CHAPTER VI

DECOMPOSITION OF COMMUTATIVE (ORDERED) 1-SEMIGROUPS INTO ARCHIMEDEAN 1-SEMIGROUPS INTO ARCHIMEDEAN 1-SEMIGROUPS INTO ARCHIMEDEAN 1-SEMIGROUPS INTO ARCHIMEDEAN

In this chapter, we divide into two sections, and many properties of the relation " $(\bar{\eta})$ η " on a (ordered) Γ -semigroup M are provided. We prove that for commutative (ordered) Γ -semigroups, we have the usual relation (\mathcal{N}) n is equal to the relation $(\bar{\eta})$ η . It is shown that if M is commutative, then M is, uniquely, a (ordered) semilattice of archimedean sub- Γ -semigroups of M which mean that they are decomposable, in a unique way, into their archimedean components.

6.1 Decomposition of Commutative Γ -Semigroups into Archimedean Components

Before the characterizations of the semilattices of archimedean sub- Γ -semi-groups for the main theorems, we give some auxiliary results which are necessary in what follows. We begin by recalling the following two lemmas which proof can be found in [13].

Lemma 6.1.1.([13]) If $\rho \in SC(M)$, then the following statements hold:

- (a) For each $x \in M$, the ρ -class $(x)_{\rho}$ is a sub- Γ -semigroup of M.
- (b) The set M/ρ is a commutative Γ -semigroup with $(x)_{\rho}\gamma(y)_{\rho}=(x\gamma y)_{\rho}$ for all $x,y\in M$ and $\gamma\in\Gamma$.

Lemma 6.1.2.([13]) If M is a Γ -semigroup, then the relation n is the least semi-lattice congruence on M.

We now characterize the relationship between the relation η and the usual relation n in Γ -semigroups, and we prove that for commutative Γ -semigroups, the relation η coincides with the usual relation n.

Proposition 6.1.3. If M is a Γ -semigroup, then the following statements hold:

- (a) $a \mid a$ for all $a \in M$.
- (b) If $a, b, c \in M$ is such that $a \mid b$ and $b \mid c$, then $a \mid c$.
- (c) If $a, b \in M$ is such that $a \mid b$, then $c \gamma a \mid c \gamma b$ for all $c \in M$ and $\gamma \in \Gamma$.
- (d) If M is commutative, and $a, b \in M$ is such that $a \mid b$, then $a\gamma c \mid b\gamma c$ for all $c \in M$ and $\gamma \in \Gamma$.

Proof. (a) Clearly, $a \mid a$ for all $a \in M$. Hence the statement (a) holds.

- (b) If $a,b,c \in M$ is such that $a \mid b$ and $b \mid c$, then b=a or $b=a\gamma x$ for some $x \in M$ and $\gamma \in \Gamma$, and c=b or $c=b\beta y$ for some $y \in M$ and $\beta \in \Gamma$. If $b=a\gamma x$ and $c=b\beta y$, then $c=b\beta y=a\gamma x\beta y$. Hence $a \mid c$. In another case, we can prove that $a \mid c$. Therefore the statement (b) holds.
- (c) If $a, b \in M$ is such that $a \mid b$, then b = a or $b = a\alpha x$ for some $x \in M$ and $\alpha \in \Gamma$. Thus $c\gamma b = c\gamma a$ or $c\gamma b = c\gamma a\alpha x$ for all $c \in M$ and $\gamma \in \Gamma$. Hence $c\gamma a \mid c\gamma b$ for all $c \in M$ and $\gamma \in \Gamma$. Therefore the statement (c) holds.
 - (d) If M is commutative, then by (c), the statement (d) also holds.

Therefore we complete the proof of the proposition.

Recall that for $x, y \in M$, we write $x\mu y$ if and only if $x \mid y$ or $x \mid y\gamma_1y\gamma_2y...y\gamma_my$ for some $m \in \mathbb{N}$ and $\gamma_1, \gamma_2, ..., \gamma_m \in \Gamma$, and $\eta = \mu \cap \mu^{-1}$.

The following proposition is easy to verify.

Proposition 6.1.4. If M is a Γ -semigroup, then the following statements hold:

- (a) η is reflexive.
- (b) η is symmetric.
- (c) $(a\gamma a, a) \in \eta$ for all $a \in M$ and $\gamma \in \Gamma$.

Proposition 6.1.5. If M is a commutative Γ -semigroup, then the following statements hold:

- (a) If $a, b \in M$ is such that $a \mid b$, then for any $n \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_n \in \Gamma$, $a\gamma_1 a\gamma_2 a \dots a\gamma_n a \mid b\gamma_1 b\gamma_2 b \dots b\gamma_n b.$
- (b) If $a, b \in M$ and $\beta \in \Gamma$, then for any $n \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_n \in \Gamma$, $a\beta(b\gamma_1b\gamma_2b\dots b\gamma_nb) \mid (a\beta b)\gamma_1(a\beta b)\gamma_2(a\beta b)\dots(a\beta b)\gamma_n(a\beta b).$

Proof. (a) Let $a, b \in M$ be such that $a \mid b, n \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_n \in \Gamma$. Then b = a or $b = a\beta x$ for some $x \in M$ and $\beta \in \Gamma$. If b = a, then $b\gamma_1b\gamma_2b \dots b\gamma_nb = a\gamma_1a\gamma_2a \dots a\gamma_na$. Hence $a\gamma_1a\gamma_2a \dots a\gamma_na \mid b\gamma_1b\gamma_2b \dots b\gamma_nb$. If $b = a\beta x$, then $b\gamma_1b\gamma_2b \dots b\gamma_nb = (a\beta x)\gamma_1(a\beta x)\gamma_2(a\beta x)\dots(a\beta x)\gamma_n(a\beta x) = (a\gamma_1a\gamma_2a \dots a\gamma_na)\beta$ $(x\beta x\beta x \dots x\beta x)$. Hence $a\gamma_1a\gamma_2a \dots a\gamma_na \mid b\gamma_1b\gamma_2b \dots b\gamma_nb$.

(b) Let $a, b \in M, n \in \mathbb{N}$ and $\beta, \gamma_1, \gamma_2, \dots, \gamma_n \in \Gamma$. Put $\beta_1 = \beta_2 = \dots = \beta_n = \beta_{n+1} = \beta$. Then $(a\beta b)\gamma_1(a\beta b)\gamma_2(a\beta b)\dots(a\beta b)\gamma_n(a\beta b) = (a\beta_1 b)\gamma_1(a\beta_2 b)$ $\gamma_2(a\beta_3 b)\dots(a\beta_n b)\gamma_n(a\beta_{n+1} b) = (a\beta_1 a\beta_2 a\dots a\beta_n a)\beta(b\gamma_1 b\gamma_2 b\dots b\gamma_n b) = a\beta(b\gamma_1 b)\gamma_2 b\dots b\gamma_n b$ $\gamma_2 b\dots b\gamma_n b)\beta(a\beta_1 a\beta_2 a\dots a\beta_{n-1} a). \text{ Hence}$

$$a\beta(b\gamma_1b\gamma_2b\dots b\gamma_nb) \mid (a\beta b)\gamma_1(a\beta b)\gamma_2(a\beta b)\dots(a\beta b)\gamma_n(a\beta b).$$

Therefore the proof is completed.

Proposition 6.1.6. If M is a commutative Γ -semigroup, then the following statements hold:

- (a) η is transitive.
- (b) η is left compatible.
- (c) η is right compatible.
- (d) $(a\gamma b, b\gamma a) \notin \eta$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Proof. (a) Let $a, b, c \in M$ be such that $(a, b) \in \eta$ and $(b, c) \in \eta$. Since $(a, b) \in \eta$, we have

 $a \mid b \text{ or } a \mid b\gamma_1 b\gamma_2 b \dots b\gamma_m b \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma$

and

 $b \mid a \text{ or } b \mid a\beta_1 a\beta_2 a \dots a\beta_n a \text{ for some } n \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_n \in \Gamma.$

Since $(b, c) \in \eta$, we have

 $b \mid c \text{ or } b \mid c\alpha_1 c\alpha_2 c \dots c\alpha_t c \text{ for some } t \in \mathbb{N} \text{ and } \alpha_1, \alpha_2, \dots, \alpha_t \in \Gamma,$

and

 $c \mid b \text{ or } c \mid b\lambda_1 b\lambda_2 b \dots b\lambda_h b \text{ for some } h \in \mathbb{N} \text{ and } \lambda_1, \lambda_2, \dots, \lambda_h \in \Gamma.$

Assume that $a \mid b\gamma_1b\gamma_2b \dots b\gamma_mb$, $b \mid a\beta_1a\beta_2a \dots a\beta_na$, $b \mid c\alpha_1c\alpha_2c \dots c\alpha_tc$ and $c \mid b\lambda_1b\lambda_2b \dots b\lambda_hb$. Since M is commutative and using Proposition 6.1.5(a), we have

 $b\gamma_1b\gamma_2b\dots b\gamma_mb \mid c'\gamma_1c'\gamma_2c'\dots c'\gamma_mc'$ where $c'=c\alpha_1c\alpha_2c\dots c\alpha_tc$.

By Proposition 6.1.3(b), we have $a \mid c'\gamma_1c'\gamma_2c'\ldots c'\gamma_mc'$. In a similar way, we prove that $c \mid a'\lambda_1a'\lambda_2a'\ldots a'\lambda_ha'$ where $a' = a\beta_1a\beta_2a\ldots a\beta_na$. Hence $(a,c) \in \eta$. In another case, we can prove that $(a,c) \in \eta$. Therefore η is transitive.

(b) Let $a, b, c \in M$ and $\gamma \in \Gamma$ be such that $(a, b) \in \eta$. Then

 $a \mid b \text{ or } a \mid b\gamma_1 b\gamma_2 b \dots b\gamma_m b \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma,$

and

 $b \mid a \text{ or } b \mid a\beta_1 a\beta_2 a \dots a\beta_n a \text{ for some } n \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_n \in \Gamma.$

Assume that $a \mid b \gamma_1 b \gamma_2 b \dots b \gamma_m b$ and $b \mid a \beta_1 a \beta_2 a \dots a \beta_n a$. By Proposition 6.1.3(c), we have $c\gamma a \mid c\gamma(b\gamma_1 b\gamma_2 b \dots b\gamma_m b)$. Since M is commutative and using Proposition 6.1.5(b), we have

$$c\gamma(b\gamma_1b\gamma_2b\dots b\gamma_nb) \mid (c\gamma b)\gamma_1(c\gamma b)\gamma_2(c\gamma b)\dots (c\gamma b)\gamma_m(c\gamma b).$$

By Proposition 6.1.3(b), we have

$$c\gamma a \mid (c\gamma b)\gamma_1(c\gamma b)\gamma_2(c\gamma b)\dots(c\gamma b)\gamma_m(c\gamma b).$$

In a similar way, we prove that

$$c\gamma b \mid (c\gamma a)\beta_1(c\gamma a)\beta_2(c\gamma a)\dots(c\gamma a)\beta_n(c\gamma a).$$

Hence $(c\gamma a, c\gamma b) \in \eta$. In another case, we can prove that $(c\gamma a, c\gamma b) \in \eta$. Therefore η is left compatible.

- (c) Since M is commutative, it follows from (b).
- (d) Since M is commutative and using Proposition 6.1.4(a), $(a\gamma b, b\gamma a) \in \eta$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Hence we have the proposition.

Immediately from Propositions 6.1.4 and 6.1.6, we have Theorem 6.1.7.

Theorem 6.1.7. If M is a commutative Γ -semigroup, then η is a semilattice congruence on M.

Lemma 6.1.8. If M is a Γ -semigroup, and $a, b \in M$ is such that $a \mid b$, then $n(a) \subseteq n(b)$.

Proof. Assume that $a, b \in M$ is such that $a \mid b$. Then b = a or $b = a\gamma x$ for some $x \in M$ and $\gamma \in \Gamma$. Since $b \in n(b)$, we have $a \in n(b)$ or $a\gamma x \in n(b)$. Hence $a \in n(b)$, so $n(a) \subseteq n(b)$.

Theorem 6.1.9. If M is a commutative Γ -semigroup, then $\eta = n$.

Proof. Let $a, b \notin M$ be such that $(a, b) \in \eta$. Then

 $a \mid b \text{ or } a \mid b\gamma_1 b\gamma_2 b \dots b\gamma_m b \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma,$

and

 $b \mid a \text{ or } b \mid a\beta_1 a\beta_2 a \dots a\beta_k a \text{ for some } k \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_k \in \Gamma.$

Assume that $a \mid b\gamma_1 b\gamma_2 b \dots b\gamma_m b$ and $b \mid a\beta_1 a\beta_2 a \dots a\beta_k a$. Then

 $b\gamma_1b\gamma_2b\dots b\gamma_mb=a \text{ or } b\gamma_1b\gamma_2b\dots b\gamma_mb=a\alpha x \text{ for some } x\in M \text{ and } \alpha\in\Gamma.$

Since $b \in n(b)$, we have $b\gamma_1b\gamma_2b \dots b\gamma_mb \in n(b)$. This implies that $a \in n(b)$ or $a\alpha x \in n(b)$. Hence $a \in n(b)$, so $n(a) \subseteq n(b)$. Since $b \mid a\beta_1a\beta_2a \dots a\beta_ka$, by symmetry, we get $n(b) \subseteq n(a)$. Therefore n(a) = n(b), so $(a,b) \in n$. In another case, we can prove that $(a,b) \in n$. Hence $\eta \subseteq n$. On the other hand, by Theorem 6.1.7 and Lemma 6.1.2, we have $n \subseteq \eta$. Therefore $\eta = n$.

Therefore we complete the proof of the theorem.

Proposition 6.1.10. For a Γ -semigroup M, $\delta \cap \delta^{-1} \subseteq n$.

Proof. Let $a, b \in M$ be such that $(a, b) \in \delta \cap \delta^{-1}$. Then $(a, b) \in \delta$, so $b \mid a$. By Lemma 6.1.8, $n(b) \subseteq n(a)$. Since $(a, b) \in \delta^{-1}$, $(b, a) \in \delta$. By symmetry, we have $n(a) \subseteq n(b)$. Thus n(a) = n(b), so $(a, b) \in n$. Therefore $\delta \cap \delta^{-1} \subseteq n$.

Proposition 6.1.11. If M is a Γ -semigroup and $a, b \in M$, then the following statements are equivalent:

- (a) $a \mid b \text{ or } a \mid b\gamma_1b\gamma_2b \dots b\gamma_mb \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma.$
- (b) $b = a\beta y$ for some $y \in M$ and $\beta \in \Gamma$ or $b\beta_1 b\beta_2 b \dots b\beta_n b = a\beta_{n+1} y$ for some $n \in \mathbb{N}, y \in M$ and $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1} \in \Gamma$.

Proof. If $a \mid b$, then b = a or $b = a\gamma x$ for some $x \in M$ and $\gamma \in \Gamma$. Thus $b\gamma b = a\gamma b$ or $b\gamma b = a\gamma x\gamma b$. Hence there exist $y \in M$ and $\beta_1, \beta_2 \in \Gamma$ such that $b\beta_1 b = a\beta_2 y$. Assume that $a \mid b\gamma_1 b\gamma_2 b \dots b\gamma_m b$ for some $m \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma$. Then

 $b\gamma_1b\gamma_2b\dots b\gamma_mb=a \text{ or } b\gamma_1b\gamma_2b\dots b\gamma_mb=a\beta x \text{ for some } x\in M \text{ and } \beta\in\Gamma.$

Put $\gamma_{m+1} = \beta$. Then

 $b\gamma_1b\gamma_2b\dots b\gamma_mb\gamma_{m+1}b = a\gamma_{m+1}b \text{ or } b\gamma_1b\gamma_2b\dots b\gamma_mb\gamma_{m+1}b = a\beta x\gamma_{m+1}b.$

Hence there exist $n \in \mathbb{N}, y \in M$ and $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1} \in \Gamma$ such that $b\beta_1 b\beta_2 b \dots b\beta_n b = a\beta_{n+1} y$. Therefore (a) implies (b).

Conversely, if $b = a\beta y$ for some $y \in M$ and $\beta \in \Gamma$, then $a \mid b$. Assume that $b\beta_1b\beta_2b\dots b\beta_nb = a\beta_{n+1}y$ for some $n \in \mathbb{N}, y \in M$ and $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1} \in \Gamma$. Then $a \mid b\beta_1b\beta_2b\dots b\beta_nb$. Hence there exist $m \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma$ such that $a \mid b\gamma_1b\gamma_2b\dots b\gamma_mb$. Therefore (b) implies (a).

Using the relation η defined above, we prove that the commutative Γ semigroups are, uniquely, semilattices of archimedean sub- Γ -semigroups. That is,
they are decomposable into archimedean sub- Γ -semigroups, and the decomposition
is unique.

Proposition 6 1.12. If M is a commutative Γ -semigroup, then the η -class $(x)_{\eta}$ is an archimedean sub- Γ -semigroup of M for all $x \in M$.

Proof. Let $x \in M$. Since $\eta \in SC(M)$ and using Lemma 6.1.1(a), we have the η -class $(x)_{\eta}$ is a sub- Γ -semigroup of M. Let $a, b \in M$ be such that $a, b \in (x)_{\eta}$. Then $(a, b) \in \eta$. Thus

 $a \mid b \text{ or } a \mid b\gamma_1b\gamma_2b\dots b\gamma_tb$ for some $t \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_t \in \Gamma$,

and

 $b \mid a \text{ or } b \mid a\beta_1 a\beta_2 a \dots a\beta_h a \text{ for some } h \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_h \in \Gamma.$

Since $a \mid b$ or $a \mid b\gamma_1b\gamma_2b \dots b\gamma_tb$, it follows from Proposition 6.1.11 that there exist $u \in \mathbb{N}, s \in M$ and $\alpha_1, \alpha_2, \dots, \alpha_u \in \Gamma$ such that $b\alpha_1b\alpha_2b \dots b\alpha_ub = a\alpha_{u+1}s$. Similarly, there exist $v \in \mathbb{N}, k \in M$ and $\lambda_1, \lambda_2, \dots, \lambda_v \in \Gamma$ such that $a\lambda_1a\lambda_2a \dots a\lambda_va = b\lambda_{v+1}k$. Thus $b\alpha_1b\alpha_2b \dots b\alpha_ub\alpha_{u+1}b = a\alpha_{u+1}s\alpha_{u+1}b = b\alpha_{u+1}s\alpha_{u+1}a$, so $b\alpha_{u+1}s \mid b\alpha_1b\alpha_2b \dots b\alpha_ub\alpha_{u+1}b$. Then $b \mid b\alpha_{u+1}s$. Hence $(b\alpha_{u+1}s, b) \in \eta$, so $b\alpha_{u+1}s \in (b)_{\eta} = (x)_{\eta}$. Thus $b\alpha_1b\alpha_2b \dots b\alpha_ub\alpha_{u+1}b = a\alpha_{u+1}b\alpha_{u+1}s$ where $u + 1 \in \mathbb{N}$ and $b\alpha_{u+1}s \in (x)_{\eta}$, that is $a \mid_{(x)_{\eta}} b\alpha_1b\alpha_2b \dots b\alpha_ub\alpha_{u+1}b$.

In a similar way, we can prove that there exist $n \in \mathbb{N}, z \in (x)_{\eta}$ and $\beta_1, \beta_2, \ldots, \beta_n$ such that $a\beta_1 a\beta_2 a \ldots a\beta_n a = b\beta_{n+1} z$. Hence $b \mid_{(x)_{\eta}} a\beta_1 a\beta_2 a \ldots a\beta_n a$. Therefore $(x)_{\eta}$ is an archimedean sub- Γ -semigroup of M.

Immediately from Theorem 6.1.7 and Proposition 6.1.12, we have Theorem 6.1.13.

Theorem 6.1.13. If M is a commutative Γ -semigroup, then M is a semilattice of archimedean sub- Γ -semigroups of M.

Proposition 6.1.14. If M is a commutative Γ -semigroup, and ρ is a semilattice congruence on M such that the ρ -class $(x)_{\rho}$ is an archimedean sub- Γ -semigroup of M for all $x \in M$, then $\rho = \eta$.

Proof. Let $a, b \in M$ be such that $(a, b) \in \rho$. Then, since $a, b \in (b)_{\rho}$ and $(b)_{\rho}$ is archimedean, we get

 $a \mid_{(b)_a} b \text{ or } a \mid_{(b)_a} b \gamma_1 b \gamma_2 b \dots b \gamma_m b \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma,$

and

 $b\mid_{(b)_{\rho}} a \text{ or } b\mid_{(b)_{\rho}} a\beta_1 a\beta_2 a \dots a\beta_n a \text{ for some } n \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_n \in \Gamma.$

Hence $a \mid b$ or $a \mid b\gamma_1b\gamma_2b\dots b\gamma_mb$, and $b \mid a$ or $b \mid a\beta_1a\beta_2a\dots a\beta_na$. Therefore $(a,b) \in \eta$, so $\rho \subseteq \eta$. By Lemma 6.1.2 and Theorem 6.1.9, we have η is the least semilattice congruence on M. Hence $\eta \subseteq \rho$, so $\eta = \rho$.

Hence the proof is completed.

The following theorem is the main result of this section which is immediate from Theorem 6.1.7 and Propositions 6.1.12 and 6.1.14.

Theorem 6.1.15. If M is a commutative Γ -semigroup, then M is, uniquely, a semilattice of archimedean sub- Γ -semigroups of M.

6.2 Decomposition of Commutative Ordered Γ-Semigroups into Archimedean Components

Before the characterizations of the ordered semilattices of archimedean sub- **Γ**-semigroups for the main theorems, we give some auxiliary results which are necessary in what follows. We begin by recalling the following lemma, which proof can be found in [13].

Lemma 6.2.1.([13]) If M is an ordered Γ -semigroup, then the relation $\mathcal N$ is the least ordered semilattice congruence on M.

The first purpose of this section is to characterize the relationship between the relation $\bar{\eta}$ and the usual relation \mathcal{N} in ordered Γ -semigroups, and we prove that for commutative ordered Γ -semigroups, the relation $\bar{\eta}$ coincides with the usual relation \mathcal{N} .

Our first aim is to give some basic propositions for the main theorems.

Proposition 6.2 2. If M is an ordered Γ -semigroup, then the following statements hold:

- (a) $a \parallel a$ for all $a \in M$.
- (b) If $a, b, c \in M$ is such that $a \parallel b$ and $b \parallel c$, then $a \parallel c$.
- (c) If $a, b \in M$ is such that $a \parallel b$, then $c\gamma a \parallel c\gamma b$ for all $c \in M$ and $\gamma \in \Gamma$.
- (d) If M is commutative, and $a, b \in M$ is such that $a \parallel b$, then $a\gamma c \parallel b\gamma c$ for all $c \in M$ and $\gamma \in \Gamma$.

Proof. (a) Clearly, $a \parallel a$ for all $a \in M$. Hence the statement (a) holds.

- (b) If $a,b,c\in M$ is such that $a\parallel b$ and $b\parallel c$, then $b\leq a$ or $b\leq a\gamma x$ for some $x\in M$ and $\gamma\in\Gamma$, and $c\leq b$ or $c\leq b\beta y$ for some $y\in M$ and $\beta\in\Gamma$. If $b\leq a\gamma x$ and $c\leq b\beta y$, then $c\leq b\beta y\leq a\gamma x\beta y$. Hence $a\parallel c$. In another case, we can prove that $a\parallel c$. Therefore the statement (b) holds.
- (c) If $a, b \in M$ is such that $a \parallel b$, then $b \leq a$ or $b \leq a\alpha x$ for some $x \in M$ and $\alpha \in \Gamma$. Thus $c\gamma b \leq c\gamma a$ or $c\gamma b \leq c\gamma a\alpha x$ for all $c \in M$ and $\gamma \in \Gamma$. Hence $c\gamma a \parallel c\gamma b$ for all $c \in M$ and $\gamma \in \Gamma$. Therefore the statement (c) holds.
 - (d) If M is commutative, then by (c), the statement (d) also holds. \Box

Recall that for $x, y \in M$, we write $x\bar{\mu}y$ if and only if $x \parallel y$ or $x \parallel y \gamma_1 y \gamma_2 y ... y \gamma_m y$ for some $m \in \mathbb{N}$ and $\gamma_1, \gamma_2, ..., \gamma_m \in \Gamma$, and $\bar{\eta} = \bar{\mu} \cap \bar{\mu}^{-1}$.

Proposition 6.2.3. If M is an ordered Γ -semigroup, then the following statements hold:

- (a) $\bar{\eta}$ is reflexive.
- (b) $\bar{\eta}$ is symmetric.
- (c) If $a, b \in M$ is such that $a \leq b$, then $(a, a\gamma b) \in \bar{\eta}$ for all $\gamma \in \Gamma$.

Proof. (a) If $a \in M$, then it follows from Proposition 6.2.2(a) that $a \parallel a$. Thus $(a, a) \in \bar{\eta}$. Hence $\bar{\eta}$ is reflexive.

- (b) It is obvious.
- (c) Let $a,b \in M$ and $\gamma \in \Gamma$ be such that $a \leq b$. Then $a\gamma a \leq a\gamma b$, so $a\gamma b \parallel a\gamma a$. Clearly, $a \parallel a\gamma b$. Hence $(a,a\gamma b) \in \bar{\eta}$.

Proposition 6.2.4. If M is a commutative ordered Γ -semigroup, then the following statements hold:

(a) If $a, b \in M$ is such that $a \parallel b$, then for any $n \in \mathbb{N}$ and $\gamma_1, \gamma_2, \ldots, \gamma_n \in \Gamma$,

 $a\gamma_1 a\gamma_2 a \dots a\gamma_n a \parallel b\gamma_1 b\gamma_2 b \dots b\gamma_n b$.

(b) If $a, b \in M$ and $\beta \in \Gamma$, then for any $n \in \mathbb{N}$ and $\gamma_1, \gamma_2, \ldots, \gamma_n \in \Gamma$,

 $a\beta(b\gamma_1b\gamma_2b\dots b\gamma_nb) \parallel (a\beta b)\gamma_1(a\beta b)\gamma_2(a\beta b)\dots (a\beta b)\gamma_n(a\beta b).$

Proof. (a) Let $a, b \in M$ be such that $a \parallel b, n \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_n \in \Gamma$. Then $b \leq a$ or $b \leq a\beta x$ for some $x \in M$ and $\beta \in \Gamma$. If $b \leq a$, then $b\gamma_1b\gamma_2b \dots b\gamma_nb \leq a\gamma_1a\gamma_2a \dots a\gamma_na$. Hence $a\gamma_1a\gamma_2a \dots a\gamma_na \parallel b\gamma_1b\gamma_2b \dots b\gamma_nb$. If $b \leq a\beta x$, then $b\gamma_1b\gamma_2b \dots b\gamma_nb \leq (a\beta x)\gamma_1(a\beta x)\gamma_2(a\beta x)\dots(a\beta x)\gamma_n(a\beta x) = (a\gamma_1a\gamma_2a \dots a\gamma_na)\beta (x\beta x\beta x \dots x\beta x)$. Hence $a\gamma_1a\gamma_2a \dots a\gamma_na \parallel b\gamma_1b\gamma_2b \dots b\gamma_nb$.

(b) Let $a, b \in M, n \in \mathbb{N}$ and $\beta, \gamma_1, \gamma_2, \dots, \gamma_n \in \Gamma$. Put $\beta_1 = \beta_2 = \dots = \beta_n = \beta_{n+1} = \beta$. Then $(a\beta b)\gamma_1(a\beta b)\gamma_2(a\beta b)\dots(a\beta b)\gamma_n(a\beta b) = (a\beta_1 b)\gamma_1(a\beta_2 b)\gamma_2(a\beta_3 b)\dots(a\beta_n b)\gamma_n(a\beta_{n+1} b) = (a\beta_1 a\beta_2 a\dots a\beta_n a)\beta(b\gamma_1 b\gamma_2 b\dots b\gamma_n b) = a\beta(b\gamma_1 b\gamma_2 b\dots b\gamma_n b)\beta(a\beta_1 a\beta_2 a\dots a\beta_{n-1} a)$. Hence

 $a\beta(b\gamma_1b\gamma_2b\dots b\gamma_nb) \parallel (a\beta b)\gamma_1(a\beta b)\gamma_2(a\beta b)\dots (a\beta b)\gamma_n(a\beta b).$

Therefore the proof is completed.

Proposition 6.2.5. If M is a commutative ordered Γ -semigroup, then the following statements hold:

- (a) $\bar{\eta}$ is transitive.
- (b) $\bar{\eta}$ is left compatible.
- (c) $\bar{\eta}$ is right compatible.
- (d) $(a\gamma b, b\gamma a) \notin \bar{\eta}$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Proof. (a) Let $a, b, c \in M$ be such that $(a, b) \in \bar{\eta}$ and $(b, c) \in \bar{\eta}$. Since $(a, b) \in \bar{\eta}$, we have

 $a \parallel b \text{ or } a \parallel b \gamma_1 b \gamma_2 b \dots b \gamma_m b \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma,$

and

 $b \parallel a \text{ or } b \parallel a\beta_1 a\beta_2 a \dots a\beta_n a \text{ for some } n \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_n \in \Gamma.$

Since $(b, c) \in \bar{\eta}$, we have

 $b \parallel c \text{ or } b \parallel c\alpha_1 c\alpha_2 c \dots c\alpha_t c \text{ for some } t \in \mathbb{N} \text{ and } \alpha_1, \alpha_2, \dots, \alpha_t \in \Gamma,$

and

 $c \parallel b \text{ or } c \parallel b\lambda_1b\lambda_2b\dots b\lambda_hb \text{ for some } h \in \mathbb{N} \text{ and } \lambda_1, \lambda_2, \dots, \lambda_h \in \Gamma.$

Assume that $a \parallel b\gamma_1b\gamma_2b...b\gamma_mb$, $b \parallel a\beta_1a\beta_2a...a\beta_na$, $b \parallel c\alpha_1c\alpha_2c...c\alpha_tc$ and $c \parallel b\lambda_1b\lambda_2b...b\lambda_nb$. Since M is commutative and using Proposition 6.2.4(a), we have

 $b\gamma_1b\gamma_2b$... $b\gamma_mb \parallel c'\gamma_1c'\gamma_2c'\ldots c'\gamma_mc'$ where $c'=c\alpha_1c\alpha_2c\ldots c\alpha_tc$.

By Proposition 6.2.2(b), we have

$$a \parallel c' \gamma_1 c' \gamma_2 c' \dots c' \gamma_m c'.$$

In a similar way, we prove that

$$c \parallel a' \lambda_1 a' \lambda_2 a' \dots a' \lambda_h a'$$
 where $a' = a \beta_1 a \beta_2 a \dots a \beta_n a$.

Hence $(a,c) \in \bar{\eta}$. In another case, we can prove that $(a,c) \in \bar{\eta}$. Therefore $\bar{\eta}$ is transitive.

(b) Let $a, b, c \in M$ and $\gamma \in \Gamma$ be such that $(a, b) \in \overline{\eta}$. Then

$$a \parallel b \text{ or } a \parallel b \gamma_1 b \gamma_2 b \dots b \gamma_m b \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma,$$

and

$$b \parallel a \text{ or } b \parallel a\beta_1 a\beta_2 a \dots a\beta_n a \text{ for some } n \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_n \in \Gamma.$$

Assume that $a \parallel b\gamma_1b\gamma_2b...b\gamma_mb$ and $b \parallel a\beta_1a\beta_2a...a\beta_na$. By Proposition 6.2.2(c), we have $c\gamma a \parallel c\gamma b\gamma_1b\gamma_2b...b\gamma_mb$. Since M is commutative and using Proposition 6.2.4(b), we have

$$c\gamma(b\gamma_1b\gamma_2b\dots b\gamma_nb) \parallel (c\gamma b)\gamma_1(c\gamma b)\gamma_2(c\gamma b)\dots (c\gamma b)\gamma_m(c\gamma b).$$

By Proposition 6.2.2(b), we have

$$c\gamma a \parallel (c\gamma b)\gamma_1(c\gamma b)\gamma_2(c\gamma b)\dots(c\gamma b)\gamma_m(c\gamma b).$$

In a similar way, we prove that

$$c\gamma b \parallel (c\gamma a)\beta_1(c\gamma a)\beta_2(c\gamma a)\dots(c\gamma a)\beta_n(c\gamma a).$$

Hence $(c\gamma a, c\gamma b) \in \bar{\eta}$. In another case, we can prove that $(c\gamma a, c\gamma b) \in \bar{\eta}$. Therefore $\bar{\eta}$ is left compatible.

- (c) Since M is commutative, it follows from (b).
- (d) Since M is commutative and using Proposition 6.2.3(a), $(a\gamma b, b\gamma a) \in \overline{\eta}$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Immediately from Propositions 6.2.3 and 6.2.5, we have Theorem 6.2.6.

Theorem 6.2.6. If M is a commutative ordered Γ -semigroup, then $\bar{\eta}$ is an ordered semilattice congruence on M.

Lemma 6.2.7. If M is an ordered Γ -semigroup, and $a, b \in M$ is such that $a \parallel b$, then $N(a) \subseteq N(b)$.

Proof. Assume that $a, b \in M$ is such that $a \parallel b$. Then $b \leq a$ or $b \leq a\gamma x$ for some $x \in M$ and $\gamma \in \Gamma$. Since $b \in N(b)$, we have $a \in N(b)$ or $a\gamma x \in N(b)$. Hence $a \in N(b)$, so $N(a) \subseteq N(b)$.

Theorem 6.2.8. If M is a commutative ordered Γ -semigroup, then $\bar{\eta} = \mathcal{N}$.

Proof. Let $a, b \in M$ be such that $(a, b) \in \overline{\eta}$. Then

 $a \parallel b \text{ or } a \parallel b\gamma_1b\gamma_2b\dots b\gamma_mb \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma,$

and

 $b \parallel a \text{ or } b \parallel a\beta_1 a\beta_2 a \dots a\beta_n a \text{ for some } n \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_n \in \Gamma.$

Assume that $a \parallel b\gamma_1b\gamma_2b \dots b\gamma_mb$ and $b \parallel a\beta_1a\beta_2a \dots a\beta_na$. Then

 $b\gamma_1b\gamma_2b\dots b\gamma_mb \leq a \text{ or } b\gamma_1b\gamma_2b\dots b\gamma_mb \leq a\alpha x \text{ for some } x \in M \text{ and } \alpha \in \Gamma.$

Since $b \in N(b)$, we have $b\gamma_1b\gamma_2b \dots b\gamma_mb \in N(b)$. This implies that $a \in N(b)$ or $a\alpha x \in N(b)$. Hence $a \in N(b)$, so $N(a) \subseteq N(b)$. Since $b \parallel a\beta_1a\beta_2a \dots a\beta_na$, by symmetry, we get $N(b) \subseteq N(a)$. Therefore N(a) = N(b), so $(a,b) \in \mathcal{N}$. In another case, we can prove that $(a,b) \in \mathcal{N}$. Hence $\bar{\eta} \subseteq \mathcal{N}$. On the other hand, by Theorem 6.2.6 and Lemma 6.2.1, we have $\mathcal{N} \subseteq \bar{\eta}$. Therefore $\bar{\eta} = \mathcal{N}$.

We define a relation $\bar{\delta}$ on an ordered Γ -semigroup M as follows:

$\bar{\delta} := \{(x,y) \mid y \parallel x\}.$

Proposition 6.2 9. If M is a commutative ordered Γ -semigroup, then the relation $\bar{\delta}$ is pseudoorder on M.

Proof. Let $a, b \in M$ be such that $(a, b) \in \underline{\delta}$. Then $a \leq b$, so $b \parallel a$. Thus $(a, b) \in \overline{\delta}$, so $\leq \subseteq \overline{\delta}$. Let $a, b, c \in M$ be such that $(a, b) \in \overline{\delta}$ and $(b, c) \in \overline{\delta}$. Then $b \parallel a$ and $c \parallel b$. By Proposition 6.2.2(b), we have $c \parallel a$. Thus $(a, c) \in \overline{\delta}$. Let $a, b, c \in M$ and $\gamma \in \Gamma$ be such that $(a, b) \in \overline{\delta}$. Then $b \parallel a$. By Proposition 6.2.2(c) and (d), we have $b\gamma c \parallel a\gamma c$ and $c\gamma b \parallel c\gamma a$. Thus $(a\gamma c, b\gamma c) \in \overline{\delta}$ and $(c\gamma a, c\gamma b) \in \overline{\delta}$. Therefore $\overline{\delta}$ is a pseudoorder on M.

Proposition 6.2.10. For an ordered Γ -semigroup M, $\bar{\delta} \cap \bar{\delta}^{-1} \subseteq \mathcal{N}$.

Proof. Let $a, b \in M$ be such that $(a, b) \in \overline{\delta} \cap \overline{\delta}^{-1}$. Then $(a, b) \in \overline{\delta}$, so $b \parallel a$. By Lemma 6.2.7, $N(b) \subseteq N(a)$. Since $(a, b) \in \overline{\delta}^{-1}$, $(b, a) \in \overline{\delta}$. By symmetry, we have $N(a) \subseteq N(b)$. Thus N(a) = N(b), so $(a, b) \in \mathcal{N}$. Therefore $\overline{\delta} \cap \overline{\delta}^{-1} \subseteq \mathcal{N}$.

Proposition 6.2.11. If M is an ordered Γ -semigroup and $a, b \in M$, then the following statements are equivalent:

- (a) $a \parallel b \text{ or } a \parallel b\gamma_1b\gamma_2b\dots b\gamma_mb \text{ for some } m \in \mathbb{N} \text{ and } \gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma.$
- (b) $b \leq a\beta y$ for some $y \in M$ and $\beta \in \Gamma$ or $b\beta_1 b\beta_2 b \dots b\beta_n b \leq a\beta_{n+1} y$ for some $n \in \mathbb{N}, y \in M$ and $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1} \in \Gamma$.

Proof. If $a \parallel b$, then $b \leq a$ or $b \leq a\gamma x$ for some $x \in M$ and $\gamma \in \Gamma$. Thus $b\gamma b \leq a\gamma b$ or $b\gamma b \leq a\gamma x\gamma b$. Hence there exist $y \in M$ and $\beta_1, \beta_2 \in \Gamma$ such that $b\beta_1 b \leq a\beta_2 y$. Assume that $a \parallel b\gamma_1 b\gamma_2 b \dots b\gamma_m b$ for some $m \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma$. Then

 $b\gamma_1b\gamma_2b\dots b\gamma_mb \leq a \text{ or } b\gamma_1b\gamma_2b\dots b\gamma_mb \leq a\beta x \text{ for some } x \in M \text{ and } \beta \in \Gamma.$

Put $\gamma_{m+1} = \beta$. Then

 $b\gamma_1b\gamma_2b\dots b\gamma_mb\gamma_{m+1}b \leq a\gamma_{m+1}b$ or $b\gamma_1b\gamma_2b\dots b\gamma_mb\gamma_{m+1}b \leq a\beta x\gamma_{m+1}b$.

Hence there exist $n \in \mathbb{N}, y \in M$ and $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1} \in \Gamma$ such that

$$b\beta_1 b\beta_2 b \dots b\beta_n b \le a\beta_{n+1} y$$
.

Therefore (a) implies (b).

Conversely, if $b \leq a\beta y$ for some $y \in M$ and $\beta \in \Gamma$, then $a \parallel b$. Assume that $b\beta_1b\beta_2b\dots b\beta_nb \leq a\beta_{n+1}y$ for some $n \in \mathbb{N}, y \in M$ and $\beta_1, \beta_2, \dots, \beta_n, \beta_{n+1} \in \Gamma$. Then $a \parallel b\beta_1b\beta_2b\dots b\beta_nb$. Hence there exist $m \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_m \in \Gamma$ such that

$$a \parallel b\gamma_1b\gamma_2b\dots b\gamma_mb.$$

Therefore (b) implies (a).

Using the relation $\bar{\eta}$ defined above, we prove that the commutative ordered Γ -semigroups are, uniquely, ordered semilattices of archimedean sub- Γ -semigroups. That is, they are decomposable into archimedean sub- Γ -semigroups, and the decomposition is unique.

Proposition 6 2.12. If M is a commutative ordered Γ -semigroup, then the $\bar{\eta}$ class $(x)_{\bar{\eta}}$ is an archimedean sub- Γ -semigroup of M for all $x \in M$.

Proof. Let $x \in M$. Since $\bar{\eta} \in SC(M)$ and using Lemma 6.1.1(a), we have the $\bar{\eta}$ -class $(x)_{\bar{\eta}}$ is a sub- Γ -semigroup of M. Let $a, b \in M$ be such that $a, b \in (x)_{\bar{\eta}}$. Then $(a, b) \in \bar{\eta}$. Thus

$$a \parallel b \text{ or } a \parallel b\gamma_1b\gamma_2b\dots b\gamma_tb$$
 for some $t \in \mathbb{N}$ and $\gamma_1, \gamma_2, \dots, \gamma_t \in \Gamma$,

and

 $b \parallel a \text{ or } b \parallel a\beta_1 a\beta_2 a \dots a\beta_h a \text{ for some } h \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_h \in \Gamma.$

Since $a \parallel b$ or $a \parallel b \gamma_1 b \gamma_2 b \dots b \gamma_t b$, it follows from Proposition 6.2.11 that there exist $u \in \mathbb{N}, s \in M$ and $\alpha_1, \alpha_2, \dots, \alpha_u \in \Gamma$ such that $b\alpha_1 b\alpha_2 b \dots b\alpha_u b \leq a\alpha_{u+1} s$. Similarly, there exist $v \in \mathbb{N}, k \in M$ and $\lambda_1, \lambda_2, \dots, \lambda_v \in \Gamma$ such that $a\lambda_1 a\lambda_2 a \dots a\lambda_v a \leq b\lambda_{v+1} k$. Thus $b\alpha_1 b\alpha_2 b \dots b\alpha_u b\alpha_{u+1} b \leq a\alpha_{u+1} s\alpha_{u+1} b = b\alpha_{u+1} s\alpha_{u+1} a$, so $b\alpha_{u+1} s \parallel b\alpha_1 b\alpha_2 b \dots b\alpha_u b\alpha_{u+1} b$. Clearly, $b \parallel b\alpha_{u+1} s$. Hence $(b\alpha_{u+1} s, b) \in \overline{\eta}$, so $b\alpha_{u+1} s \in (b)_{\overline{\eta}} = (x)_{\overline{\eta}}$. Thus we have $b\alpha_1 b\alpha_2 b \dots b\alpha_u b\alpha_{u+1} b \leq a\alpha_{u+1} b\alpha_{u+1} s$ where $u+1 \in \mathbb{N}$ and $b\alpha_{u+1} s \in (x)_{\overline{\eta}}$, that is $a \parallel_{(x)_{\overline{\eta}}} b\alpha_1 b\alpha_2 b \dots b\alpha_u b\alpha_{u+1} b$. In a similar way, we can prove that there exist $n \in \mathbb{N}, z \in (x)_{\overline{\eta}}$ and $\beta_1, \beta_2, \dots, \beta_n$ such that $a\beta_1 a\beta_2 a \dots a\beta_n a \leq b\beta_{n+1} z$. Hence $b \parallel_{(x)_{\overline{\eta}}} a\beta_1 a\beta_2 a \dots a\beta_n a$. Therefore $(x)_{\overline{\eta}}$ is an archimedean sub- Γ -semigroup of M.

Immediately from Theorem 6.2.6 and Proposition 6.2.12, we have Theorem 6.2.13.

Theorem 6.2.13. If M is a commutative ordered Γ -semigroup, then M is an ordered semilattice of archimedean sub- Γ -semigroups of M.

Proposition 6.2.14. If M is a commutative ordered Γ -semigroup, and ρ is an ordered semilattice congruence on M such that the ρ -class $(x)_{\rho}$ is an archimedean sub- Γ -semigroup of M for all $x \in M$, then $\rho = \bar{\eta}$.

Proof. Let $a, b \in M$ be such that $(a, b) \in \rho$. Then, since $a, b \in (b)_{\rho}$ and $(b)_{\rho}$ is archimedean, we get

 $a\parallel_{(b)_{
ho}}b$ or $a\parallel_{(b)_{
ho}}b\gamma_1b\gamma_2b\dots b\gamma_mb$ for some $m\in\mathbb{N}$ and $\gamma_1,\gamma_2,\dots,\gamma_m\in\Gamma,$ and

 $b \parallel_{(b)_{\rho}} a \text{ or } b \parallel_{(b)_{\rho}} a\beta_1 a\beta_2 a \dots a\beta_n a \text{ for some } n \in \mathbb{N} \text{ and } \beta_1, \beta_2, \dots, \beta_n \in \Gamma.$

Hence

$$a \parallel b \text{ or } a \parallel b\gamma_1b\gamma_2b\dots b\gamma_mb$$
,

and

$$b \parallel a \text{ or } b \parallel a\beta_1 a\beta_2 a \dots a\beta_n a.$$

Therefore $(a,b) \in \bar{\eta}$, so $\rho \subseteq \bar{\eta}$. By Lemma 6.2.1 and Theorem 6.2.8, we have $\bar{\eta}$ is the least ordered semilattice congruence on M. Hence $\bar{\eta} \subseteq \rho$, so $\bar{\eta} = \rho$.

Immediately from Theorem 6.2.6 and Propositions 6.2.12 and 6.2.14, we have Theorem 6.2.15.

Theorem 6.2.15. If M is a commutative ordered Γ -semigroup, then M is, uniquely, an ordered semilattice of archimedean sub- Γ -semigroups of M.

In comparison our above results with results of ordered semigroups, we see that for commutative ordered Γ -semigroups, we have the usual relation \mathcal{N} is equal to the relation $\bar{\eta}$, and every commutative ordered Γ -semigroup is, uniquely, ordered semilattice of archimedean sub- Γ -semigroups which is an analogous result of ordered semigroups.