LIST OF CONTENTS | Chapter | | Page | |---------|--|------| | I INT | RODUCTION | 1 | |] | Rationale for the Study and Statement of the Problem | 1 | | | Objectives of the Study | 4 | |] | Expected Benefits | 4 | | | Scopes of the Study | 4 | | II THE | CORETICAL AND RELATED LITERATURE | 8 | | | Management | | | 1 | Function of management | 8 | | 1 | Risk management | 10 | | | Biomass | | | (| Gasification | 25 | | (| Gasification | 29 | | | Applications of biomass gasified power generation system | 30 | |] | Economic condition evaluation | 30 | |] | Environmental impacts | 35 | |] | Review related literatures | 41 | | III MET | THODOLOGY | 54 | | • | Technical performance evaluation | 56 | |] | Biomass supplied system | 69 | |] | Economic condition | 80 | |] | Environmental impacts | 81 | | (| Community | 82 | | | Development management model of SBGPGS | 82 | # LIST OF CONTENTS (CONT.) | Chapter | | |--|-----| | IV RESULTS AND DISCUSSION | 83 | | Factors of SBGPGS | 83 | | Management model of SBGPGS for community in Thailand | 106 | | V CONCLUSIONS AND RECOMMENDATIONS | 120 | | Conclusions | 120 | | Recommendations | 125 | | REFERENCES | 126 | | APPENDIX | 134 | | BIOGRAPHY | 151 | ### LIST OF TABLES | able | rag | |------|--| | 1 | General characteristics of C ₃ , C ₄ and CAM plants17 | | 2 | Average bulk density23 | | 3 | Ambient noise standards of Pollution Control Department, Ministry of | | | Natural Resources and Environment, Thailand39 | | 4 | The technical specifications of the gasified system57 | | 5 | Heating values and stoichiometric oxygen demands of combustible gas | | | components64 | | 6 | Proximate analysis and calorific value data of Eucalyptus wood chips67 | | 7 | Ultimate analysis data of Eucalyptus wood chips | | 8 | The measured parameters, methods and equipments68 | | 9 | The parameters, methods and equipments for waste water analysis81 | | 10 | The parameters, methods and equipments for air pollution and sound | | | level analysis82 | | 11 | The parameters for BGPGS performance evaluation84 | | 12 | Biomass consumption rate and biomass plantation area requirement (Rai) | | | of BGPGS at SERT of fast growing plants that were appropriate | | | for growing in Thailand, E. camaldulensis, A. mangium and L. | | | leucocephala, was classified by the amount of rain in Thailand and the | | | interval of growing88 | | 13 | The specific vehicle transportation cost (baht km ⁻¹) and vehicle capacity | | | (t Vehicle-1) of E. camaldulensis residuals from sawmill by a | | | tricycle, a motor tricycle, a pickup truck and a truck91 | | 14 | Biomass distribution density of tropical hardwood plants, E. | | | Camaldulensis, L. leucocephala, and A. mangium, number of vehicle | | | capacity, and area per vehicle a year92 | | 15 | Vehicle cost per year of tropical hardwood plants, E. camaldulensis, | | | L. leucocephala, and A. mangium, and total distance per year by | | | anaifia vahialaa | ## LIST OF TABLES (CONT.) | Table | Page | |-------|--| | 16 | Vehicle cost and total distance per year by specific vehicles of circular | | | biomass plantation area95 | | 17 | Biomass consumption rate at 50% moisture content (wet basis), | | | M _{50%wet basis} (t year ⁻¹), biomass consumption rate at dry basis, M _{dry basis} | | | (t year ⁻¹), biomass storage, S _b (t year ⁻¹) and warehouse (m ³)96 | | 18 | Plant technical parameters, case at SERT97 | | 19 | Financial assumptions, case at SERT98 | | 20 | Results of economic condition evaluation that consisted of COE, PB, | | | NPV and IRR, based on tricycle, motor tricycle, pickup truck and truck99 | | 21 | Parameters, methods and equipments of environmental evaluation100 | | | Parameters, methods, unites, measured values and standards of air | | | quality and noise standard values101 | | 23 | Plant technical parameters of 50 kW _e BGPGS at 20% overall conversion | | | efficiency103 | | 24 | Parameters of economic condition evaluation consisted of COE, PB | | | NPV and IRR, referring to 20% overall conversion efficiency by using | | | tricycle, motor tricycle, pickup truck and truck104 | | 2: | 5 Risk assessment and mitigation of the main factors for SBGPG107 | | | 6 The biomass productivity of fast growing plants that are appropriate for | | | growing in Thailand, E. camaldulensis, L. leucocephala, and A. | | | mangium, is classified by amount of rain of any region in Thailand and the | | | interval of growing | | 2 | 7 Qualifying and acceptable performance levels of BGPGS for commercial | | 4- | standard | ## LIST OF TABLES (CONT.) | Table P: | age | |---|-----| | 28 The average energy consumption per day of men and women that | | | the ages are between 20 to 60 years, height are between 5 to 6 feet,. | | | and weight are between 40 to 80 kg | 137 | | 29 The investment cost of equipment pieces and waste water treatment | 146 | | 30 Components of capital investment costs evaluation | 147 | | 31 Biomass transportation costs, TB (baht year-1), vehicle costs, V (baht year-1) | | | and transportation personnel costs, TP (baht year 1) referring specific | | | vehicleof tricycle, motor tricycle, pickup truck and truck | 149 | | 32 Components of total operating and maintenance costs evaluation | 150 | | | | | | | ### LIST OF FIGURES | Figure | | | |--------|---|-----| | 1 | The four functions of management | 9 | | 2 | The three processes from thermo-chemical conversion of biomass | 24 | | 3 | The main types of gasifier | 26 | | 4 | Applications of thermo-chemical conversion process from BG | 30 | | 5 | The decision process | 30 | | 6 | Methodology flow chart of technical performance, biomass supplied | | | | system and economic condition | 55 | | . 7 | The BPGSP at SERT (Left) and Eucalyptus residuals were used for | | | | fuel (Right) | 56 | | 8 | Schematic block diagram of BPGSP at SERT | 56 | | | | | | 10 | Schematic of basic of BGPGS | 60 | | 11 | Energy conversion flow of fuel consumption quantity in BGPGS | 69 | | 12 | Biomass consumption rate of BGPGS | 70 | | | Flow-chart of adopted algorithm | | | 14 | Energy conversion flow of plantation area in BGPGS | 71 | | 15 | The logistic direction of biomass fuel for square plantation area | 75 | | 16 | ************************************** | | | 17 | Flow of energy conversion for biomass storage | 80 | | 18 | Temperatures in gasifier and percent of CO in producer gas | 85 | | 19 | Temperatures in gasifier and supplied air flow rate | 86 | | 20 | Relation between percentage of CO in producer gas and supplied | | | | air flow rate | 86 | | 21 | The logistics direction of square biomass plantation area | | | | for BGPGS at SERT | 90 | | | 2 The logistics direction of circular biomass plantation area for BGPGat SE | | | 23 | The NPV sensitivity analysis of BGPGS at SERT | 99 | | 24 | The four factors of SBGPGS that supported by secondary data | 102 | ## LIST OF FIGURES (CONT.) | Figur | Page | |-------|--| | 25 | The NPV sensitivity analysis of 50 kW _e BGPGS at 20% overall conversion | | | efficiency105 | | 26 | Estimated biomass consumption rate of SBGPGS | | | at 20% overall conversion efficiency113 | | 27 | Estimated biomass plantation area of SBGPGS | | | at 20% overall conversion efficiency114 | | 28 | Vehicle cost of SBGPGS at 20% overall conversion efficiency, | | | referring to tricycle, motor tricycle, pickup truck and truck115 | | 29 | Biomass storage of SBGPGS at 20% overall conversion efficiency116 | | 30 | The management processes flow of community for SBGPGS117 | | 31 | The model of decentralized power generation system for community118 | | 32 | Management model of SBGPGS for community in Thailand | | 33 | Gas composition analysis by gas analyzer (Left) and GC (Right)139 | | 34 | Gas sampling bag (Left) and tight syringe for injection gas sample (Right)140 | | 35 | The total tar and particulate measurement140 | | 36 | The temperature measurement | | | The air flow rate meter for supplying air to a gasifier141 | | 38 | Eucalyptus residuals being cut and dried before feeding the BGPGS142 | | 39 | The maximum output power testing at full load of the BGPGS | | | only producer gas143 | #### **ABBREVIATIONS** A Ash Biomass Plantation Area (Rai) A_{bp} Area per Vehicle a Year (km² vehicle 1 year 1) A_V Anaerobic Digestion AD Ash Landfilling Cost (baht year⁻¹) ALReactor Cross-Sectional Area (m²) A_r **ASTM** American Society for Testing Materials Benefits from Sale of Produced Electric Energy (baht year-1) В The Total Benefits of the jth Year B_i **BCR** Benefit Cost Ratio Biomass Gasifier BG Biomass Gasification Based Power Plant **BGBPP** Biomass Gasified Power Generation System **BGPGS** Biomass Gasification Technology **BGT** C Fixed Carbon Content Initial Capital Cost at the Year 0 C_0 3-Carbon Acid Phosphoglycerate C_3 4-Carbon Acid Oxaloacetate C_4 Specific Purchased Biomass Cost (baht t⁻¹) C_B Electricity Consumption (kWh) C_e The Total Costs of the ith Year C_i An Oil Price (baht L⁻¹) C_{oil} The Employed Personnel Average Fee (Baht unit-1 year-1) $C_{\mathfrak{p}}$ Power Plant Capacity (kW) C_{pp} Specific Vehicle Consumption (km L⁻¹) C_{SV} Transport Operations Employed Personnel Fee C_{TP} (Baht unit⁻¹ year⁻¹) Specific Vehicle Transportation Cost (baht km⁻¹) Crassulacean Acid Metabolism Combined Heat and Power C_{VT} **CAM** **CHP** #### **ABBREVIATIONS (CONT.)** CO = Carbon-monoxide COE = Cost of Energy (baht kwh⁻¹) CRF = Uniform Series Capital Recovery Factor D = Displacement Volume in Cylinder of the Engine (L) D_A = Average Round Trip Transportation Distance (km) D_{BD} = Biomass Distribution Density (t km⁻² year⁻¹) DCS = Devices to Control System EB = Environmental Benefit (baht year⁻¹) EGAT = Electricity Generating Authority of Thailand EP = Current Market Price of Produced Electricity with Government Subsidies (baht kWh⁻¹) EPC = Energy Policy Committee **EPPO** = Energy Policy and Planning Office FB = Fluidized Bed H_g = Heating Value of the Gas (kJ m⁻³) H_s = Lower Heating Value of Gasifier Fuel (kJ kg⁻¹) Hp = House Power HC = Hydrocarbon HHV = High Heating Value i = Effective Interest Rate (% year⁻¹) I_p = Phase Current (A) IC = Investment Cost (baht) ICEs = Internal Combustion Engine IRR = Internal Rate of Return LHV = Low Heating Value of Biomass Fuel (kJ kg⁻¹) LPG = Liquefied Petroleum Gas LPM = Liter per Minute M = Biomass Consumption Rate, (t year⁻¹) M_s = Gasifier Solid Fuel Consumption (kg s⁻¹) M_{wet} = Biomass Flow Rate as Wet Basis (t year⁻¹) #### **ABBREVIATIONS (CONT.)** Biomass Consumption Rate as Dry Basis (t year⁻¹) M_{%dry} M.C. Moisture Content Maintenance Cost (baht year⁻¹) MAN Metropolitan Electricity Authority **MEA** N Total Annual Working Personnel (unit) Times of Vehicle per Year of Plantation Area (vehicle year⁻¹) N_{AV} Times of Vehicle Capacity per Square Kilometer a Year N_{VC} (vehicle km⁻² year⁻¹) Useful Life of the Asset (year) n Number of Operators Employed in Transport Operations (unit) n_{T} National Energy Policy Council **NEPC** Net Present Value **NPV** The Plant Annual Operating Hours (h year⁻¹) OH Productivity of Biomass as Dry Basis (kg Rai-1year-1) Pdry basis Fuel Power (kW) $\mathbf{P_i}$ Output Power (kW) P_0 Total Population (capita) \mathbf{P}_{T} Payback Period PB Provincial Electricity Authority PEA Phosphoenol Pyruvate **PEP** Power factor (%) pf Volume Flow of Gas (m³ s⁻¹) Q_g The Rotation of Short Rotation Forest (year times⁻¹) R Renewable Energy RE Rice Husk Ash RHA Riburose Bisphosphate Number of Revolutions Per Minute Sustainable Biomass Gasified Power Generation System Distance of circular section area Biomass Storage (kg year⁻¹) RuBP rpm s S_b **SBGPGS** #### **ABBREVIATIONS (CONT.)** SERT = School of Renewable Energy Technology SGR = Specific Gasification Rate $(kg h^{-1} m^{-2})$ SPRERI = Sardar Patel Renewable Energy Research Institute SRF = Short Rotation Forest SS = Suspended Solid (mg L⁻¹) TB = Biomass Transportation Costs (baht year⁻¹) TCI = Total Capital Investment (baht) TD = Total Annual Traveled Distance (km year⁻¹) TDS = Total Dissolved Solid (mg L^{-1}) TOC = Total Operating Cost (baht year⁻¹) TP = Transportation Personnel Costs (baht year⁻¹) V = Vehicle Cost (baht year⁻¹) V_p = Phase Volts (V) VC = Vehicle Capacity (t vehicle⁻¹) VM = Volatile Matter VSPP = Very Small Power Producer η_e = The Plant Energy Conversion Efficiency (%) $\eta_{\text{gasifier}} = \text{Gasifier Efficiency (\%)}$ $\eta_{gas\ engine\ generator}$ = Gas Engine-Generator Efficiency (%) θ = Radian Angle