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wo sections in this chapter. In the first section, general criteria
ved while in the second section, characterizations of QPP’s via

1e same line as those of PP’s are investigated.

riteria

\is section by establishing a very general necessary and sufficient

: its proof is inspired by the work of Carlitz and Lutz [12].

Let S and T be nonempty subsets of ¥, with the same number

d 5(z) = [1ocs(® — ). For P(z) € Fylz] and k € N, put
(P(2))" = Bi(2)S(z) + Ax(),

4k(:€) = as_l,kxs_l -+ as_g,kxs;z F - a14% F Qo € ]Fq[ﬁb‘] Let

V=Y ¥ (j=01,...,s~1)
bes

g1 2

= 52T+ 1 as-11 Ve F @91 Vea + 0o a0 Vo)
-3

F 297 (as1,2Ve1 F+ Gsn2Veo + - Fap2Vo) + -0

F 2 (0s1,g-2Vimt + Oseng-2Vea + - + apg_2Vp)

(5-1,9-1Vse1 + Cso0g1Voa + - - + ag g1V — ).
S, TYQPP if and only if

ged (T(z),2(z"" = 1)) = [] (z-w),

aeFA\T

roduct is taken to be 1.
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Proof. For k € N, we have
S P =Y [Be(B)SE) + Ax(B)] = D> Aw(b) (3.1.1)
bes be bes
= Q5 lkst I—I—as 2k255—2 -+a1,kZb+sag,k (312)
be S e S bes
Forbe S C Ty, k)l €N, it is evident that
(P(B))* = (P(p))*+"aD (3.1.3)
(P = (PE). (3.1.4)

Let

so that @(z) is m¢

Q) = [[ (= - P)),

beS
mic and deg Q(z) = s. By (3.1.2), (3.1.3) and (3.1.4), we have

Qz) _ _1_ 1 0 K
o) —bézsx B $%(P(b)) +Z — ;(P@))
B i_ T Z R+ EP (&) + Z sy E (P(B))*
k = 1i(mod ¢—1) BES k = 2 (mod ¢-1) be 5
RO - SO D D3 3 0)\
k = g-2 (mod g—1) be § k = 0 {mod g-1), k#0 bes
T (T b PO) 27+ (S (PO )7+ (Taes(POY) ~ 5
z(ze=t —1)
= 52971 + (e s A1(8)) 272 + -+ (e 5 Ag-2(8)) 7+ (L5 Ag-1(B)) —
z{zdt — 1)

__ T(=)
z{zdt — 1)

where T'(x) is of ¢

(3.1.5)

he form as stated in the statement of the theorem.

Assume that ged (T'(z), z(2%7" — 1)) = [],ep\r(z — @). Then
Q) _ V(@
Q) Hﬁe’r($

where V(z) = -

aé Eq\r(ﬂﬂ—’a)

() € F,lz]. Since deg Q(z) = s and @(z) is monic, then

Q) =1]=-5).

geT




Consequently,

implying that {P{

Let

where U(z)/W{(z)

Assume tha

Qz) = Hbes(z N |
Hence, Q(z) = W

W(z) = Tser(z -

Using Theg

the next example.
Example 3.1.2. ]
PP. Take S = {0,
A

Using the notatior
flz) =0-5(
(f(@)) = (z+1
(f(@))* = (=° +
(fla))! = (=" +

Thus, T(z}) = 34

ged (T'(x), z(z* —

that f(z) is a QPP.

r.

1
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H@-P0)=Q@ =[]=-5),

bes BeT
); be S} ={B; Be€T}, ie P(z)isan (S T)QPP.

U) _  T@) _ Q)
W) 2 —1) Q@)

is in reduced form. Then deg W(z) < deg Q(z).

(3.1.6)

t P(z) is an (S, T)QPP. Then Q(z) has not a repeated root and
P(®)) = [Loop(@ — ). Thus Q(z)/Q(z) is in reduced form.
(2) and Q'(z) = U(z). Since 5(29* — 1) = [L,cx, (& — @) and
@), by (3.1.6), we get ged (T'(z), 2(27! — 1)) = oe ppriz — o)

O

rem 3.1.1, an example of a QPP which is not a PP is given in

Let f(z) = a2 + 1 € Fsfz]. Since f(2) =0 = f(3), f(z) is not a
2,4}, T'=40,1,2}. Then

= H(a:w—a) =z(z - 2)(x ~ 4) = 2® ~ 2% + 3.
&S

y of Theorem 3.1.1, we have

Y+ Ai(z), Afz) = 2% +1

V- S(z) + As(z), Ao(z) =22 +1
1 + x4 3) - S(z) + As(x), As(z) =322+ +1

r* + 22° + 42% + 4z + 2) - S(x) + Ag(m), As(z) =42" -~z + 1.

Y+ 35 +4z -1 = (z — 3z — 4)(3x% + 4z + 2), and so

) = (=3)(z—4) = [] qp\r(z— ), showing, by Theorem 3.1.1

)




Most knowr

Taking S{z) = 9 -

Corollary 3.1.3.

where Ar(r) = a,-

R(z)

Then P(z) is ¢ Pl

Specializing

classical Hermite's

Corollary 3.1.4.
a PP if and only ¢

(9) deg Ax(:
(%) deg A,

Proof. To invoke

conditions are equi

if (i) and (i

relatively prime.

On the oth

—Og—1,1%7

Hence, a,_1: =0

forall1 <k <g¢—1anda, 145 =1, Le (i) and (i) hold.
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1 criteria for PP’s are immediate consequences of Theorem 3.1.1.

~ x, we get the following results.

Let P(x) be a polynomial with coefficients in ¥y, k € N and
(P(2))* = Bi(z)(z" — 2) + Aw(2),

LT a0t T+ agy € Fol). Let

—~Og-11 27 =g 28T — = G197 Qg1 g1

D if and only if R{z) and x(z7 ' — 1) are relatively prime.

- the reduction polynomials in Corollary 3.1.3, we obtain the

criterion.

Let P(zx) and R(z) be defined as Corollary 3.1.3. Then P(z) is
f the following two conditions hold:
p)<g—1 (1<k<g—1),

1(z) =g — 1.

upon the result of Corollary 3.1.3, we need show that the two

ivalent t0 R(z) and x(z?~! — 1) are relatively prime.

1) hold, then R(z) = —a,—14-1 # 0, so f(z) and (27 — 1) are

er hand, since Q(z) = z(z%1 — 1), we have J'(x) = —1. Thus,

T gpr" T - a1 = R2) = Q'r) = ~ 1.

O




In Corollary

polynomial becausg
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r 3.1.4, if (i) holds but (ii) does not, then Q(x) is a linearized
> from (3.1.5),

Q(z) _ —ag12297" Qg-1277% — - —@prg1 _ 0
Q) 2@ T = 1) ’
we get Q'(z) = 0 implying that each monomial in ¢ has degree equal to multiple

of char F,.

Another cor

Corollary 3.1.5.
a PP if and only i

(i) the equc
Proof. If P(x)isa
(11} holds by the de

On the othe
get

—Qq.

i.e., deg Ay (z) =

There is an

which is the same

Proposition 3.1.

where By, (x), Ak,

1sequence is the main result of [12].

Let P{z) and R(z) be defined as Corollary 3.1.3. Then P(x) is
f the following two conditions hold:
Yy<g—1 A <k<g-—1),

ition P(x) = 0 has ezactly one solution in F,.

permutation polynomial, then (i) holds by Corollary 3.1.4, while

finition of permutation polynomial.

T hand, assume that (i) and (ii) hold. From (ii) and (3.1.2), we

=Y (PO =041414. 1 =1, (3.1.7)
S, ppimisssanai?
beF, g—1 times
g — 1. By Corollary 3.1.4, P(z) is a PP. O

alternative formulation similar to Theorem 3.1.1, whose proof,

that of Theorem 3.1.1, is omitted here.

6. Let Sp(z) = [ co(x — Pla)). Fork € N, put

z¥ = By (3)S,(z) + Ar, (2), (3.1.8)

(®) == o142+ Cso 22 + -+ 14T + cop € Fylx]. Let

W;=> " (P®)Y (i=01,...,5-1)

be 8




and

Tp{z) =

Then P(z) is an (

where the empty m

Though the
the coroliaries of T
Proposition 3.1.6 &

show that for each

From (3.1.8), we h

S PO =
bes besS
=2

bes

from which togeths

3.2 Criteria in

In this secti

doing so, we give t
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sT?t 4 mq_z(csml,lwsmi +Cs01Ws o+ + o1 Wh)
xq_?’(cs_l,st_l + oW g+ FegaWp) + -+
r(Cs—1,g—2Wery + Comn g-2Wso + - + €9 g2 Wp) _
(Co—1,9-1Wsm1 + Comag-1Wia + - + g g1 Wo — 5).

5, TYQPP if and only if

ged (T(z),6(2" ! = 1)) =[] (z-0),

aEFNT

roduct is defined as 1.

statements of Theorem 3.1.1 and Proposition 3.1.6 are different,
heorem 3.1.1 listed above and their counterparts derivable from
re identical because T,(z) = T(z}. To see this, it is enough to
keN,

D Ad)

bes

= > A, (P(b)).

bes

(3.1.9)
ave

{Br, (P(5)S,(P(b)) + Ag, (P

{

or with (3.1.1), the identity (3.1.9) follows.

(®)}

By, (P(5) [ [ (P(®) — P(a)) + Ay, (P())

aesS

z Ar, (P

bes

}-

wvolving characters

on, we use the concept of characters to determine QPP’s. Before

he definition of character.




Definition 3.2.1.

x : G — Fis called

group F™ of nonze
X(g1 * g2} = x(g1)
said to be irivial.
with respect to m
character and if G

called an additive
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Let (G, %) be a finite abelian group and F a field. A function
| a character if it is a homomorphism of G into the multiplicative
ero elements of F, i.e. a mapping from G into F* such that
x(g2) for all g;,9: € G. If x{g) = 1 for all g € G, then x is
All other characters of G are called nonirivial. If G is a group
nitiplication, then a character y of (¢ is called a multiplicative
is a group with respect to addition, then a character x of GG is

character. Denote by G is the set of characters of G; it is an

abelian group under the multiplication of characters, L.e., xi(h)x2(h) = x1x2(h)

for all h € G

Some criter

of ¥, are given nex

Theorem 3.2.2.

f(z) € F,lz} sendi

for each nontrivial

Proof. We give on
that f(z) is an (S,
and T have the sa]

and T. Then by T

Conversely,

X # Xo, the trivial

ia for QPP’s based on the use of characters of abelian subgroups

t.

Let S and T be multiplicative {(or additive) subgroups of ¥, and
ng S onto T. Then f(x) is an {S,TYQPP if and only if

> x(f(e) =0

cES

character x of S.

ly a proof for multiplicative S; the other case is similar. Assume

TYQPP. We may assume without loss of generality that both S

me set of characters. Let y be a nontrivial character of both S

heorem 2.1.13,

DXy = xib) =o.

ces beT

assume that Y o x{(f(c)} = 0 for all multiplicative characters

character of S. Then for fixed a € T' = f(S), the number N of




solutions of f(x)

cGS yes

Tl (Z‘

ceS
Hence, f(z) is an

Specializing
characterizations c
characters. Let H
A quadratic H-cha

cel,,

We gather basic p

Lemma 3.2.3. 1.

(i) either b¥/?
(1) ne(b) =1

II. Ifc € F,\ {0},

III. Let b,c € F,.

nu (b) # na(e

IV. IfbeF, and

Proof. 1. (i) Since

u

{ii) Since H is a s
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)

= g in S is given, see e.g. equation {5.5) p. 189 of [4], by

N

(f(@)x(a) = B (Z Xo(F(@)xo(@) + Y > x(F())x(a)

cES xFExo cES
1+ 2 x(@) 2 x(f( c))) Sl (ISI+ > x(@)- 0) =1
x#xo0 ceS X#X0
S, TYQPP. |
the result of Theorem 3.2.2 to quadratic characters, interesting

an be derived. We start by recalling some facts about quadratic
be a nonempty multiplicative subgroup of F, \ {0}, |H| = d.

racter of F, is defined as a map ny : F, = C satisfying, for each

0 if c =0,
nu(c) = ¢ 1 ifc=b* for some be H,
—1 otherwise.

\

roperties of quadratic characters in the following lemma.

If be H, then
e e

if and only if bY2 =1.

¢ H.

then g (c) =1

a{

Then ng(be) = ny(b)ny

Y, or nu(b) =ng(c) =1

(¢) holds only when b= 0, or c=0, or

ce H, then ng(bc™) = ny(bc).

H is of order d, from (b%2)? = b? = 1, the result follows.

ubgroup of the multiplicative group F, \ {0}, H is cyclic, i.e,




H = {a) for some
some i € NU{0}.
then /2 = of for s

character yields

=

II. We have

. Tiu (C)-

I11. The result hold
both b and ¢ are n

u,v € H, and so b

If ny(b) # 1
and ¢ # v* for all
w € H, and s0 ¢ =
(be)'/? ¢ H and so
IV. As a preliming

e (be(c™)?) = nuf

Assume b #

Ty (bc

If ny(bc) = —1, the

T}H(b(

Using the prelimin

U4
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o € H. We first verify that 52 ¢ H if and only if b = o% for
If b = o for some i € NU {0}, then b2 =o' € H. If b/ ¢ H,

ome ¢ € NU{0}, and so b = o*. Now the definition of quadratic

= h? (for some h ¢ H) & b2 ¢ H

h = % for some i € NU{0} & b2 = (o) = (o*)? = 1.

lec=h (heHec'=Gm"VoenpE)=1

Is trivially when b = 0 or ¢ = 0. For the rest of the proof assume
onzero. If ny(b) = ny(c) = 1, then b = % and ¢ = v? for some

: = (uv)? showing that ny(be) = 1 = nx(b)ng{c).

ju(e), say ng(b) = 1, ng(c) = —1, then b = u?® for some u € H

v € H. Suppose that (be)'/? € H. Then be = w* for some

w?b! = (wu™')?, which contradicts with nz{c) = —1. Thus
i (be) = —1 = ny(b)na(c).
ry result, we show that ng(bc(c™1)?) = gy{be). If b = 0, then
bty = 0 = ny(be).
0. Tf g (be) = 1, then nx((c™!)?) = 1 = ny(be), so by part I,
(™)) = nu(beynu((¢™)?) = na(be) - 1 = ng(be).
en by part 111,
(™)) = nu (be)na ((¢71)%) = na(be) - 1 = ng(be).

ary result, we have

(be™) = nﬁ(bcc"lc‘i) = ng(be{c™y?) = ny(be).
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Theorem 3.2.4. Let ¢ be odd, a € F,, H a nonempty multiplicative subgroup of
F, \ {0} of even orderd, and S = H U {0}.

() Ifa—1¢€ H=_S8\{0} and ny(a® — 1) = 1, then f(z) = 21?4 ax is
an (S, f(S))QPP.

(i) Ifa+1€ S anda—1¢€ H=39\{0}, then f(z) = z1¥¥? 4 oz is an
(S, F(S)YQPP if and onZy if np{a® - 1) =1.

Proof. Let f(z) = x'*%? + az. We proceed to prove the assertion (i) as the
~ assertion (i) will be deduced along the way. Assumingae-+1€ Sanda—1€ H=

S\ {0}, it suffices to show that
n{a® — 1) # 1 <= f is not injective on S.

Assume that f is not injective on S. Then there are b,c € 5,b # ¢ such that
J(b) = f(c). We consider two possible cases.
Case 1. ¢ = 0 or b = 0. Without loss of generality assume ¢ = (. Then
be H. Thus
(62 + a)b = b¥*" + ab = f(b) = fc) =10,

implying that 5%2 + g = 0. Consequently,
n(0” 1) = (b~ 1) = 9 (0) =0 # 1.
Case 2. b0 and ¢ # 0. From
b@“+@:ﬂw:ﬁ@=ﬂﬂwﬁc
we deduce that
(b2 4 a)b = (c¢*? + a)e. (3.2.3)

If 5%/2 + @ = 0, then the same reasoning as in Case 1 yields the result. If 5%/24+q # 0,

then its inverse (b%% +a)~' € F,, and (3.2.1) implies

be ™t = (0% 4 a)"Hc? + a). (3.2.2)




T. QA
Wty
¢ QS'Q?-E?/,
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If ng(b) = nu(ec) = 1, then Lemma 3.2.3 I (ii) shows that %2 = 1 = %2

Consequently, (3.2.2) yields b = (1 +a)" Y1+ a) = 1, ie., b = ¢, which is a

contradiction.

If ng(b) = nu(c) = —1, then Lemma 3.2.3 I show that b%? = —1 = %2,
Consequently, (3.2.2) yields bc™! = (—1+a) " (—1+a) = 1, e, b = ¢, again a

contradiction.

Thus, 7y (b) # ne(c). We assume, without loss of generality, that ng () = —1

and ng(c) = 1. Then by Lemmma 3.2.3 1, 5%? = —1 and ¢%? = 1. Thus

—1 = np(b)nalc) = ne(b)ne(c™!) (by Lemma 3.2.3 I1)
= ng(be™t) (by Lemma 3.2.3 IIT)
=ng((—1+a)*(I+a)) (using also (3.2.2))

=na{{—1+ a)(1 + a)) (by Lemma 3.2.3 IV, usinga— 1€ H = §\ {0})

= ny(a* - 1).
We note in passing that at this point the assertion (i) holds.

Conversely, if 7y (a* — 1) # 1, then a2 — 1 = 0 or ng{a® — 1) = —1. There
are two possible cases.
| Case 1. 6>—1=0. Then a = +1. Ifg = —1, then f(1) = 14+a = 0= f(0),
$o f 1s not one-to-one on S. ifa=1,then 0 =a— 1€ H = S\ {0}, which is a
contradiction. |
Case 2. ny(a®—1) = —1. By hypothesis, the element b = (a+1)}{(a—1)"1 €
S. Then

(b)) = nu((a+1Ha—1)") =ng((a+ 1)(e — 1)) (by Lemma 3.2.3 IV)

=ng{a® —1) = -1
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Lemmas 3.2.3 I thus imply that %2 = —1. Thus
F0) =07 fab= (b2 +a)b = (—1+a)b=0a+1= f(1),
showing that f is not injective on S. 1
Theorem 3.2.4 is sharp in the sense that there are other values of a, such as
a = +1, yielding non-QPP’s as in the next example.

Example 3.2.5. For odd ¢, let S = HU {0} where H is a nonempty multiplicative

subgroup of Fy of even order d. Then
fu(x) = 292 & 3 = 2(z¥? + 1)
is not an (S, f(5))QPP.

To see this, taking a € H, we have
f@) = (@)~ =0=f.(0),

showing that f. is not injective. Since H is a nonempty multiplicative subgroup of
"} of even order d, we have H = () for some o € F; with o =1 and o¥? = —1.

Now,
fale) = a (@) +1) =0= £,(0),

i.e., f; is not injective.






