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ABSTRACT

Through a well-known interpolation technique, each function from one subset

into another subse

t of a finite field is uniquely representable by a polynomial of

bounded degree over the same field. This implies that to study functions over

a finite field, it suffices to consider merely polynomials over that field. A quasi-

permutation poly

omial is a polynomial which is a bijection from one subset of a

finite field onto another having the same number of elements. This is a natural

generalization of ithe familiar permutation polynomials. Since this notion is

introduced here for the first time, the thesis starts with derivations of its basic

properties. The

a general necessary and sufficient condition for a quasi-

permutation polynomial is proved. This characterization, whose existence seems

surprising, is established using ideas from an old work of Carlitz and Lutz. Though

it is not easy to

use, it does contain the well-known Hermite's criterion for

permutation polynomials as well as a number of other criteria depending on the

permuted domain jand range. Characterizations of quasi-permutation polynomials

via characters along the same line as those of permutation polynomials are then

investigated. Line

arized quasi-permutation polynomials which form a nontrivial

and useful class are determined. Imposing vector space structure on such linearized




polynomials yields interesting indepencence results extending the classical ones due

to Zhou. Miscell
monomtals and bi

the number of qu

aneous other types of quasi-permutation polynomials, such as
nomials are found. The thesis ends with the problem of counting

asi-permutation polynomials of fixed degrees. Employing ideas

from a recent work of Das, the number of quasi-permutation polynomial of a fixed

degree is shown fo

be closely related to the number of solutions of a system of linear

equations over a finite filed. Nearly all results proved here generalize those of the

classical permutat

instances, reasona,

ion polynomials. However, as to be expected, in a number of

ble results are obtainable only after some structures are provided

to the domain and range and in general if the shape of quasi-permutation

polynomials are 1

permutation polyy

1ot of primary interest, the problem of searching for quasi-
womials is almost equivalent to that of determining polynomials

n |

which are injective.
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