CHAPTER IV

GREEN’S RELATIONS

In this chapter, we present Green’s relations on Trg(X) and Tse(X). We
investigate characterizations of left principal ideal, right principal ideal and principal
ideal on Tre(X) and Tsg(X). And then we determine when elements of Tre(X) and

Tsp(X) are equivalence respect to Green’s relations.

4.1 Green’s relations on full regressive transformation

semigroups

We let X be a partially ordered set. Green’s relations on Tre(X) are studied in

this section.

Theorem 4.1.1. Let ,3 € Tre(X). Then B € oTrp(X) i and only if for every
P € n(a), there exists Q € n(B) such that P C Q and QB. < Pa,.

Proof. Suppose that 8 € aTrg(X). Then there exists y € Tre(X) such that 8 = ay.
Let P € m(c). Thus Pa, = y for some y € Xa, it follows that P8 = Pary = {y~}. Hence
yy € XB. Let Q@ = yyB~1. Then Q € 7(8) and QB, = yv. Since PS = {y7}, we deduce
P C Q. By the regressiveness of v, we have that yy < y. This implies that @8, < Pa,
as required.

For the converse, suppose that for every P € 7(a), there exists Q € 7(8) such
that P C Q and QB. < Pa,. We construct v € Trp(X) such that 8 = oy in the
following. For each z € Xa, there exists a unique P, € m(e) such that z = P,a,. By

assumption, Py C Q; and Q0. < Pray for some Q; € m(B3). Define y: X — X by

{ Qzﬂ*, 1f$ € XO{,
Ty =

i, otherwise.

Since 7(8) is a partition of X, it can be shown that - is well-defined. Let z € X. If

T € Xa, then 2y = Qzf.. Hence 2y = Q.0 < Prow = . If z & Xa, then zy = .
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These prove that y < « for all z € X, so v € Tre(X). Next, to show that 8 = oy,
let z € X. Since va € Xa, there exists Py € m(a) such that Proon = zo, hence
% € Prq. By the definition of vy, we have zay = Q0 Where Qg € 7(8), Pea C Qo
and Qrofs < Praty. Since z € Ppy € Qra, we have zay = QzafBx = z. This proves
that 8 = oy, so B € aTrp(X).

The theorem is thereby proved. O

Theorem 4.1.2. Let 8, € Trp(X). Then (a,B) € R if and only if o = 8.

Proof. Suppose that aRB. Thus § € oTgre(X) and & € BTgrp(X). To show that o = 3,
let z € X. Then z € P for some P € m(a). By Theorem 4.1.1, there exists Q € () such
that P C Q and @B, < Pa.. By Theorem 4.1.1, there exists P’ € m(a) such that Q C P’
and P'oye < QP,. Since m(a) is a partition of X, P = P’. It follows that Pa, = @B« and

z € Q. Hence za = z0. O

Example 12. Define o, 8 : Z+ — Zt by

1, ifzx <4
o=
z, otherwise,

1, ifz<2;
=14 3, ifzx=4;

z, otherwise,

We note that o, 8 € TRE(Z+). It is clear that
m(a) = {{1,2,3,4}} U {{z} : € Z* and z > 4},
w(8) = {{1,2},{3,4}} U {{z} : z € Z* and = > 4}.

Hence we can verify that o € 8Trg(X) via Theorem 4.1.1. Moreover, a 7# B which

implies that (o, 8) € R by Theorem 4.1.2.
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Theorem 4.1.3. Let o, B € Trp(X). Then the following statements are equivalent.

1) @€ Tre(X)8.

(2) For every P € w(a), there exzists Q € n(B) such that Pa, = QB and for every

x€P,y<z for somey € Q.

Proof. Suppose that (1) holds. Then there exists § € Tgrp(X) such that o = §3. Let
P € m(a). Then Pa, € Xa = X683 C X which implies that Pa, € X3. Then there
exists @ € () such that @B, = Pa.. Let z € P. Since 268 = zao = Pa, = QB., it
follows that zd € Q. By § € Trr(X), we deduce that =6 < z as desired.

Conversely, suppose that (2) holds. We construct a map § € Trg(X) such that
o = 6f3 in the following. For each z € X, there exists P, € 7(c) such that z € P,.
By assumption, we choose and fix Q, € 7(8) and y, € Q, such that Py, = Q.0, and
Yz < z. Define § : X — X by

20 =y, for all z € X.
Let z € X. Thenwé=y,,5m and
T8 = Yol = Qufi = Pras = zar.
These prove § € Trg(X) and o = 63, respectively. Therefore o € Trg(X)3. a

Theorem 4.1.4. Let o, B € Trp(X). Then the following statements are equivalent.

(1) (a,B) € L.

(2) XB C Xa and for every P € w(e), there exists Q € w(B) such that Pa, = QB
and for every p € P and q € Q, there exist a € P and b € Q such that b < p and

a<gq.

Proof. Suppose that (1) holds. Then 8 € Tgre(X)a and @ € Tre(X)B. It is clear
that X8 C Xa. Let P € n(a). Since @ € Trp(X)B and by Theorem 4.1.3, there
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exists ) € 7(8) such that Pa, = QB. and for all P € P, b< pfor some b € Q. Since
B € Tre(X)a and by Theorem 4.1.3, there exists P’ € 7(a) such that QB, = P'a, and
for every g € Q, a < ¢ for some a € P'. Since Pa, = QB = Pla,, it follows that P = P’.
Hence (2) holds.

Conversely, assume that (2) holds. By Theorem 4.1.3, we suddenly have a €
Tre(X)B. It suffices to show that B € Tre(X)a. Let Q € n(f). Since QB, € X8, by
assumption, @B« € Xa. Hence QB. = Pa, for some P € m(a). By assumption, there
exists Q' € 7(8) such that Pa, = Q'S, and for every ¢ € ', a < q for some a € P. We
then have that Q = Q. By Theorem 4.1.3, 8 € Tre(X)a.

Hence the proof of theorem is complete. O

As an immediate consequence of Theorem 4.1.2 andD=LoR=LoT=_L
and H=LNR =LNZ =Z where T is the identity relation on Tgrg(X). We have the
following result.

Theorem 4.1.5. Let o, € Tre(X). Then the following statements hold.

(1) («,B) € D if and only if aLB.
(2) (o, B) € H if and only if o = 8.

Example 13. Consider maps a, 8 : Zt — Z* defined by :

1, ifz=2n—1 for some n € Z*;
T =

2, otherwise
and

5 { 1, fz=1o0rz=2n+2 for some n € Z+;
T =

2, otherwise.

It is not difficult to show that o, 8 € Tre(Z1). Note that

ma)={{2n~-1:n € Z*},{2n:n e Z*}},
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m(B)={{2n+1:neZ*}U{2},{2n+2:nec Z+} U {1}}.

From Theorem 4.1.4, we conclude that (a, 8) € £ and clearly, a # B. Let iz+ be an
identity map on Z¥. We can show that o € Trg(Z")iz+ and (e, iz+) & L via Theorem

4.1.3 and Theorem 4.1.4, respectively.

Next, Green’s relation J is considered, we need the following lemma.

Lemma 4.1.6. If o, 8,6, € T(X) are such that o = 53, then
A={UAg:Q e n(B) and Q N X5 # 0}
is a refinement of m(a) where Ag = {P € n () : Pé, € Q).

Proof. Let o, 8,0,7 € T(X) be such that o = §3-. By Theorem 2.2.8, 7(6) refines ().
To show that UA = Ur(a) = X, let € X. We then have z € P for some P ¢ m(6).
Since 268 € X3, 268 = Qp, for some Q € m(8). Then Pé, = 26 € Q, hence QN X6 = (.
Therefore P € Ag and z € P C UAg C UA. Hence X =UA. Let Q € 7() be such that
QN X4 # 0. To show that there is P m(a) such that UAg C P, let z € QN X6. Then
there exists an element ' € X such that 2/ = z. Since 7(6) is a partition of X ,o'eP
for some P € m(6) and P4, = 2'6. Since m(6) refines m(c:), P C P for some P € m(a).

Let y € UAq. Then y € P’ for some P’ € Ag. By the definition of Ag, P'5, € Q. Hence
Y60 = P'6,f = QB = z8 = 2'50.

Since 2’ € P C P, 2’ = Pa,. Thus
ya = ydfy = z'6fy = z'a = Pa,

which implies that y € P, hence UAg C P. This proves that A refines 7 () as required.
O

Theorem 4.1.7. Let o, 8 € Trp(X). Then the following statements are equivalent.
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(1) o€ Tre(X)BTre(X).

(2) There ezist a refinement B of w() and an injection ¢ B — mw(B) such that for
every P € B, Pa, < (Pp)B. where P C P and P € 7(a) and for every z € P,

y <z for some y € Pep.

Proof. Assume that (1) holds. Then o = §8y for some 0,7 € Tre(X). Recall A
from Lemma 4.1.6, we then have A is a refinement of m(c). Define ¢ : A — 7(8) by
UAgy = Q. It is easy to verify that ¢ is well-defined. Suppose that UAgy = UAg .
By the definition of ¢, we conclude that Q = Q’, hence UAqg = UAg. This proves that
@ is an injection.

Next, let UAg € A where Q € 7(8) and QN X6 # 0 and let = € UAg. Then
z € P for some P € 7(§) and Pé, € Q. We deduce that =6 = P, € Q = UAgy. Since

A is a refinement of 7(), z € UAg C P for some P € m(a). Hence

Pa, = za = 58y = QB.y < QB = (UAgy)B..

Since ¢ is regressive, 6 < z. Therefore (2) holds.

For the converse, suppose that (2) holds. We construct maps 0,7 € Tre(X) such
that o = 687 in the following. For each z € X, there exists some Py € B such that
« € P;. By assumption, we choose and fix an element y, € P, such that Yz < z. Define
§:X = X by |

20 = yz for all z € X.

Clearly, 6 € Trp(X). Since By : 7(8) — X8 and ¢ are injective, we then have WP :
B — X is also injective. For each z € Byg,, there exists a unique P, € B such that
© = Plyf, and P, € n(a) such that P, C P.. Definev: X — X by

{ Ploy, if z € BB
Ty =

x, otherwise.
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Since B is a refinement of m(a), we deduce that v is well-defined. It follows from
assumption that zy = Ploy, < (Prp)B« = z which implies that v € Tre(X). Fi-
nally, let z € X. Then =z € P, for some P, € B. Since B is a refinement of m(a),
P, = za where P, C P, for some P, € m(c). Hence z6 = y, where y, € Pyo. It
follows that y,0 = (P:p)B« € BpfBi. By the definition of v, y.8y = ﬁ;xﬁa* where
P, € B,P, 5 € m(e) and P, 5 C Py ;. Since Poof. = 48 = Pl_zpf, and @B, is

injective, P, = P?:,z g- Hence P, = P;,: - Therefore

8By = Y287 = Prow = z02.

Hence the theorem is completely proved. O

The next corollary is immediate from Theorem 4.1.7.

Theorem 4.1.8. Let o, B € Trg(X). Then (o, 8) € J if and only if

(1) there exist a refinement B of w(a) and an injection ¢ : B — n(8) such that for
every P € B, Paw. < P, where PC P and P € 7(a) and for everyz € Py <<z

for some y € Py and

(2) there exzist a refinement B' of m(B) and an injection ¢ : B’ — w(a) such that for
every Q € B,QB: < Qo' where Q € Q and Q € 7(B8) and for every ' € Q,

Y <z’ for some y' € Q¢ .

From Example 12, we can verify that o € Trp(Z1)BTre(Z*) by Theorem 4.1.7
and (e, B) ¢ J by Theorem 4.1.8. Recall o, § defined in Example 13, we have (o, 8) € J

via Theorem 4.1.8.

4.2 Green’s relations on self-F-preserving transformation

semigroups

Denote E an equivalence relation on X. We discuss Green’s relations of Tsg(X).
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Theorem 4.2.1. For any o, 8 € Tsp(X), a € Tsp(X)B if and only if for every A €
X/E, Aa C AB.

Proof. Suppose that a € Tsg(X)B. Then a = §3 for some § € Tse(X). Let Ae X/E.
By Proposition 2.2.9(3), we then have A5 C A, hence Ao = A58 C AB.

Conversely, assume that for every A € X /E, Aa C AB. For each z € X, there
exists a unique A € X/F such that z € 4. By assumption, choose an element =’ € 4

such that za = /8. Define §: X — X by
zé =2’ for all z € X.

Letz € X. Sincez,2’ € 4, (z,26) = (z,2) € E. Henced € Tsp(X) and 268 = ' = za
for all z € X. This implies that o = 8, therefore o € Tsg(X)B as required. O

Theorem 4.2.2. Fora, 8 € Tsp(X), (a, B) € L if and only if Aa = AB forall A € X/E.

Theorem 4.2.3. Let o, € Tsp(X). Then o € BTse(X) if and only if 7(B) refines

7(c).

Proof. We note by Theorem 2.2.8 that a = 36 for some & € T(X) if and only if w(0)
refines m(a). It suffices to show that § which is defined in Theorem 2.2.8 is in Tsg (X).
Let z € X. If z ¢ Xp, then (z,26) = (2,2) € E. Assume that z € XB3. Then by
the definition of 4, £d = Qo where P, = 28! and P, C Q, for some P, € 7(B) and
@z € m(a). By Proposition 2.2.9(1), 7(c) and 7(8) refine X/E, we then have P, C A
and Q; C B for some A, B € X/E. Since 8 € Tse(X), we conclude that z € A. Since
P, C Q; and X/F is a partition-of-X, we huve that 4 = B, so @, C A. By Proposition
2.2.9(3), we note that Qzax € Aa C A. It follows that (z,26) = (z,Qz0.) € E.
Therefore § € Tgg(X). O

Theorem 4.2.4. For o, 8 € Tsp(X), (a, 8) € R if and only if m(a) = n(8).

Since H = RN L, the following theorem follows immediately from Theorem 4.2.2
and Theorem 4.2.4.
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Theorem 4.2.5. For o, € Tsg(X), (o, B) € H if and only if m(a) = 7(B) and for
every A€ X/E, Aa = AB.

Example 14. Let 4; = {1,2,3,4} and A = Z+\ 4;. Define
E= (AI X Al) U (Ag X Ag).
We then have E is an equivalence relation on Z*. Define a, 8, € T(Z*) by

{ z—1, ifze A\{1}
ga=

5 otherwise,

%, otherwise

{ i, =, s
zf =
and

{ 2, Fe=1;
Ty=

x, otherwise.
Clearly, o, 8,7 € Tsg(Z*). Note here that
(@) = {{L.2}} U {{z} : 2 € Z*\{1,2}},
m(6) = {{2,3}} U{{z} : 2 € Z"\{2,3}},
m(7) ={{L.2}}u{{=} : z € Z*\{1,2}}.
Hence by Theorem 4.2.4, we conclude that («, 8) € R. Since Ao = AB for all A € Z+/E,
by Theorem 4.2.2, we have (o, §) € £. We see that m(a) = 7(y) and Ao = {1,2,3}

{2,3,4} = A1y where A; € Z*/E. Thus by Theorem 4.2.4 and Theorem 4.2.2, we deduce
that (o, ) € R and (e,7) € L, respectively.



65

Theorem 4.2.6. For a,f8 € Tsp(X), a € Tsp(X)BTse(X) if and only if there exist a
refinement A of m(a) and ¢ : A — 7(8) such that @ s an injection and for every P € A,
P,Pyp C A for some A € X/E.

Proof. Assume that a € Tsg(X)BTsg(X). Then o = 63 for some 6,7 € Tsp(X). Let
A={UAg : Q € n(8) and Q N X§ # §} where Aq = {P € n(a) : P5, € Q}. Then
by Lemma 4.1.6, A is a refinement of 7(a). Define ¢ : A — 7(B) by (UAQ)p = Q. Tt
is clear that ¢ is well-defined. Suppose that (UAQ)y = (UAg)p. By the definition of
¥, @ = Q" Thus Ag = Ay and so ¢ is an injection. Let UAg € A where Q € (3).
We note that Q C A for some A € X/E by Proposition 2.2.9(1). For every P € Ag, we
have P6, € Q and then P§, € A. Hence PC Aby 6 Tsp(X). Thus UAg C A which
implies UAg € A and (UAQ)p = Q C A.

Conversely, suppose that ¢ : A — 7(8) is an injection where A is a refinement of
m(a) and P, Pp C A for some A € X/E for each P € A. Let € X, so z € P for some
P e A Choose z € Pp. Wedefine§: X — X by

zd=7 for allz € X.

Clearly, Py is unique and P,Pyp C A for some 4 € X/E then § € Tgp(X). Since
Bx : m(B) — X B is an injection and by assumption, @B, : A — X3 is an injection. For
each z € Apf,, there exists a unique P, € A such that z = FPrpBy, hence we fix 2’ € P,.
Define v: X — X by

{ Za, ifze Apby;
2y =

x, otherwise.

By A is a refinement of m(a), 7 is well-defined. Let z € X  if z & Apfy, then (z,z27) =
(z,z) € E. Assume that z € ApB,. So, r = FPrpf, for some P, € A. By Proposition
2.2.9(1), there is A € X/E such that P, C A. We conclude that = = Prpf.c ABC A
by Proposition 2.2.9(3). It follows from assumption that P, C A. From (',z'a) € E
and 2’ € A, we then have z’a € A. Thus v € Tsp(X). Now, for z € X, z € P for
some P € A. Since 3 = Pypf, C Apf., we conclude that PpB, = 78 = PipBu. It
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follows from 3, is injective that P = P;g. Hence z, (Z8)’ € P. Since A is a refinement
of m(e), there exists P’ € m(a) such that P C P’. Thus z, (£8)’ € P’ which implies that

za = (Z6)'a. Consider
zéfBy = &Py = (ZB) a = za.

We get a € Tsp(X)BTse(X) as required. O

Theorem 4.2.7. For a,f € Tsg(X), a € Tsp(X)BTse(X) if and only if there exists an
injection ¢’ : w(a) — m(B) such that for every P € m(c), P, Py’ C A for some A € X/E.

Proof. Assume that o € Tsg(X)BTse(X). We note by Theorem 4.2.6 that there exist
a refinement A of m(a) and ¢ : A — () such that ¢ is an injection and for all P € A,
P,Pp C A for some A € X/E. For each P € w(a), choose and fix P’ € A such that
P’ C P. Define ¢ : n(a) — 7(B) by

Py’ = Py for all P € n(a).

We then have ¢ is well-defined. Let P,Q € w(a) be such that P’ = Qy’. Hence
P'p = Q'p. By p is injective, P’ = @'. Since PN Q # 0 and 7(a) is a partition of X,
P = Q. Thus ¢’ is injective. Let P € w(a). Then P, P’ C A for some A € X/E. We
have PN A # (. By Proposition 2.2.9(1), we conclude that P C A. Therefore the proof

is complete. O

Theorem 4.2.8. For o, € Tsg(X), (o,8) € J if and only if there exist injections
Y :7w(@) — 7(8) and ¢’ : w(B) — w(e) such that for every P € n(a) and Q € =(B),
PPy C A and Q,Q¢' C A’ for some A, A’ € X/E.

From Example 14, we can verify that (o, 8), (o,7) € J via Theorem 4.2.8.

To obtain D relation, the following lemma is needed.

Lemma 4.2.9. For a,f € Tsp(X) and A € X/E. If ¢ : mo(B) — ma(a) is a bijection,
then there ezists 64 : A — X satisfies m(04) = m4(8) and Ads = Ac.
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Proof. Assume that ¢ : m4(8) — 74 (@) is bijective. Let z € A. By Proposition 2.2.9(2),
there exists P, € m4(8) such that z € P,. We define §4: 4 — X by

64 = (Prp)ay for all z € A.

04 is well-defined. By Proposition 2.2.9(2), we then have Uma(B8) = A =Un(d4). Claim
that m4(8) = 7(d4). From the definition of §4, we note that for all P € wA(B), Péy =
{Pyay} so, P C Q for some Q € m(64). For each Q € 7(64), Q4. = (Py)a, for some
P € m(B). To show Q C P, iet z € (). Then there exists P, € wa(B) such that z € P,.
S0 Qéa. = xds = (Prp)oy, then we have Ppa, = Prpay. Since pa, is a bijection,
P = P;. Hence z € P, so Q C P. Therefore we conclude that 7a(B) = w(64). By
Proposition 2.2.9(2), A = Ur4(8) = Un(d4). So,

Ada = (Uma(B))da = (Ura(B))pa = (Ura(B)p)a = (Ura(a))e = Ac.

Therefore the lemma is proved. 0D

Theorem 4.2.10. For o, 8 € Tsg(X), (o, 8) € D if and only if for every A € X/E,

there ezists a bijection p, : w4(B8) — ma(c).

Proof. Suppose that (o, 8) € D. Then there exists § € Tsg(X) such that (,0) € L
and (6,8) € R. Let A € X/E. For each P € ma(B), we then have P € m(8) and
PN A#0. By Theorem 4.2.4, we have m(6) = 7(8), so P € n(6). Since PN A # 0 and
by Proposition 2.2.9(1), we deduce that P C A, hence P§, € AS. From Theorem 422,
we obtain that Ao = AJ, that is Pé, € Aa C Xa. Then there exists Qp € m(c) such

that Qpa. = Pd,. Since Qpay € A and a € Tse(X), we observe that Qp C A and then

Qp € m4(a). Define p4 : m4(8) — ma(c) by
Ppy = Qp for all P € m4(B).

To show that ¢4 is well-defined, if Q' € m4() such that Q'a, = P§, then Q = Q'
by Qo = Q'a. Assume that Ppy = P'p4. Then Qp = Qp, hence P§, = Qpa, =
@pray = P'6, which implies that P = P’. This shows that ¢ is an injection. Claim that
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¥4 is a surjection, let @ € ma(a). Then Qa. € Aa = AJ. Thus there exists P € w(8)
such that Pd, = Qay. Since § € Tsg(X) and Proposition 2.2.9(3), we conclude that
P C A. By 7(8) = 7(f) then P € m(8) and so P € m4(8). Therefore P4 = Q, thus we
have the claim. Hence @4 is bijective as required.

Conversely, for every A € X/F, there exists a bijection va 1 ma(B) = ma(e). It
follows from Lemma 4.2.9 that there exists 4 : A — X corresponding to A € X/F such
that ma(B8) = m(04) and A4 = Ao. Thus we define § : X — X by

6la =04 for each A € X/E.

Since X/E is a partition of X, § is well-defined. We note that for each A € X/E,
Ab = Abés = Aa C A by o € Tsp(X). We then have § € Tsr(X). Finally, we can see
that

m(8) = UAGX/E T4(B) = UAEX/E m(d4) = UAeX/E 7A(8) = 7(9).
It follows from Theorem 4.2.4 that (4, 3) € R. Consider,
Ab = Ab|4 = Ab, = Ac.

We then have (a,d) € £ by Theorem 4.2.2. Therefore, (a, 3) € D.

Hence the theorem is completely proved. O





