CHAPTER III

REGULARITY FOR SOME SUBSEMIGROUPS

OF FULL TRANSFORMATION SEMIGROUPS

In this chapter, we characterize the regular, left regular, right regular and com-

pletely regular elements of some subsemigroups of T'(X).

3.1 Regularity for full transformation semigroups

Firstly, we characterize the regularity, left regularity, right regularity and com-
pletely regularity for each element of T'(X).

Theorem 3.1.1. Every element of T'(X) is regular. Hence, T(X) is a reqular semigroup.

Example 2. Define o : Z* — ZT by

1, fz<2
rax=4 2, ifzx=3;

xz, otherwise.

Clearly, a € T(Z"). To show that « is neither right regular nor left regular element of
T(X), suppose that o € RReg(T(Z")). Thus a = o8 for some 8 € T(Z1). By the

definition of &, we have la = 2o = 1 and 3« = 2. Hence
1=1la=1e20 = (la)af = loB = 208 = (3a)af = 30?8 = 3a = 2,

a contradiction. Thus we have shown that « is not a right regular element of T(Z%).
Next, we suppose that o = Sa? for some 8 € T(Z*). Since (38a)a = 36a? =
3a = 2, we deduce that 38a € 2a~! = {3}. Hence 3 = 38a € Zta = Z+\{3}, it is

impossible. Thus « is not a left regular element of T'(Z).

A natural question is under what conditions each element of T'(X) is left regular,

right regular or completely regular.
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Theorem 3.1.2. Let o € T(X). Then o € LReg(T(X)) if and only if PN Xa # 0 for
all P € m(a).

Proof. Suppose that o € LReg(T(X)). Then o = Ba? for some 8 € T(X). Let
P € m(ca). Then P = ya~?! for some y € Xo. There is an element z € X such that

za =y, hence
y =za =zBa? = (zfa).

Thus z8a € ya™?, from which it follows that PN Xa 5 (.

Conversely, suppose that PN Xa # @ for all P € n(a). We construct 8 € T(X)
such that o = Ba?. For every z € X, there exists a unique P, € w(c) such that z € P;.
By assumption, we have P, N Xa # (). We choose and fix an element zp, € PLNXa and

z’p_ € X such that /> a = zp_. Define 3: X — X by
P Py,
zf = zp_for all z € X.

Clearly, 8 € T(X). To show that a = Ba2, let z € X. Then

D i e LR s
zfha =2p &" =Tpa=zaQ,

it follows that a = Ba?. Therefore a € LReg(T(X)). |

Theorem 3.1.3. Let a € T(X). Then a € RReg(T (X)) if and only if a|x, is injective.

Proof. Suppose that € RReg(T(X)). Then o = 2B for some § € T(X). Let
z,y € Xa be such that zoo = ya. Since 2,y € Xa, z = z'a and y = y'o for some

2,y € X. Therefore
z=2a=2a%F=(2a)ef = (za)B =yaf = (Ya)af =ya?B=ya=y.

This shows that a|x, is injective.

Conversely, suppose that |xq is injective. We construct 8 € T(X) such that
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a = a“f. For every z € Xa? we choose and fix an element ' € Xa such that z = z'a. )

Define §: X — X by

z, otherwise.

{ 7, ifz e Xa?;
zf =

We note that 8 € T(X). To verify that @ = o?, let z € X. Since zo? € Xo?2,
there exists (za?)’ € Xa such that (ze?)a = (za)a. It follows from assumption that

(za?)' = za. Therefore zo2f = (za?)’ = za. Hence o € RReg(T(X)) as required. O

Theorem 3.1.4. Let & € T(X). Then a € CReg(T(X)) if and only if for every P €
m(a),|PNXa| =1.

Proof. Suppose that o € CReg(T(X)). Then o = afa and af = Ba for some B €
T(X). Let P € w(a) and z € P. From

za = zafa = (zof)a and zaf = zPa € Xo,

we see that zaf € PN Xa. Thus PNXa # 0. Let a,b € PN Xa, then aa = ba, a = a'a

and b = Vo for some o/, b € X. We observe that
a=d'a=dafa=(da)ba=afa=/(ac)8=(ba)B =bBa=Vafa=>ba=>

This means that |P N Xa| = 1.
Conversely, suppose that [P N Xa| =1 for all P € 7(a). For each P € n(a), let
PN Xo = {zp}. Since zp € Xa, there exists P’ € m(a) such that P’ = zpa~!. By

assumption, there is a unique zp» € P’N Xa and zp = rprav. Define B: X — X by
zf3 = zp: for all z € P and for each P € 7(a).

Clearly, § is well-defined because () is a partition of X. To show that a = afa and
af = Ba, let z € X. By m(a) is a partition of X, za € P for some P € 7(a). It follows
from assumption that za € PNXa = {zp}. Since zp € P, we conclude that zp = zp.

Thus
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VZEQ'IBQ = .’L‘Pﬁa =ZTpx=ZITp =2XQ.

Since za = zp , we get £ € P'. By the definition of 3, 8 = zp» where zprar = zpr and

P" € m(a). We then have
:cozﬁ = xpﬂ =Tpr=ITpr = :cﬁa.

These mean that o = afa and a8 = Ba, hence a € CReg(T(X)). O

Corollary 3.1.5. CReg(T'(X)) = RReg(T'(X)) N LReg(T(X)).

Proof. Assume that o € RReg(T(X)) N LReg(T(X)). To show that o € CReg(T (X)),
let P € m(c). By Theorem 3.1.2, PN Xa # 0. Let a,b € PN Xa. Then ac = b and
a,b € Xa . It follows from Theorem 3.1.3 that @ = b. This proves that |[P N Xa| = 1.

By Theorem 3.1.4, a is completely regular as required. O

Example 3. Define o : Z* — Z* by

1, ifz e {1,3};
Ta=4 2, if z € {2,4};

x — 2, otherwise.

Clearly, a: € T(Z*). Note that m(a) = {{1,3},{2,4}} U {{z} : € Z+ and z > 4}. For
each P € m(a), we have PN Z% a # (. By Theorem 3.1.2, « is a left regular element of
T(Z*). Since 1,3 € Z*a and la = 3a, by Theorem 3.1.3, « is not right regular. Next,
we define 8: Zt — Z* by

1, ifz e {1,3}
zB=14 2, if z € {2,4};

T+ 2, otherwise.

We have 8 € T(Z*) and it is clear that Blz+p is an injection. By Theorem 3.1.3, 3 is
right regular. Since {5} € =(8) and {5} NZ*8 = 0, it follows from Theorem 3.1.2 that
B is not left regular. By Corollary 3.1.5, we also get « and 3 are not completely regular
elements of T(Z%).
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3.2 Regularity for full regressive transformation semigroups

Throughout this section, let (X, <) be a partially ordered set. We give necessary
and sufficient conditions for elements in Trz(X) to be regular, left regular, right regular

or completely regular.

Theorem 3.2.1. Let o € Trg(X). Then o € Reg(Trp(X)) if and only if o® = a.
Proof. Assume that a € Reg(Trg(X)). Then there exists an element 8 € Trg(X )
such that o = afa. Suppose that a? # . Then za?® # zo for some z € X. Since

o, B € Trp(X), we deduce that zo? < za and zaf < za. We consider two cases as

follows :
Case 1. zaff = za. Then za = zafa = zao < za.
Case 2. zaf < za. Then za = rafa < zaf < za.

These lead to a contradiction. Therefore a? = a. O
It is known that for every a € T(X), o is an idempotent if and only if za = =

for all z € Xa. Then by Theorem 3.2.1, za = z for all z € Xa where a belongs to
Reg(Tre(X)).

Theorem 3.2.2. The following statements are equivalent.

(1) Reg(Tre(X)) is a subsemigroup of Tre(X).

(2) For every o, 3 € Reg(Trp(X)) andz € X, ifz € Xa\Xp, then z8 € Xa.
(3) For every o, B € Reg(Tre(X)), Xaf = Xfea.

(4) For every subchain C of X, |C| < 2.

(5) Reg(Tre(X)) = Tre(X).

Proof. (1) = (2) Suppose that there exist o, 8 € Reg(Trp(X)) and z € X such that

z € Xa\XfF but 28 ¢ Xa. As was mentioned above, we have that za = z and
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(zB)a # z since + € X and =8 ¢ Xo, respectively. Since a is regressive, (zB)a < zB.
Then

z(af)? = (za)Baf = (zfa)B < zBa < z8 = zaf.

This proves that («8)? # 8. By Theorem 3.2.1, we have that af3 & Reg(Tre(X)).
(2) = (3) Let @, 8 € Reg(Trr(X)). To show that Xeaf C XfBa, let z € X. By

Theorem 3.2.1, we deduce that o? = a.

Case 1. za € X3. Since 8 € Reg(Tre(X)), zo8 = za. Then
zaf = za = zo? = zafa € XBa.

Case 2. za ¢ X 8. By assumption, za3 = ya for some y € X. Then
zof = ya = yo? = rafa € X Ba.

From two cases, we conclude that Xaf C XBa. By symmetry, we have Xfa C Xaf.
Hence Xaf = X fBo.

(3) = (4) Suppose that there exists a subchain C of X such that |C| > 2. Choose
elements a,b,¢ € C such that a < b < ¢. Define , 3 : X — X as follow :

b, fz=c¢
To =
x, otherwise,
and
a, Hw=0h
zf =
xz, otherwise.
Consider

ba=b=za, fz=c

o, otherwise
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and

af=a=zB, Hz=0b
xzf? =

=3, otherwise,

hence a, § € Reg(Tre(X)). But b= ca = cfa € XBaand Xaf = (X\{c})8 = X\{b,c}
which imply that Xaf8 # X fBa.
(4) = (5) Assume that Reg(Trp(X)) # Tre(X). Then there exists a € Trp(X N

Reg(Tre(X)), hence o # a by Theorem 3.2.1. Then za? # za for some z € X.

By regressiveness of a, za?

< za. If za = z, then z0? = (za)a = za which is a
contradiction. Hence zo: < 2. Now, there exists a subchain {zo?, za, 2} of X including

more than two elements as desired. O

Theorem 3.2.3. Let o € Trp(X). Then a € LReg(Tre(X)) if and only if for every
P € m(a) and z € P, there exists Q € m(a) such that Qa, € P and y < z for some

Y E Q.

Proof. Suppose that & € LReg(Trg(X)). Then there exists 8 € Trg(X) such that o =
Bo?. Let P € m(a) and z € P. By m(a) is a partition of X, z8 € @ for some Q € n(a).
Since za = zfa? = (zBa)q, it follows that zBa € P. Thereby Qus = zBa € P and
zf < z as required.

For the converse, suppose that for every P € w(a) and z € P, there exists
@ € m(a) such that Qo € P and y < z for some y € Q. For each z € X, there is a
unique P € m(a) such that z € P. By assumption, we choose and fix P, € 7(a) and
z' € Py such that 2’ < z and Pyo. € P. Define 8: X — X by

2B =4a for all z € X.
For any z € X, we then have z8 =2’ < z and

zfa? = 2'aa = Pya,a = Pa, = za.
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Therefore 8 € Tre(X) and o = So?, respectively. This proves that « is a left regular
element of Tre(X) as desired. O

Theorem 3.2.4. Let a € Trp(X). Then o € RReg(Tre(X)) if and only if o2 = a.

Proof. Suppose that a € RReg(Tre(X)). Then a = o8 for some 8 Tre(X).

Suppose that o? # a. Then there exists z € X such that za? za, hence
T = xag,ﬁ’ < za? < za.

This is a contradiction. Therefore o? = o. |

Completely regularity is directly characterized from Theorem 3.2.1.

Corollary 3.2.5. Let a € Trg(X). Then o € CReg(Trg(X)) if and only if a® = o

Corollary 3.2.6. CReg(Tre(X)) = RReg(Trg(X)) N LReg(Tre(X)).

3.3 Regularity for semigroups of full transformations that

preserve an equivalence

In this section, we let E an equivalence relation on X, we investigate regularity,

left regularity, right regularity and completely regularity for elements of Tg(X).

Theorem 3.3.1. [1] Let o« € Tp(X). Then o € Reg(Tg(X)) if and only if for every
A € X/E, there ezists B € X/E such that AN Xo C Boa.

In general, Tp(X) is not a regular semigroup as we show in the below example.

Example 4. Let 41 = {2n : n € Z¥} and 4y = {2n—1: n € Z*}. Define E =
(A1x A1)U(A2x A2). We note E is an equivalence relation on Z* and Z+/E = {41, A2}
Consider @ : ZT — Z* defined by

za =2z forall x € Z7.
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Clearly, (za,ya) € A1 x A1 CEforallz,y € Z*. Thusa € Te(Z*). We see that Aja =
{4n:n € 2%} and Apar = {4n—2:7n € Z*}. This implies that A; NZ+a = A; € Ba for
all B € Z*/E. By Theorem 3.3.1, o & Reg(Tg(Z*)) and hence TE(Z+) is not a regular

semigroup.
Theorem 3.3.2. [1] Tg(X) is a regular semigroup if and only if E= X xX or E= I X-

Corollary 3.3.3. Reg(Tg(X)) is a subsemigroup of Te(X) ifand only if E = X x X
or B =1TIx.

Proof. Assume that E # X x X and E # Ix. Since E # Iy, there are distinct elements
a,¢ € X such that (a,c) € E. Then a,c € A for some A € X/E. Since E # X x X,
(a,b) ¢ E for some b € X. Hence b € B for some B € X/E and B # A. Define
o,B: X — X by

and

if z € A;

otherwise.

ifxe B;

C?
zf =
z, otherwise.

Then o, 8 € Te(X). By the definitions of @ and 8, we have that Xa = {a} UX\A
and X3 = X\B. It is not difficult to verify that C N Xa C Ca and C N X3 C CB for
all C € X/E. Tt follows from Theorem 3.3.1 that a, 3 € Reg(Ts(X)). Since Ao =
{a}B = {a}, Bop = BB = {c} and CoB = CB = C for all C € X/E\{4, B} and
ANXaf = AN(X\AU{a})B = {a,c}, we conclude that o3 is not a regular element by
Theorem 3.3.1. Therefore Reg(Tr(X)) is not a subsemigroup of Tx(X). O

The next corollary follows immediately from Theorem 3.3.2 and Corollary 3.3.3.

Corollary 3.3.4. The following statements are equivalent.

(1) Te(X) is a regular semigroup.
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(2) Reg(Tr(X)) is a subsemigroup of T(X).
8) E=XxX or E=1Ix.

Example 5. Let A; = {1}, A2 = {2} and A3 = Z*\{1,2} and define
E= U?=1(Ai X A;).
We observe that E is an equivalence relation on Z*. We define o : Z+ — Zt by
za=z+1 for all z € Z7.

It is easy to verity that o € Tg(Z"). Assume that @ € RReg(Tg(Z1)). Then o = 28
for some 8 € Tg(Z*). We note that 2 = la = 16?8 = 208 = 38 and 3 = 2a = 2028 =
3af = 4f. Since B € Tg(Z*) and (3,4) € E, we conclude that (2,3) = (38,48) € E
which is a contradiction. Hence « is not a right regular element of Tg(Z1).

Next, assume that o = Bo? for some 8 € Tg(Z"). Since la = 1802 = (18)a and
a is injective, we conclude that 1 = 18a € Zta = Z+\{1}. This is impossible, therefore

a is not a left regular element of Tg(ZT).

Theorem 3.3.5. Let a € Tg(X). Then a € LReg(Tg(X)) if and only if for every
A € X/E, there exists B € X/E such that for each P € m4(a), za € P for some z € B.

Proof. Assume that o € LReg(Tp(X)). Then a = Ba? for some § € Tg(X). Let
A € X/E. By Lemma 2.2.4, there is B € X/E such that A3 C B. Let P € 74(a) and
z € PN A. Since A3 C B, we have that 3 € B. Hence za = zf8a? = (zf8a)a which
implies that zf8a € P as we wish to show.

Conversely, for every A € X/E, we choose A’ € X/E such that for every P €
7a(a), za € P for some z € A’. Let z € X. Since X/E and m(a) are partitions of X,
there exist A € X/E and P € w(a) such that z € A and z € P. Hence P € m4(a). By
assumption, we choose z’ € A’ such that #’a € P and A’ € X/E. We also have that

z'aa = za. Define §: X — X by

zB=z'forallz € X.
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Let z,y € E be such that (z,y) € E. Then there exists A € X/E such that z,y € A.
By the definition of 8, z3,y8 € A’ where A’ € X/E. Hence § € Tg(X). Let z € X. We
then deduce that z8a? = 2’ac = za. Therefore « is a left regular element of T'g (X) as

required. O

Theorem 3.3.6. Let o € Tg(X). Then a € RReg(Tg(X)) if and only if

(1) a|xa is an injection and

(2) for every z,y € Xa, (za,ya) € E implies that (z,y) € E.

Proof. Assume that o € RReg(Tr(X)). Then a = o?3 for some 8 € Tg(X). We note
that o € RReg(T(X)), it follows from Theorem 3.1.3 that a|x, is an injection. Let
z,y € Xa be such that (zo,ya) € E. Thus z = z'a and y = y'a for some z/,y € X.
Since B € Tg(X), (zaB,yaB) € E. Hence

(z,9) = (@, ') = (z0?B,y'a?B) = (zaB,yaf) € E

which implies that (2) holds.

Conversely, assume that (1) and (2) hold. Let A € X/E be such that ANXa? = 0.
We choose and fix an element z4 € ANXa?. For each z € ANXa?, there exists a unique
z’ € Xa such that £ = z'a by a|x, is injective. We observe that (z'a, 4c) = (z,z4) €

E. Tt follows from assumption that (z',2/,) € E. Define 84 : A — X by
7/, ifze Xa?
zfa =
zy, ifz & Xa?.

Then we define the map 5: X — X by

Ba, if ANXo2#0:;
Bla=

14, otherwise,

for all A € X/E (i4 is the identity mapping on A). Since X/E is a partition of X,
B is well-defined. Let z,y € X be such that (z,y) € E. Then z,y € A for some
A € X/E. By the definition of 3, we have (z8,y8) = (z8|a,yB|4). If AN Xa? = 0,
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then (z8,y8) = (z,y) € E. If AN Xo? # 0, by the definition of B4, we then have
(zB4,%)4), (yBa,zly) € E. By transitivity of E, (z8, yB) € E, hence § € Tg(X).

Finally, to show that o = o2, let z € X, so za? € Xo2. Then there exists
A € X/E such that zo? € A. By the definition of 84, z0284 = (za?) where (za?)a =
za? = (za)e. Since (za?)’ is unique, (za?)’ = zo. Thus 2028 = 20284 = za. Therefore

o € RReg(Tg(X)) as asserted. O

From Example 5, we observe that 2,3 € Z*a such that (2a, 3a) = (3,4) € E but
(2,3) € E. Hence « does not satisfy (2) in Theorem 3.3.6.

Theorem 3.3.7. Let @ € Tp(X). Then o € CReg(Tr(X)) if and only if for every
A € X/E, there exists B € X/E such that |[PN Ba| = |P N Xa| =1 for all P € m4(c).

Proof. Assume that o« is a completely regular element in Te(X). Then a = ofa
and off = Pa for some § € Te(X). Let A € X/E. By Lemma 2.2.4, there exists
A" € X/E such that AB C A’. Let P € ma(a) and x € PN A. Hence 8 € A’. Since
zafa = za = Pay, we deduce that za3 € P. We note that zof = zfa € A'a. Hence
PN A'a # 0 which implies that PN Xea # 0. Since o € CReg(T(X)), by Theorem 3.1.4,
we get |[PNXa| = 1. It follows from PN A’a C PN Xa that |[PNAal=|PNXa|=1.

Conversely, suppose that for every A € X/E, there exists B € X /E such that
|PNBo|=|PNXa|=1foral P€ny(x). Let A € X/E. By assumption, we choose
A’ € X/E such that [PN A'a| = |[PNXa| =1 for all P € m4(c). For each P € ma(a),
let zp € PN A'a. This means that zp = za for some z € A’ and then z € P’ for some
P' € mp(a). Welet A” € X/E be such that |Q N A%a| = 1 for all Q € w4 (a) and
zp' € P'N A”a. Hence zpra = P'ay = zp. For each P,Q € ma(a), we note by Lemma
2.2.4 that zp,zqg € A'a C B for some B € X/E. And zp,rg € A’a C B’ where
B' € X/E, thus (zpr,zg) € E. This implies that for all P,Q € wa(a), (zp,zo) € E.
Let z € X. Since X/E and 7(«) are partitions of X, z € A for some A € X/F and
z € Py for some P, € 7(a). Then P, € m4(a). Define 3: X — X by

zB = zp; for all z € X.
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Let z,y € X be such that (z,y) € E. Then z,y € A where A € X/E. We note that
Pz, Py € ma(c). Hence (zp,zp;) € E which implies that 8 € Tg(X).

To show that oo = o and of = Ba, let € X. za € A for some A € X/F and
Ta € Pro where Pry € ma(a). By assumption, we note that za € Poo N Xa = {zp..}-
Hence za = zp,,. By the definition of 8, zaf = xp;, where zp; o = 2p,,. Thus
zafa = zp;, o = za. Moreover, za = zp,, = P, a,. Then we have z € P._. By the
definition of 8, 8 = zp; and zp;a = zp,. Since z € P,, N P, and 7(c) is a partition of

/ -
X, Pyo = Pr. Hence zp;_ = zp,, S0
zof =zp; =zp, =Tpa=zfo

which completes the proof. O

Corollary 3.3.8. CReg(Tg(X)) = RReg(Tg(X)) N LReg(Ts(X)).

Proof. Suppose that « € RReg(Tr(X)) N LReg(Tg(X)). Let A € X/E. Since a is left
regular, by Theorem 3.3.5, there exists B € X/FE such that for every P € 74(a), za € P
for some z € B. Let P € m4(), then PN Ba # (. We note here that PN Ba € PN Xa.
It is enough to show that [PNXa| = 1. Let a,b € PNXa. Then ao = ba and a,b € Xoa.
It follows from o« is right regular and Theorem 3.3.6 that a = b. We conclude that
a € CReg(Tg(X)) by Theorem 3.3.7. O

Example 6. Define o, 8 : Z* — ZT by

a5 o< 3
T =
z—1, otherwise,

; ife<3;

z+ 1, otherwise.

Recall an equivalence relation E on Z* from Example 5. We see that Ao € A and
AB C Aforall A€ Z*/E. Hence ¢, € Tg(Z*). Since 3o = 4a and 3,4 € Z*a, we

have a|z+, is not injective. Thus by Theorem 3.3.6, « is not right regular. For each
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A€Z*/E, we have PN Ao # f for all P ma(a). It follows from Theorem 3.3.5 that
@ is left regular in Tr(Z1).

We note that {3} = 487! € 74,(8) and za # 3 for all z € Z+. By Theorem
3.3.5, we conclude that o ¢ LReg(Tg(Z*)). Clearly, Blz+g is injective and we note that

(zB,y6) € F implies (z,y) € Eforall z,y € Z*J3. Hence (3 is right regular by Theorem
3.3.6

From this example, we notice that a € LReg(Ts(Z*))\RReg(T(Z")) and 8 €
RReg(Tg(Z1))\LReg(Te(Z*)). By Corollary 3.3.8, we deduce that ¢ and B are not

completely regular.

3.4 Regularity for semigroups of transformations that

preserve double direction equivalence

Deng et al. [4] have given some characterizations of regularity on Tg«(X). In

this section, we then determine the rest regularity of Tg«(X).

Theorem 3.4.1. [4] Let o € Tp«(X). Then o € Reg(Tp+(X)) if and only if for every
AeX/E, AN Xa # 0.

Theorem 3.4.2. [4] Tg-(X) is regular if and only if X/E is finite.

Theorem 3.4.3. Reg(Tg-(X)) is a subsemigroup of T (X).

Proof. Let o, 8 € Reg(Tg+(X)). To show that af € Reg(Tp-(X)), let A € X/E. By
Theorem 3.4.1, we have AN X8 £ (. Choose ¢ € AN XB. Thus a = o/f for some
o’ € X and then o’ € af~l. It follows from Proposition 2.2.5(1) that ¢8~! C B for
some B € X/E. We then have BN Xa # () via Theorem 3.4.1. Let b € BN Xa
and ¥ € X such that b = bo. Since (¢/,0) € E and 8 € Tg- (X), we conclude that
(a,b'af) = (a’B,b0) € E. Therefore ¥af € A and hence AN X aff # (. By Theorem
3.4.1, we have a8 € Reg(Te~(X)) as required. O

Theorem 3.4.4. Let a € Tp«(X). Then a € LReg(Tp~(X)) if and only if for every
Pen(a), PN Xa # 0.
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Proof. From Theorem 3.1.2, we have a = B for some 8 € T(X) if and only if for
every P € m(a), PN Xa # (. To complete the proof, we have to show that 8 which
is defined in Theorem 3.1.2 belongs to Tg~(X). Let z,y¥ € X be such that (z,y) € E.
Then z,y € A for some A € X/E. Since m(a) is a partition of X, we note that z € P,
and y € Py for some P, Py € m(a). By Proposition 2.2.5(2), we get Py, P, C A.
Since zp, € P, and zp, € P, we then have (zp,,xp,) € E. Since o € Tg+(X) and
(zp, 0 %p @) = (zp,,2p,) € E, we conclude that (z8,y8) = (zp,,%p,) € E. On the
other hand, let z,y € X be such that (z8,y8) € E. Hence by the definition of 3,
z € P; and y € P, for some P, Py € m(e) and satisfy 8 = 25 ,y8 = a:’},y. We
note by (zp,,%p,) € E and a € Tp-(X) that (zp,,zp,) = (zp,@,7p,@) € E. That is
zp,,Tp, € A for some A € X/E. Since zp, € Fr,zp, € Py and Proposition 2.2.5(2), we

observe that Py, Py C A, thus (z,y) € E and therefore 3 € Tg-(X). a

Theorem 3.4.5. Let a € Tp+(X). Then a € RReg(Te+(X)) if and only if

(1) a|xa is an injection and

(2) if there exists A € X/E such that AN Xa? = 0, then there ezists an injection
p:{AeX/E:ANXa?=0} - {A € X/E: AnXa=0).

Proof. Suppose that @ = a2 for some 8 € Tg+ (X). It follows from Theorem 3.1.3
that a|xq is injection. Next, we prove that (2) is hold in the following. Suppose that
{AeX/E:ANXa? =0} #0. Let A€ {A€ X/E: An Xa? = 0}. By Proposition
2.2.6(1), we let A’ € X/FE such that A8 C A’. Claim that A’ N Xa = 0, suppose not.
Let z € X be such that za € A" and choose a € A. Then a8 € A’ which implies that
(za?B,aB) = (z0,afB) € E. Since 8 € Tg-(X), we have (za?,a) € E. Hence zo? € A
which is a contradiction. Thus A'N Xa = (. Define ¢p: {A € X/E: AN Xa? =0} —
{AeX/E: ANnXa=0}by

Ap=A'forall A€ X/E and AN Xo? = 0.

To show that ¢ is an injection, let A,B € {4 € X/E : AN Xa? = 0} be such that
Ap = Byp. By definition of ¢, Ap = A" and By = B’ where A3 C A’ and B3 C B’ for
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some A’, B' € X/E, respectively. It follows by Proposition 2.2.6(2) that A = A’8~! and
B = B'#~1. Since A’ = B, we deduce that A = B. Thus ¢ is an injection, hence (2)
holds.

Conversely, suppose that o satisfies (1) and (2). For any x € Xa?, we choose and
fix an element 2’ € Xo such that = 2’a. Let A € X/E be such that 4 N Xo? # 0.
ThenweﬁxaeAﬂXaanddeﬁneﬁA:A—»be

z, ifz e Xa?
rha =

a/, otherwise.

Let A € X/E be such that AN Xa =@ and z € A, by (2) we fix £ € Ap and define
Ba:A— X by

zB4 =1z forall z € A.

For convenience, we may assume that there exists A € X /E such that AN Xo2 = (.

Define §: X — X by
Bla = PB4 forall A€ X/E.

Since X/E is a partition of X, 8 is well-defined. Let z,y € X be such that (z,y) € E.

Then z,y € A for some A € X/E. There are two cases to consider :
Case 1. AN Xo? = 0. Then (z8,y8) = (%,7) € E.

Case 2. AN Xao? # 0. Without loss of generality, we assume that z,y € Xa?.
Hence z(3 = 1z’ and y8 = ¢/ where z = 2’a and y = ¢/, respectively. Since a € Tg«(X)
and (z'c, y'@) € E, we conclude that (z8,y8) = (',y') € E.
Next, let z,y € X be such that (z3,y83) € E. Thus z8,y8 € B for some B € X/E. If
BN Xa =0, then by the definition of 3, 28,y8 € B = Ay where 4 € X/E. Since ¢
is injective, z,y € A. If BN Xa # ), then by the definition of 8, we may assume that
zf =2',yB =y’ for some ¢/, € X and z = ¥, y = /. Since («',y') = (zB,yB) € E
and o € Tg~(X), we deduce that (z,y) = (z'e, v/a) € E.
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It follows that B € Tp-(X). Let = € X, then za? € Xa? and there exists (za?) € Xa
such that (za?)'e = za? = (za)a. We note by (1) that (za?) = za. Therefore

za?f = (zo?)' = za. Hence o is right regular as required. | O

Example 7. Let A; = {1}, A3 = {2,3}, 43 = {4,5,6} and for n > 4

An={mez+:@<xgﬁ(”—;—ll}.

Define F = U (A4; x A;). Clearly, E is an equivalence relation on Z+. Now, we define
1€Zt
a:Zt - Z* by

zo = min Apy; for all z € A, and for each 4, € Z*/E.

Since Z*/E is a partition of Z*, o is well-defined. To show o € Te«(ZT), let z,y € Z*
be such that (z,y) € E. Thus 2,y € A, for some 4, € Z+ /E. This implies that
(za, ya) = (min Apqy, min 4,,1) € E. Next, let z,y € Z* be such that (za,ya) € E.
By the definition of a, we then have za = ya = min A, for some 4, € Zt /E and n > 1.
Therefore z,y € A,_; and hence (z,y) € E. We deduce that a € Ty~ (Z*) as required.
We note that c|z+, is injective but since {4 € Z*/E : AN Xa? = 0} = {4;, A3} and
{A€Z*/E: AnXa =0} = {41}, there is no injection from

{A€ZT/E: AnXa? =0} to {A€Z*/E: ANXa =0}

Hence « does not satisfy condition (2) in Theorem 3.4.5. Hence o & RReg(Te~(Z7T)).

Theorem 3.4.6. Let o € Tp(X). Then o € CReg(Tg- (X)) if and only if for every
Pex(a), |[PnXa =1.

Proof. It follows from Theorem 3.1.4 that o = afBc and aff = Ba for some 8 € T(X)
if and only if for every P € w(a),|P N Xa| = 1. It is enough to show that B which
defined in Theorem 3.1.4 is an element of T-(X). Let z,y € X be such that (z,y) € E.
Then z,y € A for some A € X/E. Since () is a partition of X, z € P and yeQ
for some P,Q € m(c). This implies that PN A # 0 and Q N A # 0, respectively.
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From Proposition 2.2.5(2), P,Q C A. Hence zp,zg € A. Since & € Tx» (X) and
(zproyzgra) = (zp,zq) € E, we conclude that (z8,y8) = (zpr,zg) € E. Assume
that (z8,yB) € E for some z,y € X. It follows from the definition of [ that =8 = zp:
and y = zg where z € P, y € Q and P,Q € n(c). Since (zpr,zg) = (zB,yB) € E
and a € Tg~(X), (zp,2q) = (zpra, zg:a) € E. This implies that zp,zQ € A for some
A € X/E. Since zp € P and Proposition 2.2.5(2), we note that z € P C A. Similarly,
we have y € Q C A. Hence (z,y) € E which implies that 3 € Tg- (X0). O

Corollary 3.4.7. Let o € Tg+(X). Then a is completely regular if and only if a is both
left and right regular.

Proof. Assume that o is both left and right regular. Thus a € RReg(T(X ))INLReg(T(X)).
By Corollary 3.1.5, we have & € CReg(T(X)). It follows from Theorem 3.1.4 and Theo-
rem 3.4.6 that a € CReg(Tg-(X)). O

3.5 Regularity for self-E-preserving transformation

semigroups

Theorem 3.5.1. Every element of Tsg(X) is regular. Hence, Tse(X) is a regular

semigroup.

Proof. Let a € Tsg(X). For each z € Xa, choose ' € X such that z = z’a. Define
B:X — X by

7, ifze Xo;
zfB =
z, otherwise.
It is clear that 8 € T'(X). Let z € X. Then

(¢'a,2’) € E, ifz€ Xa;
(x,:cﬂ) =

(z,z) € E, otherwise
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and
zafo = (za) o = za.

This proves that 8 € Tsp(X) and o = afa, respectively. O

The following example shows that there is an element of Tse(X) is neither left

regular nor right regular.

Example 8. We note that the relation E which is defined in Example 7 is an equivalence
relation on Z*. Define o : Zt — Z+ by

{ min A, ifz € A, and z is odd;
T =

maxA,, ifze€ A, and z is even.

To show o € Tsp(ZY), let © € Z*. Since {An : n € Z*} is a partition of Z*1, there
exists n E-Z*' such that z € A,. By the definition of ¢, zo € {min A4,,, max An}. Hence
(z,70) € An X An C F, 50 a € Tsp(Z1). Next, we verify that « is neither left regular
nor right regular of Tsg(Z*). Suppose that « is a left regular element of T5g(Z*). Then
o = fa? for some 3 € Tsp(Z*). Since (56a)a = 5802 = 5a = 4, we have 58a = 5.
Since (5,58) € E and the definition of E, we get 58 € As. This is a contradiction because
5 = (58)a € Aza = {4,6}. Hence « is not left regular. Su'ppose that o is right regular
element of Tsp(Z*). Then o = o?F for some 8 € Tsp(Z™). We see that {4,6}a = {6}
and 5a = 4. Thus

6 = 6a = 60?8 = 608 = 4a8 = 5028 =50 = 4

which is a contradiction. Hence a is not a right regular.
Theorem 3.5.2. Let a € Tsp(X). Then o € LReg(Tsp(X)) if and only if for every

Pen(a),PN Xa#0.

Proof. By Theorem 3.1.2, we note that @ = Ba? for some 8 € T(X) if and only if
PN Xa # 0 for all P € n(a). It is enough to show that 3 is defined in Theorem 3.1.2
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belongs to Tsp(X). Let x € X. Since a € Tsg(X), we have (z,z0), (zp,, zp,a) € E. By
the transitivity of £ and zp,a = za, we conclude that (z,zp,) € E. Since (zp_,zp,) =

(@'p,,2p @) € E, we deduce (z,zp) = (z,z,) € E. Hence 8 € Tsp(X ). O

Theorem 3.5.3. Let o € Tsg(X). Then o € RReg(Tsg(X)) if and only if o|xe is

injection.

Proof. We note by Theorem 3.1.3 that o = a3 for some 8 € T(X) if and only if o xq

is injection. We will verify that 8 in Theorem 3.1.3 belongs to Tsg(X). Let z € X.

2a,7) e E, if Xao?;
(x,zﬁ):{(aw)e ifreXa

(z,z) € E, otherwise.
This implies that 8 € Tgg(X). O

Theorem 3.5.4. Let oo € Tgp(X). Then a € CReg(Tsg(X)) if and only if for every
Pen(e),lPNXa|=1.

Proof. It follows from Theorem 3.1.4 that o € CReg(T(X)) if and only if for every
P € m(a),|PNXea| = 1. It is enough to show that 8 which is defined in Theorem 3.1.4 is
in Tsp(X). Let z € X. By 7(a) is a partition of X, we have z € P for some P € ().
Since za = zpa, (z,zpa) = (z,za) € E. Since (z,zpa) € E and (zp,zpa) € E, we
conclude that (z,zp) € E by transitivity of E. Then (z,zpa) = (z,zp) € E. Since
(zpr,zprar) € E and by transitive of E, (z,2p/) € E. It follows that (z,z8) = (z,zp/) €
E, hence 8 € Tsg(X). O

By using the proof as given for Theorem 3.1.5, we then have the following char-
acterization.

Corollary 3.5.5. CReg(Tsg(X)) = RReg(Tsp(X)) N LReg(Tsg(X)).

Example 9. Let Ay ={2n—1:n€Z*},Ay={2n:n € Z*} and

E = (Al X A1) U (A2 X Ag)
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Clearly, E is an equivalence relation on Z*. Recall a and B are defined in Example 3.
We observe that Ajor C A; and Aza € Ay, hence o € Tsp(Z*). From Example 3, we
show that PNZ*Ta # () for all P € m(c) and a|z+, is not injective. By Theorem 3.5.2
and Theorem 3.5.3, we conclude that o is left regular but not right regular, respectively.
Similarly, we note that 8 € Tsg(Z*) and B is right regular but not left regular. Hence
from Corollary 3.5.5, o and 8 are not completely regular.

3.6 Regularity for order preserving transformation semi-

groups
For this section, we let (X, <) be a totally ordered set. The following example

shows that in general, O(X) is not a regular semigroup.

Example 10. Define o : R* — R* by
ra=z+1forallz € Rt.

Then o € O(R™). We claim that o is not regular in O(R™).

Assume that a = aBa for some 3 € O(R¥). Since « is injective, z = z8a for
all z € R*. Thus Rt = R*af = (1,00)8. So, 18 = af for some a € (1,00). For fix
b € (1,a), we note that 183 < b8 < af = 13. This implies that b3 = a8. Consider,

a=(a—l)a=(a—l)aﬁa=aﬁa=bﬁa=(b—l)aﬁa:(b—l)a:b.

It is a contradiction.

Theorem 3.6.1. Let o € O(X). Then o € Reg(O(X)) if and only if there ezists a

partition 7 of X such that |PNXa| =1 for all P € 7 and (x, <) is a totally ordered set.

Proof. Suppose that a = afa for some 8 € O(X). For each P € (), we let

P'=u{Qen(8):QB. € P} and denote r = {P': P ¢ ()}
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Let P € m(0) and z € P. By assumption, zao = zafBa. Since m(B) is a partition
of X, za € Q for some Q € «(3). Hence Pa, = zafa = QBya. This implies that
@B« € P and then ) £ Q C P'. Moreover, we note that za: € P’ N X¢. This means that
P'NXa#0. Let a,b € P'N Xo. Then there exist Q,0 € 7(B) such that QB,, 0B, € P
and a € Q,b € Q. Since a,b € Xa, a = a’a and b = Vo for some a,b € X. It follows
that

a=da=dafa=afa=QBa=Pa, = QB0 = bBa = VoBa=ba=ns.

Therefore |P'NXa| = 1 for each P’ € 7. Claim that 7 is a partition of X, it is clear that
U = Um(8) = X. Let P/, Q' € 7 be such that P’ N ¢’ # 0. Then there exist P,Q € (a)
such that P’ = U{P € =(B) : PB. € P} and Q' = U{0 « 7(B) : @B« € Q). Let
z € P'NQ'. Since 7(B) is a partition of X , & € P for some P e 7(B). By the definition
of P’ and @', PB, € PN Q. Since (q) is a partition of X, P=Q. Thus P' = Q'. This
shows that 7 is a partition of X. We need to prove that (7, <) is a totally ordered set.
Since 7 is a partition of X, (7, <) is a partially ordered set. Let P/, Q' € 7 be such that
Q" A P'. Then there exist a € P’ and b € Q' such that b £ a. Since (z, <) is a totally
ordered set, a < b. To verify that P’ < (', suppose that there exist z € P’ and y € Q'
such that z £ y. By (X, <) is a totally ordered set, we have y < z. Since z,a € P/, we
conclude that 23,a8 € P. Similarly, we then have yB,88 € Q. Since P' # Q', P # Q.

Consider,
Pao, = afa < bfa = Q.
It follows from P s Q that Pa, < Qa,. This implies that
Pay < Qay = yBa < zfa = Pa,

which is a contradiction. Thus z < y for all z € P and ¥ € Q. Hence P < Q and then
(7, %) is a totally ordered set.
Conversely, assume there exists a partition 7 of X such that |[PNXa| =1 for

each P € w and (m, <) is a totally ordered set. For each P € 7, we choose zp € X be
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such that PN Xao = {:rpdc}. Let z € X. Since 7 is a partition of X, z € P, for some
P; € 7. Define 8: X — X by

B =zp, forall z € X.

By m is a partition of X, § is well-defined. Let z,y € X be such that z < y. Then there
exist Fr, Py € 7 be such that z € P; and y € P,. If P, = P, then zp, = xp,. Suppose
that P, # P,. Since z < y and by assumption, P, < Py. To show that zp, < zp,,
assume that zp, £ zp,. Since (X, <) is a totally ordered set, we have zp, < zp,. It
is clear by o € O(X) that zp,a < zp,e. By assumption, zp,0 € P, and zp,a € F.
From P, and Py are distinct elements in = and = is a partition of X , we conclude that
zp,a < zp,&. We note by P X P, that zp.a < zp,c. This is a contradiction. Thus
zp, < zp, which implies that 8 € O(X). Finally, let z € X. We note by assumption that

za € PraNXa = {zp,,a} where za € P,y and Py € 7. Thus zafa = zp o=za 0O

Theorem 3.6.2. Let o € O(X). Then a € LReg(O(X)) if and only if for every P €
m(a), PN Xa # 0.

Proof. By Theorem 3.1.2, we note that o = Ba? for some 8 € T(X) if and only if
PNXa # 0 for all P € m(a). It is enough to show that 3 defined in Theorem 3.1.2 belong
to O(X). Let z,y € X be such that z < y. By the definition of 8, z8 = zp, and yB = xp,
where Py, Py € w(a) and z € Pp,y € Py. If P, = P, then 28 = zp, = zp, = ypP.
Assume that P; # P,. It follows from x < y and Proposition 2.2.11 that P, < F,. To
show that xp, < zp,, assume that zp, ¥ zp,. Since (X, <) is a totally ordered set,
zp, < zp,. It follows from o € O(X) that zp,& < zp . By assumption, zp,a € Py and
zp o € Pr. We note that zp & < zp, & from P, N Py = (. Since P, <X P,, we conclude
that zp,a < zp,a < zp,a. This is a contradiction. Hence z8 = zp, < zp, = yB and

thus G € O(X) as we wished to show. O

Theorem 3.6.3. Let a € O(X). Then a € RReg(O(X)) if and only if

(1) a|xq is an injection and
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(2) there exist zp € X corresponding to P for all P € m(a) such that P < Q implies
zp < zQ for all P,Q € w(a) and for P € n(a) such that P N Xo? # 0 implies

zp € Xa and zpa € P.

Proof. Suppose that & = o?8 for some 3 € O(X). From Theorem 3.1.3, we note that
@|xq is an injection. Let P € 7(e) be such that PN Xa2 # 0 and a,b € PN Xa?. Then
aa = ba and a,b € Xa. By a|xq is injective, we have @ = b. For each P € m(a) such
that PN Xa? # 0, we let zp = 28 where 7 € PN Xa2. For each P € 7(a) such that
PNXa? =0, we choose z € P and let zp = zf3. Let P,Q € m(a) be such that P < Q.
We note that z8 = zp and y8 = zg forsomez € Pandy € Q. If P = Q, then zp = zgq.
Assume that P # Q. It follows from P < Q that z < y. Since 8 € O(X), we get
zp =z < yB = zq. Let P € m(a) be such that P N Xa? # 0. To show that zp € X
and zpo: € P, let z € PN Xa®. Then there exists 2’ € X such that 2/a? = z. Note that
zp = zf = 2'a?f = 7o € Xa and zpa = 2o = ro?fa = (o)a = r'a® = z € P.
Thus (2) is true.

To prove the converse, assume that (1) and (2) hold. Let z € X. By 7(a) is a
partition of X, x € P, for some P, € m(a). Define 8: X — X by

zf=zp forallz € X.

Clearly, 8 is well-defined. Let z,y € X be such that z < y. Then there exist Py, P, € 7(c)
such that x € P, and y € P,. If P, = Py, then 28 = yB. Suppose that P, P,. Since
z < y, by Proposition 2.2.11, we have P, < Py. It follows from (2) that 28 = zp, <
zp, = yB. Hence § € O(X). Finally, let z € X. Then zo® € Xo?. By the definition
of B, we have (z0”)8 = zp_, where za? € P,,2 and P,2 € m(a). This means that
P2 N Xa? # (. We note from (2) that zp, . € Xa and zp_,a € Pp,2. That is
(zp, ,0)a = (za?)a. It follows from (1) that zp, .0 = z0? = (za)a. Since zp_, € Xa
and by (1), we then have zp_, = za. Thus za?B = za and therefore o € RReg(O(X))

as required. |

Theorem 3.6.4. Let o € O(X). Then a € CReg(O(X)) if and only if for every
Pen(a), |PNXa|=1.
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Proof. It follows from Theorem 3.1.4 that & = o8 and a8 = Ba for some B eT(X)if
and only if for every P € m(a),|PNXa| = 1. It is enough to show that B which defined
in Theorem 3.1.4 belongs to O(X). Let z,y¥ € X be such that z < ‘y. We note that
z € P and y € Q for some P,Q € 7(a). If P = Q, then by assumption we have zp = o
and hence z8 = zpr = xgr = yB. Suppose that P # Q. It follows from Proposition
2.2.11 that P X Q. This implies that zp < zg. Then there exist P, Q' € () and
zpr € PPN Xa,2g € @ N Xa such that Ploy = zya = zp and Q'ay = TQra = ZQ.
Since P'aw = zp < 2@ = Q'a. and by Proposition 2.2.11, we conclude that P’ < Q.
Hence z8 = zpr < 2o = yB. Therefore 8 € O(X). a

Corollary 3.6.5. Let o € O(X). Then « is completely regular if and only if o is both
left and right regular.

3.7 Regularity for E-order-preserving transformation

semigroups

Throughout of this section, we assume that (X, <) is a totally ordered set and
E is an equivalence on X. The following example shows that EOP(X) need not to be
regular and there exists an element of FOP(X) which is neither left regular nor right

regular.

Example 11. Let 41 = {3(k—-1)+1:k € ZT}, Ay = 83(k—1)+2: k € Zt} and
3
Az = {3k : k € ZT}. Define E = U A; x A;. It is clearly that E is an equivalence

t=1
relation on Z* and Z* /E = {4, A2, A3}. Define o : Z+ — Z+ by

6k—5+r, ifr=1,2;
T =
6k, if r = 3,

where x = 3(k — 1) + r for some k,7 € Z* and r < 3. It is easy to verify that o €
EOP(Z"). Assume that a = afa for some 8 € EOP(Z*). Since

20 = 2afa = 3Ba and 3a = 3afa = 6Fa
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and « is an injective, we deduce that 2 = 343 and 3 = 6. Because of 3 < 6 and (3, 6) € E,
we then have (2,3) = (33,68) € E which is a contradiction. Therefore « is not regular
of EOP(Z").

Suppose that @ = o?f for some B € EOP(Z*). Since 8 € EOP(Z*) and
(3,6) € E and 3 < 6, we have that (33,683) € E. We note that

2=1o:=1a2ﬁ22a6=3ﬁand3=2a=2a2ﬁ=3aﬁ:6ﬁ_

It would follow that (38,68) = (2,3) ¢ E which is a contradiction. This proves that « is
not right regular of EOP(Z).

Next, suppose that a = Ba® for some 8 € EOP(Z'). Since « is injective and
la = 16a? = (1Ba)a, 1 = 1B, we conclude that 1 € Z+a. This contradiction shows

that « is not left regular of EOP(Z%).

Example 11 inspires us to find necessary and sufficient conditions under which an
element of EOP(X) is regular, right regular, left regular or completely regular, respec-
tively.

Theorem 3.7.1. Let « € EOP(X). Then o € Reg(EOP(X)) if and only if for every
A € X/E, there ezists a partition w4 of A such that (ma,X) is a totally ordered set and
for every P € my, there exists zp € X corresponding to P such that PN Xa C {zpa}

and P 2 Q implies zp < 2g and (zp,zQ) € E for P,Q € 4.

Proof. Suppose that a = afa for some 8 € EOP(X). Let A € X/E. We note by
Proposition 2.2.12(2) that

T(A,B) ={P' NA: P enys(B)}

is a totally ordered set. By the definition of (4, ), we have 7(A4, 3) is a partition of
A. For every P € w(A, (), there exists P’ € m4(8) such that P = P'N A. We denote
xp = P'By. Let P € w(A, ) be such that PN Xa # 0. We have that P = P' N A for

some P’ € m4(B). For arbitrary z € PN X, z = 2/ for some 2’ € X. Hence
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z=7'a=72afa =zBa = PB.a=zpa.

This means that P N Xo = {zpa}. Let P,Q € w(A4,B) be such that P < Q. Then
P=PnNAand Q =Q N A for some P',Q € ma(B). Choose z € Pand y € Q. If
P = Q, then zp = zg. Assume that P # Q. By P < Q, we have z < y. Since (z,y) € E
and z <y, (zp,2q) = (2B,yB) € F and zp = 28 < yB = zg.

For the converse, suppose that for every A € X/E, there exists a partition 74 of
A such that (74, <) is a totally ordered set and for every P € 7y, there exists zp € X
corresponding to P such that PN Xa C {zpa} and P < Q implies zp < zg and
(zp,zq) € E for P,Q € 4. We will construct 3 € EOP(X) in the following, let z € X.
Since X/FE is a partition of X, « € A for some A € X/E. We note by assumption that
x € Py for some P, € 4. Define 8: X — X by

zB=zp, forall z € X.

Clearly, 8 is well-defined. Let =,y € X be such that (z,7) € F and z < y. Then there
exists A € X/E such that z,y € A. Thus z € P, and y € P, for some P, P, € ma.
Since z < y and by assumption, P, < P,. It follows that (z3,y3) = (zp,,zp,) € E and
zf = zp, < zp, = yB. Therefore 8 € EOP(X). Finally, let z € X. Then za € A for
some A € X/E. Tt follows from the definition of 8 that za8 = zp,, where za € Py,
and Pro € ma. It is clear from assumption that za € Py N Xa = {zp, a}. Thus

zafa = zp, o = za. Hence the theorem is thereby proved. O

Corollary 3.7.2. Let @ € EOP(X). Then o € Reg(EOP(X)) if and only if for every
A € X/E such that AN Xa # 0, there ezist a partition s of A such that (74, =) is a
totally ordered set and B € X/E such that |[PNBa|=|PNXa|=1 for all P € 4.

Proof. Assume that o € Reg(EOP(X)). Then there exists 8 € FOP(X) such that
a = afa. Let A € X/E be such that AN Xea # (). By Proposition 2.2.12(1), we have
AB C B for some B € X/E. Claim that Ba C A, let b € B. Since ANXa # 0, we choose
a € AN Xa, that is a = o'« for some o/ € X. We note that (a,b) € E. Since (X, <) is

a totally ordered set, we conclude that a3 < b or b < af. It follows from o € EOP(X)
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that (afa,ba) € E. Note that afa = d’afia = a’a = a € A, hence b € A. So we have

the claim. For P € mg(a), we denote
P'=u{Qen(4,6):QB8C P}and definery = {P': P e mg(a)}.

Let P € mp(e) and z € PN B. We note that za € A and za = zafBa. From 71'(‘A, B)
is a partition of A, za € Q for some Q € 7(4,B). By the definition of (A4, B), we
have that @ = Q N A for some Q ¢ 7A(B). This means that zaB € Q8 = {Q8.},
thus QBsa = za = Pa,. Hence QF = {QB.} C P. This shows that § # Q C P’ and
zo € PPNBa C P'NXa. Hence § 3 P'N Ba C P'N Xa. To verify that [PPNXea|=1,
let a,b € PN Xa. Thatis a = a’a and b = ¥« for some o/, ¥ € X. By (X, <) is a totally
ordered set, we assume that a < b. Since a,b € P’ C Ur(4, 8) C A, we have (a,b) € E.
It follows from 8 € EOP(X) that (a8,b83) € E. By the definition of P’ , a3, b3 € P for

some P € wp(a). Hence afBa = bBa. We conclude that
a=da=dafa=afa=>bfa=Vafa=Vba=Dh

This implies that |P' N Xa| =1 and hence |[P'NBa| = |P'NXa| =1 for all P! € 74.
To show w4 is a partition of A. It is clear that Ury C Urn(B,A) = A, let z € A.
By n(4,8) is a partition of A, we have z € Q for some Q € 7(A,3). We note by
AB C B that 3 € P for some P € 7p(c). Hence z € Q C P’ C Uny, then Umy = A.
Let P',Q" € m4 be such that PN Q' # 0. Then there exist P,Q € 7g(a) such that
P'=U{Pen(A,pB): PACPtand @ =U{Q e (4,8 : OB C Q). Letz € P'N (.
Since (A, ) is a partition of A, z € P for some P € 7(A, 3). By the definition of P’
and Q', P8 C PN Q. Since m() is a partition of X, we conclude that P = @, hence
P’ = @Q'. Therefore 74 is a partition of 4. Next, we will verify that (74, X) is a totally
ordered set. Since w4 is a partition of A, we get (w4, <) is a partially ordered set. Let
P',Q" € m4 be such that Q' A P'. Since Q' Z P, we conclude that Q' # P’ and ¢ £ p
for some ¢ € Q" and p € P'. It follows from (X, <) is a totally ordered set that p < g.
Claim that P’ < @', suppose that there exist z € P’ and y € Q’ such that y < z. Since
z,p € P, we have £3,p8 € PN B. Similarly, we deduce that y3,¢8 € Q N B. Since
P’ # @', P# Q. We note here that
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Pay = pfa < gfa = Qa.
From P # Q, we have Pa, < Qo,. Then
Pa, < Qo = yBa < zfo = Pa,

which is a contradiction. Thus z < y for all z € P’ and Yy € Q. Hence P’ < Q' and then
(74, =) is a totally ordered set.

Conversely, suppose that for every 4 € X /E such that AN Xa # 0, there exist
a partition w4 of A such that (m4,=) is a totally ordered set and B € X /E such that
|[PNBa|=|PNXa|=1foral Pe s Let A e X/E. If AN Xa = 0, then we let
ma={A} and fix 4 € A. Clearly, ANXa C {zaa} and for P,Q € w4 such that P < Q
implies zp < zg and (zp,2@) € E. Assume that AN Xa s 0. It follows that there exist
a partition 74 of A such that (74, =) is a totally ordered set and B € X /E such that
|PNBa| =|PNXa|=1for all P € ny. Then for each P € T4, we fix zp € B such
that zpa € PN Ba = PN Xa. Let P,Q € m4 be such that P Q. ¥ P=Q, then
Tp = Q. Suppose that P # Q and hence z < y for all z € P, y € Q. We conclude that
zpa < zga. Since 74 is a partition of A, zpa < zqo. To show that zp < zg, suppose
that zp £ zg. By (X, <) is a totally ordered set, we have zg < zp. By zp,zg € B and
a € EOP(X), we have zga < zpa < zga. It is a contradiction. Hence zp < g as

required. By Theorem 3.7.1, we conclude that « is a regular element of EOP(X). O

This leads directly to the following corollary when X is finite.

Corollary 3.7.3. [3] Let X be a finite set and & € EOP(X). Then a is a regular
element if and only if for every A € X/E, there ezists B€ X /E such that XaNA C Ba.

Proof. Suppose that « is a regular element. Let A € X/E. If AN X # 0, then
ANXoa C Ao. Assume that AN Xa # 0. By Corollary 3.7.2, there exists a partition
74 of A such that (74, =) is a totally ordered set and B € X/E such that [P N Ba| =
|[PNXa|=1forall P€ 7y Thus PN Xa=PNBaforal Pe Ta4. Since w4 is a

partition of A, we have U P = A. Hence
Permy
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ANXa= (Upm P) 0 Xo = Upey, (PN Xa) = Upey, (PN Ba) C Ba.

Conversely, assume that for every A € X/E, there exists B € X /E such that Xan A C
Ba. We need to show that o is regular via Corollary 3.7.2. Let A € X/F be such that
ANXa # 0. Since X is a finite set, we order ANXa = {a1,4as,...,a,} where a; < as <
... < an for some n € N. Let A={zcA:z<a},A={z€A:a;-1 <z<a}
foralli=23,...,n—1land P, ={z € A:ap_; < x}. It is easy to see that m4 =
{F;:1=1,2,...,n} is a partition of A. Moreover, P,N Xa = {a;} foralli=1,2,...,n.
By assumption, we have AN Xa C Bo for some B € X/E. Then choose z; € B such
that z;a = a; for each 1 =1,2,...,n. Hence PN Xa = {a;} = {z;a} = P,N Ba for all
i=1,2,...,n Thus |[P;NXa|=|P,NBa|=1forall¢=1,2,...,n. To verify (ra,=X)
is a totally ordered set, let P;, P; € m4 be distinct. We assume that a; < a; from X is a
totally ordered set. This implies that ¢ < j. Claim that P, < Pj,letz € P,and y € Fis
It follows from the definition of P; and P; that z < a; < aj—1 < y. Hence (74, x) is a

totally ordered set. By Corollary 3.7.2, we observe that « is regular. O

Theorem 3.7.4. Let o € EOP(X). Then a € LReg(EOP(X)) if and only if for every
A € X/E, there exists B € X/E such that for each P € w4(a), za € P for some z € B.

Proof. Suppose that o = o for some 8 € EOP(X). Let A € X/E and a € A. Since
X/E is a partition of X, a8 € B for some B € X/E. We claim that for each P € m4(c),
za € P for some z € B. Let P € myq() and z € PN A. Since X is a totally ordered set,
we assume that ¢ < z. From (a,z) € F and a < z, we then have (af,z8) € E. Since
af € B, we conclude that z8 € B. Consider, Pa, = za = z8a® = (zfa)a. Therefore
zfBa € P and z3 € B.

Conversely, suppose that for every A € X/FE, there exists B € X/E such that for
each P € m4(e), za € P for some z € B. Hence each A € X/E, we fix A’ € X/E and
zp € A’ corresponding to P € m4(e) such that zpa € P. We will construct 8 € EOP(X)
in the following, let z € X. Since X/E is a partition of X, z € A for some A € X/E.

Then there exists P € m4(«) such that z € P,. Define 8: X — X by

zB =zp, forall z € X.
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To show that 8 € FOP(X), let 2,y € X be such that (z,y) € E and z < y. We then
have z,y € A for some A € X/F and z € P,y € Py where P, P, € ma(a). Clearly,
(zB,yB) = (zp,,%p,) €EE. U P, = Fy, then zp, = zp,. Suppose that P, # P,. Claim
that zp, <=z Py, suppose not. Since X is a totally ordered set, we have zp, < zp,. Since
(zp,,zp,), (2,y) € E, zp, < zp, and z < y, we conclude that zp,a < zp,a,za < Yo
and (zp,a,zp,c) € E. Then Pa, = za < ya = Pya,. We note by P, # P, that
FProw < Pyo,. Similarly, we see that (xpya,xpma) € E and zp,a < zp,a. Hence

zp,aa < zp,ca. By assumption, we have z P, € Py and zp,a € P,. It follows that
zp,aa = FPro, < Pyoy = zp,aa < Tp Ooo.

This is a contradiction. Thus zp, < zp, and then 28 < yB. Therefore 3 € EOP(X).
We need to verify that o = So?, let z € X. Hence 2802 = zp_ a0 = Py = za, 50 @ is

a left regular element of FOP(X) as required. a

Theorem 3.7.5. Let « € EOP(X). Then o: € RReg(EOP(X)) if and only if

(1) a|lxa is an injection and

(2) for every A € X/E, there ezist zp € X corresponding to P for all P € w(A, )
such that P X @Q implies xp < 2q and (zp,zq) € E for all P,Q € (A, &) and if
PNXo?#0, then zp € Xa and zpa € P.

Proof. Suppose that oo = o? for some 3 € EOP(X). We note from Theorem 3.1.3 that
@|xq is an injection. Let A € X/E and P € (4, a) be such that PN Xa? # 0. Claim
that |PN Xa?| =1, let a,b € Xo?, then ac = b and a,b € Xav. It follows from c|xq is
an injection that @ = b. For each P € n(A4, ) such that PN Xa? # 0, we let zp = z3
where £ € PN Xo?. For each PN Xa? = 0, we choose z € P and let zp = z8. Let
P,Q € m(A, ) be such that P < Q. We see that 28 = zp and y8 = zq for some z € P
and y € Q. if P = Q, then zp = zg. Assume that P % Q. Thus by assumption, z < y.
Since (4, @) is a partition of 4, (z,y) € E. This implies that zp = z8 < yf8 = zQ
and (zp,zq) = (z6,yB) € E. Let P € m(A,a) be such that PN Xa® # 0. We note

that zpa = z8 for some z € PN Xo?. There exists ' € X such that z’a? = z. Then
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zp = zf = 2'a’B = ¥’a'and zpa = 2'ae = z € P which imply that zp € Xa and
Tpw € P, respectively.

Conversely, assume that (1) and (2) are true. Let = € X. Then z € A for some
A€ X/E. By (A, ) is a partition of A, we have z € P, for some P, € (A, @). Define
B:X—-Xby

zB=zp, for all z € X.

It is clear that § is well-defined. Let z,y € X be such that x < y and (z,y) € E.
Then there exists 4 € X/E such that z,y € A. Thusz € P, and y € F, for some
P, Py € m(A,a). By z < y and Proposition 2.2.12(2), we conclude that P, £ B,
It follows that 8 < yB and (0, yB) € E, hence 8 € EOP(X). Let z € X, then
za? € Xa?. Thus za?8 = zp_, where za? € P for some P € m(A, ). We note that
PN Xa?+# (. Hence TP, € P and zp_, € Xa. Thus (zp, @) = (za®)a. By (1),
we conclude that (zp_,)a = za?. Since zp, .. € Xa and by (1), we deduce again that

zp_, = va. Therefore zo?8 = za and hence o is right regular. O

Theorem 3.7.6. Let o € EOP(X). Then o € CReg(EOP(X)) if and only if for every
A € X/E, there ezists B € X/E such that [PNBa|=|PNXa|=1foralPe Ta(a).

Proof. Since EOP(X) is a subsemigroup of Tp(X) for a totally ordered set X, by
Theorem 3.3.7, we have @ = afla and a8 = Be for some B € Tg(X) if and only if for
every A € X/E, there exists B € X/E such that [P N Ba| = |[PNXa| = 1 for all
P € m4(a). It enough to show that 8 which is defined in Theorem 3.3.7 is in EOP(X).
Let z,y € X be such that (z,y) € E and z < 4. Then there exist P, P, € 7(a) such
thatz € P,andy € P,. If P, = Py, then we have z8 = y3. Assume that P, # P,. Since
(z,y) € B, 2,y € A for some A € X/E which implies that Fr, Py € wa(a). It follows
from Proposition 2.2.12(2) that P, N 4 < Py N A. Hence zp, < zp, and by P, # P,
we conclude that zp, < zp,. From Theorem 3.3.7, we have shown that (zp,zpy) € E
where zpra = zp, and z pya = zp,. To prove that zp; < z Py, suppose not. Since (X, <)

is a totally ordered set, z Py < zp;. By @« € EOP(X), we note that
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‘ Zp, = TPy Szpa=zp < zp,-

It is a contradiction. Hence zp, < zp; and so T = Zp; < zp; = yPB. This implies that

B € EOP(X) and theorem has been proved. a

Corollary 3.7.7. CReg(EOP(X)) = RReg(EOP(X)) N LReg(EOP(X)).





