tf:j_)‘l_lﬁﬂ (l = 1’ 2, e .,n).

The next example shows that the bound for the pre-period s in Corollary

4.3.2 is sharp.

Example 4.3.3. Let p(z,y) = 9 +(z+ 1)y - € Folz,y]. Note that n = 2,
B =degh) = degly = By = 1. Take

r=r® =z +1€R={a+ay; a € Falzl}
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where "rgo) =gz 41, Cp=deg r(()e) =1 and Cy = deg r&o), 7‘(10) = (0. Then

D= (z+1)+y TP =2+, r® =gty =r®

Thus, the sequence U, i8 ultimately periodic with period m =1 and pre-period

= 5 < Lcm. {max (2(6"“)2”23" —~1,1); =0, 1} =3.

Example 4.3.4. Let p(z,y) = y? + zy — = € Falz, vl Take

re=r® =+ +@+2yeR

= {zzr+1}+(z + 2)y.

Then

r(1) m(x2+m+2)+my:{(m+1)x+2}+a:y,
r® = (2 +20) + @+ Yy =@+ 2z + 0} + (z + 1)y,
r® = (g% + 1)+ (z +2)y = ),

The sequence U, 18 purely periodic with period m = 3 and 7o =, 71 =T+ 1,

7o = x + 2. Moreover, 0 satisfies the following relations

rO = PO =g 2=b = Fr1b(n-1)+1 |

and

f'g}iz - T{(}g) =g+l = (:1; + 2):1: + (a: +1) = Faby +T1by = ﬁr—1b(n-2)+1 + {f?r_2b(n——2}+2-

If we take another element
r=r®=(F+z+2)+tyeR

= {(x+ Dz +2}+,
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then

M= (@ re+1)+ @+ Dy={(z+ Dz +1}+ (& + Ly,
r® = (o 4 22+ )+ e+ Dy ={(z+ 2z +1}+ (= + )y,
@ = (2 +1) + (& + 2y = {zz + 1} + (2 + 2y,
P = (2% + 2 +2) + oy = {(z + 1)z + 2} + 2y,
r® = (22 +20) + (z+ Dy = {(g+ Dz + 0} + (= + Dy,
r® = (2 + 1) + (¢ + 2y =%
The sequence U, is ultimately periodic of period 7 = 3 with pre-period § = 3,

Fozx»i-l, 7':123?4—1, Fgw”‘—iﬁ-l"z, fgmx, ?:4«‘:23-}“1, ?5333"5-2. Notethatr{s}

satisfies the following relations

o)) = Tk = r® = 5+ 2 = Fsby = Formrbu-1)41

and

Tiflg == 'f'Siz = 1‘{()3) — .’,62 +1= (x + 2)3’; + (.'1) + 1) 21 f5bl A Fabo

= Fopa10m—-2)+1 T Tsra-2bn-2)42-

4.4 TInfinite, non-periodic expansions

In this section we investigate the simplest case where the degree condition

of Scheicher and Thuswaldner is violated. This corresponds to the case where
p(z,y) = y* + by — by € Fylz, 9],

with degb, > deghy > 0. For brevity, we keep the notation B := degb,
By := degby. Here, R = {cp+ay; & € F,[z]} and we set B = By +8 (BeN),.

Take any starting element r := r{® € R\ {0}, ie,

P =0 4 rOy = (Fobo + do) + r{%y.
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Following the Scheicher-Thuswaldner’s construction in the preliminaries, we find

P = 1) 4 My = (Foby +1{”) + Foy = (Fabo + i) + Toy,

v = @ 4 Py = (71by + o) + Fry = (Fobo + d2) + 1y

Case 1. deg T'[{)O} < By, deg r&"’ < By.
Clearly, in this case U, = (r'9,r,r® =0,0,.. ) (r=r®), is a finite sequence

of length < 2. If r&o} s 0, then the sequence U, has length 2.

Case 2. deg réa) < By, deg r%ﬂ) > By.

Putting deg r(lﬁ) = By+3 (j € Ng), we get

r =1 =0 Oy = by +do) + 71y (Fo = 0),

H0 = (7ohy + V) + Foy = (Fibo -+ di) + oy,
where deg(7ghy + r§°’) = deg ‘I‘(lo} = By + j and so deg#, = j. Next,
r2) = (Fiby + 7o) + Fry = (Fabo + d2) + T
where
deg(F1by + 7o) = deg(Fibr) = Bo+ B+ > By+ = deg(fobr +71"),
which implies deg 7y > deg 7. Proceeding in the same manner, in general we have
rk) = rék} + r%k)y (k> 2)

with deg r{()k) > deg r{(]k'l) and deg rgk) > deg 'r(lkdi), rendering the sequence U; to

be infinite and non-periodic.

Case 3. deg rém > By, deg rr&e) < By.
The same analysis as in Case 2 shows that the sequence U, is infinite and non-

periodic.
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Case 4. deg rgo) > By, deg 'rio) > By.
Subcase 4.1. deg rf,o) = By, deg rgﬂ) = By.

From r = rl® = rf}e) + 'rge)y = (Fobo -+ do} + 'r?})y, we see that 7 € F, \ {0} . Next,
v = (7oby + 1Y) -+ Foy = (Fibo + da) + Foy,

with deg(fobs + %) = deg(fobi) = Bo+ B (8 € N). Thus, deg#y = f. Similarly,
r® = (71by + o) + Fry = (Fabo + da) + 719,

with deg(7by + 7o) = deg(F1b,) = Bo + 28 and so deg iy = 2f3. Proceeding in the

same manner, we have in general
r® =1 oy (k21)

with deg 'rgk) = By + kf and deg rgk) = (k — 1)§ showing that the sequence U, is
infinite and non-periodic,
Subcase 4.2. deg r((,m > By, deg r%o) = Bjy.

Putting degrl = By +1 (I € N), we have
pe= 7O = ¢l 4 Oy = (Foby + do) + iy
with deg 7 = [. Similazly,
P = (7oby + 1) + Foy = (Fibo + di) + 7oy,
deg(Foby -+ V) = deg(Foby) = Bo + f +1,
yielding deg 7, = B+, and
r® = (F1by + o) + Fry = (Fabo + da) + 719,

deg(ﬁln -+ ’Fg) = deg(ﬂb;) = Bg -+ 2ﬁ 4 l,

yielding deg s = 20 + . In general,

r® =l 4y (k2 1),
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degr() = By + kB +1, degr{” = (k—1)f+1,

showing that the sequence I, is infinite and non-periodic.
Subcase 4.3. deg r((,O) = By, deg T&O) > By.

Putting deg r§°) = Byg-+j (j€N), weget
r = r® = {0 4 r®y = (Fobo + do) + rﬁﬂ)y, 7o € Ty \ {0}
Next,
r ) = (Foby + ") 4+ Foy = (F1bo + di) + oy, deg(Fobi) = Bo+ p.
There are two possibilities.

A. deg(fob1) # deg 9
1f deg(Fob; ) > deg rgo), then deg(fgm%—rgﬁ) ) = deg(Fobi) = B+, and so deg 7y = f3.
By the same proof as in Subcase 4.1, we deduce that the sequence U, is infinite
and non-periodic.

If deg(7gby) < deg rgo), then deg(7oby + r(lm) = By + j and so deg# = j. Next,
r® = (71by + 7o) + Fry = (Fabo + do) + 71y,
deg(Fiby + o) = deg(F1b1) = Bo + B+,
and so deg 7y = B + j. Proceeding in the same manner, we have generally
w8 = By (k> 2),
degr = By + (k= 1)B+3j, degri’ =(k~2F+7
vielding the sequence U, infinite and non-periodic.

B. deg(7oby) = deg r0,
We have 1) = (foby + ") + oy, with deg#o = 0. Treating (1) as the starting

element in R \ {0} and using the results of Cases 1 and 3, we deduce that:
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if deg(Fob; + ’r&e)) < By, then the sequence U, is finite of length 3, noting that
r@ = 7 and r® = 0, while if deg(Fob; + r'”) > By, then the sequence U, is
infinite and non-periodic.

Subcase 4.4. deg r((,o) > By, deg rg{)} > By.

Putting deg 'r((,o) = By+1, deg r?’} =By+3j {I,7€N), we get
=70 = 'ré{]} + r{g)y = (Tobg + dg) + rgg)y, deg 7y = [,
and
) = (Foby +11") + Foy = (F1bo + di) + Foy, deg(Fobs) = By + B+ L.
Again there are two possibilities.

A. deg(Foby) # deg r&“).
If deg(oh,) > degr”, then

deg(Foby + Tgo)) = deg(Fophy) = By + 8 +1,

and so deg7; == G4 [. Using the result of Subcase 4.2, the sequence U, is infinite
and non-periodic.

If deg(7ob,) < degr”, then
By + B+ 1 = deg(ioby) < deg(rohy +17") = degri” = By +j,
which implies [ < 7, deg#, = 7. Next,
r® = (F1by + o) + Fry = (Fabo + da) + 1y,

deg(7 by + 7o) = deg(Fi1b)) = By + 3+ J,

and so deg#; = (- j. The result of Subcase 4.3 shows that the sequence U, is

infinite and non-periodic.
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B. deg(fobs) = degrl”.

If deg(7oby + r&o)) < By, then consider r'V) = (74b; + r§°)) + Toy, degfy =1
as the starting element and using the results of Cases 1 and 2, we deduce that: if
[ < By, then the sequence U, is finite of length 3 since 7 = 7 and r® = 0, while

if { > By, then the sequence ¥, is infinite and non-periodic.

If deg(Fob; + Tgﬂ)) > By, then consider 7Y = (Fyb; -+ r§°>) + Foy, degiy =1
as the starting element and using the results of Case 3 and Subcases 4.1, 4.2, we

deduce that: if | < By or [ = By, then the sequence U, is infinite and non-periodic.

If deg(foby + ") = By, [ = deg 7y > By, then 7@ = (F\b; + ) + F1y.
1f deg(71b1) # deg 7o, then the sequence U, is infinite and non-periodic by Subcase
4.3.
If deg(7,b,) = deg Ty, deg(f by + 7o) < By, then the sequence U, is finite of length
4, noting that r® = 7, r® =0, by Subcase 4.3.
If deg(F1b; +74) > Bg, then the sequence U, is infinite and non-periodic by Subcase
4.3.

There remains the case

deg(Foby +7%) > By, deg#y > B,
in which we repeat the process of Subcase 4.4. Recall that here deg rég) > By,
deg rg‘” > By. Putting

degrl” = By + 1y, degr® = Bo+jo (lo,jo € N),
we get
0 = (D bWy = (g + 1) + oy = (Fobo + dy) -+ Foy,

deg(foby) = By + B+ ly, degfy = ly.

Since deg(7ob, + ﬂo)) > By and deg 7y > By, setting

deg(7yb; + Tgo)) = By + 1} < By+jJo, ly=degty= By +Ji,
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we get deg 7y = I; < jo = B +1lo, j1 = lo — Bo. Observe that the total degree in x

of (1) is equal to
degr" + degr{" = deg(foby +r{") + deg o = B + i + .
Next consider

r® = o 4 ey = by + o) -+ Fry = (Fabo + o) + Fay.

If deg r((f) < By or deg ng) < By, then the results of Cases 1, 2 and 3 show
that the sequence U, is finite of length 4, noting that r® = 7 and r® =0, or

infinite, non-periodic.

If deg r((,z) > By and deg r?} > By, then by the proof of Subcase 4.4 the
sequence U, is finite of length b if max{degr((,3},deg 1‘&3)} < By and of length 6
if max{deg Tg"),deg 7{4)} < By, or infinite non-periodic in every case except when

cieg(flbl) = deg o, deg(fﬂh -}-1':0) > By and degfl > By.

In the latter situation, we repeat the process of Subcase 4.4 for the third
time, keeping in mind that §+ ; = 7. Since deg(¥16 + 7y) > By and deg#; > By,
setting

deg(F1by + Fo) = By + 1o < Bg + j1, l; = degTy = By + Ja,

we get deg o = Iy < §1 = B+ i, jo = l; — Bo. Consequently, the total degree in x

of r® is equal to
deg r$) + degrl? = deg(Fiby + 7o) +degii = By + b+

i.e., the total degree of r® is reduced from that of 7" by at least ly — Iy = Bo.

Continuing this process till we reach the stage where

PO =0 0 degrl® < By or deg ! < By.
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Appealing to the results of Cases 1, 2 and 3, we conclude that the sequence U/, can
only be

(i) finite of length k£ + 1 if there exists a non-negative integer & such that
r =0, degr{” < By or

(ii) finite of length % + 2 if there exists a non-negative integer k such that
rgk) # 0, max {deg r((,k},deg rik)} < By or

(iii) infinite, non-periodic.

Summarizing, we have:

Theorem 4.4.1. Let p(z,y) = y* + by — by € Fylz, yl, B :=deghy, By = degby.
If B> By >0, then each r € R\ {0} = {¢o + 1y ; ¢ € Folz]} \ {0} either has a
finite or an infinite but non-periodic Scheicher-Thuswaldner representations.

More precisely, r € .’R\ {0} has a finite expansion if and only if there exists a

non-negotive integer k such that

max (deg ré’“), deg r%k}) < By,

where r®) = T({)k) + rgk)y; moreover, the sequence U, is finite of length k + 1 f

rgk) = 0 and of length k + 2 if rgk) # 0.






