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CHAPTER II

PRELIMINARIES

s chapter by collecting definitions, notations, and some useful
used in the later chapters. Details and proofs can be found in
er [4], Chu [8], Wan [9] and Zhou {10]. Throughout this thesis,
Is will be standard:

all natural numbers,

all whole numbers,

Id with ¢ elements where ¢ is a power of the prime p,
}.

A polynomial f(x) € F,lz] is called a permutation polynomial

ed as PP, if it is a bijection of F, onto itself.

, 7.4] The polynomial f(z) € F fz] is a PP if and only if the
sons hold:

ctly one root in Fy;

integer t with 1 <t < q—2 andt # 0 (mod p), the reduction

-z} has degree < q — 2.

4, 7.5] If d > 1 is a divisor of ¢ — 1, then there is no PP of

, 7.8] (1) Every linear polynomial € Fylx} is a PP over F,.
;" 18 a PP over By if and only if ged(n,q¢ — 1) = 1.

, 7.9] The p-polynomial (linearized polynomial over F,)
L{z) = Zaimpi € Fylz]
=0

nd only if L(z) only has the root 0 in F,.




Lemma 2.1.6. [9

characteristic p, ti

and

Conversely, if I(z)

I(z) 1s a linearized

Definition 2.1.7.
is called a set com

PP over T, for all

Theorem 2.1.8.
an integer, and d

complete mapping

Let Il?qr be ¢

L(z) of the form

Then L{z) is a PE

given by

, 10.10} Let I(z) be a linearized polynomial over F, and F, be of

ner

Uz +y)=Uz)+Uy), Vz,y € F,

lcx) = cl(z), Yz € Fy,c € F,.

& F,[z] be such that both of the above two conditions hold, then

! polynomial over IF,.

[8, p. 197] Let S be a subset of F,. A polynomial f(z) € F,[z]
iplete mapping associated with the set S of F, if f(z) +az isa

a€S.

[8, 4] Let ¥, be the finite field with g = p’. Let 0 < s < 7 be
= ged(p® ~ 1,p7 — 1) = p&dr) 1. Then f(z) = z*° is a set
for =S with S =T, _E?g, The size of the set S is 1+ %(q ~1).

n extension of IF, with » € N and consider linearized polynomials

r—1
L{z) = Z ozt € Fylzl. (2.1.1)

=0
> over Fy- if and only if det(A) # 0, where the r X r matrix A is

[
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under the operatic

Betti-Mathieu groz

Theorem 2.1.9.
linear group GL(

muliiplication.
Lemma 2.1.10. |

/"Yl i

Yz N

\7n ¥
and so the deterr

independent over ]

Theorem 2.1.11

divisor of g — 1. I
fz) = 2*(g(2))4

Theorem 2.1.12

Sy is generated by

Theorem 2.1.13

G, then

If g € G with g #

where G is the set

of characters, i.e.,

L{z} in (2.1.1) that are PP’s over F,- coustitutes a group

»n of composition modulo 9 — z. This group is known as the
4D

[4, 7.27] The Betti-Mathieu group is isomorphic to the general

r,Fy) of nonsingular v x r matrices over ¥y under matriz

4, 3.51] Let oy, g, - . ., vy be elements of Fyr. Then

g qn—l\
il Yo
g A il J
=C¥1H H X1 E CeO |
. i=1¢1,...,c;€F, k=1
g “In qn—l
4 ¥ )

ninant is not zero if and only if ap,0a,...,0,_1 are linearly

R,

[4, 7.10] Let i € N with ged(2,9 —1) = 1 and let u be a positive
et g € Folz] be such that g(x*) has no nonzero root in ¥F,. Then

/s js a PP over F,.

{4, 7.18| Let S, be the symmetric group on q letiers. Forq > 2,

z92 and all linear polynomials over F,.

[4, 5.4] If x is a nontrivial character of the finite abelian group

> x(g)=0.

gEG

> xlg) =0,

ge@d

lg, then

of characlers of G it is an abelian group under the multiplication

X1{P)xa(h) = x1x2(h) for all h € G.




Lemma 2.1.14.
with period ¢"—1 4
i>0, BeF,\{(

Lemma 2.1.15. |

nonzero r-tuple (A

Next, we gi
some examples. i
of interest at hand

function from S tc¢

Proposition 2.1
of Fy with the san
unique polynomial

Ps(c) = flc) for a
Proof. Let S = {a

Py(

 The system of ling
Cp + ¢

uniquely determines the coefficients ¢; because its coefficient matrix '(wz) has a
Vandermonde dets
P;. 'To prove uniqg
deg h < s — 1 sucl

a polynomial of de

forcing h = Ps.

10, 1.3] Let a be a sequence over F,. Then a is an m-sequence
fand only if the elements of a can be represented by a; = Tr{Ba?),

)} where o is a primitive element in Fyr.

10, 1.4] Let a be an m-sequence, then in every period of a, each

15 A2, .-, Ar) € T occurs exactly once.

ve basic properties about function representation and QPP’s with
rst, we investigate the representation of functions by polynomials
. A simple interpolation technique shows immediately that any

) T' is uniquely representable as a polynomial of degree < s — 1.

16. If f + S — T is a function, where S and T' are subsets
e number of elements |S| = |T| = s < g, then there ezists a

P; € Tlx} with deg Py < s — 1 representing f in the sense that
ilceS.

h, 0o, ... ,CLS} and let
L) =€ 18" + 0 P4 e +¢p € Fofa].
ar equations

na; + Cga? + e 83_10,:"1 = f(az) ('& = 1, ey S),

>rminant. This guarantees the existence of such a polynomial
ueness, assume that there is another polynomial h € F,[z] with
h that h(c) = f(c) for all c € S. Then P; — h € F,fz] would be
gree < s — 1 which vanishes at s distinct points in a finite field,

O




Proposition

representable as a

¢° polynomials of

into T is merely s7
S and T, it is not

function. The nex

represent function

Example 2.1.17.

Consider the polyi

of degree 1(< 3 ~

a function from S

Remark 2.1.18.
injective function
of degree < s — 1,

T, resulting in an

the domain S with

The explic
functions from § i
multiplicative gro
fixed generator of
i € NU {0, —oco}

|S] = s, then we w

for some distinct 4

2.1.16 tells us that each function from S5 to T is uniquely
polynomial in F,[x] of degree < s — 1. There are altogether
degree < s — 1 over F,, while the number of functions from S
(< ¢*). In general, without imposing any structure on the sets
easy to find out which polynomial does not represent such a
t example confirms that not all polynomials of degree < s—1

s from S to 7.

Let S = {1,2,4}, T' = {2,3,4} be subsets of 5 := {0,1,2, 3,4}.
homial

P(z) =z + 4 € Fylz]

1 = 2). We see that P is a function from Fy into F5 but it is not

imtoT as P(1)=0¢T.

It is noteworthy to remark that should we be able to obtain an
o S, it is always possible to composite it with a unique polynomial
guaranteed by Proposition 2.1.16, sending f(S) bijectively onto
(S, T)QPP. This remark enables us at times to find QPP’s over

out having to worry about the set.T.

it shape of those polynomials of degree < s — 1 representing

nto T is given in the following Proposition. Since FF; is a cyclic

up of order ¢ — 1, we may write F;, = (a), where o € F, is a
. Each element § € I, can thus be written as 8 = o for some
with the convention that o™ = 0. If S is a subset of F, with
Tite

S = {a®,a”,...,a"} (2.1.2)

1542, ...,% € NU{0, —oo} satisfying i; # ir(mod ¢—1) whenever




j # k with the conyention that o™ = 0 and the corresponding congruence relation

is interpreted as —oo # i, {mod ¢ — 1) for all 4, € NU {0}.

Proposition 2.1:19. Let S and T be subsets of F, with the same number of
elements |S| = |T| = s < q with S written as in (2.1.2). Let
(1 ai1 (ai1)2 (ail)3 e (a,z'l)a-—l\

1 aiz (aiz)i’ (aig)3 . (aiz)s-—l

\1 o (ai)? () e (aiﬂ)s—lj

be the Vandermonde matriz of the elements of S,V = det W and
AP = (1) det( M)

where My ; denotes the (k, j)-minor of W. Then

Pf(i'.) =ag+mT + - +a_1357 € Fylz]

is a polynomial of degree < s — 1 representing a function f sending S into T if and

. . . . : S A AY) A
only if each of its coefficients a; is a T-linear combination of =, <, ..., 5,
i.e.,
A(ff} A(j} A(j} ‘
a; =ttt te—— (§=0,1,...,8—1)

% % v

for some iy, ..., t € T.

Moreover, the number of such polynomials Ps(z) is equal to the nuinber of

functions from S to T which is s°.

Proof. Consider

U= (f(a’h) f@) fla®) - f(a“))t

:(Pf(aii) P(a’) Pg(a®) - Pf(ais)) €T,




where ¢ denotes th

e transpose of a matrix. Then WX = U where

t
as—l) .

X = (ao ay Oy

Since the matrix W has a Vandermonde determinant, the first part follows at once

from Cramer’s rule. Note that each function f gives rise to one vector U, each

vector U in turn gives rise to one particular set of coefficients ay, .. .,

versa, the second part is immediate.

We next give an example.

Example 2.1.20.

In

ng o Zg [SC

where a? +1 =0,

/(=" +1) =

let

{0,1,2, 0, + 1, + 2,20, 20 + 1, 20 + 2},

S=1{l,a+2,2a+1}, T'={2,a+1,2a+2}
be subsets of F32. Here,
a+2 o 1 1
AR L@y =a+1, AP = (=1 =a+1
20+1 o 20+1 o
1 1 1 «
A:(il) . (_1)344 =1, A§2) = (_1)1+2 =0,
a+2 « 1 &
11 11
AP = (1)+2 =a+2, AP = (-1)* =2+ 1,
1l « 1 o
1 a-t+2 1 1
AP = ()P =a+2, AP = (-1)** =a,
1 2;+1 1 2a+1
1 1 1
1 i
AP = (-1 =a+lL, V=1 a+2 o =20
1 a+2
1 20+1 «
M 0 M AL AD
i 3 3 Lg
T 29 7 = 2: s T & — =
- =a+2, S=at2 S S =0 =20+2,

as..1, and vice

O
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Affj A{13) A?) Ag‘”
— _ = = —_— == 2.
=at+l, S =242, 2, 5 =oa+

By Proposition 2/1.19, each polynomial of degree < 3 — 1 = 2 representing a

function from S to T is of the form
P(z) = ap + 17 + az37,

where ap = {0+ 2, + (o + 2t +ats, ay = (2a+ 2}l + (a+ D)3, ar = (200 + 2}ty

+2t -+ (o + 2)3, and conversely.

Next, we derive basic properties about QFP’S. Dealing with QPP’s, there
are two caufions ro be noted. First, we must deal with the difficulty that there
are polynomials which are both QPP’s and PP’s, there are polynomials which are
QPP’s but not PR’s, and there are polynomials which are PP’s but not QPP’s, as

evidenced in the next two examples.
Example 2.1.21, Let S ={1,2,4} and T = {2,3,4} be subsets of Fs. Consider
flry=3z+1, g(x)=2+2z+2, hiz)=3z+2¢cF;s[z]

By Theorem 2.1.4, f(z) and h(z) are PP’s over F5 and, as ea,sﬂy shown, f(z) is
also an (S, T)YQPP, but A(z) is not an (S,T)QPP for h(1) = 0 ¢ T. As for the
polynomial g, from g(1) = 4, g(2) = 3, g{4) = 2 and ¢g(0) = 2 = g(4), we see that
g(z) is an (S, T)QPP but not a PP.

A more complex example for finite fields with prime power number of

elements is:
Example 2.1.22, In

Fys = Zplzl/(x® +2+1) = {0,1,0,a+ 1,0%,0* + 1,&® + o, 0 + @ + 1},
where o® + o + 1= 0, let

S={a,a+1,d*+1}, T={o,a+1,0%}




be subsets of Faa.
Theorem 2.1.4, PP

but Q(z) is not an

R

11

The polynomials P(z) = 2 + 1 and @Q{z) = = € Fylz] are, by
’s over Fos and by direct computation P(z) is also an (S, T)QPP,
(S, TYQPP for Q(c® + 1) = a® + 1 ¢ T. The polynomial

(z) = (&® +a+ 1)z + (6 + a)z + & € Fylz]

is an (S, T)QPP but not a PP, because R(a) = o, Rla+1) = a+1, R(e* +1) = o®

and R(0) = a® = R(a® +1).

The second

the number of QPP

caution needed mentioning deals with the problem of counting

’s. The problem of counting the number of PP’s of fixed degree

has also been of recent interest, see e.g. [11]. In contrast to the case of PP’s, there

are other difficulti

systematic, let us

the set of those po

es such as those about the number of QPP’s. In order to be

denote the set of all polynomials of degree < ¢ — 1 in F [z} by

Py =A{f € Fyfz}; deg f <g—1};
lynomials in P, which represent functions from S to T by

PAS,T) ={feP,; f:S—=T};

the set of all polynomials of degree < s — 1 in F,[z] by

and the set of tho

toT by

Further, let

The next result gi

Py {f € Rylal dog f S5—1);

se polynomials in P, which uniquely represent functions from S

P(S,T):={fePs f:S—=T}.

NS, TY := {f € P(S,T); f is an (S, T)QPP}H,

Ns(5,T) := [{f € Ps(S,T); f is an (S, T)QPP}H.

ves information on these sets.




Proposition 2.1.
(i) To each f €1
whose restriction §
(é44) To each [ €
(S, TYQPP’s in P,

= gl. 975,

Proof. (i) By Pr¢
representable as a

such functions, w

e deduce that [P,(S5,T)] = s

12

23. (1) We have |P,(S,T)] = s*, N,(S,T) = s\

P.(S,T), there correspond exactly ¢°° polynomials in P,(S,T)

o S is identical with f and so |P{(S,T)| = s* - g7*.
P.(S, T} which is an (S,T)QPP, there correspond exactly q7*

(S,T) whose restriction to S is identical with f and so N,(S,T)

oposition 2.1.16, each function from S into T is uniguely

polynomial in F,lx] of degree < s — 1 and since there are s*

Since there are altogether si

(S, T)-permutations, we have N,(S,T) = sl

(ii) Each p
polynomial in P, (
into I". Since P,
a polynomial in 7
remaining g — s el
second assertion fg

The proof ¢

The next e

Example 2.1.24.

By Proposition 2.1

[Ps| = 5° = 3

[Pl =5 =1

Direct computatio

olynomial in P,(S,T) is also a function from S to T and each

5, 1) is a function from F, to F, whose restriction to S is mapped

S5, TY C Py(S,T), a polynomial in P,(S,T) is elevated to be
(S, T) by assigning any of the ¢ values in F, to each of the
ements in the domain and the first assertion is immediate. The
lows using (i).

f (i) is similar to that of (ii).

xample provides a numerical example of the last proposition.

Let § = {1,2,4}, T = {2, 3,4} be subsets of Fy := {0,1, 2, 3,4}.

.23, we have

3,125, |Ps(S,T)} = 3* - 5% = 675, Ns(S,T) = 3!- 5% = 150,

25, |P3(S,T)| = 3% = 27, N3(S,T) = 3! =6.

n shows that the 27 polynomials in P;(S, T) are as in this table.
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7 filz) i fi(z) ? fil)

1 2 10| 22+32+4 19 3z’+x
2 3 11| 22 +4z+2 20 | 32% + 22+ 2
3 4 12 2z° 21 | 352 +22+3
4 2 13 21?4+ 1 22 42? + 3
51 3z+1 141202 +3r+31| [ 23] 422+ 244
6| 2243 15| 202 +3z+4 | |24 | 422 + 22+ 2
T BT+ 2 16 | 222+ 4z +1| {25 | 42?2+ 3z +1
8| z*+2z 17|  3z? 26 | 4z + 3z + 2
9| z242z5 44 18 3z +1 27 | 422 + 4z + 4

Among them, the six (S, T)QPP’s of degree < 2 are

falz), fs(z), f7(33)a fw(ff)a f24($): fz?(x)'

Next, we find all PP’s in F5 of degree < 4. By Theorem 2.1.4, f(x) = az + I

a,b € Fs and a # 0, is a PP of Fs, so the number of PP’s with degree 1 is 20.

Since 2|(5 + 1) and 4}(5 — 1), by Corollary 2.1.3, there is no PP of F5 such
that degree 2 and degree 4. It remains to consider only the case of PP’s with degree

3. Direct checking shows that there are 100 PP’s Fs[z] of degree 3, namely,

P +d, P+ 4 20+d, 2 +22%+ 3z +d, 2°+ 327+ 32+ d,

2 H4r? + 20+ d, 208+ d, 220+ 2? o+ d, 22° + 227 + 4z + d,
22° +32° +dz Hd, 22° + 42’ + 1 +d, 3% +d, 32° + 22 + 4z + d,
3 +22% +x+d, 30° + 322+ x4+ d, 35° + 42% + 4z + d, 4% 4 d,

12° + 2 + 3x+d, 42 + 222 + 22+ d, 42° +32° + 22+ d, 4a® +4x® + 3+ d

for all d € F5. Consequently, the number of PP’s of Fy with degree < 4 is 120 = 5!,

as expected.




Since the 1
functions from S
(YL Tisg?—s
with f{S) € T anc
representable as a
bijective functions

is mg?.

The set of
and closed under 2

so. We omit its sti

Proposition 2.1.
beT. Assume the
(4) If T is ¢
(#8) If T is

We end th
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umber of functions from F, into F, is ¢? and the number of
into T is s°, the number of functions f from K, to F, with
*q?~* which is equal to the number of polynomials f(z) € F|z]
I deg f < ¢ — 1 because any function from F, into F, is uniquely
polynomial of degree < ¢g. Moreover, if m is the number of

from S onto T', then the number of (S, T)QPP’s of degree < ¢—1

QPP’s is closed under multiplication by nonzero elements of T
iddition by elements of T provided the set 7" is correspondingly

-aightforward proof.

25. Let f(z) € Flz], S, T CF, with |S|=|T}, c € T\ {0} and
it f(z) is an (S, T)QPP.

losed under multiplication , then cf(z) is an (S,T)QPP.

closed under addition, then f(x) + b is an (S,T)QPP.

is chapter with some remarks about group structure. It is

well-known that the set of all PP’s of degree < g over Iy, denoted here by A(F,),

forms a group un
isomorphic to the
Theorem 2.1.12, ¢

over ;. In the cas

Theorem 2.1.286.
SA(F,

Then SA(F,) is a

Proof. If f,g € S4
g~ * is both (S5, S)¢

der composition and reduction modulo z9 — z. This group is
symmetric group on ¢ letters, S;. Also known is the fact,
hat this group is generated by 297% and all linear polynomials

e of QPP’s, we have a related result.
Let SCF, and
)= {f(x) € Folz; f=) is an (S, S)QPP} N A(F,).

subgroup of A(F,).

1(F,), then f and g are both (S, S})QPP and PP. Consequently,

JPP and PP implying that f o g7! is also. O






