CHAPTER II
PRELIMINARIES

2.1 Normed and Banach spaces
Definition 2.1.1 Let X be a linear space over the field R. A function ||| : X — R is
said to be a normed on X if it satisfies the following conditions :
1) Jlz]| =0, Vz e X
(i) fiz]l=0¢=2z=0
(i) Yo+ vl <zl + 1yl Yo,y € X (the triangle inequality)
(iv) ezl = lo|llzll, V2 € X and Va e R
A linear space X over R with norm |-} defined on X is called a normed linear space or

simply a normed space over R, written (X, [I-[|) or stuply X.

Definition 2.1.2 A normed space X is called complete if every Cauchy sequence in X

converges to a vector in X.

Definition 2.1.3 A complete normed linear space over field R is called a Banach space
over R.
A normed linear space carries a natural metric, namely, the distance d: X xX -~ R

defined by taking
d(z,y) = llz - yli
Taking o = —1 in (iv) and combining this with (iif) instantly gives

lz - yll < ltwil + iyl

and the triangle inequality for d follows from this.




Definition 2.1.4 A Banach space is a normed linear space (X, ||-l) which is complete ‘

relative to the metric d defined above.

Definition 2.1.5 Let X be a linear space over the field R. A function (-,-) : XXX — R
that assigns to each ordered pair (2,4) of vector in X a scalar {z,y) is said to be inner
product on X if it satisfies the following conditions:

i) (z,z) >0, Yz e X and (z,2) =0 x:=0

(i) (&Y =@z, Ly eX

(i) (aw,y) = afz,y), Yo,y € X and Ve € R.

(iv) (z+y,2)= (22 +{y2 VY2 € X.
The scalar (z,%) is called the inner product of z and y. A linear space X equipped with
an inner product {-,-) defined on X is called inner product space. We also see that an

inner product on X relative to the norm on X given by |lz]l = /{2, y) and the metric d
on X given by d(z,y) = llz —yll = /(& =y 2 — y) forall z,y € X

Definition 2.1.6 A Hilbert space is a complete inner product space.

Definition 2.1.7 Let X = (X,d) be a metric space. A mapping T : X — X is called a

contraction on X if there is a positive real number o < 1 such that for all z,y € X

d(Tz,Ty) < ad(@,y).

Theorem 2.1.8 (Banach contraction mapping principle) Consider a metric space
X = (X,d). Suppose that X is complete and let 7' : X — X be a contraction on X.
Then T" has a unique fixed point.

Proof. See [13].



Definition 2.1.9 A bounded convex subset of K of a Banach space X is said to have
normal structure if every bounded, convex qubset H of K that contains more than one

point contains a point Zg € H such that

sup {lzo —yll :y € H} < diam(H).

Definition 2.1.10 A Banach space X is said to have normal structure if every bounded,

convex subset of X has normal structure.

Definition 2.1.11 The Banach space X is said to be uniformly conver whenever given
£ > 0 there exist & > 0 such that if z,y € S{X) where S(X)={zeX:|z|=1} and

llz — yl Z e then {[%5*

| <1-6.

Definition 2.1.12 A normed linear space £ 1s uniformly convex in cvery direction
(UCED) if and only if for every nonzero member z of B and £ > 0, there exist a 6 > 0

such that |\ < ¢ if [lzf = |yl =1, z —y = Az, and =2l > 1 4.

Theorem 2.1.13 (cf[9]) Compact convex sets have normal structure.

Theorem 2.1.14 (cf20}) If X is a UCED Banach space then X has a normal structure.

2.2 Fixed point theorems for nonexpansive mappings
Tn this section we establish a fixed point theorems for nonexpansive mapping applying

to a uniformly convex Banach space and normal structure.

Definition 2.2.1 Let X = (X,d) be a metric space. A mapping T:X — X is called a
nonexpansive on X if

d(Tz, Ty) < d(z,y)



for all z,y € X.

Definition 2.2.2 A subset C of a weakly topological space X is called weakly compact

if every open cover of C has a finite subcover.

Theorem 2.2.3 (cf[10]) Let X be a Banach space, C a weakly compact set in X, and
T . — ¢ anonexpansive mapping. If C has normal structure then T has a fixed point

in C.
Proposition 2.2.4 (cf[9]) Every uniformly convex Banach space is reflexive.

Corollary 2.2.5 (cf{9}) If C is a nonempty closed bounded convex subset of a uniformly

convex Banach space, then every nonexpansive 7' : C — C has a fixed point.

Theorem 2.2.6 (cf[12]) Let X be a reflexive Banach space. Suppose K is a bounded
closed convex subset of X which has normal structure. Then any nonexpansive mappings

T : K — K has a fixed point.

Definition 2.2.7 Let X be a Banach spaces. A mapping T : X — X is said to be h-non
expansive for h > 0if {|Tz — Tyl < max {||z —yl|,»} for z,5 € X.

Theorem 2.2.8 (cf[9]) If K is a nonempty closed bounded convex subset of a Banach

space X and if T': K — K is h-nonexpansive mapping then inf {le — Tzl :z€ K} < h

Definition 2.2.9 Let K be a nonempty closed bounded convex subset of a Banach
space X and let T: K — K be a mapping, for some h > 0 and p > 0, the condition
Tz —Ty| < hllz—ylIf (2.9 € K) is said to be Holder condition.



Theorem 2.2.10 Suppose K is a nonempty closed bounded convex subset of a Banach
space X and suppose T : K — K satisfies the Holder condition for some h.p € (0,1).
Then inf {|}z — Tz|| : & € K} < AT,

Proof. See[9).

As we have seen a nonexpansive mapping is h-nonexpansive for any kb > O,that is, if
T . K — K is nonexpansive then T' is 1_nonexpansive and moreover there exists z € K

such that ||z — Tz| < £ ¥ n € N. We have the following.

Lemma 2.2.11 Let K be a nonempty closed bounded convex subset of a Banach space
X. 1 T: K — K is a nonexpansive mapping, then inf {llz—Tz||:z € K} =0.
Proof. See [9].

Lernma 2.2.12 ( Goebel-Karlovitz ) Let K be a subset of a Banach space X which is
minimal with respect to being nonempty weakly compact convex and T invariant for some
nonexpansive mapping 7', and suppose Zn & K satisfies nl}_r}go @y — Tl = 0. Then for
each z € K, r}iz}goilx — .|| = diam(K).

Proof. See [9, p.212].

Theorem 2.2.13 (cf[1]) Let C be a nonempty, closed, bounded, convex set in a (real)

Hilbert space H. Then each nonexpansive map 7. C — C has at least one fixed point.

2.3 Fixed point theorems in metric spaces
Definition 2.3.1 A metric space (X, d) is conves if for each z,y € X withz#£y there
exists 2 € X, v # # s y, such that d{z, z) + d(z,y) = d{z,y)



Lemma 2.3.2 Let K be a closed subset of a complete and convex metric space (X.,d). .

If z € K and y ¢ K, then there exists a point z € 0K { the boundary of K) such that

d(z, z) + d(z,y) = d(z,y).

Tn this section we introduced two fixed point theorerns for self mappings of com-
plete metric spaces by Rashwan and Sadeek {16]. Let @ denote the class of function

$ : [0,00) -—— [0,00) which satisfy the condition ¢(t) = 1", 1 € N for every t 2 0

Theorem 2.3.3 Let § and T be the mappings of complete metric space (X, d) into itself,

and ¢ : [0,00) — [0,00) satisfying the following statements:
(i) ¢ is coutintous and strictly increasing in R

(i) ¢(t) = 0 if and only if t = 0, and if a,b, and ¢ are decreasing funetions from
R+ U {0} into [0,1] such that a(t) + 2b(t) + c(t) < 1 for every t > 0 and suppose that S

and T satisfy the following condition:

$(d(Se, Ty)) < oldle,y)¢(d(z,85)) + bld(y, Ty)) [b(d(z,9)) + $ld(S2; Ty))]
+e(d(@,y)) min {g(d(z, Ty)), $(dly; S2))}

where 2,y € X and z #y. Then 5 and T have a unique fixed point in X.

Definition 2.3.4 Let (X, d) be a metric space, and let S and f be self mappings of X.

Then S and f are said to be weakly commuting at a point x if
d(Sfz, fSx) < d(Sz, fz).

Definition 2.3.5 Let S and f be self mappings of X. Then S and f are said to be com-

patible if lim d(Sfzn, f5z,) = 0 whenever lim Sz, = lim fx, =1 for somet € X.
-0 T+ 00 T—rO0



Theorem 2.3.6 (cf[15]) Let (X, d) be a complete convex metric space, K a nonempty
closed subset of X and let S and T be self mappings of X with S or T' continuous and
8K C S(K)NT(K). Suppose that f and g are mappings from K into X which satisty

(a) F(K)N K C T(K) and g(K) N K C S(X),
(b) (S, f) and (7', g) are two pairs of compatible mappings,
(c) there exists a lower semicontinuous function & : (0,00) — (0,00) such that for any
£>0,8(c) >eand for z,y € X, e < M(z,y) < 5(e)
imply d(fz,gy) < € where M(z,y) = max d(Sz, Ty), d(Sz, fx), dTy, 99)},
(q) for every z € K, Tz € 0K = gz € K and Sz € 9K = fr € K,
(e) for every z,y € K,
(i) Tz € 0K, Sy € K and d(Sy, Tx) + d(T'z, fy) = d(Sy, fy) = d(Tz,gz) <
d(Sy, fy) and
(ii) Sw € 0K, Ty € K and d(Ty, Sz} + d(Sz,gy) = d(Sy, fy) = d(Sz, fz) <

d(Ty, gy)-

Then all of the f,¢,S and T have a unigue common fixed point.

2.4 Banach Limits
In this section we give Banach limits which useful for the next chapter.
Definition 2.4.1 Let I be a space of all bounded over filed R. A linear continuous
functional ;i : I — R which we denote u(a) by p(z,) is called a Banach limit if
(1) u(z) > 01if (z,) >0 farallne N
(2) ple) =1 = ||| where e = {1,1,..}

(3) p(zn) = p(@ny1) for each x = {z1,Z2,...} EI%

Theorem 2.4.2 (cf{19]) There exists a linear continuous functional f on [ such that

liell = u(1) and p(2a) = p(Ens) for cach & = (1,22,...) € I°
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Theorem 2.4.3 (cf[19}) Let p be a Banach limit. Then
inf {z, : n € N} < pfz) < sup [z, :n € N}

for every & = (1, B2, ...) € {*and T, — ¢ which e € R, Tt follows that p(zs) = wlz) =c.

2.5 Boundary conditions

The following boundary conditions have been particularly useful in extending fixed
point theory for non-self mappings:
Definition 2.5.1 Let K be subset of a Banach space X. A mapping T K — X satisfies
Rothe’s condition if T(OK) C K .

Definition 2.5.2 Let K be subset of a Banach space X. A mapping T: K — X is said
to be inward condition if Tz € [ k(x), forall z € K

where I(z) = {z e X1z=a+ My~ z), for some y € I and A 2 0}.

Definition 2.5.3 Let K be subset of a Banach space X. A mapping T : K — X is sald

to be weakly inward condition if Tz € I «(z) for all z € K where [ x(z) is a closure of

Definition 2.5.4 Let K be subset of a Banach space X. A mapping T:K —» X
satisfies Leray-Schauder’s condition if the intK # 0 then there exists a z € intK such

that Tz — 2 # m(x — 2) for & € 9K and m > L.

Remark 2.5.5 It is well known that there hold the following:
Rothe’s condition==>inward condition=>weakly inward condition===Leray-Schauder’s

condition(in case intK # 0).
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Theorem 2.5.6 (cf[14]) Let K be a closed subset of & Banach space X and T: K — X
o contraction satisfying one of the following:

(i) TOK) < K .

(i) T is weakly inward.

(iii) 0 € IntK and Tz # mz for all z € 8K and m > 1.

Then T has a unique fixed point.

Definition 2.5.7 A subset K of a Banach space X is said to be star shape if there exist
a point To € K such that txo -+ (1—t)z € K forany ¢ € (0,1) and = € K, where o is

called a center of K.

Theorem 2.5.8 (cf[14]) Let X be a Banach space, K aclosed subset of X, and T : K — X
a nonexpansive mapping such that K is bounded and one of the following hold:

(i) K is star shape and T(OK) C K .

(i) K Ais gtar shape and T is weakly inward.

(iii) 0 € IntK and Tz # mz for all z € 8K and m > 1. Then there exists a bounded

secquuence {z,} in K such that [|@, — T(x,)|| — 0 as n — 0

Theorem 2.5.9 (cf[14]) Let X be a uniformly convex Banach space, K a closed bounded
convex subset of X, and T: K — X a nonexpansive mapping satisfying one of {1)-(iil) of

Theorem 2.5.6. Then T has a fixed point.

Definition 2.5.10 A sequence {x,} satisfying |Zn — T{@n)ll — O asn— o0 is called an

approzimate fized point sequence.





