CHAPTER VIII CONCLUSIONS

We obtain the following results:

- 1. Let P be a prime ideal of a Γ -semigroup M and $A \subseteq M$. Then $\langle A, P \rangle$ is a prime ideal of M. Furthermore, $\langle A, \bigcap_{P \in P(M)} P \rangle$ is a semiprime ideal of M if $\bigcap_{P \in P(M)} P \neq \emptyset$.
- 2. Assume that M is a commutative ordered Γ -semigroup and $A \subseteq M$. If $\{I_i \mid i \in \Lambda\}$ is a collection of ordered prime ideals of M such that $\bigcap_{i \in \Lambda} I_i \neq \emptyset$, then $\langle\!\langle A, \bigcap_{i \in \Lambda} I_i \rangle\!\rangle$ is an ordered semiprime ideal of M.
- 3. If I is an s-prime ideal of a Γ -semigroup M, then $\phi_I = \sigma_I$ and $n \subseteq \phi_I$.
- 4. If I is an ordered prime ideal of an ordered Γ -semigroup M, then $\Phi_I = (I \times I) \cup (M \setminus I \times M \setminus I)$.
- 5. Every (n-1)-prime ideal of a Γ -semigroup M is an n-prime ideal of M for all integers $n \geq 3$.
- 6. Every ordered (n-1)-prime ideal of M is an ordered n-prime ideal of an ordered Γ -semigroup M for all integers $n \geq 3$.
- 7. An ideal I of a commutative Γ -semigroup M is an n-prime ideal of M if and only if any extension of I is an (n-1)-prime ideal of M for all integers $n \geq 3$.
- 8. An ordered ideal I of a commutative ordered Γ -semigroup M is an ordered nprime ideal of M if and only if any extension of I is an ordered (n-1)-prime
 ideal of M for all integers $n \geq 3$.

9. A Γ -semigroup M is a band of weakly r-archimedean sub- Γ -semigroups of M if and only if it satisfies the condition for all $a, x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$,

$$(a, a\gamma a), (x\alpha a, x\alpha a\gamma a), (a\beta y, a\gamma a\beta y), (x\alpha a\beta y, x\alpha a\gamma a\beta y) \in \eta_r \cap \eta_r^{-1}. (\star)$$

10. An ordered Γ -semigroup M is a band of weakly r-archimedean sub- Γ -semigroups of M if and only if it satisfies the condition for all $a, x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$,

$$(a, a\gamma a), (x\alpha a, x\alpha a\gamma a), (a\beta y, a\gamma a\beta y), (x\alpha a\beta y, x\alpha a\gamma a\beta y) \in \bar{\eta}_r \cap \bar{\eta}_r^{-1}.$$
 (*)

11. Let

$$\rho := \{(a,b) \mid (a,b), (x\alpha a, x\alpha b), (a\beta y, b\beta y), (x\alpha a\beta y, x\alpha b\beta y) \in \eta_r \cap \eta_r^{-1} \}$$

$$\text{for all } x, y \in M \text{ and } \alpha, \beta \in \Gamma\}$$

be a congruence on a Γ -semigroup M. Then M/ρ is an ordered Γ -semigroup.

12. Let

$$\rho := \{(a,b) \mid (a,b), (x\alpha a, x\alpha b), (a\beta y, b\beta y), (x\alpha a\beta y, x\alpha b\beta y) \in \bar{\eta}_r \cap \bar{\eta}_r^{-1} \}$$
 for all $x, y \in M$ and $\alpha, \beta \in \Gamma\}$

be a congruence on an ordered Γ -semigroup M. Then ρ is a regular congruence on M.

- 13. Let M be a Γ -semigroup. Then following statements are equivalent:
 - (a) M is a band of weakly r-archimedean left ideals of M.
 - (b) M is a band of r-archimedean left ideals of M.
 - (c) M satisfies the condition for all $a, x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$,

$$(a, a\gamma a), (x\alpha a, x\alpha a\gamma a), (a\beta y, a\gamma a\beta y), (x\alpha a\beta y, x\alpha a\gamma a\beta y) \in \eta_r \cap \eta_r^{-1}. (*)$$

- 14. Let M be a negative ordered Γ -semigroup. Then the following statements are equivalent:
 - (a) M is a band of weakly r-archimedean sub- Γ -semigroups of M.
 - (b) M is a band of r-archimedean sub- Γ -semigroups of M.
 - (c) M satisfies the condition for all $a, x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$,

$$(a, a\gamma a), (x\alpha a, x\alpha a\gamma a), (a\beta y, a\gamma a\beta y), (x\alpha a\beta y, x\alpha a\gamma a\beta y) \in \bar{\eta}_r \cap \bar{\eta}_r^{-1}.$$
 (*)

- 15. If M is a commutative Γ -semigroup, then M is a semilattice of archimedean sub- Γ -semigroups of M.
- 16. If M is a commutative ordered Γ -semigroup, then M is an ordered semilattice of archimedean sub- Γ -semigroups of M.
- 17. If M is a commutative Γ -semigroup, then M is, uniquely, a semilattice of archimedean sub- Γ -semigroups of M.
- 18. If M is a commutative ordered Γ -semigroup, then M is, uniquely, an ordered semilattice of archimedean sub- Γ -semigroups of M.
- 19. Let ρ be a regular congruence on an ordered Γ -semigroup M. Define a relation $(\leq \circ \rho)/\rho$ on M/ρ as follows:

$$(\leq \circ \rho)/\rho := \{((x)_{\rho}, (y)_{\rho}) \mid (x_1, y_1) \in (\leq \circ \rho) \text{ for some } x_1 \in (x)_{\rho} \text{ and } y_1 \in (y)_{\rho}\}.$$

If $\preceq := \{((x)_{\rho}, (y)_{\rho}) \mid ((x)_{\rho}, (y)_{\rho}) \in ((\leq \circ \rho)/\rho)^m \text{ for some } m \in \mathbb{N}\}$, then \preceq is the least regular order on M/ρ with respect to the regular congruence ρ on M.

20. If $\rho \in SC(M)$, then $(M/f(\rho); \preceq')$ is an ordered Γ -semigroup.

- 21. If $\rho \in OSC(M)$, then $(M/F(\rho); \preceq')$ is an ordered Γ -semigroup. Moreover, if $x \leq y$, then $F(x)_{\rho} \preceq' F(y)_{\rho}$.
- 22. If $\rho \in SC(M)$, then $M/\rho \cong M/f(\rho)$.
- 23. If $\rho \in OSC(M)$, then $M/\rho \cong M/F(\rho)$. Moreover, if $x \leq y$, then $F(x)_{\rho} \preceq' F(y)_{\rho}$.

