CHAPTER III

(ORDERED) IDEAL EXTENSIONS IN (ORDERED) 1-SEMIGROUPS

In this chapter, we divide into two sections, and many properties of extension $(\langle A, I \rangle)$ of an (ordered) ideal I by a subset A of a (ordered) Γ -semigroup M are provided. Moreover, the equivalence relation (Φ_I) ϕ_I on M defined by $((x,y) \in \Phi_I \Leftrightarrow \langle (x,I) \rangle = \langle (y,I) \rangle)$ $(x,y) \in \phi_I \Leftrightarrow \langle x,I \rangle = \langle y,I \rangle$ is considered. It will be shown that if M is commutative, and I is an (ordered) s-semiprime ideal of M, then (Φ_I) ϕ_I is a (ordered) semilattice congruence on M. In addition, if I is a (ordered) prime ideal of M, then (Φ_I) $\phi_I = \{(x,y) \mid x,y \in I \text{ or } x,y \notin I\}$.

3.1 Ideal Extensions in T-Semigroups

The following theorem is obtained in [13] and the following lemmas will be used frequently in this thesis.

Theorem 3.1.1 ([13]) If M is a Γ -semigroup, then

$$n = \bigcap_{I \in SP(M)} \sigma_I.$$

The next two lemmas are easy to verify.

Lemma 3.1.2. If A is a subset of a Γ -semigroup M, then

$$I(A) = A \cup M\Gamma A.$$

Lemma 3.1.3. Let I be an ideal of a Γ -semigroup M and $A \subseteq B \subseteq M$. Then $\langle B, I \rangle \subseteq \langle A, I \rangle$.

Lemma 3.1.4. Let I be an ideal of a commutative Γ -semigroup M, $A \subseteq M$ and $\gamma \in \Gamma$. Then we have the following statements:

- (a) $\langle A, I \rangle$ is an ideal of M.
- (b) $I \subseteq \langle A, I \rangle \subseteq \langle A \Gamma A, I \rangle \subseteq \langle A \gamma A, I \rangle$.
- (c) If $A \subseteq I$, then $\langle A, I \rangle = M$.

Proof. (a) Let $x \in \langle A, I \rangle, y \in M$ and $\gamma \in \Gamma$. Then $A\Gamma(x\gamma y) = (A\Gamma x)\gamma y \subseteq I\Gamma M \subseteq I$, so $x\gamma y \in \langle A, I \rangle$. Hence $\langle A, I \rangle$ is an ideal of M.

- (b) If $x \in I$, then $A\Gamma x \subseteq M\Gamma I \subseteq I$. Thus $x \in \langle A, I \rangle$. If $x \in \langle A, I \rangle$, then $(A\Gamma A)\Gamma x = A\Gamma (A\Gamma x) \subseteq M\Gamma I \subseteq I$. Thus $x \in \langle A\Gamma A, I \rangle$. If $x \in \langle A\Gamma A, I \rangle$, then $(A\gamma A)\Gamma x \subseteq (A\Gamma A)\Gamma x \subseteq I$. Thus $x \in \langle A\gamma A, I \rangle$. Hence $I \subseteq \langle A, I \rangle \subseteq \langle A\Gamma A, I \rangle \subseteq \langle A\gamma A, I \rangle$.
- (c) Let $A\subseteq I$ and $x\in M$. Then $A\Gamma x\subseteq I\Gamma M\subseteq I$, so $x\in \langle A,I\rangle$. Hence $\langle A,I\rangle=M$.

Hence the proof is completed.

Lemma 3.1.5. Let I be an ideal of a Γ -semigroup M and $A \subseteq M$. Then

$$\langle A, I \rangle = \bigcap_{a \in A} \langle a, I \rangle = \langle A \setminus I, I \rangle.$$

Proof. By Lemma 3.1.3, we have $\langle A, I \rangle \subseteq \bigcap_{a \in A} \langle a, I \rangle$. Now, let $x \in \bigcap_{a \in A} \langle a, I \rangle$. Then $a\Gamma x \subseteq I$ for all $a \in A$, so $A\Gamma x \subseteq I$. Thus $x \in \langle A, I \rangle$, so $\bigcap_{a \in A} \langle a, I \rangle \subseteq \langle A, I \rangle$. Hence $\langle A, I \rangle = \bigcap_{a \in A} \langle a, I \rangle$. By Lemma 3.1.4(c), we have $\langle A, I \rangle = \bigcap_{a \in A} \langle a, I \rangle = \langle A \setminus I, I \rangle$. Hence the proof is completed.

Lemma 3.1.6. Let I be an ideal of a Γ -semigroup M. Then I is a prime ideal of M if and only if $\langle A, I \rangle = I$ for all $A \nsubseteq I$.

Proof. Assume that I is a prime ideal of M and $A \subseteq I$. Let $x \in \langle A, I \rangle$. Then $A\Gamma x \subseteq I$. By hypothesis and $A \not\subseteq I$, $x \in I$. Thus $\langle A, I \rangle \subseteq I$. By Lemma 3.1.4(b), $\langle A, I \rangle = I.$

Conversely, assume that $\langle A, I \rangle = I$ for all $A \not\subseteq I$. Let $A, B \subseteq M$ be such that $A\Gamma B \subseteq I$ and $A \not\subseteq I$. Then $B \subseteq \langle A, I \rangle = I$. Hence I is a prime ideal of M.

Hence the proof is completed.

We can easily prove the last lemma.

Lemma 3.1.7. Let \mathcal{A} and \mathcal{B} be two nonempty subfamilies of P(M) and SP(M), respectively. Then we have the following statements:

- (a) $\bigcap_{P \in \mathcal{A}} P$ is a semiprime ideal of M if $\bigcap_{P \in \mathcal{A}} P \neq \emptyset$. (b) $\bigcup_{P \in \mathcal{B}} P$ is a prime ideal of M.
- (c) $\bigcap_{P \in \mathcal{B}} P$ is an s-semiprime ideal of M if $\bigcap_{P \in \mathcal{B}} P \neq \emptyset$.
- (d) $\bigcup_{P \in \mathcal{B}} P$ is an s-prime ideal of M.

We now give some characterizations of extensions of ideals and the main theorems of this section as below.

Theorem 3.1.8. Let P be a prime ideal of a commutative Γ -semigroup M and $A\subseteq M$. Then $\langle A,P \rangle$ is a prime ideal of M. Furthermore, $\langle A, \bigcap P \rangle$ is a semiprime ideal of M if $\bigcap_{P \in P(M)} P \neq \emptyset$.

Proof. If $A \subseteq P$, then it follows from Lemma 3.1.4(c) that $\langle A, P \rangle = M$. If $A \subseteq P$, then it follows from Lemma 3.1.6 that $\langle A, P \rangle = P$. Hence $\langle A, P \rangle$ is a

prime ideal of M Now,

$$x \in \langle A, \bigcap_{P \in P(M)} P \rangle \iff A\Gamma x \subseteq \bigcap_{P \in P(M)} P$$

$$\Leftrightarrow A\Gamma x \subseteq P \text{ for all } P \in P(M)$$

$$\Leftrightarrow x \in \langle A, P \rangle \text{ for all } P \in P(M)$$

$$\Leftrightarrow x \in \bigcap_{P \in P(M)} \langle A, P \rangle.$$

Hence

$$\langle A, \bigcap_{P \in P(M)} P \rangle = \bigcap_{P \in P(M)} \langle A, P \rangle$$

By Lemma 3.1.7(a), $\langle A, \bigcap_{P \in P(M)} P \rangle$ is a semiprime ideal of M.

Theorem 3.1.9. Let A and B be subsets of a Γ -semigroup M and $A \subseteq M\Gamma A$. Then $I(A) \subseteq I(B)$ if and only if for every ideal J of M, $\langle B, J \rangle \subseteq \langle A, J \rangle$.

Proof. Assume that $I(A) \subseteq I(B)$. Let J be an ideal of M and $x \in \langle B, J \rangle$. By Lemma 3.1.2, we have $A \subseteq I(B) = B \cup M\Gamma B$. For any $a \in A$, if $a = y\alpha b$ for some $y \in M, b \in B$ and $\alpha \in \Gamma$, then $a\gamma x = (y\alpha b)\gamma x = y\alpha(b\gamma x) \in M\Gamma J \subseteq J$ for all $\gamma \in \Gamma$. Hence $a\gamma x \in J$ for all $\gamma \in \Gamma$, so $x \in \langle a, J \rangle$. If a = b for some $b \in B$, then $a\gamma x = b\gamma x \in J$ for all $\gamma \in \Gamma$. Hence $a\gamma x \in J$ for all $\gamma \in \Gamma$, so $x \in \langle a, J \rangle$. Therefore $\langle B, J \rangle \subseteq \bigcap \langle a, J \rangle$. It follows from Lemma 3.1.5 that $\langle B, J \rangle \subseteq \langle A, J \rangle$.

Conversely, assume that $\langle B, J \rangle \subseteq \langle A, J \rangle$ for all ideal J of M. Then $\langle B, I(B) \rangle \subseteq \langle A, I(B) \rangle$. Since $B \subseteq I(B)$, it follows from Lemma 3.1.4(c) that $\langle B, I(B) \rangle = M$. Thus $\langle A, I(B) \rangle = M$, so $M\Gamma A \subseteq I(B)$. Hence $A \subseteq M\Gamma A \subseteq I(B)$. This implies that $I(A) \subseteq I(B)$.

Theorem 3.1.10. If I is an s-semiprime ideal of a commutative Γ -semigroup M, then ϕ_I is a semilattice congruence on M.

Proof. Let $(x,y) \in \phi_I, c \in M$ and $\gamma \in \Gamma$. Then $\langle x, I \rangle = \langle y, I \rangle$. Thus

$$a \in \langle x\gamma c, I \rangle \iff (x\gamma c)\Gamma a \subseteq I$$

$$\Leftrightarrow x\Gamma(c\gamma a) \subseteq I$$

$$\Leftrightarrow c\gamma a \in \langle x, I \rangle$$

$$\Leftrightarrow c\gamma a \in \langle y, I \rangle$$

$$\Leftrightarrow y\Gamma(c\gamma a) \subseteq I$$

$$\Leftrightarrow (y\gamma c)\Gamma a \subseteq I$$

$$\Leftrightarrow a \in \langle y\gamma c, I \rangle.$$

Hence $(x\gamma c, y\gamma c) \in \phi_I$. Similarly, we can show that $(c\gamma x, c\gamma y) \in \phi_I$. Hence ϕ_I is a congruence on M. Let $x \in M$ and $\gamma \in \Gamma$. Then

$$a \in \langle x\gamma x, I \rangle \implies (x\gamma x)\Gamma a \subseteq I$$

$$\Rightarrow (x\gamma x\Gamma a)\Gamma a \subseteq I\Gamma M \subseteq I$$

$$\Rightarrow (x\Gamma a)\gamma(x\Gamma a) \subseteq I$$

$$\Rightarrow x\Gamma a \subseteq I$$

$$\Rightarrow a \in \langle x, I \rangle.$$

Thus $\langle x\gamma x, I \rangle \subseteq \langle x, I \rangle$. By Lemma 3.1.4(b), we have $\langle x, I \rangle \subseteq \langle x\gamma x, I \rangle$. Hence $\langle x\gamma x, I \rangle = \langle x, I \rangle$, so $(x\gamma x, x) \in \phi_I$. Therefore ϕ_I is a semilattice congruence on M.

Theorem 3.1.11. If I is an s-prime ideal of a Γ -semigroup M, then $\phi_I = \sigma_I$ and $n \subseteq \phi_I$.

Proof. Let $(x, y) \in \phi_I$. Then $\langle x, I \rangle = \langle y, I \rangle$. Suppose that $(x, y) \notin \sigma_I$. Without loss of generality, we may assume that $x \in I$ but $y \notin I$. By Lemmas 3.1.4(c) and 3.1.6, we have $\langle x, I \rangle = M$ and $\langle y, I \rangle = I$. Thus I = M, so $y \notin M$. This is a

contradiction. Hence $(x,y) \in \sigma_I$, so $\phi_I \subseteq \sigma_I$. Let $(x,y) \in \sigma_I$. If $x \in I$, then $y \in I$. By Lemma 3.1.4(c), $\langle x,I \rangle = M = \langle y,I \rangle$. If $x \notin I$, then $y \notin I$. By Lemma 3.1.6, $\langle x,I \rangle = I = \langle y,I \rangle$. Hence $(x,y) \in \phi_I$, so $\sigma_I \subseteq \phi_I$. Therefore $\phi_I = \sigma_I$. It follows from Theorem 3.1.1 that

$$n = \bigcap_{J \in SP(M)} \sigma_J = \bigcap_{J \in SP(M)} \phi_J \subseteq \phi_I.$$

Hence the proof is completed.

3.2 Ordered Ideal Extensions in Ordered Γ-Semigroups

Our purpose is to provide various properties of extensions of ordered ideals of an ordered Γ -semigroup M. The following lemma is evident.

Lemma 3.2.1. Let I be an ordered ideal of an ordered Γ -semigroup M and A, B \subseteq M. Then the following statements hold:

- (a) If $A \subseteq B$, then $\langle \langle B, I \rangle \rangle \subseteq \langle \langle A, I \rangle \rangle$.
- (b) If $A \subseteq I$, then $\langle \langle A, I \rangle \rangle = M$.
- (c) $\langle\!\langle A, I \rangle\!\rangle \subseteq \langle\!\langle A \setminus I, I \rangle\!\rangle$.

Proposition 3.2.2. Let I be an ordered ideal of an ordered Γ -semigroup M. Then for any $a \in M$,

$$\langle\!\langle (a], I \rangle\!\rangle = \langle\!\langle a, I \rangle\!\rangle \subseteq \langle\!\langle x, I \rangle\!\rangle \text{ for all } x \leq a.$$

Proof. By Lemma 3.2.1(a), $\langle \langle (a], I \rangle \rangle \subseteq \langle \langle (a, I) \rangle \rangle$. If $y \in \langle \langle (a, I) \rangle \rangle$ and $z \in \langle (a], then <math>z \leq a$, so $z \gamma y \leq a \gamma y \in a \Gamma y \subseteq I$ for all $\gamma \in \Gamma$. Hence $y \in \langle \langle (a], I \rangle \rangle$. Therefore we have $\langle \langle (a], I \rangle \rangle = \langle \langle (a, I) \rangle \rangle$. If $x \leq a$, then $x \in \langle (a], s \rangle$ by Lemma 3.2.1(a), $\langle \langle (a], I \rangle \rangle \subseteq \langle \langle (x, I) \rangle \rangle$.

Proposition 3.2.3. If I is an ordered ideal of an ordered Γ -semigroup M and $A \subseteq M$, then

$$\langle\!\langle A, I \rangle\!\rangle \subseteq \langle\!\langle A\Gamma A, I \rangle\!\rangle \subseteq \langle\!\langle A\Gamma' A, I \rangle\!\rangle \text{ for all } \Gamma \subseteq \Gamma'.$$

Proof. Since $(A\Gamma A)\Gamma\langle\langle A,I\rangle\rangle = A\Gamma(A\Gamma\langle\langle A,I\rangle\rangle) \subseteq A\Gamma I \subseteq I$ and $(A\Gamma'A)\Gamma\langle\langle A\Gamma A,I\rangle\rangle$ $\subseteq (A\Gamma A)\Gamma\langle\langle A\Gamma A,I\rangle\rangle \subseteq I$, it follows that $\langle\langle A,I\rangle\rangle\subseteq \langle\langle A\Gamma A,I\rangle\rangle$ and $\langle\langle A\Gamma A,I\rangle\rangle\subseteq \langle\langle A\Gamma'A,I\rangle\rangle$, respectively.

Proposition 3.2.4. Let I and I_i be ordered ideals of an ordered Γ -semigroup M and $A, A_i \subseteq M$ for all $i \in \Lambda$. Then

(a)
$$\langle \langle A, \bigcap_{i \in \Lambda} I_i \rangle \rangle = \bigcap_{i \in \Lambda} \langle \langle A, I_i \rangle \rangle$$
 and

(b)
$$\langle\!\langle \bigcup_{i \in \Lambda} A_i, I \rangle\!\rangle = \bigcap_{i \in \Lambda} \langle\!\langle A_i, I \rangle\!\rangle.$$

Proof. For $x \in M$,

$$\begin{aligned} x \in \langle\!\langle A, \bigcap_{i \in \Lambda} I_i \rangle\!\rangle & \Leftrightarrow & A \Gamma x \subseteq \bigcap_{i \in \Lambda} I_i \\ & \Leftrightarrow & A \Gamma x \subseteq I_i \text{ for all } i \in \Lambda \\ & \Leftrightarrow & x \in \langle\!\langle A, I_i \rangle\!\rangle \text{ for all } i \in \Lambda \\ & \Leftrightarrow & x \in \bigcap_{i \in \Lambda} \langle\!\langle A, I_i \rangle\!\rangle, \end{aligned}$$

and

$$x \in \langle\!\langle \bigcup_{i \in \Lambda} A_i, I \rangle\!\rangle \quad \Leftrightarrow \quad (\bigcup_{i \in \Lambda} A_i) \Gamma x \subseteq I$$

$$\Leftrightarrow \quad A_i \Gamma x \subseteq I \text{ for all } i \in \Lambda$$

$$\Leftrightarrow \quad x \in \langle\!\langle A_i, I \rangle\!\rangle \text{ for all } i \in \Lambda$$

$$\Leftrightarrow \quad x \in \bigcap_{i \in \Lambda} \langle\!\langle A_i, I \rangle\!\rangle.$$

Proposition 3.2 5. Let I be an ordered ideal of an ordered Γ -semigroup M. Then I is an ordered prime ideal of M if and only if $\langle\!\langle A, I \rangle\!\rangle = I$ for all $A \subseteq M$ with $A \not\subseteq I$.

Proof. Assume that I is an ordered prime ideal of M, and let $A \nsubseteq I$. Since $A\Gamma\langle\langle A,I\rangle\rangle \subseteq I$, $A \nsubseteq I$ and I is an ordered prime ideal of M, it follows that $\langle\langle A,I\rangle\rangle \subseteq I$ which implies that $\langle\langle A,I\rangle\rangle = I$.

Conversely, assume that $\langle\!\langle A,I\rangle\!\rangle=I$ for all $A\not\subseteq I$. To show that I is an ordered prime ideal of M, let $A,B\subseteq M$ be such that $A\Gamma B\subseteq I$ and $A\not\subseteq I$. Then $B\subseteq \langle\!\langle A,I\rangle\!\rangle=I$.

Recall that for an ordered ideal I of an ordered Γ -semigroup M and $A \subseteq M, \langle \langle A, I \rangle \rangle$ is an ordered ideal of M if M is commutative.

Corollary 3.2.6. Assume that M is a commutative ordered Γ -semigroup. If I is an ordered prime ideal of M and $A \subseteq M$, then so is $\langle \langle A, I \rangle \rangle$.

Proof. This follows directly from Lemma 3.2.1(b) and Proposition 3.2.5.

It is obviously seen that a nonempty intersection of ordered prime ideals of an ordered Γ -semigroup M is an ordered semiprime ideal of M.

Corollary 3.2.7. Assume that M is a commutative ordered Γ -semigroup and $A \subseteq M$. If $\{I_i \mid i \in \Lambda\}$ is a collection of ordered prime ideals of M such that $\bigcap_{i \in \Lambda} I_i \neq \emptyset$, then $\langle\!\langle A, \bigcap_{i \in \Lambda} I_i \rangle\!\rangle$ is an ordered semiprime ideal of M.

Proof. By Corollary 3.2.6, $\langle\!\langle A, I_i \rangle\!\rangle$ is an ordered prime ideal of M for all $i \in \Lambda$. But $\langle\!\langle A, \bigcap_{i \in \Lambda} I_i \rangle\!\rangle = \bigcap_{i \in \Lambda} \langle\!\langle A, I_i \rangle\!\rangle$ by Proposition 3.2.4(a). It follows that $\langle\!\langle A, \bigcap_{i \in \Lambda} I_i \rangle\!\rangle$ is an ordered semiprime ideal of M.

Proposition 3.2.8. For $A, B \subseteq M$ where M is an ordered Γ -semigroup, if $OI(A) \subseteq OI(B)$, then $\langle \langle B, I \rangle \rangle \subseteq \langle \langle A, I \rangle \rangle$ for every ordered ideal I of M.

Proof. Assume that $OI(A) \subseteq OI(B)$ and let I be an ordered ideal of M. If $x \in \langle\langle B, I \rangle\rangle$, then $B\Gamma x \subseteq I$. Since $A \subseteq OI(B)$, it follows from Lemma 3.2.1(a) that $\langle\langle OI(B), I \rangle\rangle \subseteq \langle\langle A, I \rangle\rangle$. By Lemma 3.2.1(a) and Propositions 3.2.2 and 3.2.4(b),

$$\langle \langle B, I \rangle \rangle \subseteq \langle \langle B, I \rangle \rangle \cap \langle \langle M \Gamma B, I \rangle$$

$$\subseteq \langle \langle B, I \rangle \rangle \cap \langle \langle (M \Gamma B], I \rangle \rangle$$

$$= \bigcap_{b \in B} \langle \langle \langle b, I \rangle \rangle \cap \langle \langle (M \Gamma B], I \rangle \rangle$$

$$= \langle \langle \bigcup_{b \in B} \langle b, I \rangle \rangle \cap \langle \langle (M \Gamma B), I \rangle \rangle$$

$$= \langle \langle \langle \langle B, I \rangle \rangle \cap \langle \langle (M \Gamma B), I \rangle \rangle$$

$$= \langle \langle \langle \langle B, I \rangle \rangle \cap \langle \langle (M \Gamma B), I \rangle \rangle$$

$$= \langle \langle \langle \langle B, I \rangle \rangle \cap \langle \langle (M \Gamma B), I \rangle \rangle$$

$$= \langle \langle \langle \langle B, I \rangle \rangle \cap \langle \langle (M \Gamma B), I \rangle \rangle$$

$$= \langle \langle \langle \langle B, I \rangle \rangle \cap \langle \langle \langle A, I \rangle \rangle \rangle$$

$$= \langle \langle \langle \langle B, I \rangle \rangle \cap \langle \langle \langle A, I \rangle \rangle \rangle$$

Hence $\langle\!\langle B, I \rangle\!\rangle \subseteq \langle\!\langle A, I \rangle\!\rangle$.

Lemma 3.2.9. If M is a commutative ordered Γ -semigroup, and I is an ordered ideal of M, then Φ_I is a congruence on M.

Proof. Let $(x,y) \in \Phi_I, c \in M$ and $\gamma \in \Gamma$. Then $\langle \langle x, I \rangle \rangle = \langle \langle y, I \rangle \rangle$. For $a \in M$,

$$a \in \langle\!\langle x\gamma c, I \rangle\!\rangle \iff (x\gamma c)\Gamma a \subseteq I$$

$$\Leftrightarrow x\Gamma(c\gamma a) \subseteq I$$

$$\Leftrightarrow c\gamma a \in \langle\!\langle x, I \rangle\!\rangle$$

$$\Leftrightarrow c\gamma a \in \langle\!\langle y, I \rangle\!\rangle$$

$$\Leftrightarrow y\Gamma(c\gamma a) \subseteq I$$

$$\Leftrightarrow (y\gamma c)\Gamma a \subseteq I$$

$$\Leftrightarrow a \in \langle\!\langle y\gamma c, I \rangle\!\rangle,$$

and

$$a \in \langle\!\langle c\gamma x, I \rangle\!\rangle \iff (c\gamma x) \Gamma a \subseteq I$$

$$\Leftrightarrow x \Gamma(c\gamma a) \subseteq I$$

$$\Leftrightarrow c\gamma a \in \langle\!\langle x, I \rangle\!\rangle$$

$$\Leftrightarrow c\gamma a \in \langle\!\langle y, I \rangle\!\rangle$$

$$\Leftrightarrow y \Gamma(c\gamma a) \subseteq I$$

$$\Leftrightarrow (c\gamma y) \Gamma a \subseteq I$$

$$\Leftrightarrow a \in \langle\!\langle c\gamma y, I \rangle\!\rangle.$$

Thus $(x\gamma c, y\gamma c) \in \Phi_I$ and $(c\gamma x, c\gamma y) \in \Phi_I$. Hence Φ_I is a congruence on M. \square

Proposition 3.2.10. If M is a commutative ordered Γ -semigroup, and I is an ordered s-semiprime ideal of M, then Φ_I is an ordered semilattice congruence on M.

Proof. By Proposition 3.2.9, Φ_I is a congruence on M. Since M is commutative, $(a\gamma b, b\gamma a) \in \Phi_I$ for all $a, b \in M$ and $\gamma \in \Gamma$. Let $x \in M$ and $\gamma \in \Gamma$. Then for $a \in M$,

$$a \in \langle \langle x \gamma x, I \rangle \rangle \Rightarrow (x \gamma x) \Gamma a \subseteq I$$

$$\Rightarrow (x \gamma x \Gamma a) \Gamma a \subseteq I \Gamma M \subseteq I$$

$$\Rightarrow (x \Gamma a) \gamma (x \Gamma a) \subseteq I$$

$$\Rightarrow x \Gamma a \subseteq I$$

$$\Rightarrow a \in \langle \langle x, I \rangle \rangle.$$

By Proposition $\beta.2.3, \langle \langle x, I \rangle \rangle \subseteq \langle \langle x \gamma x, I \rangle \rangle$. Therefore we have $\langle \langle x \gamma x, I \rangle \rangle = \langle \langle x, I \rangle \rangle$,

T. QA 2144 AMM 2009

so $(x\gamma x, x) \in \Phi_I$. Let $x, y \in M$ be such that $x \leq y$ and $\gamma \in \Gamma$. Then for $a \in M$,

$$\begin{array}{ll} a\in\langle\!\langle x,I\rangle\!\rangle &\Rightarrow &x\Gamma a\subseteq I\\ \\ &\Rightarrow &(x\Gamma a)\gamma y\subseteq I\Gamma M\subseteq I\\ \\ &\Rightarrow &(x\gamma y)\Gamma a\subseteq I\\ \\ &\Rightarrow &a\in\langle\!\langle x\gamma y,I\rangle\!\rangle, \end{array}$$

and

$$a \in \langle \langle x\gamma y \rangle, I \rangle \Rightarrow (x\gamma y)\Gamma a \subseteq I$$

$$\Rightarrow (x\gamma x\Gamma a)\Gamma a \subseteq ((x\gamma y\Gamma a)\Gamma a] \subseteq (I\Gamma M] \subseteq [I] \subseteq I$$

$$\Rightarrow (x\Gamma a)\gamma (x\Gamma a) \subseteq I$$

$$\Rightarrow x\Gamma a \subseteq I$$

$$\Rightarrow a \in \langle \langle x, I \rangle \rangle.$$

Thus $\langle\!\langle x,I\rangle\!\rangle = \langle\!\langle x\gamma y,I\rangle\!\rangle$, so $(x,x\gamma y)\in \Phi_I$. Hence Φ_I is an ordered semilattice congruence on M.

Proposition 3.2.11. If I is an ordered prime ideal of an ordered Γ -semigroup M, then

$$\Phi_I = (I \times I) \cup (M \setminus I \times M \setminus I).$$

Proof. This follows directly from Lemma 3.2.1(b) and Proposition 3.2.5. \Box