CHAPTER II

PRELIMINARIES

In this chapter, we give some precise definitions, notations and basic results
which will be used in our study. Moreover, we will show some necessary propositions
that we usually refer to and we show some relationships among subsemigroups of 7(X)

in the rest of this chapter.
2.1 Elementary concepts

Definition 2.1.1. Let S be a semigroup and z € S. Then

(1) z is a regular element if z = zyx for some y € S.
(2) z is a left regqular element if x = yx® for some y € S.
(3) = is a right reqular element if x = x%y for some y € S.

(4) z is a completely regular element if z = zyz and zy = yz for some y € S.

And we denote

Reg(S) = {z € S:zis aregular element of S},
RReg(S) = {z €S :zis aright regular element of S},
LReg(S) = {z €S :zisaleft regular element of S},

CReg(S) = {z €S :zisa completely regular element of S}.

We call S a regular semigroup if all its elements are regular, that is Reg(S) = S.

Theorem 2.1.2. For a semigroup S, CReg(S) C LReg(S) N RReg(S) C Reg(S).

Proof. Let S be a semigroup. Clearly, CReg(S) C LReg(S) N RReg(S). To show that
LReg(S) N RReg(S) C Reg(S), let x € LReg(S) N RReg(S). Then z = yx? and z = 2%z

for some y,z € S. Since



z = yz° = (y2)7 = y(2%2)z = (yz?)2z = z2z,
we have z € Reg(S) as required. ' O
In general, left regularity and right regularity are not a generalization of regularity.

If S is a commutative semigroup, then Reg(S), LReg(S), RReg(S) and CReg(S) coincide.

Definition 2.1.3. Let X be a nonempty set and ¢ a relation on X. Then

(1) o is reflexive if (z,z) € o for all z € X.

(2) o is symmetric if (z,y) € o implies (y,z) € ¢ for all z,y € X.

(3) o is anti-symmetric if (z,y), (y,z) € o imply z =y for all z,y € X.
(4) o is transitive if (z,y), (y,2) € o imply (z,z) € o for all z,y,z € X.

If o satisfies (1), (2) and (3), then ¢ is a partially order on X. And we call o an

equivalence relation on X if o satisfies (1), (2) and (4).

For a nonempty set X and a partially order < on X, we say that (X, <) is a
partially ordered sef. For z,y € X, we denote (z,y) €< by z < y and write z < y if

z<yandz#uy.

Let X be a nonempty set and E an equivalence relation on X, we denote
X/E={{reX:(z,a) € E}:a€ X}

and call A € X/E an equivalence class or E-class.

Definition 2.1.4. Let (X, <) be a partially ordered set. For z,y € X, z and y are said
to be comparable if z < y or y < z. A nonempty subset C of X is called a chain if all
elements z,y € C are comparable. In particular, if X is a chain, we say that (X, <) is a

totally ordered set.

Let z,y € X besuch that x < y,if x < 2z and z <y imply x = 2 or z =y, for all

z € X, then we call z an upper cover for y and y is a lower cover for z.



Definition 2.1.5. Let (X, <) be a partially ordered set and z € X. Then

(1) = is a maxzimal element of (X, <) if for all y € X, z < y implies = y.

(2) z is a minimal element of (X, <) if for all y € X, y < z implies y = z.

(3) =z is isolated if it is incomparable with every element in X except itself.
Definition 2.1.6. Let 7 be a collection of nonempty subsets of X. We say that 7 is a
partition of X if 7 satisfies the following conditions.

(1) ur =X and

(2) for every A,B € m, AN B # () implies A = B.

Theorem 2.1.7. Let E be arbitrary equivalence relation on a nonempty set X. Then

X/E is a partition of X.

Theorem 2.1.8. Let m be a partition of a nonempty set X. Then E = U (AxA) is

Aer
an equivalence relation on X and X/F = 7.

Let A, B be nonempty subsets of a semigroup S and s € S, we denote AB =
{ab:a € Aand b e B} and sA = {sa:a € A}. If S is a semigroup with identity, then
we means S' = S. If S has no an identity element, we let S* = SU {1} and define the

binary operation on S* by
l-s=s-1=sforallseS'anda-b=abforalla,be S.

An element z in a semigroup S is called an idempotent element if z = z2. We denote the

set of all idempotent elements of S by E(S).

Definition 2.1.9. [15] Let S be a semigroup and a,b € S. We say that

(1) (a,b) € L if S'a = Sb.

(2) (a,d) € R if aS? = bS™.



(3) (a,b) € J if S*aS* = S'bS1.

We then have £, R and J are equivalence relationson §. Let H=LNR and D = LoR.
Since LoR = RoL, we have D and H are also equivalence relations on S. Five equivalence

relations on S are called Green’s relations.

Mitsch [11] defined the natural partial order on any semigroup S as follows : for
a,be s,

a < b if and only if a = zb = by, @ = ay for some z,y € S*.

This order coincides with the natural partial order for a regular semigroup which is the

following : for a,b € S,
a < b if and only if @ = eb = bf for some e, f € E(S)

where E(S) is the set of all idempotents of S.

2.2 Subsemigroups of full transformation semigroups

Let S be a semigroup. A nonempty subset T of S is called a subsemigroup of S
if zy € T for all z,y € T. Let X be a nonempty set and let T'(X) denote the semigroup

of full transformations from X into itself under composition of mappings.

For a partially ordered set (X, <), let E be an equivalence relation on X. The
following subsemigroups of 7'(X) are considered as in [14, 7, 1, 4, 3] respectively, defined
by

O(X) = {aeT(X):Vz,y€ X,z <y implies za < ya},
Tre(X) = {aeT(X):Vze X,za <z},
Te(X) = {aeT(X):Vz,y€ X, (z,y) € FE implies (za, ya) € F},

Tex(X) = {aeT(X):Vz,y€ X,(z,y) € E if and only if (za, ya) € E},



EOP(X) = {aeT(X):Vz,yeX,(z,y) €eEandz <y

imply (za, yo) € E and za < ya}.

All subsemigroups clearly contain ix where iy is the identity map on X. Now, we define

a new subsemigroup of T'(X) by

Tsp(X) ={a € T(X) :Vz € X, (z,z0) € E}.

We call Tsg(X) the self-E-preserving transformation semigroup on X.

Next, we will briefly recall some characterizations for above semigroups and in-

troduce some notations that will be used in the sequel.

Theorem 2.2.1. Let E be an equivalence relation on a nonempty set X. Then

Tse(X) C Te+(X) C Te(X).

Proof. Clearly, Tg~(X) is a subsemigroup of Tg(X). Let o € Top(X). To show « €
Tp+(X), let z,y € X be such that (z,y) € E. Since a € Tsp(X), (z,za), (v, ya) € E.
It follows from E is symmetric that (za, z) € E. We conclude that (za, ya) € E by the
transitivity of E. Conversely, suppose that (za,ya) € E for some z,y € X. We note
that (z,za), (y,ya) € E. Since E is symmetric, (ya,y) € E. By the transitivity of E,
we then have (z,y) € E. Therefore o € Tp«(X). O

Definition 2.2.2. [1] For a nonempty set X and o € T(X), m(a) denotes the decompo-

sition of X induced by «, namely

m(a) = {ya~!:y € Xa}

and define ay : m(a) — Xa by

Pay, = xo for each P € m(a) and z € P.

Then 7(a) is a partition of X and a, is a bijection.
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For a nonempty subset A of X and a € T(X), we write

ma(a) ={P e n(a): PN AF#0}.

Theorem 2.2.3. Let A be a nonempty subset of X and o € T(X), we denote
m(A, o) ={PNA:Pems(a)}
Then w(A, @) is a partition of A induced by a.

Proof. Clearly, Ur(A,a) C A. Let z € A, we note by () is a partition of X that
z € P for some P € w(a). Thus PN A # 0. Hence P € m4(e) and z € Un(4, a). Next,
let P/,Q" € m(A, @) be such that P’ N Q' # 0. Then there exists z € P' N Q' for some
z € X. Since P/, Q" € n(4, a), we conclude that P’ = PN A and Q' = Q N A for some
P,Q e .‘H'A(C!). ‘This implies that z € PN Q. It follows from 7(c) is a partition of X that
P = @Q and hence P’ = @’. Therefore 7(A, a) is a partition of A as required. a

Lemma 2.2.4. [1] Let E be an equivalence relation on X and o € Tg(X). Then for each
B € X/E, there exists B' € X/E such that Ba C B'. Conseguently, for each A € X/E,

the set Aa™" is either 0 or a union of some E-classes.
Proposition 2.2.5. Let E be an equivalence relation on X and a € Tg«(X). Then the
following statements hold.

(1) If P € w(a), then there exists A € X/E such that P C A.

(2) For every Pen(a) and A€ X/E, if PNA#0, then P C A.

(3) For every A€ X/E, wa(a) is a partition of A.
Proof. (1) Let P € w(a) and z € P. Since X/F is a partition of X, there exists A € X/E
such that x € A. For each p € P, we have za = pa which implies that (za,pa) € E.
Since a € Tg«(X), we deduce that (z,p) € E. Hence p € A. This shows that P C A.

(2) Let P € w(a) and A € X/E be such that PN A # (. By (1), there exists
B € X/FE such that P C B. This implies that AN B # . Since X/FE is a partition of
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X, we have that A = B.

(3) Let A € X/E. It follows from (2) that Ura(a) C A. Let z € A. Since m(a) is
a partition of X, there exists P € r(c) such that z € P, so PN A % . Hence P € 14 (@)
and therefore A C Umg(a). O

Proposition 2.2.6. Let E be an eguivalence relation on X and o € T (X). Then the

following statements hold.

(1) For every A € X/E, there exists B € X/E such that Ao C B.

(2) For every A,B € X/E, if Ao C B, then Ba~! = A.

Proof. (1) Since Tg-(X) is a subsemigroup of Tg(X), by Lemma 2.2.4 we have (1) is
true.

(2) Suppose that Ae C B where 4, B € X/E. Clearly, A C Ba~!. Let b € Ba~1.
Then ba € B. Let a € A. By assumption, ao € B, hence (aa,ba) € E. Since
a € Tp«(X), we get (a,b) € E. That is, b € A and then Ba~! C A. O

Definition 2.2.7. For a nonempty set X, let 4 and B be collections of subsets of X.
- We say that B is a refinement of A or B refines A if UB = UA and for each B € B, there
exists A € A such that B C A.

Theorem 2.2.8. Let o, 8 € T(X). Then a € BT(X) if and only if 7(B) refines m(c).

Proof. Assume that oo € 8T(X). Then oo = 36 for some § € T(X). We note Ur(a) =
Um(B). Let P € w(B). Hence P = yB~! where y € X3. Thus Pa = PS5 = {y&} which
implies that P C ydo!. Since yda~! € m(e), we conclude that 7(8) refines m ().

Conversely, assume that 7(85) refines w(a). For each z € X3, there exists a unique
P, € n(B) such that P; = z3~1. By assumption, there exists a unique Q, € m(a) such
that P, C Q. Define § : X — X by

z, otherwise.

{ Qzow, ifz € X,
o=
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By m() is a partition of X, we have § is well-defined. Let € X, hence z8 € X3. By
the definition of 4,

B = Qzpax = o

since € Prg C Qzp where Pyg € w(8) and Qg5 € w(a). Therefore o = 35, so the
theorem is thereby proved. O

From Theorem 2.1.7, Definition 2.2.2 and Proposition 2.2.5(1), we conclude that
m(a) refines X/E for all & € Tg+(X). Since Tsg(X) is a subsemigroup of T~ (X), we

have the following result immediately.

Proposition 2.2.9. Let E be an equivalence relation on X and o € Tsp(X). Then the
following statements hold.

(1) m(a) is a refinement of X/E.
(2) A=Ums(a) for all A e X/E.

(3) Aa C A forall A€ X/E.

The next theorem is easy to verify.
Theorem 2.2.10. For a partially ordered set (X, <), let = be a collection of nonempty
subsets of X. We define a relation < on w by

PXQifandonlyif P=Q orz <y for allz € P,y € Q.

Then (m, =) is a partially ordered set.
Proposition 2.2.11. Let (X, <) be o totally ordered set and oo € O(X). Then (7(a), <)

is a totally ordered set and (for any P,Q € n(a), P X Q if and only if Pa, < Qo).

Proof. Since m(a) is a partition of X, (w(a), X) is a partially ordered set. Let P,Q €

7(c) be distinct. Fix p € P and g € Q. Since (X, <) is a totally ordered set, we assume
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that p < q. Claim that P < Q, suppose not. Then there exist z € P and y € Q such that
z £ y. We note by (X, <) is a totally ordered set that y < z. It follows from a € O(X)
that |

ya < zo = Pa, = pa < go = Qo = ya.

Hence Pay = Qay which is a contradiction with P and @ are distinct. Thus z < y for
allz € P and y € Q. This means that P < @ and then (7(a), =) is a totally ordered
set. Let P,Q € 7(a) be such that P < Q. Suppose that P # Q. Let z € P and y € Q,
then by P % Q we get x < y. Thus Pa, = za < ya = Qax. On the other hand,
let P,Q € w(a) be such that Pa, < Qay. If P = Q, then the proposition is already
proved. Suppose that P # Q. Since P and @ are distinct, Pa, < Qas. Assume that
Q X P. Let z € P and y € Q. We note by assumption that y < z. It follows that
Qow = ya < za = Pa, < Qay which is a contradiction. Hence Q A P. By (n(a), =) is
a totally ordered set, we have P < (. Od

Proposition 2.2.12. Let (X, <) be a totally ordered set and E an equivalence relation
on X. For Ac X/E and o € EOP(X),

(1) there exists a unique B € X/E such that Ae C B and

(2) (w(A, @), =) is a totally ordered set.

Proof. Let A € X/E and z € A. Since X/FE is a partition of X, za € B for a unique
B € X/E. Claim that Ao C B, let y € A. We note by (X, <) is a totally ordered set
that ¢ <y or y < z. It follows from o € EOP(X) that (za,ya) € E which implies that
ya € B. Thus (1) holds.

It is clearly seen that m(A, @) is a partition of A and (7(4, @), X) is a partially
ordered set. To prove (7(4,a), <) is a totally ordered set, let P,Q € (A, a) be such
that @ £ P. Then there exist p € P and g € @ such that ¢ £ p. Since (X, <) is a totally
ordered set, p < ¢g. By the definition of 7(A4, &), we have that P = PNdand Q =Q' NA
for some P/,Q’ € ma(a). Since P # @, P’ # Q' and hence P'ay # Q' a,. Claim that

P < Q. Suppose that y < z for some z € P and y € Q. We note here that p,g,z,y € A.
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Since p < q and (p,q) € E, we deduce that pa < go. Since P'ay # Q oy, p € P’ and
q € Q, Plax = pa < gqa = Q’ay. Similarly, we conclude that Q'ay = ya < za = Play.

This implies that
Pao, < Qax < Pa,

which is a contradiction. Hence z < y for all z € P and ¥ € Q. So we have the claim.

Therefore (7(A4, &), =) is a totally ordered set as desired. O

2.3 Relationships between subsemigroups of full

transformation semigroups

In this section, the set X under consideration is a totally ordered set with F an

arbitrary equivalence relation on X. We define subsets of T'(X) by

Ter(X) = Te(X)NTre(X),
Op(X) = Te(X)NO(X),
Tser(X) = Tse(X)NTre(X),
Tseo(X) = Tse(X)NO(X),
Tor(X) = O(X)NTre(X).

It is known that the intersection of subsemigroups of a semigroup S is either an empty set
or itself a subsemigroup of S. Then Tgr(X),Op(X),Tser(X),Tseo(X) and Tor(X)

are subsemigroups of T'(X) containing ix.
We characterize the conditions under which some of above subsemigroups of T'(X)

are equal.

Theorem 2.3.1. Tgr(X) = Tre(X) if and only if for every A,B € X/E such that
A # B, if there exist a € A,b € B such that a < b, then |B| = 1.

Proof. Assume that there exist A, B € X/E such that A # B, a < b for somea € A,b €
B and |B| > 1. Define a.: X — X by
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a, ifz=b
T =

z, otherwise.

Clearly, zoo < z for all z € X and then a € Tre(X). Let ¢ € B\{b}. Thus (b,c) € E.
Since (be, ca) = (a,¢) & E, a & Tg(X). Therefore Ter(X) # Tre(X).

Conversely, suppose that for every A, B € X/E such that A # B, if there exist
a € A,b € B such that a < b, then |B| = 1. To show that Tgr(X) = Tre(X), let
a € Trp(X) and let z,y € X be such that (z,v) € E. Hence z,y € B for some B € X/E.
If z = y, then (za,ya) € E. Suppose that z # y. Then |[B| > 1. Since a € Tre(X),
ra < z. It follows by assumption that zoo € B. Similarly, we have that ya € B. This
means that (za,ya) € E. Therefore, o € Tr(X) and hence Tgr(X) = Tre(X). O

Theorem 2.3.2. Tpr(X) = Tg(X) if and only if | X| = 1.

Proof. Suppose that [X| > 1. Let a,b € X be such that @ # b. Then there exist
A,B € X/E such that a € A and b € B. Suppose that a < b and define o : X — X by

b, ifze€ 4;
T =

z, otherwise.

Let z,y € X be such that (z,y) € E. Then

(b,b) e E, ifz,yecA4;
(e, yor) =

(z,y) € E, otherwise

which implies that o € Tr(X). Since aa = b £ a, we deduce that o & Ter(X). a

Theorem 2.3.3. Tsgr(X) =Tre(X) ifand only if E = X x X.

Proof. Suppose that £ # X x X. Then there exist a,b € X such that (a,b) & E.
Suppose that a < b and define o : X — X as given in Theorem 2.3.1. Then a € Tre(X).
Since (b, ba) = (b,a) € E, o & Tsp(X). Hence Tspr(X) # Tre(X).

Assume that £ = X x X. We have that Tsg(X) = T(X), hence Tsgr(X) =
Tsp(X) N Tre(X) = T(X) N Tre(X) = Tre(X). O
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Theorem 2.3.4. Tspr(X) = Tsg(X) if and only if E = Ix where Ix is the identity

relation on X.

Proof. Suppose that £ 7 Ix. Then there exist a,b € X such that a # b and (a,b) € E.
We assume that @ < b and define o : X — X by

b, ifz=a;
o=

z, otherwise.

For each z € X,

(a,b) € E, ifz=a;
(z,2e) =

(z,z) € E, otherwise,

hence o € Tsg(X). Since aa = b £ a, we conclude that o ¢ Tre(X). Therefore
Tspr(X) # Tsp(X).

Conversely, suppose that E is the identity relation on X. Let a € Tsg(X) and
z € X. Then we have that (z,za) € E. By assumption, zoe = z which implies that
o € Trp(X). This proves that Tsg(X) € Trp(X), hence Tsp(X) = Tsp(X)NTgre(X) =
Tser(X). L.

Theorem 2.3.5. Op(X)=0(X) ifand only if E=X x X or E = Ix.
Proof. Assume that E # X x X and E # Ix. Then there exist A, B € X/E such that

|A| > 1 and B # A. Let a,c € A be such that a < cand b € B. Since E is an equivalence
relation on X, we have that b € B\ A. Define o: X — X by

max{b,c}, if c< x;
Loi=

min{b,c}, otherwise.
To show that a € O(X), let z,y € X be such that z < y.

Case 1. c<z <yorz <y <c Then we get that za = ya.
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Case 2. z < ¢ < y. Then we have that zo: = min{b, ¢} < max{b,c} = yo.

From two cases, we deduce that oo € O(X). We note here that (a,c) € E and (ac, ca) =
(min{d, c}, max{b,c}) ¢ E. Hence o & Tg(X). This proves that Op(X) # O(X) as
required.

Conversely, suppose that E = X x X or E = Ix. We then have that Tg(X) =
T(X). Therefore Op(X) = Te(X) NO(X) = T(X) N O(X) = O(X). O

Theorem 2.3.6. Op(X) =Tg(X) if and only if | X| = 1.

Proof. Assume that |X| > 1. Let a,b € X be such that a < b. Then a € A for some
A€ X/E. Define a: X — X by

b, ifz € Aandz#b;
o =

a, otherwise.

To show that o € Tg(X), let 2,y € X be such that (z,y) € E. Then z,y € B for some
B e X/E.

Case 1. B # A. This implies that z,y ¢ A. Hence (za,ya) = (a,a) € E.

Case 2. B= A. If b € A, then za,ya € {a,b} C A. Thus (za,ya) € E. If
b¢ A, then z # b and y # b which implies that (za, ya) = (b,b) € E.

From two cases, we then have o € Tg(X). Since a < b and aa = b € a = ba, we get

a & O(X). Hence Og(X) # Te(X). O

Theorem 2.3.7. Tspo(X) = Tse(X) if and only if E = Ix.

Proof. Assume that E # Ix. Then there exist a,b € X such that (a,b) € F and a # b.
We may assume that a < b and define o : X — X by

’

b, ifz=a;

Ta=14gq ifz=0b

z, otherwise.
\
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It is easy to verify that o € Tsg(X). Since a < b and aa > b, & € O(X). Therefore
Tspo(X) # Tse(X).

Conversely, suppose that E = Ix. Then we get Tsp(X) = {ix}, it follows that
Tseo(X) =Tsp(X) N O(X) = {ix} NO(X) = {ix} = Tse(X). O

Theorem 2.3.8. Tsgo(X) =O(X) ifand only if E = X x X.

Proof. Suppose that E # X x X. Then there exist a,b € X such that (a,b) &€ E. We

may assume that a < b and define a: X — X by

b, ifz>a;
T =

a, otherwise.
To show that a € O(X), let z,y € X be such that z < y.
Case 1. a<z<yorz <y<a. Then we get za = yo.
Case 2. z < a < y. Then we have that za = a < b = ya.

From two cases, we deduce that o € O(X). Since (a,ac) = (a,b) € E, o & Tse(X).
Hence Tspo(X) # O(X).

Conversely, assume that E = X x X. Thus Tsg(X) = T'(X). Hence Tspo(X) =
Tse(X)NOX)=T(X)NO(X) = O(X). O

Theorem 2.3.9. Tog(X) = O(X) if and only if | X| = 1.
Proof. Assume that |X| > 1. Then there exist a,b € X such that a < b. Define

a: X — X as given in Theorem 2.3.8. Then o € O(X). Since aax = b > @, o & Tre(X).
Hence Tor(X) # O(X). O

Theorem 2.3.10. Togr(X) = Tre(X) if and only if | X| < 2.

Proof. Suppose that |X| > 2. Let a,b,c € X be such that a < b < ¢. We define
a: X — X by
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o Hz=gc
oo =

z, otherwise.

Then a € Tre(X). We note that b < c and ba = b £ a = co. Thus & ¢ O(X) and so
Tor(X) # Tre(X).

Conversely, assume that |X| < 2. Let o € Tre(X). To show that & € Tor(X),
let z,y € X be such that z < y. Since o € Trg(X) and by assumption, we then have
za =z (since va < z). It follows that za < ya (since yo = z or ya = y), which implies

that o € O(X). Therefore Tor(X) = Tre(X). O

Finally, we study relationships among EOP(X),Tg(X) and O(X) where (X, <)
is a partially ordered set and E is an equivalence relation on X. Clearly, Tg(X)NO(X) C
EOP(X).

Proposition 2.3.11. Let X be a partially ordered set and E an arbitrary equivalence
relation on X. Then EOP(X) = O(X) if and only if UK C E where K = {C x C :
C is a subchain of X }.

Proof. Suppose that there exists (a,b) € UK such that (a,b) € E. Then a € A and
b € B for some A,B € X/E. Since (a,b) € UK, a,b € C for some subchain C of X.
Define a € T'(X) by

a, ifzxe B;
o=
b, otherwise.

Let z,y € X be such that x < y and (z,y) € E. By the definition of o, we deduce that

(a,a) € E, ifz,y € B;
(zo, ya) =
(b,b) € E, otherwise.

It follows that o € EOP(X). Since a and b are comparable, we may assume that a < b.
Then we have ac = b £ a = ba. Hence a ¢ O(X).
Conversely, assume that UK C E where KX = {C x C : C is a subchain of X}.
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To show that EOP(X) = O(X), let « € EOP(X) and a,b € X be such that a < b.
Thus a,b € C for some subchain C of X. By assumption, we have (a,b) € E. Since
o € EOP(X), ac < ba. Hence a € O(X). Next, let o € O(X) and z,y € X be such
that (z,y) € E and z < y. Since @ € O(X), za < ya which implies that za,ya € C
for some subchain C' of X. It follows from assumption that (ze, ya) € E. Hence

o € EOP(X). O

Proposition 2.3.12. Let X be a partially ordered set and E an arbitrary equivalence
relation on X. Then EOP(X) = T(X) if and only if for every two distinct a,bin X,

(a,b) € E implies that a and b are incomparable.

Proof. Suppose that there exist distinct elements a,b in X such that (a,b) € E and a

and b are comparable. We may assume that a < b. Define 8 € T(X) by
a, ifxz=4b;
#f=
b, otherwise.

By the definition of 3, we then have a8 = b € a = bB. This means that B & EOP(X).
Conversely, assume that for every two distinct a,b in X, (a, b) € E implies that
a and b are incomparable. Let o € T(X) and z,y € X be such that (z,9) € E and
z < y. We deduce that z = y which implies that (za, ya) € F and za < ya. Therefore
o € EOP(X). O

Corollary 2.3.13. Let X be a partially ordered set and E an arbitrary equivalence rela-

tion on X.

(1) f E=X x X, then EOP(X) = O(X) and Tg(X) = T(X).
(2) If E = Ix, then Tg(X) = EOP(X) = T(X).

Theorem 2.3.14. Let X be a partially ordered set and E an arbitrary equivalence relation

on X. If EOP(X) C Tg(X), then

(1) E=XxX or
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(2) for every A € X/E and arbitrary partition {P,Q} of A, there existz € P,y € Q

such that  and y are comparable.

Proof. Suppose that E # X x X and (2) is not true. Then there exist A € X/E and
a partition {P,Q} of A such that @ and b are incomparable for all @ € P,b € Q. Since
E # X x X, choose B € X/E such that B # A and fix b € B. Define o : X — X by

b, ifze P
TO =
x, otherwise.

To show that o € EOP(X), let z,y € X be such that (z,y) € F and z < y. Hence
z,y € D for some D € X/E.

Case 1. D # A. Then z,y ¢ P. By the definition of o, zao = z and yo = y.

Hence (za,ya) € E and za < ya.

Case 2. D = A. Since z < y and {P,Q} is a partition of A, either z,y € P or

z,y € Q. This implies that (za,ya) € E and za < ya.

It follows by two cases that & € EOP(X). Notice that for any z € P and y € Q,
(z,y) € E but (za, ya) = (b,y) & E. Therefore o & Tr(X). O

Theorem 2.3.15. Let X be a partially ordered set and E an arbitrary equivalence re-
lation on X. Suppose that for every A € X/E and z,y € A, there exist subchains
C1,Cs,Cs,...,Cn of A for some positive integer n such that z € Cp,y € C, and
CiNCiy1 #0 foralli=1,2,...,n—1. Then EOP(X) C Te(X).

Proof. Suppose that for every A € X/F and z,y € A, there exist subchains Cy, Cs, Cs, . ..

of A for some positive integer n such that z € Cy,y € C,, and C; N Ciy1 # O for all
t=1,2,....,n—1. Let « € EOP(X) and (z,y) € E. Hence z,y € A for some A € X/E.
It follows from assumption that there exist subchains Cy,Cs,C3,...,Cy, of A for some
positive integer n such that x € C1,y € Cp, and C; NCiyy # 0 forall i =1,2,...,n— 1.
Choose ¢; € C; N Cyyq for all t =1,2,...,n — 1. Since z,¢; € Ci1, = and ¢; are compa-

rable. Assume that z < ¢;. By a € EOP(X), we deduce that (za,cia) € E. For each
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t=1,2,...,n—1, we have ¢;, c;y1 € Cjy1. We conclude that ¢; < ¢;41 or ¢iy1 < ¢;. Since
(ci,civ1) € E and & € EOP(X), (¢, cit1) € E. Similarly, we have that (c,a, ya) € E.
It follows from transitivity of E that (za,ya) € E. This proves that o € Te(X). O

Example 1. Let X = {a’laa2,a3:b} and E = ({31,02} X {a‘la a2}) U ({a’3:b} X {631 b})'

Define

<= {(ala G]_), (32: 0'2): (0'37 "1'3)7 (a11 a2)n (a]_, a3)a (021 (13)3 (ba b)}

Then (X, <) is a partially ordered set and F is an equivalence relation on X. Define
a,f,6 € T(X) by

a3, if x = aq;
rza=4< b ifxr=aqg;

z, otherwise,

az, ifz=a;
zB=1 a3, ifz= as;

x, otherwise

and

oy, if o= ag;
zd =

z, otherwise.

It is easy to verify that a € Te(X)\ (O(X) U EOP(X)), 8 € O(X)\ (Te(X) U EOP(X))
and § € EOP(X)\ (O(X) UTx(X)).





