CHAPTER VII

THE LEAST REGULAR ORDER WITH RESPECT TO A REGULAR CONGRUENCE ON ORDERED Γ-SEMIGROUPS

In this chapter, we characterize the concept of regular congruences on ordered Γ -semigroups, and prove that for an ordered Γ -semigroup M, the following statements hold:

- (i) Every ordered semilattice congruence is a regular congruence.
- (ii) There exists the least regular order on the Γ -semigroup M/ρ with respect to a regular congruence ρ on M.
- (iii) The regular congruences are not ordered semilattice congruences in general.

7.1 The Least Regular Order with respect to a Regular Congruence on Ordered Γ-Semigroups

Before the characterizations of regular congruences on ordered Γ -semi-groups for the main theorems, we give some auxiliary results which are necessary in what follows. We begin by recalling the following two lemmas which proof can be found in [13].

Lemma 7.1.1.([13]) If $x \in M$ and $\rho \in SC(M)$, then the following statements hold:

- (a) $f(x)_{\rho} = \{a \in M \mid a \in (x)_{\rho} \text{ or } u\gamma a \in (x)_{\rho} \text{ for some } u \in f(x)_{\rho} \text{ and } \gamma \in \Gamma\}.$
- (b) $f(x)_{\rho} = t$.
- (c) If $b \in f(x)|_{\rho}$, then $f(b)_{\rho} \subseteq f(x)_{\rho}$.

(d)
$$\rho = \{(x,y) \mid f(x)_{\rho} = f(y)_{\rho}\}.$$

Lemma 7.1.2.([13]) If $x \in M$ and $\rho \in OSC(M)$, then the following statements hold:

- (a) $F(x)_{\rho} = \{a \in M \mid a \in [(x)_{\rho}) \text{ or } u\gamma a \in [(x)_{\rho}) \text{ for some } u \in F(x)_{\rho} \text{ and } \gamma \in \Gamma\}.$
- (b) $F(x)_{\rho} = T$.
- (c) If $b \in F(x)_{\rho}$, then $F(b)_{\rho} \subseteq F(x)_{\rho}$.
- (d) $\rho = \{(x,y) | F(x)_{\rho} = F(y)_{\rho} \}.$

Similar to the proof of Corollary 5.1.2, we have Lemma 7.1.3.

Lemma 7.1.3. Let ρ_1 and ρ_2 be relations on a Γ -semigroup M. If ρ_1 and ρ_2 are compatible, then so are ρ_1^n and $(\rho_1 \circ \rho_2)^n$ for all $n \in \mathbb{N}$.

We now characterize the regular congruences on ordered Γ -semigroups, and answer the question that does there exist the least regular order on the Γ -semigroup M/ρ with respect to a regular congruence ρ on an ordered Γ -semigroup M?

Theorem 7.1.4. Let ρ be a semilattice congruence on a Γ -semigroup M. Define an order \preceq on M/ρ as follows:

$$(x)_{\rho} \preceq (y)_{\rho}$$
 if and only if $f(y)_{\rho} \subseteq f(x)_{\rho}$ for all $x, y \in M$.

Then $(M/\rho; \preceq)$ is an ordered Γ -semigroup.

Proof. Let $(x)_{\rho} = (x')_{\rho}$ and $(y)_{\rho} = (y')_{\rho}$ be such that $(x)_{\rho} \leq (y)_{\rho}$. Then $f(y)_{\rho} \subseteq f(x)_{\rho}$, so $f(y')_{\rho} = f(y)_{\rho} \subseteq f(x)_{\rho} = f(x')_{\rho}$. Hence $(x')_{\rho} \leq (y')_{\rho}$, so

 \preceq is well-defined. For any ρ -class $(x)_{\rho}$, $f(x)_{\rho} \subseteq f(x)_{\rho}$. Hence $(x)_{\rho} \preceq (x)_{\rho}$, so \preceq is reflexive. Let $(x)_{\rho} \preceq (y)_{\rho}$ and $(y)_{\rho} \preceq (x)_{\rho}$. Then $f(x)_{\rho} = f(y)_{\rho}$. By Lemma 7.1.1(d), we have $(x,y) \in \rho$. Hence $(x)_{\rho} = (y)_{\rho}$, so \preceq is anti-symmetric. Let $(x)_{\rho} \preceq (y)_{\rho}$ and $(y)_{\rho} \preceq (z)_{\rho}$. Then $f(y)_{\rho} \subseteq f(x)_{\rho}$ and $f(z)_{\rho} \subseteq f(y)_{\rho}$, so $f(z)_{\rho} \subseteq f(x)_{\rho}$. Hence $f(x)_{\rho} \preceq (x)_{\rho}$, so $f(x)_{\rho} \subseteq f(x)_{\rho}$. Therefore $f(x)_{\rho} \subseteq f(x)_{\rho}$ is an equivalence relation. Let $f(x)_{\rho} \preceq f(x)_{\rho} \subseteq f(x)_{\rho}$ and $f(x)_{\rho} \subseteq f(x)_{\rho}$. By Lemma 7.1.1(c), we have $f(x)_{\rho} \subseteq f(x)_{\rho} \subseteq f(x)_{\rho}$ and $f(x)_{\rho} \subseteq f(x)_{\rho} \subseteq f(x)_{\rho}$. Thus $f(x)_{\rho} \subseteq f(x)_{\rho} \subseteq f(x)_{\rho}$ so it follows from Lemma 7.1.1(c) that $f(y)_{\rho} \subseteq f(x)_{\rho}$. Hence $f(x)_{\rho} \preceq f(x)_{\rho} \subseteq f(x)_{\rho}$. Similarly, $f(x)_{\rho} \preceq f(x)_{\rho} \subseteq f(x)_{\rho}$. Therefore $f(x)_{\rho} \subseteq f(x)_{\rho} \subseteq f(x)_{\rho}$.

Theorem 7.1.5. If ρ is an ordered semilattice congruence on an ordered Γ -semigroup M, then ρ is a regular congruence on M.

Proof. Assume that $\rho \in OSC(M)$. We define the order \preceq on the Γ -semigroup M/ρ by $(x)_{\rho} \preceq (y)_{\rho}$ if and only if $F(y)_{\rho} \subseteq F(x)_{\rho}$ for all $x, y \in M$. By a similar proof of Theorem 7.1.4 and using Lemma 7.1.2, we get M/ρ is an ordered Γ -semigroup. If $x \leq y$, then $y \in F(x)_{\rho}$. By Lemma 7.1.2(c), we have $F(y)_{\rho} \subseteq F(x)_{\rho}$. Therefore $(x)_{\rho} \preceq (y)_{\rho}$, so $\varphi(x) \preceq \varphi(y)$. Hence ρ is a regular congruence on M. \square

Immediately from Theorem 7.1.5, we have that $OSC(M) \subseteq RC(M)$, and the congruence \mathcal{N} is the regular congruence on M.

The next theorem answer that we can find the least regular order on the Γ -semigroup M/ρ with respect to a regular congruence ρ on an ordered Γ -semigroup M.

Theorem 7.1.6. Let ρ be a regular congruence on an ordered Γ -semigroup M. Define a relation $(\leq \circ \rho)/\rho$ on M/ρ as follows:

 $(\leq \circ \rho)/\rho := \{((x)_{\rho}, (y)_{\rho}) \mid (x_1, y_1) \in (\leq \circ \rho) \text{ for some } x_1 \in (x)_{\rho} \text{ and } y_1 \in (y)_{\rho}\}.$

If $\leq := \{((x)_{\rho}, (y)_{\rho}) \mid ((x)_{\rho}, (y)_{\rho}) \in ((\leq \circ \rho)/\rho)^m \text{ for some } m \in \mathbb{N}\}, \text{ then } \leq \text{ is the least regular order on } M/\rho \text{ with respect to the regular congruence } \rho \text{ on } M.$

Proof. We shall show that \leq is an order on M/ρ .

- (i) Reflexive: For any $x \in M$, since $x \leq x\rho x$, we have $(x,x) \in (\leq \circ \rho)$. Thus $((x)_{\rho},(x)_{\rho}) \in \preceq$.
- (ii) Transitive: Let $((x)_{\rho}, (y)_{\rho}) \in \preceq$ and $((y)_{\rho}, (z)_{\rho}) \in \preceq$. Then there exist $m, n \in \mathbb{N}$ such that $((x)_{\rho}, (y)_{\rho}) \in ((\leq \circ \rho)/\rho)^m$ and $((y)_{\rho}, (z)_{\rho}) \in ((\leq \circ \rho)/\rho)^n$. Thus there exists a sequence of elements $(w_1)_{\rho}, (w_2)_{\rho}, \ldots, (w_{m-1})_{\rho}, (k_1)_{\rho}, (k_2)_{\rho}, \ldots, (k_{n-1})_{\rho} \in M/\rho$ such that $((w_{i-1})_{\rho}, (w_i)_{\rho}) \in (\leq \circ \rho)/\rho$ and $((k_{j-1})_{\rho}, (k_j)_{\rho}) \in (\leq \circ \rho)/\rho$ where $i = 1, 2, \ldots, m, j = 1, 2, \ldots, n, (w_0)_{\rho} = (x)_{\rho}, (w_m)_{\rho} = (y)_{\rho} = (k_0)_{\rho}$ and $(k_n)_{\rho} = (z)_{\rho}$. Since $((y)_{\rho}, (y)_{\rho}) \in (\leq \circ \rho)/\rho$, we have $((x)_{\rho}, (z)_{\rho}) \in ((\leq \circ \rho)/\rho)^{m+n+1}$. Hence $((x)_{\rho}, (z)_{\rho}) \in ((\leq \circ \rho)/\rho)^{m+n+1}$.
- (iii) Anti-symmetric: Let $((x)_{\rho}, (y)_{\rho}) \in \preceq$ and $((y)_{\rho}, (x)_{\rho}) \in \preceq$. Then there exist $m, n \in \mathbb{N}$ such that

$$((x)_{\rho}, (y)_{\rho}) \in ((\leq \circ \rho)/\rho)^m \text{ and } ((y)_{\rho}, (x)_{\rho}) \in ((\leq \circ \rho)/\rho)^n.$$
 (7.1.1)

By (7.1.1), there exist a sequence of elements $(w_1)_{\rho}$, $(w_2)_{\rho}$, ..., $(w_{m-1})_{\rho}$, $(k_1)_{\rho}$, $(k_2)_{\rho}$, ..., $(k_{n-1})_{\rho} \in M/\rho$ such that

$$((w_{i+1})_{\rho}, (w_i)_{\rho}) \in (\leq \circ \rho)/\rho \text{ and } ((k_{j-1})_{\rho}, (k_j)_{\rho}) \in (\leq \circ \rho)/\rho$$
 (7.1.2)

where $i = 1, 2, ..., m, j = 1, 2, ..., n, (w_0)_{\rho} = (x)_{\rho} = (k_n)_{\rho}$ and $(w_m)_{\rho} = (y)_{\rho} = (k_0)_{\rho}$. By (7.1.2), there exist $w'_{i-1} \in (w_{i-1})_{\rho}, w'_i \in (w_i)_{\rho}, k'_{j-1} \in (k_{j-1})_{\rho}$ and $k'_j \in (k_j)_{\rho}$ such that

$$(w'_{i-1}, w'_i) \in (\leq \circ \rho) \text{ and } (k'_{i-1}, k'_i) \in (\leq \circ \rho)$$
 (7.1.3)

for all $i=1,2,\ldots,m$ and $j=1,2,\ldots,n$. By (7.1.3), there exist $w_i'',k_j''\in M$ such that

$$w'_{i-1} \le w''_i \rho w'_i \text{ and } k'_{j-1} \le k''_j \rho k'_j$$
 (7.1.4)

for all $i=1,2,\ldots,m$ and $j=1,2,\ldots,n$. Since ρ is regular, there exist a regular order \leq_1 on M/ρ such that $(M/\rho; \leq_1)$ is an ordered Γ -semigroup, and the mapping $\varphi: M \to M/\rho$ defined by $a \mapsto (a)_\rho$ is isotone. Consequently, by (7.1.4), we have for all $i=1,2,\ldots,m$ and $j=1,2,\ldots,n$,

$$\begin{cases} (w_{i-1})_{\rho} = (w'_{i-1})_{\rho} \leq_1 (w''_i)_{\rho} = (w'_i)_{\rho} = (w_i)_{\rho} \\ (k_{j-1})_{\rho} = (k'_{j-1})_{\rho} \leq_1 (k''_j)_{\rho} = (k'_j)_{\rho} = (k_j)_{\rho}. \end{cases}$$

$$(7.1.5)$$

Hence

$$\begin{cases} (x)_{\rho} = (w_0)_{\rho} \preceq_1 (w_1)_{\rho} \preceq_1 \ldots \preceq_1 (w_m)_{\rho} = (y)_{\rho} \\ (y)_{\rho} = (k_0)_{\rho} \preceq_1 (k_1)_{\rho} \preceq_1 \ldots \preceq_1 (k_n)_{\rho} = (x)_{\rho}. \end{cases}$$

$$(7.1.6)$$

Since \leq_1 is an order on M/ρ , we have $(x)_\rho = (y)_\rho$.

Hence \leq is an equivalence relation. We shall show that \leq is compatible. Since \leq and ρ are compatible, then by Lemma 7.1.3, $\leq \circ \rho$ is compatible. Let $((x)_{\rho}, (y)_{\rho}) \in (\leq \circ \rho)/\rho$, $c \in M$ and $\gamma \in \Gamma$. Then there exist $x' \in (x)_{\rho}$ and $y' \in (y)_{\rho}$ such that $(x', y') \in (\leq \circ \rho)$. Since $\leq \circ \rho$ is compatible, we have $(c\gamma x', c\gamma y')$, $(x'\gamma c, y'\gamma c) \in (\leq \circ \rho)$. Since $c\gamma x' \in (c)_{\rho}\gamma(x')_{\rho}$ and $c\gamma y' \in (c)_{\rho}\gamma(y')_{\rho}$, we have $((c)_{\rho}\gamma(x')_{\rho}, (c)_{\rho}\gamma(y')_{\rho}) \in (\leq \circ \rho)/\rho$. Similarly, $((x')_{\rho}\gamma(c)_{\rho}, (y')_{\rho}\gamma(c)_{\rho}) \in (\leq \circ \rho)/\rho$. Hence $(\leq \circ \rho)/\rho$ is compatible. By Lemma 7.1.3, $((\leq \circ \rho)/\rho)^n$ is compatible for every $n \in \mathbb{N}$. Therefore \leq is compatible, so \leq is an order on M/ρ . If $x \leq y$, then $x \leq y\rho y$. Thus $(x,y) \in (\leq \circ \rho)$. Hence $((x)_{\rho}, (y)_{\rho}) \in (\leq \circ \rho)/\rho \subseteq \leq$. Therefore \leq is a regular order on M/ρ . Let $((x)_{\rho}, (y)_{\rho}) \in \leq$. Then there exists $m \in \mathbb{N}$ such that $((x)_{\rho}, (y)_{\rho}) \in ((\leq \circ \rho)/\rho)^m$. For any regular order $\leq \rho$ on M/ρ with respect to the

regular congruence ρ on M, by using a similar proof in (iii), we know that there exist $z_0, z_1, \ldots, z_m \in M$ such that

$$(x)_{\rho}=(z_0)_{\rho} \leq_{\rho} (z_1)_{\rho} \leq_{\rho} \ldots \leq_{\rho} (z_m)_{\rho}=(y)_{\rho}.$$

Hence $((x)_{\rho}, (y)_{\rho}) \in \preceq_{\rho}$. Therefore \preceq is the least regular order on M/ρ with respect to the regular congruence ρ on M.

Hence the proof of the theorem is completed.

We shall give an example of an ordered Γ -semigroup M with there exists a regular congruence on M which is not an ordered semilattice congruence.

Example 7.1.1. Let $\Gamma=\{\gamma\}$ and $M=\{a,b,c,d\}$ be an ordered Γ -semigroup with

$$x\gamma y = \begin{cases} b & \text{if } x, y \in \{a, b\}, \\ c & \text{otherwise} \end{cases}$$

\$\leq := \{(a, a), (b, b), (c, c), (d, d), (b, c), (b, d), (c, d)\}.

By Example 3.5 [13], we have $(M; \leq)$ is an ordered Γ -semigroup and

$$\mathcal{N} = M \times M,
n = \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)\}.$$

Since $b \leq c$ and $b\gamma c = c$, we get $(b, b\gamma c) = (b, c) \notin n$. Hence $n \notin OSC(M)$. We observe here that $M/n = \{(a)_n, (c)_n\}$. Define a relation \leq on M/n as follows:

$$\leq := \{((a)_n, (a)_n), ((c)_n, (c)_n), ((a)_n, (c)_n)\}.$$

We can easily show that $(M/n; \preceq)$ is an ordered Γ -semigroup. We note that

$$b \le c$$
 implies $(b)_n = (a)_n \le (c)_n$,
 $b \le d$ implies $(b)_n = (a)_n \le (c)_n = (d)_n$,
 $c \le d$ implies $(c)_n \le (c)_n = (d)_n$.

Therefore n is a regular congruence on M. Hence $OSC(M) \neq RC(M)$.

By Theorems 7.1.3 and 7.1.4, we obtain Theorems 7.1.7 and 7.1.8.

Theorem 7.1.7. If $\rho \in SC(M)$, then $(M/f(\rho); \preceq')$ is an ordered Γ -semigroup.

Proof. Assume that $\rho \in SC(M)$. Then, by Theorem 7.1.4, $(M/\rho; \preceq)$ is an ordered Γ -semigroup. Now, define a mapping by $f(x)_{\rho}\gamma f(y)_{\rho} = f(x\gamma y)_{\rho}$ for all $x,y \in M$ and $\gamma \in \Gamma$. Let $f(x)_{\rho} = f(x')_{\rho}$ and $f(y)_{\rho} = f(y')_{\rho}$, and $\gamma \in \Gamma$. Then, by Lemma 7.1.1(d), we have $(x,x') \in \rho$ and $(y,y') \in \rho$. Thus $(x\gamma y,x'\gamma y') \in \rho$. Hence $(x\gamma y)_{\rho} = (x'\gamma y')_{\rho}$, so $f(x\gamma y)_{\rho} = f(x'\gamma y')_{\rho}$. Therefore the mapping is well-defined. For any $x,y,z \in M$ and $\alpha,\beta \in \Gamma$,

$$(f(x)_{\rho}\alpha f(y)_{\rho})\beta f(z)_{\rho} = f(x\alpha y)_{\rho}\beta f(z)_{\rho}$$

$$= f((x\alpha y)\beta z)_{\rho}$$

$$= f(x\alpha (y\beta z))_{\rho}$$

$$= f(x)_{\rho}\alpha f(y\beta z)_{\rho}$$

$$= f(x)_{\rho}\alpha (f(y)_{\rho}\beta f(z)_{\rho}).$$

Therefore $M/f(\rho)$ is a Γ -semigroup. We define an order \preceq' on $M/f(\rho)$ by $f(x)_{\rho} \preceq'$ $f(y)_{\rho}$ if and only if $(x)_{\rho} \preceq (y)_{\rho}$ for all $x, y \in M$. We can easily show that $(M/f(\rho); \preceq')$ is an ordered Γ -semigroup.

Theorem 7.1.8. If $\rho \in OSC(M)$, then $(M/F(\rho); \preceq')$ is an ordered Γ -semigroup. Moreover, if $x \leq y$, then $F(x)_{\rho} \preceq' F(y)_{\rho}$.

Proof. Assume that $\rho \in OSC(M)$. Then, by Theorem 7.1.5, $(M/\rho; \preceq)$ is an ordered Γ -semigroup, and there exists a mapping $\varphi : M \to M/\rho$ such that φ is isotone. Define a mapping and an order \preceq' on $M/F(\rho)$ by $F(x)_{\rho}\gamma F(y)_{\rho} = F(x\gamma y)_{\rho}$, and $F(x)_{\rho} \preceq' F(y)_{\rho}$ if and only if $(x)_{\rho} \preceq (y)_{\rho}$ for all $x, y \in M$ and $\gamma \in \Gamma$. By a similar proof of Theorem 7.1.7 and Lemma 7.1.2, we get $(M/F(\rho); \preceq')$ is

an ordered Γ -semigroup. If $x \leq y$, then $\varphi(x) \preceq \varphi(y)$. Hence $(x)_{\rho} \preceq (y)_{\rho}$, so $F(x)_{\rho} \preceq' F(y)_{\rho}$.

By Theorems 7.1.7 and 7.1.8, we can easily prove Corollaries 7.1.9 and 7.1.10.

Corollary 7.1.9. If $\rho \in SC(M)$, then $M/\rho \cong M/f(\rho)$.

Corollary 7.1.10. If $\rho \in OSC(M)$, then $M/\rho \cong M/F(\rho)$. Moreover, if $x \leq y$, then $F(x)_{\rho} \leq' F(y)_{\rho}$.

In comparison our above results with results of ordered semigroups, we see that $\mathcal N$ is the regular congruence on M which is an analogous result of ordered semigroups.