CHAPTER I

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapter.

Throughout this thesis, we let R stand for the set of all real numbers and

N the get of all natural numbers.

2.1 Basic results.

Definition 2.1.1. Let X be a linear space over the field K (R or C). A function

| -1l : E —= R is said to be a norm on X if it satisfies the following conditions:
(1) llzli 2 0,Vz € E;
(2) |zl =0 z = 0;
@)z +yll < lzlf + lyli, Vo, y € £,
(4) ozl = le||lz|l, Yo € E and Vo € K.
Definition 2.1.2. Let (F,|| - ||) be a normed space.

(1) A sequence {z,} C F is said to converge strongly in X if there exists

z € B such that lim iz, = z|| = 0. That is, if for any ¢ > 0 there exists a positive
Tt (oo}

integer N such that |z, —z]| < ¢,Vn > N. We often write lim =z, =z or &, — ¢

) Thomed OO
to mean that z is the limit of the sequence {z,}.

(2) A sequence {z,} C E is said to be a Cauchy sequence if for any € > 0
there exists a positive integer NV such that ||z, — z.]] < &,V m,n > N. That is,

{z,} is a Cauchy sequence in B if and only if |z, — z,]| — 0 as m,n — co.

Definition 2.1.3. A normed space X is called complete if every Cauchy sequence

in X converges to an element in X.




Definition 2.1.4. A complete normed linear space over field K is called a Bonach

space over K

Definition 2.1.5. Let €' be a nonempty subset of normed space X. A mapping
T . ¢ — C is said to be lipschitzian if there exists a constant k& > 0 such that
forall z,y € C

A ] e (2.1.1)

The smallest number k for which 2.1.1 holds is called the Lipschitz constant of T

Definition 2.1.6. A lipschitzian mapping T : € — C with Lipschitz constant

k < 1 is said to be a contraction mapping.

Definition 2.1.7. An clement z € C is said to be a fized point of a mapping
T:C— Cifi Ty =z

Definition 2.1.8. [Banach’s contraction mapping principle] Let (M, d) be
a complete metric spaces and let T: M — M be a contraction. Then T has a

unique fixed point .
Definition 2.1.9. Let F and F be linear spaces over the field K.

(1) A mapping T : F — E is called a linear operator if T(z+y) =Tz +Ty
and T(ax) = oTz,Vz,y € F, and Va € K.

(2) A mapping T : F — K is called a linear functional on F if T' ais linear

operator.

Definition 2.1.10. A sequence {z,} in a normed spaces is said to converge weakly
to some vector z if limyeo f(2n) = f(z) holds for every continuous linear func-

tional f. We often write z, — % to mean that {z,} converge weakly to .

Definition 2.1.11. Let F' and E be normed spaces over the field Kand 7" : F' —

E a linear operator. T is said to be bounded on F, if there exists a real number

M > 0 such that |T'(z)|] < M|jzl},Vz € F.




Definition 2.1.12. Sequence {,}2%, in a normed linear space X is said to be o

bounded sequence if there exists M > 0; such that j|z,|| £ M,Vn e N,

Definition 2.1.13. Let F and £ be normed spaces over the field K, 7': F' —» F
an operator and ¢ € F. We say that 1" is continuous at ¢ if for every ¢ > 0 there
exists § > 0 such that [|T(z) — T(c)|} < ¢ whenever jlz —cl| <dandz € F. If T'is

continuous at each z € F, then T is said to be continuous on F.

Definition 2.1.14. Let X and ¥ be normed spaces. The mapping T': X — V' is
said to be completely continuous if and only if T(C) is a compact subset of ¥ for

every bounded subset C of X.

Definition 2.1.15. A mapping 7" : € — C is said to be semicompact if, for
any sequence {z,} in C such that ||z, — T@,|| ~ 0 as n ~— 00, there exists

subsequence {z,,} of {z,} such that {z,,} converges strongly to z € C.

Definition 2.1.16. A subset ' of a normed linear space X is said to be conver

set in X if Az + (1 — A)y € C for each 2,y € C and for each scalar A € [0,1].

Definition 2.1.17. Let X be a real normed space and (' a nonempty subset of X.
A mapping T € — C is said to be

(a) nonexpansive whenever [Tz — Tyl < ||z — yl|,Vz,y € C;

(b) asymptotically nonezpansive on C if there exists a sequence {k,} in

[1, 00}, with lim, o &k, = 1 such that
1Tz — Tyl < kallz -yl - (212)
forall z,y € C and each n > 1;

(¢) asymptotically nonezpansive in the intermediate sense {4} provided T is

uniformly continuous and

limsup sup (J|7"z — T"y|| — |lz —yli) £ 0. (2.1.3)

n—00 a,yeC




From the above definitions, it follows that asymptotically nonexpansive
mapping must be asymptotically nonexpansive mapping in the intermediate sense

but the converges does not hold as the following example:

Example 2.1.18. [18] Let X = R, C = [}, 2] and |k| < 1. For each z € C,

define

kxsini, ifxz#£0,

T(z) = ?
0, if z=0.

Then T is an asymptoticelly nonerpansive in the intermediate sense. It is well

known in (17} that 7"z — 0 uniformly, but is not a Lipschitzian mapping so that

it is not asymptotically nonexpansive mapping.

Definition 2.1.19. [10] A Banach space X is said to be uniformly conves if for
each 0 < € < 2, there is § > 0 such that Yz,y € X, the condition [lz}} = |lyf =1,

and ||z — y|| = e imply |52 <1~ 6.

Definition 2.1.20. [10] Let X be a Banach space. Then the modulus of convezity
of X §:1]0,2] — [0, 1] defined as follows:

o) = nt1 = LI o < 1 < 1yl 2 o,

Theorem 2.1.21. [10] Let X be a Banach space. Then X is uniformiy conver if
and only if 6(c) > 0 for all ¢ > 0.

Theorem 2.1.22. [2] Let C be a nonempty, closed, conver and bounded subset of

uniformly convex Banach space E and let T : C — C be nonezpansive mapping.

Then T has o fized point.

Theorem 2.1.23. [10] Let C be a nonemply, closed, convezr and bounded
subset of uniformly convez Banach space E and let T : C — C be asymptotically

nonezpansive mapping. Then T has a fized point.

Theorem 2.1.24. [19] Let C be a nonempty, closed, convezr and bounded
subset of uniformly convez Banach space E and let T : C — C be asymyptotically

nonezpansive mapping in the intermediate sense. Then T has a fized point.




Definition 2.1.25. [26] A Banach space X is said to satisfy Opial’s condition if
any sequence {x,, } in C, ,, — z weakly asn — co implies that limsup,,__, len—

z|| < limsup,__, ., ||z — vl] for all y € C with y # z.

Definition 2.1.26. [32] The mapping T : C -— C with F'(T') # § is said to satisfy
condition (A) if there exists a nondecreasing function f : [0,00) —> [0, c0) with

F(0) = 0, f(r) > 0 for all r € (0, 00) such that
|z — Tzl = f(d(z, F(T)))
for all ¢ € C where d(z, F(T)) = inf{||z - 2*|| : &* € F(T)}.

Definition 2.1.27. [15] Two mappings 73,75 : € — C where C' a nonempty
subset of X, is said to satisfy condition (A') if there exists a nondecreasing function

f:[0,00) — {0, 00) with f(0) =0, f(r) >0 forallr € (0, 00) such that
* (o= Tuzll + llp = Toel) 2 (d(e, F)
for all 7 € C where F:= F(T}) N F(T) and d(z, F) = inf{fiz — 2*|| : =" € F}.

Remark 2.1.28. Note that condition (A") reduces to condition (A) when T} = T5.

We modify this condition for three mappings 13,712,153 : C — C as follows:

Definition 2.1.29. Three mappings 13,75, T3 + € —— C where C' is a subset
of X, is said to satisfy condition (A”) if there exists a nondecreasing function

f:[0,00) — [0, 00) with £(0) = 0, f(r) > 0 for all € (0,00) such that
Yo ~ Tial + lfo — Tosl] + o = Tual) 2 f(dle, F)
for all 2 € C where F 1= F(1y) N F(Ty) N F(T3).

Remark 2.1.30. Note that condition (A”) reduces to condition (A)whenTh =T, =
Ty |

Remark 2.1.31. [32] It is well known that every continuous and demicompact
mapping must satisfy condition (A). Since every completely continuous T C —

C is continuous and demicompact so that it satisfies condition (A).




Lemma 2.1.32. [21} Let {a.}, {ba} and {3,} be sequences of nonnegative real

numbers satisfying the inequality
Onpt < (14 0p)an + by, VR=1,2, ...

If 7% 6, < 00 and 37 by < 00, then
(i) limy,—yoo Gn €TiSES;

(i1) Yy oo @n = 0, whenever liminfp o0 G = 0.

Lemma 2.1.33. [7] Let X be a unéformly conver Banach space, C @ nonempty
closed convex subset of X, and T : G — C be an asymptotically nonezpansive
mapping. Then I—T is demiclosed at 0, .e., if 2 — x weakly and Zp—~Txyp — 0

strongly, then z € F(T), where F(T) is the set of fireds point of 1.

Lemma 2.1.34. [33] Let X be o Banach space which satisfies Opial’s condition
and let {z,} be a sequence in X. Let u,v € X be such that 1My 00 [|Tn — ]l
and lim, o0 |20 — vl| ezist. If {zn,} ond {Tm,} are subsequence of {z,} which

converge weakly to u and v, respectively, then u = v.

Lemma 2.1.35. [37) Let p > 1, 7 > 0 be two fized numbers. Then a Banach space
X is uniformly convex if and only if there emists a continuous, strictly increasing,

and convez function g [0,00) — {0,00), g(0) = 0 such that
Az + (1~ NylP < MalP + (@ = Dlyl? - wp(Nglliz ~yll),
for all o,y in B, = {z € X : ||zf| <r}, A€ [0,1], where
wp(A) = M1 = AP + W (1= N).

Lemma 2.1.36. [7] Let X be a uniformly convez Banach space and B, = {z € X :
lz|l < 7}, v > 0. Then there exisls a continuous, strictly increasing, and conver

function g : [0,00) —» [0,00),9(0) = 0 such that

Az + By + 7217 < Ml + Byl +vllzli* — ABg(ll= — ylD),

for all z,y,z € By, and all \, 3,7 € [0,1] with A+ +y =1






