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Abstract

In this article an experiment of the forced oscillator was set up. Here a vibrating
mass on a spring is driven vertically by the loudspeaker that suspends it. From this
experiment the spectrum of output signal of an infrared distance measuring sensor
(GP2Y0A02YK) which is used to transform the oscillatory motion of the mass into an
electrical signal, exhibits four sharp frequency peaks, and it is also found that two of these
frequency peaks cannot be described by the solution of ordinary differential equation from
conventional ordinary differential equation text books. However, it can be solved by multi-
time variable technique, a mathematical toel. The latter solution consists of the sum of four
terms: natural response, forced response and the two new terms being the result of
multiplying between natural and forced responses. This analytical solution reveals the
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frequency components and their behaviors more precisely and corresponds well to the
spectrum of the experimental result.

Keywords: Oscillation, Mass-Spring, Multi-Time, Differential Equation

1. Introduction

The dynamics of a spring-mass system is one of the most popular topics analyzed in textbooks and
undergraduate physics courses (Keller et al, 1993; Zill, 2005). The spring-mass system is the common
example of a mechanical oscillator. When perturbed, it begins to oscillate with a natural frequency.
Yet, this free oscillation decays exponentially with time due to retarding forces such as a resisting force
due to the surrounding medium, i.e., these forces cause the mechanical energy of the oscillator to
decrease. Any system that behaves in this way is known as a damped harmonic oscillator.

The oscillation of the damped harmonic oscillator (spring-mass system) acted on by an external
driving force is called driven oscillation or forced oscillation. The oscillations occur mainly in electric
circuits and in machinery. Using the conventional method (Taylor, 2005; Arya, 1997; James et al,
1989) for finding the solution of a linear differential equation describing the oscillation of such system,
the solution is given by the sum of two parts. The natural response, the solution for a damped harmonic
oscillator discussed above, delays out eventually. Another one is the forced response, the solution due
to the external driving force, persists after the natural response has died away. The natural response
depends on the initial conditions at time ¢ =0 and on the initial values of the forced response also at
time ¢ =0 (Dimarogonas, 1996).

Recently, the analysis of a second-order oscillator based on a multi-time variable technique was
proposed (Maneechukate, 2008). The result demonstrates that the amplitude of the natural response
x,(t) of the system depends on initial value X, and the forced response x +(7) at any arbitrary time ¢

according to the following equation
x(2,7) =[x0 —xr(r):lcoswz +x,.(7),
Rt
where x(4,7) is the complete solution of the separated time scales.
The solution above is somehow different from one achieved by the conventional method:
x(t)= [xo ~¥ (0)] coswt +x (1),

T,,\:J]
It is remarked that amplitude of the natural response x,(£) depends on the initial condition x,
and the forced response x,(1) at the initial time , i.e., t=0.

In the past, the various concepts of multi-time have been introduced, e.g., multitime wave

functions were first considered by Dirac in 1932, the term Multitime Partial Differential Equation was
proposed by Roychowdhury (2001); in the later concept a two time ¢ = (z,,rz) was used, then, a single-

time wave front y(r)is replaced by a new periodic function of two variables, 7(t,,t, ), motivated by

the wide separated time scales.

In this paper, we apply the multi-time variable technique to solve a mathematical model in the
form of second order differential equation describing the damped harmonic oscillation of the spring-
mass system acted on by the sinusoidal external force. The obtained analytical result consists of the
sum of four components: natural response, forced response and the new two terms coming from the
product of natural and forced responses. These two new terms do not appear when we use conventional
method.
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To verify that such analytical result is valid, an experiment of the forced-oscillating system is
set up. Here an oscillating mass on a spring acted by an sinusoidal external force is used as an example
to illustrate behavior of such solution. A large loudspeaker is used to generate the sinusoidal external
force to the spring-mass system. The oscillatory motion of the mass on the spring is transformed as an
electrical signal by the popular GP2YOA02YK infrared distance measuring sensor, which is placed
under the vibrating mass. From such experiment, the spectrum of output signal of the sensor exhibits
four sharp frequency peaks, which agree well with the solution of such mathematical model. Moreover,
the solution can clearly describe the behavior of each frequency peak in the spectrum.

2. Materials and Methods

In this research the forced oscillation of the mass on spring is described by a linear second order
differential equation system, with multi-time variable technique. First of all, we would therefore like to
describe the multi-time variable technique briefly as follows.

2.1. Multi-time Variable for Separating Time Scale of System

Definition (f)
The concept of multi-time variable technique is that the time of system can be separated into two
different variables, ¢ and 7, which the natural response is a function of ¢, and the forced response is a
function of 7. As a result, the complete response of system can be written as

x(t,7) = x,(t) +x,(7), (D
where 7 is time considered after the beginning of time of system, ¢, by the time Ar. Alternatively, we
can say that s is shifted by Az, namely

T=r+At @

Definition (II)
The linear second order differential equation that describes the oscillation of system acted on by an
external input can be written as
2
" d x(tz,r) - dx(t,7)
dt dt
where ¢,, ¢, and ¢, are constant and [f(r) is the external input.

+cpx(t,7) = f(7), (3)

These definitions are applied to solve the linear system as shown in Figure 1.

Figure 1: Block diagram of this system.

e

System }——»x(m T)

f(7)

Y

Dividing (3) by ¢, gives the equation of motion,

2

d x(ﬂ’7)+idx(”f)+&x(z,r)= J() @
dt” ¢, dt & ¢,

When we consider the natural response, (4) has to be written as
2

S & BT G i o, )

¢, dr
of which the solution reads

¢
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L]

—
x,(t)=e * (acosw,t+bcosw,t), (6)

where @, =,/a; ~ (¢, / 2, )2, @, =4Jc, /¢, and the constant a and b of the natural response depend

on the initial conditions and on the forced response x,(7), which will be discussed later. In addition,
(6) can usefully be rewritten as

x,(t) = .«fle-ir cos(@w,t —¢), (7

where A =va*+b" is the amplitude of the oscillation and ¢ =tan™'(b/a) is the phase constant. For
convenience we will set =0, then A=a and ¢ =0. Substituting these values to (7), we get

i
x,({)=ae ** cosw,t. (3
Next, to find the forced response , we can rewrite (4) as

&) g dlD) o f0)
dr +Z dr +fo(f)_T- (9)

Using the technique of Fourier Transform, we define the input of system f(r) = F, cos(w,7) ,

where £ and @, are the amplitude and angular frequency of the input respectively, then we obtain the
forced response output:
x,(7) = Fy|H(jw,)|cos(w, 7+ LH(jo,)), (10)

where ]H ( jcoj.)| =1/ [Cz J(wg - )2 +(¢ / 4:3)2 @} ] is the system amplitude gain at frequency @, and

¢lec,)e,
ZH(jw,)=—tan™ [%} is the phase shift of the system at frequency @
| @y =@

Finally, substituting (8) in (1), the complete response in the viewpoint of multi-time variable is

x(t,7)= ae_:_“? cos(@,1) +x (1), (11
where x,(r) was defined in (10).

Upon finding a from the initial condition x(0,7) =x,, we set 1=0 in (11), getting

a=x,—x.(7) (12)

Thus, (11) can be written as

x(t,7) =[x~ x, () Je * cos(a,1)+x,(2). (13)

In appendix of this paper, the solution of ordinary second order differential equation solved by
conventional method , in case ¢ =0, is described. It is convenient to write such solution here:

x(t)= I:x0 - X, (O):|e_E cos(w,t) + x . (t). (14)

Comparing (13) with (14), it is easy to see that the natural response term in (13) depends on the
values of the forced response for all time ¢ > 0, whereas the natural response term in (14) depends on
the initial values of the forced response at time ¢ =0 only. This is the obvious difference between the
multi-time variable technique and the conventional method.

Next, substitution 10 in 13 gives

x(.7) =[xo—Q[H(jq.){oos(w,r+./_'H(jm,))]eT"r' cos(et)+ Ky | HUjw, | cos{ @, 7+ £H(je,)). (15)



85

401 Kriangsak Prompak, Anucha Kaewpoonsuk, Thongchai Maneechukate
Narongrit Maneejiraprakam, Sangwan Pengpad and Paramote Wardkein

From a trigonometric identity,
1
oS = [cos(u—v)+cos(u+v)],

and the assumption of 7z in (2), (15) can be rewritten as

. I -
Her)=e ® penta)—e = Jenl(+0) 1+, ]-e 7 Dol (-4 ]

2 (16)

+Dcos(a)fr+¢,),
where D =E,|H (o, )I is the magnitude of forced response and ¢, =@M+ LH(jo,) is the phase
difference between the forced response and the external force.
From (16), the frequencies of the first, second, third, and fourth terms are @,, O +a,,
w, —@,, and @,, respectively, which can be easily illustrated by a simulated spectrum as shown in

Figure 2, whereas, using conventional method, the frequency components contained in the solution
(A6), which is discussed in the appendix, have only two frequencies: @, and @,, i.e., the frequency

components @, +, and @, — @, do not appear as illustrated in Figure 3.

Figure 2: The simulated spectrum of the solution obtained by using the multi-time variable technique.
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Figure 3: The simulated spectrum of the conventional solution.
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At =0, the magnitudes of the second and third term, i.e., of two new terms, are equal to half

_a,
the magnitude of the forced response (the fourth term). As ¢ increases, the exponential factor e 2
decreases continuously and approaches zero asymptotically. In effect, the magnitudes of the second
and third terms, including the first term, will decrease continuously. In addition, the magnitude of

forced response becomes large when @, gets close to @, (by observing the value of IH ( jcaf)[ as

above). As a result, the magnitudes of the second and third terms also increase, i.e.. half the magnitude
of forced response at ¢ =0.

2.2. The Driven Oscillation of 2 Mass-Spring System Described by the Multi-time Differential
Equation

To explain the forced vibration of a spring-mass system we consider a vibrating mass on a spring that
is acted on by the external force as shown in Figure 4.

Figure 4: The forced mass-spring system.

m

Without external forcing, using Newton's second and Hooke's laws we get

d*x(t) dx(t)
where m is the mass of an object, k is the spring constant, and £ is the damping constant.
Rearranging (17) we get
2
md—xst—)+ﬂ£-(t—)+kx(r)=0. (18)
dt” dt
When the support of the spring is acted on vertically by a driving force, using multi-time
variable technique the equation describing the forced motion of the mass on the spring is in form

2
mEXGT) | p BT e ry= £, (19)
dt dt
Since (19) is similar to (3) where m=c¢,, f=¢, and k =c,, hence, the natural response of this
system, in case ¢ =0, is

m

oy 2
x,(t)=ae ™ cos(w,t), (20
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where the damped natural angular frequency @, =+@] —(8/2m)" and the free natural angular
frequency @, =vk/m . The forced response, when the external force f(r) = Fycos(w, 1), is
x,(7) = Fy|H(jo,)|cos(w,r+ LH (jo,)), (21)

: = Tif 22\ 22 S T (ﬁ/m)wf )
where |H(j(t)f)| 1 [mJ(con w,) +(B/m) a)f} and ZH (jw,)=-tan {—_&’3—@?

Substituting (20) in (1), the complete response of the forced spring-mass system in the
viewpoint of multi-time variable is

x(t,7)= ae_iﬁ”'{ cos(@,t) + x (7)), (22)
where x,(7) was defined in (21).

Setting #=0 in (22) and giving x(0,7) =Xx, as an initial condition, namely the initial position
or the displacement at ¢ = 0, the parameter a is given by

a=x,-x,(z) (23)

Then, (22) can be written as

/]

x(t,7) =[x, —x,(z) ]e 2 cos(w,0) +x,(v), (24)
which, of course, the natural response term depends on the values of the forced response for all time
£ 20, whereas, using the conventional method, the natural response depends on the initial value of the
forced response at time z =0 only, as discussed previously.

Substituting (21) into (24), the complete response becomes

2,

x(¢,7) =[xﬂ -F |H(jco,)]cos(a)rr+ ZH(jew, ))]e i cos(aw,t) (25)

+F, !H(jagf)lcos(a{fr+£H(jarf)).

From a trigonometric identity discussed above and the assumption of r in (2), (25) can be
rewritten as

; z £
-2, - D -—=r D
x(t,r)=e *™ x,cos(w t)—e ™ —cos|(w, +@ |t+ —e ™ —cos|lw, —w )t+
(tr)=e 0 CO8(@,t) 5 [( ¥ n) ¢f:| 2 [( ) ") ¢f] (26)
+D cos (coft + ¢f),
where D= £, |H(jw,)| and 8, = w,At+ ZH (jo,) .
Considering (26), the frequencies of the first, second, third, and fourth terms are @, @, +@,,

@, —a,, and @,, respectively, which the second and third terms do not appear if the conventional

method is used to find the solution. At time ¢ =0, the magnitudes of both the second and third terms,
ie., of new terms, are equal to half the magnitude of the forced response (the fourth term); as ¢

g
e - -
increases, the exponential factor e *" decreases continuously and approaches zero. From this effect,
the magnitudes of the second and third terms, including the first term, decrease continuously. In
addition, the magnitude of forced response becomes large when the oscillating frequency of the driving

force, w,, is close to the free undamped natural frequency @, =k /m . As a result, the magnitudes of

the second and third terms are also large, i.e., half the magnitude of forced response at time = 0.
In order to confirm that the analytical result above is valid, an experiment that has a vibrating
mass on a spring acted on by an external force is designed as shown in Figure 5.
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Figure 5: The setup of the forced mass-spring system experiment

In this experiment a vibration system consists of a mass (m = 0.1 kg) attached to one end of a
spring; here the natural frequency f, of this system is about 1.70 Hz, i.e., ®, =2z, (the damping

constant S can be roughly calculated from the equation @, = \/()’c Im)—(B/ Zm)z , where @, =271,

£,=1.70 Hz, k=14 N/m, and m =0.10 kg.). The other end of this spring is connected vertically to the

center of a large loudspeaker. Hence, such the vibrating system is forced to undergo periodic
oscillation of the loudspeaker in the direction of the mass motion ; the loudspeaker is connected with a
power amplifier circuit that receives the sine signal from the function generator, so that we may easily
adjust the frequency and amplitude of the external force.

To measure the oscillatory motion of the mass on spring, the infrared distance measuring
sensor, GP2YOAOQ2YK, is placed under the mass. When the position of the mass varies, the output
voltage of sensor follows this variation. The voltage signal and its spectrum are displayed on the
oscilloscope.

To confirm linearity of the designed measurement system in the experiment above, the mass is
put first into motion while the external force, applying by loudspeaker, is switched off. The output
signal spectrum of sensor should have only one frequency, namely the frequency of mass's oscillation.
Second, let the external force operate while the mass does not oscillate (the spring is wrapped with
wire tape). Spectrum of output sensor signal in this case should also have only one frequency, the
frequency of loudspeaker oscillation.

In the next process of experimentation., as the external force is switched on, initially we slightly
lift the mass to one side of its equilibrium position and then release it; as a result, the oscillation of the
mass on the spring is being driven by the periodic external force beginning at z=0. In this case the
obtained spectrum of sensor's output signal should correspond to (26), i.e, it have four sharp frequency
peaks. The frequencies of the external force used in the experiment are as follows: 1.40, 1.50, 1.90 and
2.00 Hz. The experimental results of these above experiments are illustrated in the next section.
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3. Results
The experimental result that the mass oscillates, while the external force is switched off, is shown in
Figure 6. The upper trace signal is the output signal of sensor, GP2Y0A02YK, and the lower trace
signal is its spectrum. Figure 7 shows the experimental result that the external force oscillates, while
the mass does not oscillate; here the frequency of the external force is 2.00 Hz.

Next, the experimental result in case the vibrating mass on spring is forced by the driving force
1.40 Hz is illustrated in Figure 8. Similarly, the experimental results of the vibrating mass forced by the
driving forces 1.50, 1.90 and 2.00Hz are shown in Figures 10, 11 and 12, respectively.

Figure 6: The experimental result due to spring-mass system oscillation in the absence of external force, the
upper trace is the output signal of the GP2Y0A02YK sensor, and the lower trace is its spectrum
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Figure 7: The experimental result in case the mass on spring does not oscillate, while the external force
operates; the upper trace is the output signal of the GP2Y0A02YK sensor, and the lower trace is its

spectrum.
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Figure 8: The experimental result of the forced spring-mass system, in case the frequency of the external force
is equal to 1.40 Hz. The upper trace is the complete output response of the oscillating mass in time
domain. The lower trace shows the spectrum of the upper trace signal.
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Figure 9:  (Continued from Figure 8). After a short time, the frequency component 1.70 Hz slightly decreases,
and the frequency components 0.30 and 3.10 Hz cannot be observed.
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Figure 10: The experimental result of the forced spring-mass system with the frequency of the external force

1.50 Hz. The upper trace is the complete output response of the motion of the mass in time domain.
The lower trace shows the spectrum of the upper trace signal.
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Figure 11: The experimental result of the forced spring-mass system with the frequency of the external force

equal to 1.90 Hz; The upper trace is the complete output response of the motion of the mass on
spring in time domain. The lower trace shows the spectrum of the upper trace signal.
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Figure 12: The experimental result of the forced spring-mass system with the frequency of the external force
equal to 2.00 Hz; The upper trace is the complete output response of the motion of the mass in time
domain. The lower trace shows the spectrum of the upper trace signal.
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4. Discussion

The experimental results in Figure 6 and Figure 7 confirm that the designed measurement system is
linear, since in each figure the spectrum has only one frequency, i.c., a sharp frequency peak in Figure
7 shows the frequency of oscillation of the mass on spring, namely 1.70 Hz. The sharp frequency peak
in Figure 8 shows the frequency of the external force which is equal to 2.00 Hz.

Next, when the oscillating mass is acted on by the external force 1.40 Hz, the obtained
spectrum, as shown in Figure 8, matches well with all the terms in (26), where the frequency
components 1.70, 3.10, 0.30, and 1.40 Hz of spectrum are equivalent to the first, second, third, and
fourth terms of (26), respectively. Consider Figure 8 in detail, a moment after the mass is pulled or
pushed away from its equilibrium position and released, the magnitudes of the frequency components
3.10 and 0.30 Hz are about half the magnitude of the frequency component 1.40 Hz, corresponding to
the amplitudes of the second and third terms in (26), or of new terms, which are equal to half the
amplitude of the fourth term at time =0 . After a short time, the magnitude of the frequency
component 1.70 Hz slightly decreases, and the frequency components 3.10 and 0.30 Hz cannot be

I
observed, as shown in Figure 9, corresponding to the effect of the factor e > in (26), whereas the
magnitude of the frequency component 1.40 Hz has a steady or fixed amplitude.

Figure 10 is similar to Figure 8. It shows experimental result due to the external forcing
frequency 1.50 Hz. In this figure, the frequency components 1.70, 3.20, 0.20, and 1.50 Hz of spectrum
correspond to the first, second, third, and fourth terms of (26), respectively. After a short time, the
magnitude of the frequency component 1.70 Hz slightly decreases, and the frequency components 3.20
and 0.20 Hz cannot be observed.

Analogous to Figure 8, Figure 11 shows experimental result due to the external forcing
frequency equal to 1.90 Hz. In this figure, the frequency components 1.70, 3.60, 0.20, and 1.90 Hz of
spectrum correspond to the first, second, third, and fourth terms of (26), respectively. After a short
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time, the magnitude of the frequency component 1.70 Hz slightly decreases, and the frequency
components 3.60 and 0.20 Hz cannot be observed.

Similar to Figure 8, Figure 12 shows experimental result due to the external forcing frequency
equal to 2.00 Hz. In this figure, the frequency components 1.70, 3.70, 0.30, and 2.00 Hz of spectrum
correspond to the first, second, third, and fourth terms of (26), respectively. After a short time, the
magnitude of the frequency component 1.70 Hz slightly decreases, and the frequency components 3.70
and 0.30 Hz cannot be observed.

S. Conclusion

From experimental and analytical results corresponding to each other we may conclude that the two
occurring new frequency components are an outcome of an oscillating system driven by external force.
The analytical result using the multi-time variable technique can predict four frequency components in
the spectrum of the experimental result more precisely.
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Appendix : The Solution of Second Order Differential Equation Solved Using the

Conventional Method
In conventional method, the linear second order differential equation describing the oscillation output
of damped oscillator, x(t), forced by an external forcing f(¢) can be written as

d’x(t)  dx(r) B
cz_d;2_+c' s +C0)C(f)—f([).

The solution of the above equation consists of the natural response x,(¢) and the forced

response xf(t), ie.,
x(£) = x, (6)+x,(£). (AD)
The natural response of this system is
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x,(t)=e ** (acosw,t+bcosw,t),
or

x,(t)= de % cos(w,i —¢),

where 4=va’+b* and g=tan”'(b/a).
Defining 5=0, ¢ =0, thus

i

-ty

x,(f)=ae ** cosw . (A2)
Substituting (A2) into (Al) gives

o
x(t)=ae ** cosa,t+x,(1). (A3)

Upon finding a from the initial position x(0) = x,. We set r =0 in (A3) yielding
a=x,—x,(0).

Thus, (A3) can be rewritten as

&

x(8) = |:x0 —_\c_,,(O):|e_E cos @, ! +x,(f). (A4)
If the extemal input f(¢) = £, cos(w,¢), then the forced response is
x,(t) = F|H(jo,)|cos(wt + LH(jw,)), (AS)

2

- a2 2 . té.
where IH(J'w,A)|=1/{c:J(a)(;—co;.) +(g/e) a)}} and AH(jwf):_tan_l{(C;zc_)wr].
‘ Wy — @y

Substituting (A5) to (A4) and determining D= F0|H ( jwf)| and ¢, = ZH(jw,), (A4) can be

rewritten as
_4,

x(t) =[x, — Dcos(¢.)]e ** cosw,t+ Dcos(w,t+4,). (A6}
Sl

constant valuc
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In this article, an experiment of the forced oscillating pendulum system was set up. Here, a pendulum is
driven sinusoidally by the loudspeaker. From this experiment, the spectrum of output signal of a Hall-
effect sensor (UGN3503) which is used to transform the oscillatory motion of the pendulum into an
electrical signal, exhibits four sharp frequency peaks, and it is also found that two of these frequency
peaks cannot be described by the solution of ordinary differential equation from conventional ordinary
differential equation text books. However, it can be solved by multitime variable technique, a
mathematical tool. The latter solution consists of the sum of four terms: Natural response, forced
response and the two new terms being the result of muitiplying between natural and forced responses.
This analytical solution reveals the frequency components and their behaviors more precisely and
corresponds well to the spectrum of the experimental result.

Key words: Vibration, pendulum, model, multi-time.

INTRODUCTION

The dynamics of a simple pendulum is one of the most
popular topics analyzed in textbooks and undergraduate
physics courses (Keller et al, 1993). The simple
pendulum is also one of the examples presented when
noniinear oscillations are studied (the oscillation
amplitude is not small) (Marion, 1970; Mickens, 1996).
For small values of the oscillation amplitude, it is possible
to linearize the equation of motion of the pendulum (Zill,
2005) and, in this regime, the oscillatory motion is a
simple harmonic motion, that is, the restoring force is
proportional to the angular displacement.

Pendulum is also the common example of a
mechanical oscillator. When perturbed, it begins to
oscillate with a natural frequency. Yet, this free oscillation
decays exponentially with time due to friction forces, that
is, these forces cause the mechanical energy of the
oscillator to decrease. Any system that behaves in this
way is known as a damped harmonic oscillator.

The oscillation of the damped harmonic oscillator

*Corresponding author. E-mail: thongchaim@nu.ac.th.

(pendulum) acted on by an external driving force is called
forced oscillation or driven oscillation. The oscillations
occur mainly in machinery and in electric circuits. Using
the conventional method (Taylor, 2005; Arya, 1997;
James et al., 1989) for finding the solution of a linear
differential equation describing the oscillation of such
system, the solution is given by the sum of two parts. The
natural response, the solution for a damped harmonic
oscillator discussed earlier, delays out eventually.
Another one is the forced response, the solution due to
the external driving force, persists after the natural
response has died away. The natural response depends
on the initial conditions at time (=0 and on the initial
values of the forced response also at time =0
(Dimarogonas, 1996).

Recently, the analysis of a second-order oscillator
based on a multi-time variable technique was proposed
(Maneechukate et al., 2008). The result demonstrates
that the amplitude of the natural response x (¢) of the

system depends on initial value x, and the forced
response x (r) at any arbitrary time r according to the
following equation:



z(r)—> System ——>y(t,7)

Figure 1. Block diagram of this system.

x(2,7) = I:xu X, (1‘):] cos @t + x,(7),

X, (1)

where x(¢,7) is the complete solution of the separated
time scales.

This solution is somehow different from the one achieved
by the conventional method:

x(t)= [xo -, (0)] cos wt + x.(1).

x, (1)

It is remarked that amplitude of the natural response
x,(t) depends on the initial condition x, and the forced

response x,(¢) atthe initial time, thatis, t=0.

In this paper, we apply the multi-time variable technique
to solve a mathematical model in the form of second
order differential equation describing the damped
harmonic oscillation of the pendulum acted on by the
sinusoidal external force. The obtained analytical result
consists of the sum of four components: natural
response, forced response and the new two terms
coming from the product of natural and forced responses.
These two new terms do not appear when we use
conventional method.

To verify that such analytical result is valid, an
experiment of the forced-oscillating system is set up.
Here, a mechanical pendulum acted by a sinusoidal
external force is used as an example to illustrate behavior
of such solution. A large loudspeaker is used to generate
the sinusoidal external force to the pendulum. The
oscillatory motion of the pendulum is transformed as an
electrical signal by the popular UGN3503 Hall Effect
Sensor, which is placed near a magnet fixed next to
pendulum’s rotating point. From such experiment, the
spectrum of output signal of the sensor exhibits four
sharp frequency peaks, which agree well with the solution
of such mathematical model. Moreover, the solution can
clearly describe the behavior of each frequency peak in
the spectrum.

MATERIALS AND METHODS
In this research, the forced vibraticn of the pendulum is described

by a linear second order differential equation system, with multi-
time variable technique. First of all, we would therefore like to
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describe the multi-time variable technique briefly as follows.

Multi-time variable for separating time scale of system
Definition (I}

The concept of multi-time variable technique is that the time of the
system can be separated into two different variables, r and 7,
which the natural response is a function of [, and the forced
response is a function of 7. As a result, the complete response of
system can be written as:

¥, 1)=y,(O)+y,(7), (1)

where 7 is time considered after the beginning of the time of the
system, ¢, by the time Ar. Alternatively, we can say that ¢ is
shifted 7 by At, namely:

T=1+AL. (2)

Definition (il)
The linear second order differential equation that describes the

oscillation of system acted on by an external input can be written
as:

. d*y(1,7) " daw(t,7) "

i & ey, 7) = x(1). 3)

These definitions are applied to solve the linear system as shown in
Figure 1. Dividing Equation 3 by ¢, gives the equation of motion:

x(z)

)

"

dr* e, d

dy7) o dyn,r) |
!

C,
2 y(t,7)= “
<

When we consider the natural response, Equation 4 has to be
written as:

Iy, ¢ 0 &

- () =0, 5
ar” c, dt €y Yal) *)
Of which the solution reads:
==
y,()=e ** (acosw,t+bsinw,t) ©)

According to Appendix A, where @, =+ @] —(c‘ /262)~ "

@Wy=¢,/C, and the constants a and b of the natural
response depend on the initial conditions and on the forced
response v (7}, which will be discussed later. In addition,
Equation 6 can usefully be rewritten as:

ol

y,(t) = Ae ) cos(w,t=¢), )
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where A=+a’+b> is the amplitude of the motion and
g=tan"'(b/a) is the phase constant. For convenience, we wil
set b=0,then A=a and ¢=0. Substituting these values to

Equation 7, we get:
<4

v, ()= ae ¥ cos (w,1). 8)

Next, to find the forced response y,,(z‘) , we can rewrite Equation 4
as.

d*y (1) ¢ dy, () ¢, _ x(1)
e i ©

-

Using the technique of Fourier transform, we define the input of
system x(7)= X, cos(w,.r), where X, and @, are the

amplitude and angular frequency of the input, respectively, then we
obtain the forced response output:

}’f(f)=XolHUwf)lcos(wa+‘£HUwf))’ (19)
where

|H(jcqf)|=1/c2\f((c,,/c:)—w§):+(c,/c:):w} is

the system amplitude gain at frequency @ and

!

AH(jw,)z-tan"[M.i_,] is the phase

(cy ley) = a3
shift of the system at frequency @, (Appendix B) . Finally,

substituting Equations 8 and 10 in Equation 1, the complete
response in the viewpoint of multi-time variable is

I

yuer)=y, (1) + y, (1)
o, (11)

o ocos (@) + y, (),

=ae

where y f(r) was defined in Equation 10.
Upon finding a from the initial position y(0,7)=y,., we set
¢ =0 in Equation 11, getting:

a=y(0.7)-y (1)

(12)
= Yo =y, (7).

Thus, Equation 11 can be written as:

=8
2e,
y(t,7) = [yo - yf(r)je “ cos(w,t)+ y, (7).
(13)
In Appendix C, the solution of ordinary second order differential

equation soived by conventional method is described. It is
convenient to write such solution here:
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. Y
Y0 =[5 -y, 0]e ™ cos(@,2)+y, (). (14)
Comparing Equation 13 with Equation 14, it is easy to see that the
natural response term in Equation 13 depends on the values of the
forced response for all time ¢ > 0, whereas the natural response
term in Equation 14 depends on the initial values of the forced
response at time ¢ = 0 only. This is the obvious difference between
the muiti-time variable technique and the conventional method.
Next, substituting Equation 10 in Equation 13 gives:

o) = [y, - X, |H(je,)|cos(w, T+ 2H(je, ))]c-"'r cos(wys)  (15)
+ X, |H(jw,)|cos{w, T+ £H {jo,)).

From a trigonometric identity,
cosmcosn = (1/2)[cos(m — n) + cos(m+n)] ,

and the assumption of 7 in Equation 2, Equation 15 can be
rewritten as:

T i B
y(t e+ Aty =e 1y cos(wt)—e Ecos[(w[ +wﬂ)r+¢,}

-5,

—e @ gcos[(wf —w,,):+¢,.:|+ Beos(w+9,),

(16}

where B = XoIHU‘”; )| is the magnitude of forced response and

@, =w A+ LH(jw,) is the phase difference between the forced

response and the external force.
From Equation 16, the frequencies of the first, second, third, and

fourth terms are @, w+o, o, -, and @, respectively.
@, + @, and @, -, are the frequencies of two new terms, as

discussed previously. At { =0, the magnitudes of the second and
third term, that is, of two new terms, are equal to half the magnitude
of the forced response (the fourth term). As 7 increases, the
]
-t
exponential factor € ~~ decreases continuously and approaches
zero asymptotically. In effect, the magnitudes of the second and
third terms, including the first term, will decrease continuously. In
addition, the magnitude of forced response becomes large when

@, gets close to Je, /¢, (by observing the value of IH (e, )1 as

mentioned earlier). As a result, the magnitudes of the second and
third terms also increase, that is, half the magnitude of forced
response at t=0.

The forced vibration of a pendulum described by the multi-time
second order differential equation

To explain the forced vibration of a pendulum, we consider the
pendulum acted on by the external force as shown in Figure 2.
Without external forcing, when the bob of the pendulum is pulled
from its equilibrium position, the restoring force magnitude acting on
the bob is given by:



[
|
|
|
l
|
|
|
i
I
I
r
l
I
|
1

mg

Figure 2. The forced oscillating pendulum.

F=-mgsin@ (7

where m is the mass of the bob and g is the acceleration due to
gravity. Suppose the pendulum is set in motion, if the angle & is

small then sin@ = & ; the motion of the pendulum is the damped
harmonic oscillation, and the arc y can be approximately

considered to be a straight line. From the relation y =L@,
Equation 17 can be rewritten as:

F=—mg€=mg%. (18)

The motion of the pendulum will eventually be damped out,
because there is a damping force proportional to the velocity of the

dy
bob acting in the direction opposite the motion: —f d_ , where f3
t

is the damping constant. Including these forces in Newton's second
law for the bob, we obtain:

2
_mg-__'g_;_=m_-_ (19)

Rearranging Equation 19, we get:
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d*y(t dy(t /(¢
L IR B L Y (20)
dt dt L
When the support of the pendulum is acted on horizontally by 2
driving force x(7). using the multi-time variable technique, the

equation describing the forced motion of the pendulum is in the
form:

L. LI pded .

a x 7 x(7). (21)

If a periodic external force is given by x(7) = X, cos(w,7) , where
T =1+ Atf, Equation 21 becomes:

d*y(t,z dy(t, T T
WL L L o PO [ R
dt dt
Dividing Equation 22 by the mass gives the equation of motion,

d? X
‘Zf’;r) + %dy;’;” + %y(r.r) = —tcos(w,7). (@)

When we want to find the natural response, Equation 23 can be
rewritten as:

2 »
d’y. (0 Bdr.(), g

£ =y ()= 0. (24)
de* m di L Y0
Of which solution reads:
iy
y,(t)=e ™ (acosw,t+bsinw,t), (25)

where @, =,jw} —(B/2m)" and @, =.[g/L ., are the damped

and undamped natural angular frequency of the system,
respectively. The constants @ and & of the natural response
depend on the initial conditions, namely, the initial position y, and
the initial velocity v,, and on the forced response y,(7), which

will be discussed later. Of course, Equation 25 can usefully be
rewritten as:

-2y
Y, (t) = Ae *» cos(w,t—¢), (26)

where, as before, A =+/a’+b* isthe amplitude of the motion and
g=tan™ (b/a) is the phase constant. For simplicity, we will set

b=0, then A=a and ¢=0. Substituting these values to
Equation 26, we get

-
y,(ty=ae ' cos(@,t). @7

Next, when the forced response is determined, Equation 23 is
rewritten as:
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Figure 3. The setup of the forced pendulum experiment.

diy dy, (r
.lw(f)+£ v ( )+£

=X (28)
Fr i sl

Similar to the multi-time variable for separating time scale of
system, the forced response of Equation 28 is

_vf(r)=XU|H(jwf)|cos(a)fr+z:H(jwf)). (29)

where IH(jcof)|=l/m\/(m§ —wj): +(B/m) @} ang

(B/maw,

LH(jw,)= —tan”'
: w; - o}

The sum of Equations 27 and 29 represent the complete solution,
that is,

vty =y, () + v, (1)

i
=ae " cos(w,t) (30)

+X,|H(jo,)|cos(w,7+ LH (jo,)).

Setting ¢ =0 in Equation 30 and giving y(0,7) =y, as an initial
condition, namely the initial position or the displacement at ¢ = 0.
the parameter a is given by:
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a=y(0,7)=y (1)

=yu—X,,|H(ja{r)[cos(wfr+£H(jw_r)). 1)

Substituting Equation 31 into Equation 30, the complete response
becomes:

L,
vy =e [‘vD—X,|H(jaz, )Icos{ag,ﬁ LH(jw, ))]cos(a;,,r) 32)
+Xo|H (jw,)cos (@, 7+ LH (j@,)).

Similar to Equation 16 in the multi-time variable for separating time
scale of system, Equation 32 can be rewritten as:

=y
WL+ A= e_’z%yo cos(wt)—e " gcos[(wf + w")r + ¢(]

g
E Bef(0-a o, Jeos{ocr)

(33)
where B = X,|H(jw,) and ¢, = w,At+ LH (jw,).

Considering Equation 33, the frequencies of the first, second, third,
and fourth terms are w,, @, +tw@, ®,—-®, and @,

e
respectively. At time ¢ =0, the magnitudes of both the second and

third terms, that is, of new terms, are equal to half the magnitude of
the forced response (the fourth term); as ( increases, the

s

£ .
exponential factor € =™ decreases continuously and approaches

zero. From this effect, the magnitudes of the second and third
terms, including the first term, decrease continuously. In addition,
the magnitude of forced response becomes large when the

oscillating frequency of the driving force, (()f , is close to the free

undamped natural frequency @, =-+fg/L. As a result, the
magnitudes of the second and third terms are also large, that is,
half the magnitude of forced response attime ¢ =0.

In order to confirm that the aforementioned analytical result is valid,
an experiment that has a vibrating pendulum acted on by an
external force is designed as shown in Figure 3.

In this experiment, a vibration system, the pendulum consists of a
light rod of length 0.10 m (pendulum’s arm) and a mass 0.10 kg
attached at one end. The cther end of this rod is suspended to a
support fixed on an experimental cart, here, the natural frequency

f, of the pendulum’s oscillation is about 1.50 Hz (the damping
constant S «can be roughly calculated from the equation,

@, =(g/Ly—(B/2my , where @ =2zf , f =150Hz
g=9.8mis’, L=0.10mand m=0.10kg.). The body of the cart

is connected horizontally to the center of a large loudspeaker.
Hence, such that the vibrating system is forced to undergo periodic
oscillation of the loudspeaker in the direction of the pendulum
motion; the loudspeaker is connected with a power amplifier circuit
that receives the sine signal from the function generator, so that we
may easily adjust the frequency and amplitude of the external force

To measure the oscillatory motion of the pendulum, the Hall
Effect Sensor, UGN3503, is placed close to a circular flat magnet
fixed on pendulum arm close to the rotating point of it as shown



Figure 4. Hall Effect Sensor placed nearby the flat circular
magnet.

in Figure 4. When the position of the mass varies, the output
voltage of the sensor follows this variation. The voltage signal and
its spectrum are displayed on the oscilloscope.

To confirm linearity of the designed measurement system in the
aforementioned experiment, the pendulum is put first into motion
while the external force, applied by loudspeaker, is switched off.
The output signal spectrum of sensor should have only one
frequency, namely, the frequency of pendulum's oscillation.
Second, let the external force operate while the pendulum does not
oscillate (the pendulum is fixed at rest on the experimental cart).
Spectrum of output sensor signal in this case should also have only
one frequency, the frequency of loudspeaker oscillation.

In the next process of experimentation, as the external force is
switched on, initially, we slightly pull the mass to one side of its
equilibrium position, which the angle of the pendulum with respect
to the vertical is small (less than 59 and then release it. This is
equivalent to giving energy to the pendulum, that is, the oscillation
of the pendulum is maintained, and it is being driven by the periodic
external force. In this case, the obtained spectrum of sensor's
output signal should correspond to Equation 33, The frequencies of
the force used in the experiment are as follows: 1.10, 1.20 and 1.90
Hz. The experimental results of these experiments are illustrated
subsequently.

RESULTS

The experimental result which the pendulum oscillates,
while the external force is switched off, is shown in Figure
5. The upper trace signal is the output signal of sensor,
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Figure 5. The experimental result due to pendulum oscillation in the
absence of external force, The upper trace is the output signal of
the UGN3503 sensor, and the lower trace is its spectrum,
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Figure 6. The experimental result in case pendulum does not
oscillate, while the external force operates. The upper trace is the
output signal of the UGN3503 sensor, and the lower trace is its
spectrum.

UGN3503, and the lower trace signal is its spectrum.
Figure & shows the experimental result that the external
force oscillates, while the pendulum does not oscillate;
here, the frequency of the external force is 1.10 Hz. Next,
the experimental result in case the pendulum is forced by
the driving force 1.10 Hz is illustrated in Figure 7.
Similarly, the experimental results of the pendulum forced
by the driving forces 1.20 and 1.90 Hz are as shown in
Figures 9 and 10, respectively.
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Figure 7. The experimental result of the forced pendulum, in case
the frequency of the external force is equal to 1.10 Hz. The upper
trace is the complete output response of the pendulum in time
domain. The lower trace shows the spectrum of the upper trace
signal.
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Figure 8. After a short time, the frequency component 1.50 Hz
slightly decreases, and the frequency components 0.40 and 2.60
Hz cannot be observed (continued from Figure 7).

DISCUSSION

The experimental results in Figures 5 and 6 confirm that
the designed measurement system is linear, since in
each figure the spectrum has only one frequency, that is,
a sharp frequency peak in Figure 5 showing the
frequency of oscillation of the pendulum, namely 1.50 Hz.
The sharp frequency peak in Figure 6 shows the
frequency of the external force equal to 1.10 Hz.
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Figure 9. The experimental result of the forced pendulum with the
frequency of the external force 1.20 Hz. The upper trace is the
complete output response of the motion of the pendulum in time
domain. The lower trace shows the spectrum of the upper trace
signal.

Next, when the oscillating pendulum is acted on by the
external force 1.10 Hz, the obtained spectrum, as shown
in Figure 7, matches well with all the terms in Equation
33, where the frequency components 1.50, 2.60, 0.40,
and 1.10 Hz of the spectrum are equivalent to the first,
second, third, and fourth terms of Equation 33,
respectively. Consider Figure 7'in detail, 2 moment after
the mass is pulled away from its equilibrium position and
released, the magnitudes of the frequency components
2.60 and 0.40 Hz are about half the magnitude of the
frequency component 1.10 Hz, corresponding to the
amplitudes of the second and third terms in Equation 33,
or of new terms, which are equal to half the amplitude of
the fourth term at time ¢=0. After a short time, the
magnitude of the frequency component 1.50 Hz slightly
decreases, and the frequency components 2.60 and 0.40
Hz cannot be observed, as shown in Figure 8,

Ll l
corresponding to the effect of the factor ¢ 2 in Equation
33, whereas the magnitude of the frequency component
1.10 Hz has steady or fixed amplitude.

Figure 9 is similar to Figure 7. It shows experimental
result due to the external force frequency 1.20 Hz. In this
figure, the frequency components 1.50, 2.70, 0.30, and
1.20 Hz of the spectrum correspond to the first, second,
third, and fourth terms of Equation 33, respectively.

Analogous to Figure 7, Figure 10 shows experimental
result due to the external forcing frequency equal to 1.90
Hz. In this figure, the frequency components 1.50, 3.40,
0.40, and 1.90 Hz of the spectrum correspond to the first,
second, third, and fourth terms of Equation 33,
respectively.
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Figure 10. The experimental result of the forced pendulum with the
frequency of the external force equal to 1.90 Hz. The upper trace is
the complete output response of the motion of the pendulum in time
domain. The lower trace shows the spectrum of the upper trace
signal.

Conclusions

From the experimental and analytical results
corresponding to each other, we may conclude that the
two occurring new frequency components are an
outcome of an oscillating system driven by external force.
The analytical result using the multi-time variable
technique can predict four frequency components in the
spectrum of the experimental result more precisely.
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APPENDIX

Appendix A: The general solution of homogeneous
equation

The characteristic equation of Equation 5 is

v By B
rer+-2=0
& G

Then, we get the characteristic roots:

G ¢ | ¢
n=—-——=% I | -2
2c, 2c, <,

Here, we consider the solution for the damped harmonic

5

oscillator, that is, (;—‘J -c—°<0; for this case, the roots
Ca C,

will be complex:

6 , e (¢ Y
hoh=——=x/j|—=|—].
e 2c, 4 c, (2(::]

and we can write the solution, natural response, as:

i i{_"l_]:], [ a_; “o;{i”,
200 Ve \2a 2o Vo 2o
+De ;

xm=ﬂl

(A1)

2

If we define &,

G
J as the natural angular

frequency of the damped oscillator and w, = % as that of

.

the undamped oscillator, then Equation A1 can be written
as:

-=he s, e L, |
r.()= D,e[ 26 ] + ch{ 2% ] (A2)
From Euler's equation, e™’ =cos@=* jsind, we can
rewritten Equation A2 as:

y,,(r)=e‘:TE [Dicoswt+ jsinayt)+D(cos eyt~ jsin ). (A3)
We know, of course, that y (1) is real, whereas the two

exponentials in Equation A3 are complex. Therefore, the
coefficient D, must be the complex conjugate of D,. Let

us assume that
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- jb
B, =224
2
then
D, = a+ jb
2

where g and b are real constants. We then substitute
the complex constant D, and D, into Equation A3
obtaining the solution as Equation 6. That is,

£

—
Y,()=e % (acosat+bsinwy).
Appendix B: The frequency response of the system

From Equation 9, we can find the frequency response of
the system via Fourier transform pair as follows:

F["—f,‘—’-] =(0)'7, (jo).

Fly,(0]=1, (jo)
and
Flx(r)]=X(jo).
Here, we have defined x(r) as input of the system.

Substituting these Fourier transform pair into Equation 9,
we get:

(e 1 o)+ &)1, (o) + 2, ) = 22,
or simply
I TIRI Y P L
— 'l Y =7
[W *Q(J“J*Q] lia==

Then, the ratio between VY, (jw) and X(jw), the

frequency response of system, is:

1
cz[[gc'——afJ+z—‘wj:|
2 frd

where the system's magnitude response is

H(jw)=



|H (o) =

2 2"
cz‘j(c—"—wz) +(C—' w)
€z C:
and phase response is

£H(jo) = —tan~t| 0LE0€

So _ ot
<y

Since the frequency of x(z) is equal to @, , the system

amplitude gain at frequency o, |#(jo, )| Jis:
1
Cz\j(&—wa +[&w:.]
G G

and the phase shift of the system at frequency w, is:

|H(fw_r )|=

ELG,,,
ZH (jw,)=—tan™" CC'

L) 2
.

Here, the input of the system is x(r) = X, cos(w,7), the
sinusoidal input, where X, is its amplitude. The steady-
state response is indicated by:

»(8) = X, |H(jo,)|cos(w,T+ LH(jaw,)).

Therefore, it is clear that the sinusoidal steady-state
response, or the forced response, has the same
frequency as the input, whereas its amplitude and phase
angle are determined by the system's magnitude

response |H( jw)| and phase response ZH(jw) at any
given frequency w,.

Appendix C: The solution of second order differential
equation solved using the conventional method

In conventional method, the linear second order
differential equation describing the oscillation output of
damped oscillator, (), forced by an external forcing

x(¢) can be written as:

& % +e, %+ e ¥(t) = x(o).
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The solution of the aforementiond equation consists of
the natural response y, (1) and the forced response y (1),

that is,

O =y, () +y, (). (C1)

The natural response of this system is:

o
Ly

y,(ty=e’* (acosw,t+bsinaw,t).
or

i

Fa(0)= Ae  (coswt—9),

where 4=+a®+b% and ¢= tan™ [EJ .
a
If =0 then ¢=0, thus:

.
e
2y

y,{=ae cos@,l.

(C2)
Substituting Equation C2 into Equation C1 gives:

P
2ey

y(t)=ae ** cosw,t+y, (1) (C3)

Upon finding a from the initial position y(0) = y,. We set
t=0 in Equation C3 yielding:

a=y, -y 0).
“Thus, Equation C3 can be rewritten as:

&,
** cosat+y, (1)

2O =[3=2,O]e





