LIST OF CONTENTS

Chapter		Page
I INT	RODUCTION	1
]	Rationale for the Study and Statement of the Problem	1
	Objectives of the Study	4
]	Expected Benefits	4
	Scopes of the Study	4
II THE	CORETICAL AND RELATED LITERATURE	8
	Management	
1	Function of management	8
1	Risk management	10
	Biomass	
(Gasification	25
(Gasification	29
	Applications of biomass gasified power generation system	30
]	Economic condition evaluation	30
]	Environmental impacts	35
]	Review related literatures	41
III MET	THODOLOGY	54
•	Technical performance evaluation	56
]	Biomass supplied system	69
]	Economic condition	80
]	Environmental impacts	81
(Community	82
	Development management model of SBGPGS	82

LIST OF CONTENTS (CONT.)

Chapter	
IV RESULTS AND DISCUSSION	83
Factors of SBGPGS	83
Management model of SBGPGS for community in Thailand	106
V CONCLUSIONS AND RECOMMENDATIONS	120
Conclusions	120
Recommendations	125
REFERENCES	126
APPENDIX	134
BIOGRAPHY	151

LIST OF TABLES

able	rag
1	General characteristics of C ₃ , C ₄ and CAM plants17
2	Average bulk density23
3	Ambient noise standards of Pollution Control Department, Ministry of
	Natural Resources and Environment, Thailand39
4	The technical specifications of the gasified system57
5	Heating values and stoichiometric oxygen demands of combustible gas
	components64
6	Proximate analysis and calorific value data of Eucalyptus wood chips67
7	Ultimate analysis data of Eucalyptus wood chips
8	The measured parameters, methods and equipments68
9	The parameters, methods and equipments for waste water analysis81
10	The parameters, methods and equipments for air pollution and sound
	level analysis82
11	The parameters for BGPGS performance evaluation84
12	Biomass consumption rate and biomass plantation area requirement (Rai)
	of BGPGS at SERT of fast growing plants that were appropriate
	for growing in Thailand, E. camaldulensis, A. mangium and L.
	leucocephala, was classified by the amount of rain in Thailand and the
	interval of growing88
13	The specific vehicle transportation cost (baht km ⁻¹) and vehicle capacity
	(t Vehicle-1) of E. camaldulensis residuals from sawmill by a
	tricycle, a motor tricycle, a pickup truck and a truck91
14	Biomass distribution density of tropical hardwood plants, E.
	Camaldulensis, L. leucocephala, and A. mangium, number of vehicle
	capacity, and area per vehicle a year92
15	Vehicle cost per year of tropical hardwood plants, E. camaldulensis,
	L. leucocephala, and A. mangium, and total distance per year by
	anaifia vahialaa

LIST OF TABLES (CONT.)

Table	Page
16	Vehicle cost and total distance per year by specific vehicles of circular
	biomass plantation area95
17	Biomass consumption rate at 50% moisture content (wet basis),
	M _{50%wet basis} (t year ⁻¹), biomass consumption rate at dry basis, M _{dry basis}
	(t year ⁻¹), biomass storage, S _b (t year ⁻¹) and warehouse (m ³)96
18	Plant technical parameters, case at SERT97
19	Financial assumptions, case at SERT98
20	Results of economic condition evaluation that consisted of COE, PB,
	NPV and IRR, based on tricycle, motor tricycle, pickup truck and truck99
21	Parameters, methods and equipments of environmental evaluation100
	Parameters, methods, unites, measured values and standards of air
	quality and noise standard values101
23	Plant technical parameters of 50 kW _e BGPGS at 20% overall conversion
	efficiency103
24	Parameters of economic condition evaluation consisted of COE, PB
	NPV and IRR, referring to 20% overall conversion efficiency by using
	tricycle, motor tricycle, pickup truck and truck104
2:	5 Risk assessment and mitigation of the main factors for SBGPG107
	6 The biomass productivity of fast growing plants that are appropriate for
	growing in Thailand, E. camaldulensis, L. leucocephala, and A.
	mangium, is classified by amount of rain of any region in Thailand and the
	interval of growing
2	7 Qualifying and acceptable performance levels of BGPGS for commercial
4-	standard

LIST OF TABLES (CONT.)

Table P:	age
28 The average energy consumption per day of men and women that	
the ages are between 20 to 60 years, height are between 5 to 6 feet,.	
and weight are between 40 to 80 kg	137
29 The investment cost of equipment pieces and waste water treatment	146
30 Components of capital investment costs evaluation	147
31 Biomass transportation costs, TB (baht year-1), vehicle costs, V (baht year-1)	
and transportation personnel costs, TP (baht year 1) referring specific	
vehicleof tricycle, motor tricycle, pickup truck and truck	149
32 Components of total operating and maintenance costs evaluation	150

LIST OF FIGURES

Figure		
1	The four functions of management	9
2	The three processes from thermo-chemical conversion of biomass	24
3	The main types of gasifier	26
4	Applications of thermo-chemical conversion process from BG	30
5	The decision process	30
6	Methodology flow chart of technical performance, biomass supplied	
	system and economic condition	55
. 7	The BPGSP at SERT (Left) and Eucalyptus residuals were used for	
	fuel (Right)	56
8	Schematic block diagram of BPGSP at SERT	56
10	Schematic of basic of BGPGS	60
11	Energy conversion flow of fuel consumption quantity in BGPGS	69
12	Biomass consumption rate of BGPGS	70
	Flow-chart of adopted algorithm	
14	Energy conversion flow of plantation area in BGPGS	71
15	The logistic direction of biomass fuel for square plantation area	75
16	**************************************	
17	Flow of energy conversion for biomass storage	80
18	Temperatures in gasifier and percent of CO in producer gas	85
19	Temperatures in gasifier and supplied air flow rate	86
20	Relation between percentage of CO in producer gas and supplied	
	air flow rate	86
21	The logistics direction of square biomass plantation area	
	for BGPGS at SERT	90
	2 The logistics direction of circular biomass plantation area for BGPGat SE	
23	The NPV sensitivity analysis of BGPGS at SERT	99
24	The four factors of SBGPGS that supported by secondary data	102

LIST OF FIGURES (CONT.)

Figur	Page
25	The NPV sensitivity analysis of 50 kW _e BGPGS at 20% overall conversion
	efficiency105
26	Estimated biomass consumption rate of SBGPGS
	at 20% overall conversion efficiency113
27	Estimated biomass plantation area of SBGPGS
	at 20% overall conversion efficiency114
28	Vehicle cost of SBGPGS at 20% overall conversion efficiency,
	referring to tricycle, motor tricycle, pickup truck and truck115
29	Biomass storage of SBGPGS at 20% overall conversion efficiency116
30	The management processes flow of community for SBGPGS117
31	The model of decentralized power generation system for community118
32	Management model of SBGPGS for community in Thailand
33	Gas composition analysis by gas analyzer (Left) and GC (Right)139
34	Gas sampling bag (Left) and tight syringe for injection gas sample (Right)140
35	The total tar and particulate measurement140
36	The temperature measurement
	The air flow rate meter for supplying air to a gasifier141
38	Eucalyptus residuals being cut and dried before feeding the BGPGS142
39	The maximum output power testing at full load of the BGPGS
	only producer gas143

ABBREVIATIONS

A Ash Biomass Plantation Area (Rai) A_{bp} Area per Vehicle a Year (km² vehicle 1 year 1) A_V Anaerobic Digestion AD Ash Landfilling Cost (baht year⁻¹) ALReactor Cross-Sectional Area (m²) A_r **ASTM** American Society for Testing Materials Benefits from Sale of Produced Electric Energy (baht year-1) В The Total Benefits of the jth Year B_i **BCR** Benefit Cost Ratio Biomass Gasifier BG Biomass Gasification Based Power Plant **BGBPP** Biomass Gasified Power Generation System **BGPGS** Biomass Gasification Technology **BGT** C Fixed Carbon Content Initial Capital Cost at the Year 0 C_0 3-Carbon Acid Phosphoglycerate C_3 4-Carbon Acid Oxaloacetate C_4 Specific Purchased Biomass Cost (baht t⁻¹) C_B Electricity Consumption (kWh) C_e The Total Costs of the ith Year C_i An Oil Price (baht L⁻¹) C_{oil} The Employed Personnel Average Fee (Baht unit-1 year-1) $C_{\mathfrak{p}}$ Power Plant Capacity (kW) C_{pp} Specific Vehicle Consumption (km L⁻¹) C_{SV} Transport Operations Employed Personnel Fee C_{TP} (Baht unit⁻¹ year⁻¹)

Specific Vehicle Transportation Cost (baht km⁻¹)

Crassulacean Acid Metabolism

Combined Heat and Power

 C_{VT}

CAM

CHP

ABBREVIATIONS (CONT.)

CO = Carbon-monoxide

COE = Cost of Energy (baht kwh⁻¹)

CRF = Uniform Series Capital Recovery Factor

D = Displacement Volume in Cylinder of the Engine (L)

D_A = Average Round Trip Transportation Distance (km)

 D_{BD} = Biomass Distribution Density (t km⁻² year⁻¹)

DCS = Devices to Control System

EB = Environmental Benefit (baht year⁻¹)

EGAT = Electricity Generating Authority of Thailand

EP = Current Market Price of Produced Electricity with Government

Subsidies (baht kWh⁻¹)

EPC = Energy Policy Committee

EPPO = Energy Policy and Planning Office

FB = Fluidized Bed

 H_g = Heating Value of the Gas (kJ m⁻³)

H_s = Lower Heating Value of Gasifier Fuel (kJ kg⁻¹)

Hp = House Power

HC = Hydrocarbon

HHV = High Heating Value

i = Effective Interest Rate (% year⁻¹)

 I_p = Phase Current (A)

IC = Investment Cost (baht)

ICEs = Internal Combustion Engine

IRR = Internal Rate of Return

LHV = Low Heating Value of Biomass Fuel (kJ kg⁻¹)

LPG = Liquefied Petroleum Gas

LPM = Liter per Minute

M = Biomass Consumption Rate, (t year⁻¹)

 M_s = Gasifier Solid Fuel Consumption (kg s⁻¹)

 M_{wet} = Biomass Flow Rate as Wet Basis (t year⁻¹)

ABBREVIATIONS (CONT.)

Biomass Consumption Rate as Dry Basis (t year⁻¹) M_{%dry} M.C. Moisture Content Maintenance Cost (baht year⁻¹) MAN Metropolitan Electricity Authority **MEA** N Total Annual Working Personnel (unit) Times of Vehicle per Year of Plantation Area (vehicle year⁻¹) N_{AV} Times of Vehicle Capacity per Square Kilometer a Year N_{VC} (vehicle km⁻² year⁻¹) Useful Life of the Asset (year) n Number of Operators Employed in Transport Operations (unit) n_{T} National Energy Policy Council **NEPC** Net Present Value **NPV** The Plant Annual Operating Hours (h year⁻¹) OH Productivity of Biomass as Dry Basis (kg Rai-1year-1) Pdry basis Fuel Power (kW) $\mathbf{P_i}$ Output Power (kW) P_0 Total Population (capita) \mathbf{P}_{T} Payback Period PB Provincial Electricity Authority PEA Phosphoenol Pyruvate **PEP** Power factor (%) pf Volume Flow of Gas (m³ s⁻¹) Q_g The Rotation of Short Rotation Forest (year times⁻¹) R Renewable Energy RE Rice Husk Ash RHA

Riburose Bisphosphate

Number of Revolutions Per Minute

Sustainable Biomass Gasified Power Generation System

Distance of circular section area

Biomass Storage (kg year⁻¹)

RuBP

rpm

s

 S_b

SBGPGS

ABBREVIATIONS (CONT.)

SERT = School of Renewable Energy Technology

SGR = Specific Gasification Rate $(kg h^{-1} m^{-2})$

SPRERI = Sardar Patel Renewable Energy Research Institute

SRF = Short Rotation Forest

SS = Suspended Solid (mg L⁻¹)

TB = Biomass Transportation Costs (baht year⁻¹)

TCI = Total Capital Investment (baht)

TD = Total Annual Traveled Distance (km year⁻¹)

TDS = Total Dissolved Solid (mg L^{-1})

TOC = Total Operating Cost (baht year⁻¹)

TP = Transportation Personnel Costs (baht year⁻¹)

V = Vehicle Cost (baht year⁻¹)

 V_p = Phase Volts (V)

VC = Vehicle Capacity (t vehicle⁻¹)

VM = Volatile Matter

VSPP = Very Small Power Producer

η_e = The Plant Energy Conversion Efficiency (%)

 $\eta_{\text{gasifier}} = \text{Gasifier Efficiency (\%)}$

 $\eta_{gas\ engine\ generator}$ = Gas Engine-Generator Efficiency (%)

 θ = Radian Angle