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CHAPTER 111

MAIN RESULTS

3.1 Fixed point in metric spaces
Tn this section we establish a common fixed point theorems in 2 complete metric
gpaces which improve a generalization of the fixed point theorems by Rashwan and Sadeek

16].

Theorems 3.1.1 Let (X, d) be a complete convex metric space, K be a nonempty closed
subset of X. Let 5,71 K — X be a non-self mapping such that T(0K YUS(QK) C K
and ¢ : [0,00) — [0, 00) satisfy the following:

(4) ¢ is continuous and strictly increasing in R™;

(4) ¢(t) = O it and only if £ = 0, and if a,b and ¢ are three decreasing functions from
R+ U {0} into [0, 1) such that a(t) + 2b(t) +c(t) < 1, for all £ > 0. Suppose that S and T

satisfies the following condition

1d(Sz,Ty)| < a(dz,y))(d(z,y)) +bld(z,y)) (i, Sz) + Sy, TY)]
+e(d(z, y)) min {$(d(x, Ty), (dly, 5z)} - (1)

Then S and T have a unique common fixed point.

Proof. Let zo € K and {@,} be a sequence in K and {y} be a sequence in X which
satisfying
(I) for any n € N,
Yons1 = T2 and
Yo = STza—1-

(I1) Let yon € K and Yan1 € K we can represent that Yo, == Fan and Yony1 = Tont1, UDIESS

as it occurs, that is, yon € K and yons1 € K. It follows that there exists Tons1 € oK
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such that d (Yon, Tont1) + A Z2ns1s Yoni1) = @ (Yon, Yonts) and another case, if y2, ¢ K and
Yont1 € K then there exists , 75, € 9K and d (Yan—1, Ban) + AZan, Yan) = d (Yon—1, Yon)-

Fut

P(} - {yZn € {’yn} Yo = :EQn}:
Pi = {¥2n € {Yn} : Yon F Tont s
QO - {y2n+1 = {yn} Yot = :E'.Zn-%-l} ’

Ql il {y2n+1 € {yn} Y+ 5& $2n+1} .

We prove the following three lemmas before using them in this theorems.

Lemma 3.1.2 Let ¢, = d (¥n, Ynsr) for any n € N. Then {e,} is a strictly decreasing
gequence.

Proof. Case 1 If ys, € Pp and yon41 € Qo then Yo, = Top a0d Yony1 = Ton+]

Note that

plesn) = &(d(Yon Yonr1)) = 6 (d (S22n-1,TT20)) (2)
ald(Tan-1, B2 )) $(d(T2n—1, B2m))

+-b{d(Tan1, T2n)) [E{d(Tan—1; Stopet) + Pld{an, Taon)]

+e(d(Zgn-1, Ton) ) 100 {H(d(T20-1, T2 )y O(A(Zons STon—1)}

= a{d(@on-1, 920)) $(HT2n-1,%20))

+b(d(Zomry T2 )) | H(A(Yon—ts Y2n) + A (Y20 Yorr1) |

(@1, T2n)) i {(A(Z20-1, Y2rr1)> $(Y2n, Y2u )}

0(d(Y2n1 Yon) ) (A(Y2n-1,Y20))

B(A(Y2n-1, Y2u)) [S(d(Yan15 Y20) + S(d(Yams Y2nr1)] (3)

IA

IA

By (3), we have




1— b(d(y2ﬂ,—~1: y%t))qs (d (y2n1 y?ﬂ-”-)) -

< [a(d'(an—h fQ’Zn)) + b(d('yiln—l, y?ﬂ))] [¢(d(y2n~1n yZn)]

Then,
a(d(anmls nyn)) + b(d(?&nwla yﬁn) )l
d 115 T S d Te— i 13
o) s | AL COS (g4 )
Since
a(d(QZn-—l:y%z)) St zb(d(yZR——h yZn)) + c(d(yEn-—la 'an)) << 1=
We have

(L(d(y%——l: y?n)) = Qb(d('y%—lu ?}2n)) —

So that a{d(yon—1, Yen)) + 8(d(Yone1, Y20)) < 1= b{d(g2n1, Yan)) < 1.
Therefore @(GZTL) i (/5 (d' (y2n7 y2n+1)) < ¢’(d(y2n-»~1: yﬁn) =5 qb(e?n—l)-

Since ¢ is a strictly increasing function, we obtain €, < €n-1.

14

(4)

(5)

Case 2 If Yo, € Fp and Yonp1 € Q, then ya, = %o, and there exist Tone € OK with

Yorr1 # Boni1800 d{Tan, Toni1) + A(Tonsr, Yont1) = @ (Ton, Yoni)-

Note that,

dlem) = ¢ (d(Wamynin)) = (d(Son1,T02))

a(d(@an—1, T2n)) ${d(Z20-1, Z20))

b(d(@2n-1, T20)) [(A(T2n1,ST2—1) + $(A(T20, T 020 )}
el d(Tant, Tan)) 100 {$(d(@2n1, T2n ), (A(T2ns TT2n-1)}
a{d(¥an—1,Y20))$(AY2n-1, Y2n)

b(d(Y2ne1s Yom)) [$(A(Y2n15 Y2) + H(A(Y2ns Yont1)]

+e{d(1fan—1, Yon ) WD {H(d(Y2n-1 Yorr1 )y DA (Yan, Yon) } -

A

(AN
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50,
1~ b(d(y?.n—~11 y2n))¢ (d (y‘Zna y2ﬂ+1))

S [a(d(ann-«han)) -+ b(d(yzn-ﬂialy,?n))] {¢(d(y2nmiay2n)] .

Then,

@) < |2t LU I (0 )] (D)

Since a(d(Yan—1>Y2n)) + 26(d(Yon—10Yn)) + c(d{yan—1:Y2n)) < 1 , we have

a(d(yan—1, Yon)) -+ 20(d(Yon—1,¥20)) < 1

S0 a(d(yan-1>Yon)) + BAY2n1,¥20))< 1 = b(d(y20-1,920)) < 1-

Therefore d(esn) = ¢ (d (Yans Yonr1)) < B(d(Yon—1,Y20) = Slern=1)-

Since ¢ is a strictly increasing function, we obtain eg, < €2n-1-

Therefore {e,} is a strictly decreasing.

Case 3 If ¢, € P and yzap1 € Qo then there is x, € 0K, Yon 7 Ton: Yons1 = L2041
Note tliiat Yon—1 € Qo and there is a point, and Yo == STon-1 € T(OK)US(OK) C K
such that

A (Yon-1,B2n) + AZan, Y2n) = d (Yan—1,Yon) -



Consider,
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(;5(62”) = ¢ (d (y2n7y2n+1)) = (Ib (d (S$QRM11T$2T%))

[\

G(d(ivzn_l ) 53271)) P(d(z2n-1, 3:2“))

+b(d($2n—11 $2n)) [d)(d(anwl s S$2n~1) -+ ¢(d(w2n: TxQn)]

- e(d(Zanets Zan)) 00 {P(d(T2n1, T820), H(d(Z20, Ston-1)}

A

a'(d(m%z_l 3 Lon ) ) ‘;b(d(’y?n-—l 3 an))

(M Zon1, Tan)) [(d(@an-1, Yon) + ¢{d(E20, Yor+1)]

+C(d($2nwz, CEgn)) min {Qf’(d(x%mmla yﬂn+l)a ¢(d(m2n: an)}

IA

a(d(ﬁznml s mzn))(}ﬁ(d(anml? y2n)}

b (A(Z3n15 Z20)) [ G2n1Y20) + DA Y20 Y1)

“}“C(d(.’ﬁgnwi, :Li’n)) min {(p(d(q@nwl 3 ?]271*%“1)9 d)(d(.’lﬂ'gﬂ,, an)} (8)

We now consider in case Hd(Tont, Yoms1) = H(d(on, Yon )-

Then min {${d(@2n—1, Yon+1)s D d(Tans Yon) } = H(A(T2ns Yon) and from (8), we have

QS(eZn) -

<

IA

This implies that

¢ (d (yan, Y2ni1))

a{d(@an1> D2n)) H(AY2n-1, Yon))

+b(d(@an1, Tan)) [B(a01 Y2n) + B(AY2ns Yoni1 )]
+e(d(Tan— 15 B20) ) H(A(T2n; Yor)

a(d(Ban—1, T3n))$(d(Y2n—1,Y2n))

b(d( 301, T20)) [S(d(Yon-15 Y20) - D(A(Y2ns Yar1))

+¢(d(Tan1, T2n) ) P(A(Y2rs Y2nt1)-

(1 — b{d(T2n-1, F2n)) — (A(Ban—1, F2n) )} @ (d (Y2n, Yon+1))

< a(d(x‘znml:w?n)) + b(d($2n_~1, 532n)) [¢(d(yzn_1a ygn)] .




Since a(d(Zan—1, T2a)) + 2b(d(Fan—1, T2a)) + e(d(Zan—1,%2,)) < 1, we have

a(d(@an_1, T25)) + b(d(Lan—1: T2n)) <1
1 — b{d{Zan—1, Tzn)) — (A(@2n1,Ton)) '

Therefore ¢ (d (Yon, Yont1)) < @ (d(yan—1,Y2n))-

On the other hand, if d(d{Tan—1,Y2n41) < H{d{Z2n, 4jan), then from (8) we have

§b(€2n) S ¢ (d (an, Ziﬁn+1))
a’(d(m%—l s Zom ) )O{A(Y2n—1, y2n))

A+b(d(Tan1, Ton)) [H(A(Yan-1, Yon) + S(A(Yons Yon+1))

i

+e(d(@an-1, Ton)) (A D21, Yoms 1)

a{d(Tan-1, Ton))H{AY2n—1, 20))

+b(d(Zan1, T2n)) (DA (W01, Yon) + A Yons Yon1)]
+o(d{Tonar, Ton) ) H{A(20, Y2n)

a{d(Zan—1, 220) ) $(A(Y2n-1, Y2n))

+b( 21, Tan)) [H(A(Yon-1Y20) + DAY Yon)]

+C(d(x2n— 11 m2n))¢(d(y2n: y2n+l)'

IA

A

We implies that
[1— b(d{Zan—1, Zon)) — c(d{®gn-1, Ton))| ¢ (d(yﬁn'}y?n%‘l))

§ a(d(m%zwla 33211.)) o b(d(fﬁznmb mZn)) [d’(d(y%n-—-i: y?m)} -

Since a(d(zan—1,%m)) + 2b(d(z2n-1, 2n)) + c(d{Tan—1,%m)) < 1, we have

a(d(an——l’ 37213)) + b(d(a"?n—l’ 3"27&))
1 - b(d(x%b—h xﬁn)) . C(d(l‘zn_l, -7:291.))

Therefore ¢ (d (yZm y‘Zn—H)) < qﬁ (d('y‘Zn-w«la yQﬂ))'

Since ¢ is increasing, we have A (42ms Yonr1) < A(Yan—1, Yon)s 1€ €2 < €2

< 1.

Hence {e,} is a strictly decreasing sequence.

17
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Case 4 If 2, € Piand yony1 € Qrthen yon £ Top a0d Yo i1 # Tonpr Such that oz, € oK
and Tz, € K. Then yoni1 = Tant1, & contradiction.
From case l-case 4, we have eg, < €9n—1. Similarly esni1 < €2n.
Hence {e,} strictly decreasing sequence.
Lemma 3.1.3 lime, = 0.
sy

Proof. Assume that lim e, = e with e > 0. Since {e,} strictly decreasing sequence, we
TG

have €, < €2q—1. 1t follows as in the proof of Lemma 3.1.2 that

¢(@2n) wE Cb [d (y2n1 yZn-H-)]
< 7 d(yan—1Y2n)] (9)
= 1 [d(ezn-—l)] y =01 2,....
where

L (L(egnml) ~+ b(an..l)
1-— b(eg,,,_ﬂ

TN

By (8) and induction,

$len) = @d(YomYant1)]
< "¢ [d{yo, y1)]
= 7"¢(eo)
< ¢(eo)

Moreover, ¢(€ms1) < Tdles). Since ¢ is continuous, it follows by letting n — o0

#(e) < rdle) < ¢(e) which is contradict, and hence € = 0.

Lemma 3.1.4 {y,} is a Cauchy sequence.

Proof. Clearly e, # 0 for any n. By Lemma 3.1.3 , {e,} strictly decreasing to zero. We
shall show that {y.} is a Cauchy sequence. Assume that {y.} is not a Cauchy sequence.
Then there exist ¢ > 0 and integer m(k) and n(k) such that k¥ < m(k) < n(k) and

b = A(Ymk)r Yniy) = € for k€ N



19

For each k we may assume that n(k) is chosen that smallest number greater than m(k)

and d(Yme): Yn(k)) = &-

b = AYm) Uniiy) 26 >0

b, — d(¥mr)s Yniy-1) > O

Note that

b, — AUy Yati—1) = A Ymiieys Unk)) — A(Yomlle) s Y (k) —1)
e € by < d(ym(k)s yn(r’ﬂ)ml) _ d(yn(k)ﬁiv yn(k))

< &+ d(Yn)—1 yn(k))

By letting k — oo we have by - €.

We can choose some p large enough such that
£
P(2) < 3
3
Then choose some k large enough such that

g
b < 2¢ and sup e; < o~

sk 3p
Now, we obtain that
e < dYmkyr Ynii))

mi{k}p—1 n(k)y+p—1
< S A yin) F W Yot D i)

jmm(k) jmn(k)
< psup € + ¢P(bx) +psup e;

jzmik) jzn(k)
< po 4 P(26) +pas

P3p P3p
= = -+ z -+ £ £ . a contradiction
~3'3'3 7 )

Hence {y.} is a Cauchy sequence in a complete convex metric space.

(10)

(11)

(14)
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Proof of theorem 3.1.1. Since X is complete and K is closed, there exists a point z €

K C X such that limy, = z and so lm Tzy, = Um yopp1 = 2 = lim s, = lim Swapq.
N-+Q0O TL O T—r 00 T30

n—00

We shall show that Tz = 2z = Sz,

Using condition (1) we obtain

o [d(yznwst)] = ¢ ld(S2ons1,T7)]
< old{@anst, 2))0(d(Ton 41, 2))
+b(d(zone1, 2)) [P(d(Zons1, STonyr) + H(d(z,T2)]

+e(d(Tonyt, 2)) min {¢(d(Cone1, T2), d(d(2, S2ongs)t  (15)
Letting n — oo and use b <1 we have
$ld(z, 72)) < 50d(z,T2) (16)
Then ¢ [d{z,T'2)] = 0 and we have d(z,Tz) = 0. That is Tz = 2

¢ld(Sz,ymr1)] = ¢{d(52Team))
< a(d(z Tan) )P(d(2: 220))
+b(d(z, %20)) [$(d(2, 52) + P(d(&2n, T2on)]
+e(d(2, 23,) ) min {$(d(z, Tz20), ¢(d{@2n, 52)} (17)

Letting n — oo and use b < § we have
1
$ld(Sz,z)] < §¢5[(£(Sz,z)] (18)

Then ¢ [d(Sz, z)| = 0 and we have d(Sz, z) = 0. That is Sz = 2.

Therefore S and T have a common fixed point z ¢ K € X .
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For uniqueness, suppose that w and z ( with w # %) are two fixed points of S and 7.
¢ldw, )] = &d(Sw,T7)]
< a(d(w, 2))p(dw, 2)) -+ bld(w, 2))
[p(d(w, Sw) + $ld(2,T%)]
+e(d{w, 2)) min {¢(d(w, T'2), $(d(z, Sw)}
< lald(w, 2)) + c(d(w, 2))] §(d(z,w)
< ¢{d{z,w), a contradiction.

This complete the proof of theorem. L

Corollary 3.1.5 (¢f[16]} Let T : K — X be a non-self mapping satistying T(OK) € K

of a complete convex metric space (X, d) and ¢ € ¢ such that for every z,y € 9K,
Gl Ty < a(d(z,y)) + bd(d(z, Tx)
+ep(d(y, Ty) (19)

where a,b and ¢ are three nonnegative constants satisfying a -+ b+e <L

Then T has a unique fixed point.

3.2 Fixed point theorems in Banach spaces

We now determine the behavior of nonexpansive mappings defined on B ={zecX:llz| £r}
( i.e. the closed ball of radius r center at 0) and prove an existence fixed point theorems

of Leray-Schauder condition for nonexpansive mappings. It is worth resulting that a more

general case will be presented in this section.

Theorem 3.2.1 Let X be a uniformly convex Banach space and B, = {x € X : [jz|| S 7}
with > 0. Suppose F : B, — X is nonexpansive such that z = MF(z) for all z € 8B,
and for all A € (0,1). Then F has a fixed point in B,
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Proof. Suppose that F : B, — X is nonexpansive and define a mapping 5 : X — B, by

_{ o lsl<n
S) = {rm lfl > r 20)

We now show that S : X — B, is nonexpansive.

Let 7,y € X and if z,y € B,, then

1S — Syll = llz — vl - (21}
Ifz € B, but y ¢ B,, then
= oG A=
e Tilyui
< lz—9l- (22)

Similarly if ¥ € B, and % ¢ B, then we have S is nonexpansive.
Therefore S o F : B, — B, is nonexpansive mapping. By Corollary 2.2.5, there exists

z € B, such that

S(F(z)) = 2. (23)

If F(z) € B,, then
2 & Bl P h=RR 3N (24)

Bence F has a fixed point.
If F(z) ¢ B,, then
F
z = S(F(z))= Tﬂmﬁ%

= PF(z), where 8 = m < 1. (25)
This is contradict to our assumption. O

Theorem 3.2.1 has the following immediate corollary.

Corollary 3.2.2 (cf[1]) Let C be a nonempty, closed, bounded, convex set in a (real)



23

Hilbert space H. Then each nonexpansive map T : C — C has at least one fixed point. '

Proof. Since every Hilbert space is uniformly convex Banach space, we obtain corollary
as require. 0

1t is natural to ask whether we can extend theorems t0 non expansive mappings as
theorem 3.2.1 In this section we had proved fixed point theory in Banach space for non-self

maps which satisfies boundary conditions as the follows:

Theorem 3.2.3 Let K be a nonempty closed bounded convex subset of a uniformly
convex in every direction { UCED ) Banach space X and let T : K — X be nonexpansive
satisfying one of the following holds:

() T(0K) ¢ K,

(ii) 7' is weakly inward condition,

(i) 0 € [ntK and Tz # me for all € AK and m > 1.

Then T hag a fixed point in K.

Proof. (i) Suppose T : K — X is nonexpansive satisfying T(0K) € K, and let zo € K.
For each n > 1 define T, : K — X by

. A .
(L= %mg + (1~ E)T:c for z € K. (26)

For each xz,y € K, we note that

Tz - Toyll = [ixo . ~—)Tm} - F-:co . %)Ty} ||

|
- ](1 YT (1 1)Ty“ |
= Ja=Dire -l o)

lz —yll (28)

< la-3)
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Hence T, is a contraction. Further T,(0K) C K since T(0K) € K, for z € K and
20 € K.

Therefore, by assumption, 7}, has a unique fixed point z, € K.

Then there exists a bounded sequence {z,} C K such that ||z, — T%,|| — 0 as n ~» oo,
by Theorem 2.5.8 [14]. The sequence {#,} is said to be regular (relative to K ) if
rie({z,}) = ric({zn,}) for all subsequence {z,,} of {z,} and {2.} is said to be asymp-
totically uniform if Ax({£.}) = Ax({z,,}) for all subsequence {z,, } of {z.} where

ri({x,}) = inf {iim suplly — a1y € K} and

n—co

Alla) = fy € K stimon ly - 2] =re(z)) ).
Since {z,} € K is bounded, thé:?xn} has a subsequence which is regular with respect
to K. By passing t0 a subsequence we may assume that {x,} is regular,
Then Ax({x.}) consists of exactly one point in such a space is UCED and z, is asymp-
totically uniform with respect to K, Le. Ax{{z.}) = Ax({Zs,}) is singleton.

Take any v € A = Ag({x,}) and 7 = rg({z.}). By Banach contraction principle, T,, has

a unique fixed point x,, € K, that is, we have

1 1
= Lag 4 (1— 2)Ta, 2
1 n$0+( TL) € ( 9)

Let {z,,} be an subsequence of {z,}. Then we can solve the asymptotic center A as
above just by replacing the sequence {z,} by the subsequence {2y, }.

We now show that z,, — v. Observe that

s 1
”xn/\ - wn/\%"lu = ll _;;‘:EG 4 (1 — ;L:)Txﬂ’\:l - [nA+le = (1 - Nt )Tﬁ?nA+1:l
1 1 1 1
| | — 2Ty, — (1= YT, |-
2 - Lt (- o = - o @)

Given z,,,, = 1%, we also have

fom = gml = || (5= ) 2o+ (1= )T =~ (= )T T
< (”ﬁ:)mo + IIT% - T(Tmm)![
< (;,};)aco T (31)
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By letting n) — oo we have {z,, } is Cauchy sequence ( since K is bounded ).
‘ ‘ 4740212
Therefore z,, converges to a point, say z € K. Claim that z = v. 78 50 567
For ny € N, we can find y,, € K such that y,, = T'z,,,
and lim [y, ~ @,|| = 0. Note that
3 Samde ]
120y — 2l = l@ny = Tony + Ty — ]|
< Ny — T, | + 1720, — - (32)
By letting ny — o0, lim |[#,, = x| < lim ||T,, — o or,
N 1300
lim sup ||2,, — zl| < limsup [Tz, — ||
TN~ 00 T, =00
Then limsup ||Z,, — z|| is a lower bounded of {lim sup fly — 2l iy € K }
TN 00 T OG0
Therefore
limsup |z, —z| <7 (33)
[P ee's)
Note that
limsup |z, —zl] = n (34)
70300

From (33) and (34) we get limsup {|z,, — 2| = r, by asymptotically uniform with unique-

T+ O0

ness of {&,, } we have = v. It follows that Tz,, — T'v and

v —Tvli = |Jv=2Zn, + Bn, = Tn, +Tn, — T
S o =zl + 12n, = Tyl + 720, — Tl (35)
Letting ny — oo, we have lim |jv — Tl = {|v — T|| = 0. Therefore T'v = v and hence
T 3, 00

T has a fixed point.
(ii) Suppose T is weakly inward. Fix o € K define for each n > 1 the mapping 7;, : K —
X by
To(@) = 200+ (1 — )T
w0 n

It is easy to see that T is contraction. Moreover T, is weakly inward, since Tz € Ix(x)

and zo = o+ B{xo—zp) and § > 0. By Banach contraction principle 7,, has a unique fixed
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point &, € K. Then there exists a bounded sequence {z,} < K such that i@n — Txn|| — 0
as m — 00.

Similarly to (i), T has a fixed point.

(i) Suppose 0 € IntK and Tx # ma for all z € 0K and m > 1. Define T, : K - X as
above. Fix 0 € IntK C K. Assume that T,{z) = tz for some z € 0K and $ > 1.

Then

1
1 e e
{ n)Tac L

t

T

n

which is contradict. Therefore T,(z) # tx for all z € 0K and t > 1. By Banach contrac-

tion principle, Ty, has a unique fixed point z,, € K. Similarly to (i), T has a fixed point. 3

Corollary 3.2.4 (cf[14]) Let X be a uniformly convex Banach space, K a closed bounded
convex subset, and T': K - X a nonexpansive mapping satisfying one of (i)-(iii) of

Theorem 3.2.3 holds. Then T has a fixed point.

Theorem 3.2.5 Let X be a reflexive Banach space and let C be a nonempty bounded
closed convex subset of X which has normal structure. Let T': C' - X be nonexpansive
mapping satisfying 0 € IntC and Tz 5 ma for all z € 9C and m > 1 or Leray-Schauder’s

condition . Then 7" has a fixed point.

Proof. Let u € C. For each n > 1, define T, : C — X by

1 1
Tx={1—— — 3
z= n)u~i~n i (37)
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Then for each z,y € C,

ezl = |[0- B 2] - [0 D o]

n
= |3|ire-1ul
< E e — yl| . (38)

Therefore T, is a contraction. Moreover T, satisfies Leray-Schauder’s condition,

Assume 0 € IntC and Tz =1z for some z € 8C and £ > 1. We have

(—}L) T = tx. (39)

t
Ty = (-1-“> =tn > 1,

which is contradicted. Therefore To(z) # t© for all z € 8C and t > 1. By Banach

Then

contraction mapping principle, 7, has a unique fixed point s such that
1 1
2, = (1 — —Yu+ =Tz
n n

Define g : C — R by g(2) = ptn [[2a — z)| Vz € C where p, 8 2 Banach limit for all n € N,
We can choose {z,} & C such that gl,) — d = 12£ g(z). Let z € C and e > 0 we can
choose & = ¢ for each z € C.

if )|z — 2]l < & then

lg(z) — glzo)]| = |t liwn — 2l = ftnlln — | |
= ptn ([l — 2l = zn — 20ll]) (40)
Note that
Mzl lwlll < llz ~ 2l and

—(lz—=l) < N2l = lal <zl
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Therefore
2 — 2ll = 20 — 2ll < %0 — 2 — (@0 — 20)]
= |lz —all.
From (40),
lg(2) — g(z0)|| < paliz — %l (41)

By existence of Banach limit pi{a,) = (@) = c. From (41), we have
g(2) = glzo)l S callz — 20|l < cd = ce =€

Hence g is continuous. Furthermore, g is convex, let 23,29 € C and A € {0,1]. For any

i € N, we have

s s = D + (L= Nzl = plidms + (L= Nz = Az — (1= N2
ERNT) U SN ¢ B\ PP C I\ P

< (e = Al 4+ 1 = e = (1= Azl

= A~ Azl s [(1 - Mz~ (1= Azl

= iz — zall o+ (- Nz 2

This implies
g[ha 4 (1 - Nz < g(ha) + (L= A)za). (42)

Hence g is convex.

Define set
M = {’U € C:gly) = iggq(z)}
Since X is reflexive, it follows by [3] that M ## §. Moreover M we can verifies that M is
bounded, closed and convex.
To show M is bounded. Let M = {v/ € C : pt || 20 — V'l <7+ 1} wherer = iggun Nz — vl
y

We see that M C M’, we need show that M’ is bounded.
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Let z € M and r = infu, |z, —y|l, we have i, ||z, — 2| £ 7+ 1 and there exist
ec‘u Y
)

Zm € {2} such that

pnl|Zm —2|] = pn {2m — Tn + Tn — ||}
R TR mn” + pin |0 — z||

= 14r+1=r2

Since {zn} € {z,} is bounded, we have M’ is bounded.

We shall show M is closed. Let {z,} C M and iz, = . We may agsume z ¢ M.
Thus z € C\M, there is an open ball B(z;r) for some r > 0 such that B{z;r) C C\M.
Since nlgxgo &, = 2, we have there is N € N such that z, € B(x;r) ¥n > N. It implies that
%, ¢ M for sufficiently large n, which is a contradicted. Therefore z € M and corplete
the proof that M is closed. Moreover M is convex. In particular, we need to show that

TeeMifze M

o llzn ~ Tzl £ o {70 = Tall + || Txn — Tz||}

= pn [0 = Tl + pon [[T2n — Tz (43)
Note that
1 3
Ntn =T Tnl). = “(1 — —yu+ —Tx — Tz,
n i
1
< (1-2)u=Tal. (44)
From (43) and {44) we have
1
o |20 = Talf < pin(1 = =) o = Tl + o |72 Tz (45)
By the existence of Banach limit,
tn %0 — T2|| < o | T2 — T

< pallzn — 2|



Therefore g(T'z) = ig(fg(z), Tz € M which implies T is invariant under M.
Hence T has a fixed point in M by Theorem 2.2.6. 0

Corollary 3.2.6 Let X be a reflexive Banach space and let C be a nonempty bounded
closed convex subset of X which has normal structure. Let T : € — X be nonexpansive

mapping satisfying weakly inward condition . Then T has a fixed point.

Corollary 3.2.7 Let X be a reflexive Banach space and let C' be a nonempty bounded
closed convex subset of X which has normal structure. Let T : € — X be nonexpansive

mapping satisfying inward condition . Then T has a fixed point.

- Corollary 3.2.8 Let X be a reflexive Banach space and let C' be a nonempty bounded
closed convex subset of X which has normal structure. Let T : C ~+ X be a nonexpansive

mapping satisfying Rothe’s condition . Then T has a fixed point.

Corollary 3.2.9(cf[12]) Let X be a reflexive Banach space. Suppose K is a bounded
closed convex subset of X which has normal structure. Then any nonexpansive mappings

T: K - K has a fixed point.
Proof. If ¢ = X, then we have this corollary as required. L]
3.3 Remarks for hy-contractive and h-nonexpansive

Definition 3.3.1 A mapping T : K — K where K is a subset of a Banach space X is

said to be hy-contractive if for h > 0 and A € (0,1),
T2z — Tyl < Amax{h, [z —yll}, z,y € K.

Proposition 3.3.2 Let K be an open subset of a Banach space X and let T: K — X
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be a hy-contractive for h >0 and A € (0,1). Then (/ — T)(K) is an open subset of X.
Proof. Let h >0 and 2o € K. Set f = I —T, there exists y € K and p > 0 such that
lly — 20|l < p. Thus B( zo;p) € K. We choose 7 = (1 — A)p where A € (0,1). Now fix
z € B( flwzo);r). We shall show that thereisw € B{ zo; p) such that f(w) = w-T(w} = 2,
implies that B( f(z0);7) € f(K). Define the mappings T, : K — X by setting

To(x) =T(x)+ 2 z€K

We consider,

ITo(z) — mofl = IIT(x) + 2 = o] (46)

= ||T(x) + T(zo) — T(w0) + 2~ ol

< |T(e) = T@o)l| + |z — (@0 — T(2o))l

< Amax {h, ||z —woll} + Iz = f(zo)l (47)
Case 1 : If ||z — zoll > h, then we have from (47)

ITu(x) ~ moi < Az~ zoll + Iz = Fzo)ll
< Aptr
T
Case?2 : If ||z — 2| < b, then
(T (x) — zof] < Mt {2 = f(@o)l]

< Ah4T
Case2.1 If h < p, then

IT.(z) — x|l < Ab-7T
< Aptr

= Ap+(1=XA)p
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Case 2.2 If h > p, then

|To(x) — @0l < Ah+r
= M+ {(1=X)p
< A+ {1~ A

= h.

By using the results in case 1 and case 2.1, it follows that T, : B(zo;p) — Blzy; p),
Banach contraction mapping principle, 7, has a unique fixed point, says w € B(xo; p),
T, (w) = w.

Therefore w = T,(w) = T(w) + 2, which f(w) = w — T(w) = z and the proof is com-

plete. Another (case 2.2) we have T}, : B(zo; k) — B(Zo; h), the proot is also complete. L

Proposition 3.3.3 Let K be a nonempty closed bounded convex subset of a Banach
space X with intK # § and let T : K — X be h-nonexpansive which satisfies Rothe’s

condition. Then for A € (0, 0o} sufficiently small, the mapping Ty : K — X defined by
Ti(z)=(1—-Nz+ Nz, z€kK,

then there exists z € K such that [z ~Tz|| < h for h >0

(ie., inf {llz Tzl : z € K} < h).

Proof. Let a functionp : X — (0,00] satisfies the number p(z) = inf {k € (0,00 : k™' € K’}
Let 2 € K and there is r > 0 such that B(z,r) € K. Thus z € intK.

We may assume that 0 € intK. Since K is bounded, thereis ¢ > 0 such that K C B(0, ¢r).
Consider » < ||z|| < tr. Then p(z)~'r < p(z)~! ||z| < ple)'tr.

Put B = p(z)*r.

R< pla) "zl <tR (48)

and p(z) "tz € 8K , Vz # 0.
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Thus there @Xist

¢ = ——1— >0and ¢ = ~1— such that for all x € X
tr . R

¢ flzfl < plz) < e izl (49)
Now let h > 0 and z € K and suppose that y = p(z) " z.
Thus y € 0K and y = p(z) "tz + (1 — p(z)~'z). Therefore

ply—z) = plp(z) e —x)
= pl(p(x)™! ~ 1))
= (p(z)"! ~ p(z)
1
= (M - 1) p(z)

(1;—%—)) p(z) = 1 - p(a).

Now let A € (0,1) and 7 : K — K defined by Th(z) = (1 — Nz + Xz, Vz € K.
Hence
p(TMz)) = p((1—Nz+ ATx)
S (1= Nplz) + Ap(Tz).
On the other hand we consider the unit ball of K. Since y € 0K then Ty € K ,

it follows that
p(Ty) <L (50)
From(49) and (50), we have
p(Tz) = p(Ty+Tz—Ty)
< p(Ty) +p(Tz - Ty)
< l+e|Tz—Ty).
Casel If ||z — y|| < h, then
pTzy < 1+ch

< 1+ k; where k| = ¢h.
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From this, we have

p(Ta(z)) < (1 - Np(@) + A1+ k).
We can chose A € {0,1) such that A <1 —k;. Then
p(Ta(@) < (1=Np(z) -+ (1~ k)1 + k)
= (1= Np(@) + (1= (k)7)

< (1 - A)p(z) + 1.

By letting A — 1, we have p(Th(z)) < 1.
Case 2 If ||z — yi| > A, then

p(Tr) < 1+eizc—yl
< 1+ ply — x)
= 14 koply —z) where ky = cac] '
< ltk(l-p(@) (o oply) <1,

Then

Cp(I(z) < (1= Nplz) + AL+ k(L — p(z))
= p(z) — Ap(z) + A+ Mg — Akop()

We observe that if p(z) < 1(i.e. if z € K) and if X is chosen so small that (1 — A(1 + &2)) p(z)
< 1—A(l+ky) then p(Th(z)) < 1. From casel and case2 , we conclude that 7, : K — K

has a unique fixed point, by Banach contraction, which is a completion of the proof. O

Corolary 3.3.4 Let K be a nonempty closed bounded convex subset of a Banach space
X with intK # § and let T': K — X be nonexpansive which satisfies Rothe’s condition.

Then there exists an approximate fixed point sequence {z,} in K.






