CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results that will be used in the later chapter.

Throughout this thesis, we let \mathbb{R} stand for the set of all real numbers and \mathbb{N} the set of all natural numbers.

2.1 Basic results.

Definition 2.1.1. Let X be a linear space over the field \mathbb{K} (\mathbb{R} or \mathbb{C}). A function $\|\cdot\|: E \longrightarrow \mathbb{R}$ is said to be a norm on X if it satisfies the following conditions:

- $(1) ||x|| \ge 0, \forall x \in E;$
- $(2) ||x|| = 0 \Leftrightarrow x = 0;$
- (3) $||x + y|| \le ||x|| + ||y||, \forall x, y \in E;$
- (4) $\|\alpha x\| = |\alpha| \|x\|, \forall x \in E \text{ and } \forall \alpha \in \mathbb{K}$.

Definition 2.1.2. Let $(E, ||\cdot||)$ be a normed space.

- (1) A sequence $\{x_n\} \subset E$ is said to converge strongly in X if there exists $x \in E$ such that $\lim_{n \to \infty} ||x_n x|| = 0$. That is, if for any $\epsilon > 0$ there exists a positive integer N such that $||x_n x|| < \epsilon, \forall n \ge N$. We often write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ to mean that x is the limit of the sequence $\{x_n\}$.
- (2) A sequence $\{x_n\} \subset E$ is said to be a Cauchy sequence if for any $\epsilon > 0$ there exists a positive integer N such that $||x_m x_n|| < \epsilon, \forall m, n \geq N$. That is, $\{x_n\}$ is a Cauchy sequence in B if and only if $||x_m x_n|| \longrightarrow 0$ as $m, n \longrightarrow \infty$.

Definition 2.1.3. A normed space X is called *complete* if every Cauchy sequence in X converges to an element in X.

Definition 2.1.4. A complete normed linear space over field \mathbb{K} is called a Banach space over \mathbb{K}

Definition 2.1.5. Let C be a nonempty subset of normed space X. A mapping $T:C\longrightarrow C$ is said to be *lipschitzian* if there exists a constant $k\geq 0$ such that for all $x,y\in C$

$$||Tx - Ty|| \le k||x - y||. \tag{2.1.1}$$

The smallest number k for which 2.1.1 holds is called the Lipschitz constant of T.

Definition 2.1.6. A lipschitzian mapping $T: C \longrightarrow C$ with Lipschitz constant k < 1 is said to be a *contraction mapping*.

Definition 2.1.7. An element $x \in C$ is said to be a fixed point of a mapping $T: C \longrightarrow C$ iff Tx = x.

Definition 2.1.8. [Banach's contraction mapping principle] Let (M,d) be a complete metric spaces and let $T: M \longrightarrow M$ be a contraction. Then T has a unique fixed point x_0 .

Definition 2.1.9. Let F and E be linear spaces over the field \mathbb{K} .

- (1) A mapping $T: F \longrightarrow E$ is called a linear operator if T(x+y) = Tx + Ty and $T(\alpha x) = \alpha Tx, \forall x, y \in F$, and $\forall \alpha \in \mathbb{K}$.
- (2) A mapping $T: F \longrightarrow \mathbb{K}$ is called a linear functional on F if T a is linear operator.

Definition 2.1.10. A sequence $\{x_n\}$ in a normed spaces is said to converge weakly to some vector x if $\lim_{n\to\infty} f(x_n) = f(x)$ holds for every continuous linear functional f. We often write $x_n \to x$ to mean that $\{x_n\}$ converge weakly to x.

Definition 2.1.11. Let F and E be normed spaces over the field \mathbb{K} and $T: F \longrightarrow E$ a linear operator. T is said to be bounded on F, if there exists a real number M > 0 such that $||T(x)|| \le M||x||, \forall x \in F$.

Definition 2.1.12. Sequence $\{x_n\}_{n=1}^{\infty}$ in a normed linear space X is said to be a bounded sequence if there exists M > 0; such that $||x_n|| \leq M, \forall n \in \mathbb{N}$.

Definition 2.1.13. Let F and E be normed spaces over the field \mathbb{K} , $T: F \longrightarrow E$ an operator and $c \in F$. We say that T is continuous at c if for every $\epsilon > 0$ there exists $\delta > 0$ such that $||T(x) - T(c)|| < \epsilon$ whenever $||x - c|| < \delta$ and $x \in F$. If T is continuous at each $x \in F$, then T is said to be continuous on F.

Definition 2.1.14. Let X and Y be normed spaces. The mapping $T: X \longrightarrow Y$ is said to be *completely continuous* if and only if T(C) is a compact subset of Y for every bounded subset C of X.

Definition 2.1.15. A mapping $T: C \longrightarrow C$ is said to be *semicompact* if, for any sequence $\{x_n\}$ in C such that $\|x_n - Tx_n\| \longrightarrow 0$ as $n \longrightarrow \infty$, there exists subsequence $\{x_{n_j}\}$ of $\{x_n\}$ such that $\{x_{n_j}\}$ converges strongly to $x \in C$.

Definition 2.1.16. A subset C of a normed linear space X is said to be *convex* set in X if $\lambda x + (1 - \lambda)y \in C$ for each $x, y \in C$ and for each scalar $\lambda \in [0, 1]$.

Definition 2.1.17. Let X be a real normed space and C a nonempty subset of X. A mapping $T:C\longrightarrow C$ is said to be

- (a) nonexpansive whenever $||Tx Ty|| \le ||x y||, \forall x, y \in C$;
- (b) asymptotically nonexpansive on C if there exists a sequence $\{k_n\}$ in $[1,\infty)$, with $\lim_{n\to\infty} k_n = 1$ such that

$$||T^n x - T^n y|| \le k_n ||x - y|| \tag{2.1.2}$$

for all $x, y \in C$ and each $n \ge 1$;

(c) asymptotically nonexpansive in the intermediate sense [4] provided T is uniformly continuous and

$$\limsup_{n \to \infty} \sup_{x,y \in C} (\|T^n x - T^n y\| - \|x - y\|) \le 0.$$
 (2.1.3)

From the above definitions, it follows that asymptotically nonexpansive mapping must be asymptotically nonexpansive mapping in the intermediate sense but the converges does not hold as the following example:

Example 2.1.18. [18] Let $X = \mathbb{R}$, $C = \left[\frac{-1}{\pi}, \frac{1}{\pi}\right]$ and |k| < 1. For each $x \in C$, define

 $T(x) = \begin{cases} kx \sin \frac{1}{x}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$

Then T is an asymptotically nonexpansive in the intermediate sense. It is well known in [17] that $T^n x \longrightarrow 0$ uniformly, but is not a Lipschitzian mapping so that it is not asymptotically nonexpansive mapping.

()

Definition 2.1.19. [10] A Banach space X is said to be uniformly convex if for each $0 < \epsilon \le 2$, there is $\delta > 0$ such that $\forall x, y \in X$, the condition ||x|| = ||y|| = 1, and $||x - y|| \ge \epsilon$ imply $||\frac{x+y}{2}|| \le 1 - \delta$.

Definition 2.1.20. [10] Let X be a Banach space. Then the modulus of convexity of $X \delta : [0, 2] \longrightarrow [0, 1]$ defined as follows:

$$\delta(\epsilon) = \inf\{1 - \frac{\|x + y\|}{2} : \|x\| \le 1, \|y\| \le 1, \|x - y\| \ge \epsilon\}.$$

Theorem 2.1.21. [10] Let X be a Banach space. Then X is uniformly convex if and only if $\delta(\epsilon) > 0$ for all $\epsilon > 0$.

Theorem 2.1.22. [2] Let C be a nonempty, closed, convex and bounded subset of uniformly convex Banach space E and let $T: C \longrightarrow C$ be nonexpansive mapping. Then T has a fixed point.

Theorem 2.1.23. [10] Let C be a nonempty, closed, convex and bounded subset of uniformly convex Banach space E and let $T: C \longrightarrow C$ be asymptotically nonexpansive mapping. Then T has a fixed point.

Theorem 2.1.24. [19] Let C be a nonempty, closed, convex and bounded subset of uniformly convex Banach space E and let $T: C \longrightarrow C$ be asymptotically nonexpansive mapping in the intermediate sense. Then T has a fixed point.

Definition 2.1.25. [26] A Banach space X is said to satisfy *Opial's condition* if any sequence $\{x_n\}$ in C, $x_n \longrightarrow x$ weakly as $n \longrightarrow \infty$ implies that $\limsup_{n \longrightarrow \infty} \|x_n - x\| < \limsup_{n \longrightarrow \infty} \|x_n - y\|$ for all $y \in C$ with $y \ne x$.

Definition 2.1.26. [32] The mapping $T: C \longrightarrow C$ with $F(T) \neq \emptyset$ is said to satisfy condition (A) if there exists a nondecreasing function $f: [0, \infty) \longrightarrow [0, \infty)$ with f(0) = 0, f(r) > 0 for all $r \in (0, \infty)$ such that

$$||x - Tx|| \ge f(d(x, F(T)))$$

for all $x \in C$ where $d(x, F(T)) = \inf\{||x - x^*|| : x^* \in F(T)\}.$

 $I(\cdot)$

Definition 2.1.27. [15] Two mappings $T_1, T_2 : C \longrightarrow C$ where C a nonempty subset of X, is said to satisfy condition (A') if there exists a nondecreasing function $f: [0, \infty) \longrightarrow [0, \infty)$ with f(0) = 0, f(r) > 0 for all $r \in (0, \infty)$ such that

$$\frac{1}{2}(\|x - T_1 x\| + \|x - T_2 x\|) \ge f(d(x, F))$$

for all $x \in C$ where $F := F(T_1) \cap F(T_2)$ and $d(x, F) = \inf\{||x - x^*|| : x^* \in F\}$.

Remark 2.1.28. Note that condition (A') reduces to condition (A) when $T_1 = T_2$.

We modify this condition for three mappings $T_1, T_2, T_3 : C \longrightarrow C$ as follows: **Definition 2.1.29.** Three mappings $T_1, T_2, T_3 : C \longrightarrow C$ where C is a subset of X, is said to satisfy condition (A'') if there exists a nondecreasing function $f: [0, \infty) \longrightarrow [0, \infty)$ with f(0) = 0, f(r) > 0 for all $r \in (0, \infty)$ such that

$$\frac{1}{3}(\|x - T_1x\| + \|x - T_2x\| + \|x - T_3x\|) \ge f(d(x, F))$$

for all $x \in C$ where $F := F(T_1) \cap F(T_2) \cap F(T_3)$.

Remark 2.1.30. Note that condition (A'') reduces to condition (A) when $T_1 = T_2 = T_3$.

Remark 2.1.31. [32] It is well known that every continuous and demicompact mapping must satisfy condition (A). Since every completely continuous $T: C \longrightarrow C$ is continuous and demicompact so that it satisfies condition (A).

Lemma 2.1.32. [21] Let $\{a_n\}, \{b_n\}$ and $\{\delta_n\}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \le (1 + \delta_n)a_n + b_n, \forall n = 1, 2, \dots$$

If $\sum_{n=1}^{\infty} \delta_n < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, then

(i) $\lim_{n \to \infty} a_n$ exists;

1.0

(ii) $\lim_{n\to\infty} a_n = 0$, whenever $\liminf_{n\to\infty} a_n = 0$.

Lemma 2.1.33. [7] Let X be a uniformly convex Banach space, C a nonempty closed convex subset of X, and $T:C\longrightarrow C$ be an asymptotically nonexpansive mapping. Then I-T is demiclosed at 0, i.e., if $x_n\longrightarrow x$ weakly and $x_n-Tx_n\longrightarrow 0$ strongly, then $x\in F(T)$, where F(T) is the set of fixeds point of T.

Lemma 2.1.34. [33] Let X be a Banach space which satisfies Opial's condition and let $\{x_n\}$ be a sequence in X. Let $u, v \in X$ be such that $\lim_{n\to\infty} ||x_n - u||$ and $\lim_{n\to\infty} ||x_n - v||$ exist. If $\{x_{n_k}\}$ and $\{x_{m_k}\}$ are subsequence of $\{x_n\}$ which converge weakly to u and v, respectively, then u = v.

Lemma 2.1.35. [37] Let p > 1, r > 0 be two fixed numbers. Then a Banach space X is uniformly convex if and only if there exists a continuous, strictly increasing, and convex function $g: [0, \infty) \longrightarrow [0, \infty)$, g(0) = 0 such that

$$||\lambda x + (1 - \lambda)y||^p \le \lambda ||x||^p + (1 - \lambda)||y||^p - w_p(\lambda)g(||x - y||),$$

for all x, y in $B_r = \{x \in X : ||x|| \le r\}, \ \lambda \in [0, 1], \ where$

$$w_p(\lambda) = \lambda (1 - \lambda)^p + \lambda^p (1 - \lambda).$$

Lemma 2.1.36. [7] Let X be a uniformly convex Banach space and $B_r = \{x \in X : \|x\| \le r\}$, r > 0. Then there exists a continuous, strictly increasing, and convex function $g: [0, \infty) \longrightarrow [0, \infty), g(0) = 0$ such that

$$||\lambda x + \beta y + \gamma z||^2 \le \lambda ||x||^2 + \beta ||y||^2 + \gamma ||z||^2 - \lambda \beta g(||x - y||),$$

for all $x, y, z \in B_r$, and all $\lambda, \beta, \gamma \in [0, 1]$ with $\lambda + \beta + \gamma = 1$.