CHAPTER IV

CRITERIA FOR SPECIAL FORMS OF QPP’S

In this chapter, we derive some criteria for QPP’s in forms of linearized

polynomials, monomials, binomials and other different forms.

4.1 Linearized polynomials

In this section, we give you some necessary and sufficient conditions for
QPP’s in the form of linearized polynomials. Throughout this section, we let For
be an extension field of F, with r € N, Recall from [4] that L{z) € F,[x] is called
a linearized polynomial or g-polynomial if it is of the form

Y .
L(z) = Z a;z? .
=0

For such polynomials, we have the following criterion for QPP.

Theorem 4.1.1. Let S be an additive subgroup of Fpr, T C By with €T CFyp
and |S| = |T| = s. Let
r—1
L{z) = Zaixqz € F,r[z]

i=0
be a lincarized polynomial sending S into T'. Then L(z) is an (S,T)QPP if and

only if L(z) has exactly one root, namely 0, in S.

Proof. Assume that L(z) is an (S, T)QPP. Clearly, L(0) = 0 showing that 0 € S
is a root of L(z). If ¢ € S is a root of L(z), since L(z) is a bijection, we must have

c=1f.

Conversely, assume that L(z) only has the root 0 € S. To show that L is

an (S, T)QPP, it suffices to show that L is injective on S. This is immediate from
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S being an additive group and

0= L) — L{c) = i:a, (bQ" - c'f) = 2aé(b —e)f = L(b— o).

J

The requirement that S is an additive group in Theorem 4.1.1 cannot be

discarded as witnessed from the following example.

Example 4.1.2. Let Fy 2 Zs[z]/(z® + 1), with a € Fy satisfying o? + 1 = 0.
Let Si = {0,0,2a} and S» = {0,a + 1, + 2} be subsets of Fy. Clearly, S; is an

additive subgroup of Fy but S is not. Consider the linearized polynomial
L(z) = 2° + 2z € By[a].

Since 0 is the only root of L{z) in Sy, by Theorem 4.1.1, L{z) is an (S;, L{5,))QPP.
However, from L(0) = 0, L{a+ 1) = a = L{a + 2), we see that 0 is the only root
of L(z) in Sy as well, but L{z) is not an (Ss, L(S2))QPP.

An immediate consequence of Theorem 4.1.1 is the following result which is

Theorem 2.1.5.

Corollary 4.1.3. Every linearized polynomial in F,|z] is a PP if and only if it

only has the root 0 in IF,.

Making use of vector space notion, linearized polynomials give a large clasé
of PP’s and QPP’s as shown in the next result which is of interest in its own right.
Before stating the theorem, let us recall some linear algebra results. Let S be an
additive subgroup of Fyr and 0 € T C Fyr with |S| = [T} = s. If SF, C S, then S

can be viewed as a vector subspace of F- over F,.

Theorem 4.1.4. Let S be an additive subgroup of Fyr, 0 € T C Fyr, |8} = |T).
Assume that SF, C S and set d := dimg, S, r = kd (k € N). Let
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B0, B, ..., Bay € 5 be linearly independent over B, and put
o =G+ B0+ A o+ g i=0,1,2,...,d—1). (4.1.1)
Let L. S — T be o linearized polynomial of the form

r—1
L{z) = Z a2’ € Fyelzl, with a; = a; whenever t =14 (mod d). (4.1.2)
=0

(2) Assume that ag,qy,..., 0y are linearly independent over ;. Then

L{fBo), L{B1), - . ., L{Ba-1) are linearly independent over F, if and only if det A # 0,

where
v3 g
q q q
/ Gy Gz 4 Gy o O \
ks d—1
q q q
av} CI«G ad__}- geen ¥ (1,2
A= | (4.1.3)
2 g—3
q q q
\ad~1 Gg—n Qg3 " o )

(1) If ag,on,...,041 are linearly dependent over ¥,, then L(B),

L{B), ..., L(B4-1) are linearly dependent over ¥y, and L{x) is not an (S,T)QPP.

Proof. Write
Yon i=L(fn) (m=0,1,2,...,d—1).

Since %, =B, 0<j<r—1; 0<m<d—1), using a; = a; if t = i (mod d),

we have

i i i 7 i1 5] ey J j fr—1 s
vE =af BY +af BLT 4+ +al B8 4+ af B (4.1.4)
7 J ¢ g1 g o g =1
= af B% +ally BET +- 4l B+ +af_y BT

r—1 .
- qJ qi
= E :a’imj ™

=0




Substituting into (4.1.2), we get

/ Qg a'gwl
r—1 . Py
(’Yo Y% oot M \ (ﬁe gy - B \ @ af
r—1 r—1i . .
neoom o | | B B e B P
) . ) . Gat al,
ol r—1
\'Yd—i ’Ygﬂ SR 7 / \ﬁd—l Biy - ﬁgml }
\a-r—l a;_,
Equating the top left hand corner of (4.1.5), we get
A= BiA) + BaAdg 4 -+ - + BpAp
where
a1
(v g e )
G 1
nooNn e A
A 1 1 ’
)
\’Yd-——l 73_1 e 'Ygil
and for 1 <[ <k,
i-1)d (I—1)}d+1 Id-1
(6 B 4 ak ( a-nd  Gj1yg-1
gl—1d glt=1d+1 gld-1 g
1 ﬁl R ﬁl a(lmi)d+1 a Lo 1)
Bg e ‘ ’Al _ (t-1)
(e 1}d (=1)d+1 td~1
\Bi. B - B \ @t e,
Since a; = a; if t = i (mod d), we have
( ay  aj, agz—z agdnl\
g ¢ ¢!
a af af, -+ a
A= ¢ et =4 (=12,
2 d--1
\tas af, of, o af

Thus,
A={(By+ By+---+ Bi)A = BA,

30

d—1
A1_2)d+1
d—1
q
Gy 2yd 2

d—1
q
Aq—1)d
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where, using (4.1.1),

a1

( o af - of \
—1

o ag - agd
B =
a3
\oer oy o oy
(i) Assume that ag, @, . . ., g1 are linearly independent over F,. By Lemma

2.1.10, we know that det B # 0. Thus, det A = 0 if and only if det A = 0 and so

the assertion follows again from Lemma 2.1.10.

(ii) If g, 04,..., ¢ are linearly dependent over F,, then Lemma 2.1.10
implies det B = 0, and so det A = 0. This yields that v, v, ..., 741 are linearly

dependent over IF,, i.e., there are bg, by, ..., by—; € F, not all zero such that

L(0) = 0 = boL(Bo) + by L(B1} + - - - + ba_1L{Bas-1)
= L(bpfo + b1y + - - - + bg1Ba-1)-
Kby Gg+by fy4- - -+bg_184-1 = 0, since fy, 31, . . ., B4_1 are linearly independent over

F,, then all b; = 0, which is a contradiction. Thus, byBy+ 581+ -+ bg-184-1 # 0

showing that L(z) is not an (S, T)QPP. 0

Remarks. 1. The special case where d = r, which forces all matrices in {4.1.5) to

be square, shows in particular that L{z) is an (S, T)QPP if and only if

2 r—1
q q
( Qg Qu_y Gp.g - CL? \
2 T
q q g
N T
det # 0.
z T—1
g q RN q
\@r-1 al_, af, G |/

This special case is a generalization of the above remark of Theorem 2.1.9.

2. It is trivial to see that the condition SF, C S can be dropped if g = p.
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Pushing the result in Theorem 4.1.4(i) a little further, we get:

Corollary 4.1.5. Let S be an additive subgroup of Fe, 0 €6 T CFypr, |S] = {T).
Assume that SF, C S and set d := dimy, S, r =kd (k€ N). Let Bo, 51, ..., Bar

€ S be linearly independent over F, and put

gle— 4

o =B+ B + 4+ B (i=0,1,2,...,d— 1).

Let L : S — T be a linearized polynomial of the form (4.1.2) satisfying a; = a;
whenever ¢t = ¢ (mod d). If ap, 0n,..., 04y ere linearly independent over F, and

det A £ 0, where A is given by (4.1.3), then L(z) is an (S,T)QPP.

Proof. By Theorem 4.1.1, L(z) is an (S,T)QPP if and only if L(z) has only
one root 0 € 5, that is, if and only if the linear operator on the vector space
8 over F, induced by L(z) is nonsingular. This linear operator is nonsingular
precisely if L(8), L(31),- .., L{f4-1) are linearly independent over I, whenever
Bos P1y- .-, Pa—1 € S are linearly independent over I, and Theorem 4.1.4 shows

that L{(B), L(31), ..., L(Bs_1) are linearly independent over FF,. 0

The following example illustrates that both possibilities in Theorem 4.1.4

do actually occur.
Example 4.1.6. In
Fos 2 Zofz]/(z* + 2+ 1) = {0 + cra+ 020” + c30°; e, 01,00, 03 € Ly},
where o' + o+ 1 =0, let
S1={0,0,0%, 0% + a} CFau, Sp = {0,0° +1,&* +1,0° + &°} C Fau.

Note that both are additive subgroups of Fy:. For each i € {1,2}, consider the

linearized polynomial L : S; - L(S;) given by

L(z) = apz + a17® + apx® + a12% € Fau [z].
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Taking 8y = o, /1 = o? both belonging to Sy and linearly independent over

Fy, direct computation gives
ﬁ0+ﬁ§2 =a+a’=1, ﬁ1+ﬁ122 =’ +ab=1,

both of which are clearly linearly dependent over ;. Since L(;) and L(j3,) are
both equal to ag + a;, they are linearly dependent over F; and so L(x) is not an

(51, L(S1))QPP.

Taking fy = o? + 1,5 = o + ¢® both belonging to S, and linearly
g

independent over Fs, direct computation gives
Bo+ﬁ§2 =1and 5 +ﬁ122 = o+ q,

a{) (11

both of which are linearly independent over F5. By Theorem 4.1.4, det #0

: ay dg
if and only if L(f), L(3,) are linearly independent over Fs.

Observe that the linearized polynomials L, over F,-, in both Theorem 4.1.4
and Corollary 4.1.5 are of degree < ¢"~'. As seen in Proposition 2.1.16, these
linearized polynomials mé,y not be those unique polynomials of degree < s~ 1
representing functions L : S -+ T. This leads us to ask whether the unique
polynomial of degree < s — 1 representing a linearized polynomial I : § = T over
Fy is necessarily linearized. This is so if ¢ = p as shown in the next proposition,

and false otherwise as seen in the following example.

Proposition 4.1.7. Let S be an additive subgroup of Fpr and T C Fpr with 0 € T,
ISl=|T|=s<p". IfL:S =T is a linearized polynomial of the form
r—1 )
L(z) = aa? € Fylal, (4.1.6)
i=0 .
then the unique polynomial f, : S — T in Fp [z] with degree < s—1 which represents

L in the sense that fr(y) = L(y) (y € 5) is also linearized polynomial.
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Proof. Let, by Proposition 2.1.16, the unique polynomial fy, : S — 7T in F,-[z] with

degree < s — 1 which represents I be

5—1
frlm) = bia' € Fpelal].

=0
For y,z € S and ¢ € F,, we see that

-1

frly+2) = Ly+z) = Zaz(y+z) Zaz Y +2) = L{y)+L(2) = fr)+fu(2)

=0

and
r—1 r—1
Soley) = Licy) = > asley)” = ¢y ay” =cL(y) = cfi(y).
=0 Fe=f}
By Lemma 2.1.6, we conclude that fr(z) is a linearized polynomial. 1

Example 4.1.8. In
Fys = Fos = Zolzj/(a® + x4+ 1) = {gg + ra + 0 + -+ c30°; ¢; € Lo},

where 0® +a+1=0,let S = {0,1,62,0® + 1}, T = {0,6® + &® + 1,4, %} be

subsets of Fys. Consider the linearized polynomial
L{z) =z + 2% € Fylz]
whose restriction to S is a function sending S into 7" given by

0 ifz=0o0r1,
Ls(z) =

@+’ +1 ifz=cora’®+1.
If
fu(®) = ap + a1z + a22® + a32° € Fysa]
is the unique polynomial of degree < 3 representing Ls, equating the values of fy,

and Lg over S and solving the system for the coefficients a; we get
fulz) = (&® + o)z + (0 + a?)a?,

which is not a linearized polynomial over Fys, though it is a linearized polynomial

over Fos.




35

In addition, the requirement that S is an additive group in Proposition 4.1.7

cannot be dropped, even when g = p, as witnessed in the following example.

Example 4.1.9. Let Fys = Zg[z]/(23+2+1), with a € Fss satisfying o®+a+1 = 0.
Let S ={1,2,a} and T = {0, 1, 3} be subsets of ¥ys. Clearly, S is not an additive

subgroup of Fss. Consider the linearized polynomial
L(z) =a+z° + 2% € Fplal].

‘Then L is a function from S into T since I(1) = 3, L(2) = 1, and L{a) =0.
Let fi(z) = ag + a1z + apz® € Fs:[z] be the unique polynomial representing L on

S. Solving for the coeflicients, we get

4y

e |}
a2+20¢+2¢

Qp

showing that fr(z) is not a linearized polynomial.

Next, we use Zhou’s technique, [10], to find analogues of his result for QPP’s.

Theorem 4.1.10. Let S C For, |S| = s, & o primitive element inFyr, {ap, 01, ..., 01}

a basis of By over By and § € Fy \ {0}. If

-1

@) =38 (an+aor +0 a4+ o a1 )1t € Fylal, (417)

k=0

then f(z) is an (S, f(S)) QFPP.

Proof. Since « is a primitive element of Fr, we can write
S ={a",a%,...,a"},

where iy, 99, . .., 4, € NU{0, —oo} are such that ¢; # 1; (mod ¢"—1) whenever j = k,
with the convention that = = 0 and the corresponding congruence relation is

mterpreted as —oo # 4 (mod ¢” 1) for all i, € NU{0}. By Lemma 2.1.14, we can
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take an m-sequence a = {a;}, a; € F, given by a; = Tr(8c*) (i > 0). Consider,

for i € {i1,4a,...,%s}, the numbers

r—1 ol
B,; e Z Qp i = Z&kTT(ﬁGfH-i)

k=0 k=0
1
- Z ak(ﬁak“*""': + ﬁqa(k“}'é)q + ﬁq2a(lc+i)qz RN ﬁqr_la(k-i-i)q"_")
k=0
r—1 r—1 r—1
. . T § r—13 iy gt —1
- (Z akgak) o+ (z akﬁqa’“q) (W4t (z W ) (@,
k=nl} k=0 k=0
The B;’s are distinct. For otherwise, there are u,v € {1,2,...,s} such that u # v
but
7l r—1
Z apyi, 0 = B;, = B;, = Z Bptiy O+
k=0 k=0

Since {ep, 04, ..., a,.1} is a basis of Fyr over F,, this yields
Qoyi, = Okiq, (k=0,1,2,...,7~ 1)},

which contradicts Lemma 2.1.15. Hence, |{B; ; i = i1,%2,...,85}| = s. Since B; =

Fle®) (i =iy,4,...,15), we conclude that f(z) € F-[z] is an (S, f{9))QPP. 3

Using Remark 2.1.18, we get
Corollary 4.1.11. Let S and T be subsets of Fy with |S| = |T} = s and let
f(z) € Fpr[x] be as in (4.1.7).

(9) If P(z) € Fplz] is a bijection from f(S) to T, then (P o f) is an
(S,T)QPP.

(i) If Q(z) € Fyrlx] is a bijection from S to R C Fyr and f(R) =T, then
(fo@) is an (S, TYQPP.

We next give an example.

Example 4.1.12. In

Fas 2 Zofz)/(z* + 2 + 1) = {ep + cra + 0% ¢ € Lo},
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where o® +a+1 =0, let
S={a,c*, 0’ +a,a*+a+1}, T ={a,a+ 1,02+ a,0? + 1}
be subsets of Fys. Clearly,  is a primitive element in Fys and {1, @, a?} is a basis

of Fos over F, Choose 8 =a+1€ Fls. Let R = {L,e,a+ 1,02 + 1} C Fy.

Consider the linearized polynomial

, _
f@)=> (a+ 1) (1 +a”a+ amkaz) z
k=0

= (&® + Dz + (o + a)a® + (o + a)z* € Fos[z].
By Proposition 4.1.10, f(z) is an (R, f(R))QPP, with
fW=ao?+1, fla)=c?+a, fla+)=a+1, fa?+1) =0,
i.e., f(x) is an (R, T)QPP. Take a bijective function ¢ : S — R given by
fl ifr=a®’+a+l,
a if z=0a+a,

a+1l ifz=d?

ko.:z +1 ifz=aqa.
By Proposition 2.1.19 and directly computation,
Pz =a+z+2* + (® + )z’ € Fylg]
is the unigne polynomial of degree < 3 representing g. By Corollary 4.1.11, we
have
(foP)(z)=("+a)+ (@®+ Dz + (a+ 1)z’ + (a+ Dad + (& +a+ 1)z°
+ (o + a)z® + (o + 1)z
= (o’ +a) + (a+ D)z + (@+ )2 + (o + 1)z + (o® + 1)2°
+ @@+ a+1)® (mod 2% — 1)

is an (S, T)QPP.
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Our next theorem is an analogue of Theorem 2.1.8 for QPP’s.

Theorem 4.1.13. Let S be a nonempty additive subgroup of F, and U

=Fp — S-e) i > j = 0, where

§9-7) = (477 5 € §\ {0}}.

Then

flz) =27 — aa?

is an (S, f(S)) QPP for all e € U\ {0}.
Proof. For a € U\ {0}, we have 0 # o ¢ $@'~9). Since
flz)y =17 ~ aa? =27 (277 - a),
f(z) has only one root 0 in § and the result follows from Theorem 4.1.1. ]

Corollary 4.1.14. Let 0 < i < r be an integer, S a nonemply additive subgroup
of Fpr and U = Fpp — S&-1, where S0 = {1 8 € §\ {0}}. Then f(z) =
2% — ax is an (S, f(S))QPP for alla e U\ {0}.

Proof. Tt follows immediately from Theorem 4.1.13 by using § = 0. 0

Example 4.1.15. In
Fas 2 Tofz]/(z* + 2+ 1) = {co + cra + c20® + c30°; ¢; € Zy},

where o + a+ 1 = 0, let S = {0,0,0%,0® + a} be a subset of Fye and U =
Fye — S@~2) = Fyy — S®). We have S® = {0,1, 0%, o +®}. By Theorem 4.1.13,
f(z) = 2* — az is an (S, £(S))QPP for each a € U \ {0}.
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4.2 Monomials and binomials

Regarding monomials and binomials, the following proposition is basic and

its easy proof is omitted.

Proposition 4.2.1. Let SCF,.

(9 f(z) ==z is an (S, S)QPP.

(1) If S is closed under multiplication, then f(z) = ax is an (S, S)QPP for
each a € S\ {0}.

(#é4) If S is closed under addition, then f(x) = z + b is an (S, S)QPP for
each b e 5.

(#0) Every linear polynomial f(z) = az-+b € F,[z] (a # 0) is an (S, £(S))QPP.

Concerning monomials, the following criterion is useful.

Theorem 4.2.2. Let d be a divisor of g—1. Assume that S is a cyclic multiplicative
subgroup of ¥, with |S| = . Then f(z) = 2™ is an (S, S)QPP if and only if

ged (m, 51) = L.

Proof. Writing S = (a) in terms of its generator a, we have

-1 —
ged (m, ?_c_i_) =1 <= (a™) is a cyclic subgroup of F, \ {0} of order g 7 !

<=3 (&) ={a) =5

<= f{z) = ™ is an (S, S)QPP.
L]

Corollary 4.2.3. Let g = p" and let d be o divisor g—1. Assume that S is a cyclic
multiplicative subgroup of Fy with |S| = 1. Then for each j € {0,1,...,n — 1},
f(x) =2? is an (S, S)QPP.
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Proof. By Theorem 4.2.2, it suffices to verify that gecd (p7, “’—?) = 1. Should

ged (p7, 51) # 1, then p | 252, a contradiction. 0

For binomials, we have the following general results.

Theorem 4.2.4. Let 0 € S C F, and let f(z) = 2 — az?, where i > j > 1 and
a€F,\ {0}

() If a € S = {aiF;ae S}, then f(z) is not an (S, F(S)) QPP.

(i) f(z) is an (S, F(S)) QPP if and only if a ¢ {yj Loy € Sy z} =
8L

(#i5) Let e = ged(4,j), ¥ =ife, 7' = j/e. If S is closed under multiplication,
then f(z) is an (S, f(S)) QPP if and only if ged(e,q ~ 1) = 1 and h(z) = =¥ — ez’
is an (S, h{S)) QPP.

Proof. (i) Let 8 € S\ {0} be such that a = §°7. Thus

f(B) = BB —a) = 0= F(0),

showing that f is not injective on S.

(i1) Assume that a € S(z’j) je. a= L% forsomey,z € S, y # 2. Then

yd izt

fla) =4 - (y . z) o =g ( T -2) - ('~ zz)) (4.2.1)

gl — 2l y.?-z.?

Substituting z == y and x = 7 in (4.2.1), we get that f(y) = f(2). Hence f(z) is
not an (S, f{8))QPP. Conversely, suppose that there exist b,c € S, b # csuch that
#() = £(c). Then -

b —ab = f(b) = f(c) = ¢ — ad,

i-7)
5 .

sob' — ¢ = a(l! — /) implies that a = g;:;
(iii) We have f(z) = (h o g}(z) where h(z) = 7' — az’ and g(z) = z°. By

Theorem 2.1.4(ii), g(z} is a PP of F,; if and only if ged(e,¢—1) = 1. Since S is closed
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under multiplication, then g(x) is an (5, S)QPP if and only if ged{e,q¢ — 1) = 1.

Using Remark 2.1.18, the proof is completed. ]

When a ¢ S}, there are polynomials f(x) = *—ax? which are (S, f(S))QPP

as well as those which are not, as shown in the following example.

Example 4.2.5. In
Fi2 2 Zsla]/(2* +1) = {co + 10 ¢; € Zs},

where o® +1 =0, let S; = {0,2, + 1} and S3 = {0,2, @ + 2} be subsets of ;.
Consider the binomial

f(z) = 2® — 2% € Fyla].
Clearly, 1 ¢ S® 2 and 1 ¢ S, Since £(0) = 0,f(2) = 1 = f(a + 1) and
fle %2) = o+ 2, we see that f(z) = z® — 2® is not an (S, f(S:))QPP but it is an
(52, £(52))QPP.

The next proposition is obtained immediately from Theorem 2.1.4(ii).

Proposition 4.2.6. Leti ¢ N, ¢ € F, and S C F,. If ged(i,q — 1) = 1, then
f(z) =2* —a is an (S, F(S))QPP.

4.3 Other forms

Next, by using Remark 2.1.18 about compositing functions, we derive other

forms of QPP’s.

Proposition 4.3.1. Let S be o nonempty subset of ¥, with closed under
multiplication and i € N such that ged(i,q — 1) = 1. If g(z) € F,[z] is an
(S,9(S))QPP, then f(x) = g(z*) is an (S, f(S)) QPP.

Proof. It follows from Theorem 2.1.4(ii) and Remark 2.1.18. O
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Proposition 4.3.2. Let S,T C F, with |S| = |T|, i € N such that ged(i,g—1) = 1
and u a positive divisor of q— 1. Let g(z) € F,[z] be such that g(z*) has no nonzero
root in F,. Then f(z) = = (g(z'))"™V* is an (S, f(S))QPP. And if h(z) is an
(F(S), TY)YQPP, then (ho fY{z}=h (:1:5 (g(xi))(q—l)/i) is an (S, TYQPP.

Proof. From Theorem 2.1.11, we get that f(z) is a PP of F,, so f(z) is also an
(S, f(S))QPP. The second part holds from Remark 2.1.18. 0






