CHAPTER IV

CONCLUSION

Let X be a Banach space C is nonempty compact convex subset of X let $T:C\to C$ be a asymptotically nonexpansive type, we obtain the following results:

- 1. X satisfying Opial's condition $T:C\to C$ is a uniformly continuous mapping of asymptotically nonexpansive type. Suppose also $\{x_n\}$ is a sequence in C converges weakly to x and for which the sequence $\{x_n-Tx_n\}$ converges strongly to 0. Then $\{T^nx\}$ converges weakly to x.
- 2. X satisfying the locally uniform Opial condition, C is nonempty weakly compact convex subset of X and $T:C\to C$ is uniformly continuous mapping of asymptotically nonexpansive type. Then I-T is demiclosed at zero.
- 3. X is a Banach space satisfying the locally uniform Opial condition, C is nonempty weakly compact convex subset of X and $T:C\to C$ is an asymptotically nonexpansive mapping. Then I-T is demiclosed at zero.
- 4. X satisfying Opial's condition and whose norm is UKK and C is nonempty weakly compact convex subset of X, and $T:C\to C$ is a uniformly continuous mapping of asymptotically nonexpansive type. Then I-T is demiclosed at zero.
- 5. X is a Banach space satisfying Opial's condition and whose norm is UKK and C is nonempty weakly compact convex subset of X, and $T:C\to C$ is an asymptotically nonexpansive mapping. Then I-T is demiclosed at zero.
- 6. X is a Banach space such that D(X) < 1, that K is closed bounded convex subset of X, and that $T: K \to K$ is an asymptotically nonexpansive type mapping and weakly asymptotically regular on C. If $\{T^{n_k}x\}$ is a subsequence of $\{T^nx\}$ converges weakly to $x \in K$, then $\limsup_{k \to \infty} \|T^{n_k}x x\| = 0$.

7. X is a Banach space such that D(X) < 1, that C is a nonempty closed bounded convex subset of X, and $T: C \to C$ is continuous of asymptotically nonexpansive type mapping and T is weakly asymptotically regular on C. Further, suppose that there exists a nonempty closed convex subset K of C with the following property (ω) :

$$x \in K$$
 implies $\omega_w(x) \subset K$,

where $\omega_w(x)$ is the weak ω -limit set of T at x; that is, the set

$$\{y \in X : y = weak - \lim_{i} T^{n_i}x \text{ for some } n_i \uparrow \infty\}.$$

Then T has a fixed point in K.

- 8. X is a Banach space such that D(X) < 1 let $T : C \to C$ be an asymptotically nonexpansive mappings. Suppose there exists a nonempty bounded closed convex subset of K of C with the property(ω). Then T has a fixed point in K.
- 9. X is a Banach space such that D(X) < 1, let C be a bounded closed convex subset of X, and suppose $T: C \to C$ is a continuous mappings of asymptotically nonexpansive type. Then T has a fixed point.
- 10. X is a Banach space which is uniformly convex in every direction and for which D(X) < 1 and that C is a closed bounded convex subset of X. Then, if $T: C \to C$ is a continuous mappings of asymptotically nonexpansive type, T has a fixed point.
- 11. X is a Banach space with a weakly continuous duality map J_{φ} , C is a weakly compact convex subset of X, and $T:C\to C$, is an asymptotically nonexpansive type. Furthermore, suppose that there exists a nonempty closed convex subset K of C with the following property (ω) :

$$x \in K$$
 implies $\omega_w(x) \subseteq K$

where $\omega_w(x)$ is the weak $\omega - limit$ set of T at x; that is, the set

$$\{y \in K : y = weak - \lim_{i} T^{n_i} x \text{ for some } n_i \uparrow \infty\}.$$

Then T has a fixed point in K.

- 12. X is a Banach space with a weakly continuous duality map J_{φ} , C is a weakly compact convex subset of X, and $T:C\to C$, is an asymptotically nonexpansive type. Then T has a fixed point in C.
- 13. X is a Banach space with a weakly continuous duality map J_{φ} , C is a weakly compact convex subset of X, and $T:C\to C$, is an asymptotically nonexpansive mapping. Further, suppose that there exists a nonempty closed convex subset K of C with the following property (ω) :

$$x \in K$$
 implies $\omega_w(x) \subseteq K$

where $\omega_w(x)$ is the weak $\omega - limit$ set of T at x; that is, the set

$$\{y \in K : y = weak - \lim_{i} T^{n_i}x \text{ for some } n_i \uparrow \infty\}.$$

Then T has a fixed point in K.

14. X satisfying Opial's condition and let T be a mapping of asymptotically nonexpansive type on C. Let $\{x_n\}$ be a sequence in C which satisfies the following condition

$$w - \lim_{n} T^{m} x_{n} = z_{m}$$
, for all $m \ge 0$.

Then $\lim_{m\to\infty} b_m = \inf\{b_m : m \ge 0\}$, where $b_m = \limsup_{n\to\infty} ||T^m x_n - z_m||$.

- 15. X is a Banach space satisfying the uniform Opial condition, C is a nonempty weakly compact convex subset of X, and $T:C\to C$ is continuous of asymptotically nonexpansive type mapping. Then T has a fixed point.
- 16. X is a Banach space satisfying the uniform Opial condition, C is a nonempty weakly compact convex subset of X, and $T:C\to C$ is an asymptotically nonexpansive mapping. Then T has a fixed point.

- 17. X is a Banach space satisfying the uniform Opial condition, C is nonempty weakly compact convex subset of X and $T:C\to C$ is an asymptotically nonexpansive type. Then given an $x\in C$, $\{T^nx\}$ converges weakly to a fixed point of T if and only if T is weakly asymptotically regular at x.
- 18. X is a Banach space satisfying the uniform Opial condition, C is nonempty weakly compact convex subset of X and $T:C\to C$ is an asymptotically nonexpansive mapping. Then given an $x\in C$, $\{T^nx\}$ converges weakly to a fixed point of T if and only if T is weakly asymptotically regular at x.
- 19. X is a Banach space with a weakly continuous duality map J_{φ} , C is a weakly compact convex subset of X, and $T:C\to C$, is an asymptotically nonexpansive type. Then if T is weakly asymptotically regular at $x\in C$, then $\{T^nx\}$ converges weakly to a fixed point of T.
- 20. X is a Banach space with a weakly continuous duality map J_{φ} , C is a weakly compact convex subset of X, and $T:C\to C$, is an asymptotically nonexpansive mapping. Then if T is weakly asymptotically regular at $x\in C$, then $\{T^nx\}$ converges weakly to a fixed point of T.
- 21. X is a reflexive Banach space with weakly continuous duality map and uniformly Gâteaux differentiable norm. Suppose in addition T are weakly asymptotically regular and completely continuous. Then $\{x_n\}$ converges strongly to a fixed point of T.
- 22. X be a Banach space with a uniformly Gâteaux differentiable norm such that D(X) < 1, that C is a closed bounded convex subset of X, and that $T: C \to C$ is an asymptotically nonexpansive mapping. Then, a mapping S_n on C given by (3.3.1) has a unique fixed point x_n in C. Further, if T is weakly asymptotically regular and completely continuous, then $\{x_n\}$ define by (3.3.2) converges strongly to a fixed point of T.

- 23. X satisfying Opial's condition and whose norm is UKK. Let C be weakly compact convex subset of X and let $T:C\to C$ be an uniformly continuous of asymptotically nonexpansive type and which is asymptotically regular at the point $x\in C$. Then the iterates $\{T^nx\}$ converges weakly to a fixed point of T.
- 24. X satisfying Opial's condition and whose norm is UKK. Let C be weakly compact convex subset of X and let $T:C\to C$ be an asymptotically nonexpansive mapping such that T^N continuous for some $N\geq 1$ and which is asymptotically regular at the point $x\in C$. Then the iterates $\{T^nx\}$ converges weakly to a fixed point of T.

