CHAPTER V

NATURAL PARTIAL ORDER

In chapter, we present the characterization of the natural partial order on
Tsp(X) and give a necessary and sufficient condition for elements in Tse(X) to be

minimal, maximal and covering elements with respect to the order.

5.1 Characterizations

As was mention from Theorem 3.5.1, Tgg(X) is a regular semigroup. Then we

deduce the natural partial order on Tsg(X) as follows : for o, B € Tsp(X),
a < B if and only if a = §8 = v for some 4,7 € E(Tsp(X)).

The following theorem investigates the conditions when o < B forall o, 8 € Tgp(X).

Theorem 5.1.1. Let o, 8 € Tsp(X). Then a < 8 if and only if 7(B) refines m(a) and
for every P € n(a), Po, € PB.

Proof. Suppose that & < 8. Then a = §8 = (v for some 6,7 € E(Tsg(X)). Let
P € w(B8). Then PB, = z for some z € XB. Since Pa: = PBy, P C (z7)a™! € n(a).
This proves that m(5) is a refinement of m(a). Let P € n(a) and z € P. Then za = Pa,.
Since § € E(Tsp(X)), 6% = z8. Therefore

za=zif = (26)63 = zéa

which implies that 26 € P. Hence Pa, = 268 € Pg.

Conversely, suppose that 7(8) refines 7(a) and for every P € n(a), Pa, € PB.
For each z € X3, there exists a unique Q, € 7(8) such that z = Q... By assumption,
there exists 2 unique P, € 7(a) such that Q, C P,. It follows from Proposition 2.2.9(1)
that P C A for some A € X/E, hence @, C A. By Proposition 2.2.9(3), we have
QR:zB € AB C A and Pya. € Aa C A, hence (z, Prax) = (Qzfs, Pras) € E. Define
v:X — X by
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{ P, ifz € XB;
Ty =

Z; otherwise.

It is clear that v € Tsgg(X). To show that v € E(Tsp(X)), let z € X. If z & X3, then
z7v* = zv. If z € XB, then z = Q,b., 27 = Pyoy and Q, C P; for some Q, € m(f) and
P; € n(c). By assumption, Py, € Py(3, there exists y € P, such that Pra, = yB. Since
YB € X3, there exists Qug € m(8) such that y3 = QysPs. Hence Qus N P, # O which
implies that Qy3 C P, by assumption. From the definition of v, we have yBy = Pyo.
Thus y7? = (Pzow)y = Y8y = Pra, = zy. This shows that v € E(Tsg(X)) as required.

To show that By = «, let z € X. Then z8 = QzpPx and T € Qgg C P, for some
Qzp € m(B) and Py5 € m(a). Then 28y = FPrgoy = zar, s0 By = au.

Next, for each P € 7(a), by assumption, we choose and fix zp € P such that
Pay, = zpf. Since 7(c) is a partition of X, for each z € X , we let Py € m(a) such that
Z € Fp. Define 6 : X — X by

zd =zp,_ for all z € X.

Let £ € X. Then z € P, for some P, € m(a). By Proposition 2.2.9(1), there exists
A € X/E such that P, C A. Since 26 = zp, € P, C A, (z,20) € E. Thus § € Tsp(X).

Consider,
zéfB = zp, B = P,a, = za.

Since zp, € P, by the definition of § we have zp,d = zp, and 62 = zp b = zp, = 4.
Therefore @ = 63 and § € E(Tsp(X)), respectively. Thus the theorem is completely

proved. O

Corollary 5.1.2. Let a,8 € Tsp(X). Then o < 8 if and only if for every A € X/E,

7A(B) is a refinement of ma() and for every P € wa(e), Pay € PB.

Proof. Suppose that o < 8. Let A € X/F and P € 74(8). We then have P € 7(B)
and PN A # (. By Theorem 5.1.1, there exists Q € m(a) such that P C Q. Thus
0 # PNAC QN A which implies that Q € w4(a) and P C Q. It is clear from
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Proposition 2.2.9(2) that Ura(8) = Uma(e). Hence m4(B) is a refinement of ma(a).
Moreover, for any P € m4(c), we then have P € n(@). By Theorem 5.1.1, Pa, € PS.
Conversely, suppose that for every A € X/E, wa(B) is a refinement of ma(a) and
for all P € m4(a), Payx € PB. To show that & < B3, let P € m(5). From Proposition
2.2.9(1), there exists A € X/FE such that P C 4, s0 P € m4(B). By assumption, P C Q
for some Q@ € ma(a). Since ma(a) C 7(a), 7(B) refines m(c:). Next, let P m(a).
By Proposition 2.2.9(1), we have P C A for some A € X/E, hence P € my(c). By
assumption, Pa, € PS. It follows from Theorem 5.1.1 that o < [ as desired. O

5.2 Compatibility

Recall that for any partial order p on a semigroup S, an element ¢ € S is said to
be left compatible with p if for every (a,b) € p implies (ca, cb) € p. Right compatible with
p is defined dually. Next, we describe the left and right compatible elements in Tgg(X).

Theorem 5.2.1. Let o € Tsp(X). Then « is left compatible with < on Tse(X) if and

only if a is surjective.

Proof. Suppose that o is not a surjection. Let o/ € X\ Xa. Then there exists 4 € X /E
such that o’ € A. We choose and fix a € Ac, hence a # o’. By Proposition 2.2.9(3), we
have that a,a’ € A. Define 8: X — X by

{ d, ifz=aq
zf =

z, otherwise.

Since a,a’ € A, we get 8 € Tsp(X). We note that

7(8) = {{a,a'}} U {{z} : z € X\{a,a'}}.

It is easy to see that 7(ix) refines m(8) and PB, € Pix forall P € 7(3) where ix is the
identity map on X. By Theorem 5.1.1, we deduce that 8 < ix. Since o’ € X o3, we have
QR =d'(aB)™! € m(aB). Then

Q=7d(f)'=dpla! = {g,d}a ! =aaL.
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Since Quix = (e )aix = {aix} = {a}, Q(af)« = ¢’ & Qaix. By Theorem 5.1.1, we
conclude that o8 £ aix. This proves that o is not left compatible with < on Tsp (X ).

Conversely, assume that « is surjective. Then Ya™laa =Y for all Y C X. Let
B,y € Tse(X) be such that 8 < . To show that a8 < a7 via Theorem 5.1.1, let
P € m(ory). Then P(ay)« = y for some y € Xay. Since Xay C Xv,y € Xv. Let
@ € 7(v) be such that Qv = y. Since 8 < v and by Theorem 5.1.1, Q C P for some
P € 7(B). Note here that

Paop = y(ay)af = (yy o laB = (y771)8 = QB8 C PB = {BB,}.

Hence P C PB.(af)™! € #(af). That is m{ay) refines m(a8). Next, let P € w(af).
Then P = y(aB)~! for some y € Xaf. We then have y € X2, so Q8. = y for some
Q € 7(B). Since 8 < 7, by Theorem 5.1.1 we have Q3, € Qv. Consider

P(ef)x =yB o afs = Qo of = QB € Qv = Qa~lay = yB~lalay = Pay.
It follows from Theorem 5.1.1 that a8 < ary. Therefore a is a left compatible with < on
Top(X). O
Theorem 5.2.2. Let a € Tsg(X). Then a is right compatible with < on Tsp(X) if and

only if for every A€ X/E, A€ n(a) or |P|=1 for all P € m4(a).

Proof. Assume that there exists A € X/E such that A & m(a) and |P’| > 1 for some
P' € ma(a). By Proposition 2.2.9(2), we have P’ C A. Since A ¢ 7(a), it follows that
P' # A. We choose p’ € P’ and a € A\P'. Then pa = P'o, and act # P'a,. Now,
define 8: X — X by

a;, fz=yp;
xﬁ={ o

z, otherwise.

Let z € X.

(:1:,3;5) = { (P’aa) €E, ifx=yp;

(z,z) € E, otherwise,
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thus 8 € Tsp(X). It is easy to see that m(ix) = {{z} : = € X} is a refinement of 7(8)
and P, € Pix for all P € w(8). By Theorem 5.1.1, 8 < ix. Note that

(Plow)(ixe)™! = (Plaw)a iy = Plizt = P'.

Hence we deduce P’ € w(ixa). By the definition of 8 and P’ \{?»'} # 0, we have that
P'Bo = ({a} UP'\{p'}) @ = {ae, P'ax}. Claim that P’ € Q for all Q € 7(Ba). Suppose
not, there exists Q € n(Ba) such that P’ C Q. Since {aa, P'ay} = P'Ba, we observe
that {ac, Pou} C QBa = {Q(Ba).} which is a contradiction. So we have the claim.
This proves that m(ixa) does not refine 7(8c). By Theorem 5.1.1, we conclude that
Ba £ ixc. Therefore a is not a right compatible.

Conversely, suppose that for all A € X/E, A € 7(a) or |P| =1forall P € 74 (o).
Let 8,7 € Tsg(X) be such that 8 < 7. To show that Ba < o via Corollary 5.1.2, let

A € X/E. We consider two cases as follow :

Case 1. A € w(a). Then Aa, = y for some y € Xa. By Proposition 2.2.9(3),
Af € A. Since Afa C Aa = {y}, we note that A C y(8a)~! € m(Be). By Proposition
2.2.9(1), there exists B € X/F such that y(8a)~! C B. Then A = B since X/E is a
partition of X. Hence A = y(8a)~" which implies that 74(8a) = {A4}. Similarly, we have
that ma(ya) = {A}. Hence ma(ya) refines m4(Ba). Moreover, let P wa(Ba) = {A}.
Then

P(Ba)x = A(Ba)x =y € {y} = Aya = Pryo.

Case 2. |P| =1 for all P € ma(). Let P € ma(ya). P(ya), = y for some y € Xvo.
Then Py C yo~'. Since ya~* € ma(a), by assumption, [ya~| = 1. Let ya~! = {z}
for some z € X. We then have Py = {z} and PN A # 0, hence P = 2y~ € m4().
Since 3 < 7, by Corollary 5.1.2, w4 (7) refines m4(8). Hence P C Q for some Q € ma(PB).
This means that P8 C QB = {Qf.}. Now, we consider Pfa C QBa = {QB,a}, thus
P C (QBxa)(Ba)~1. Note that

0#ANPC AN (QB.a)(Ba)7t,
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hence (QBx)(Be:)™! € ma(Ba). This proves that ma(ya) refines ma(Ba). Next, let
P € m4(Bc). Then P(Ba). = y for some y € X which implies that P8 C ya~!. By
assumption, ya~* = {z} for some z € X, hence PB = {x}. Therefore P = z8~1 € m4(B).
It follows from 8 < < and Corollary 5.1.2, we have PB, € Pvy. Hence P(fa), € PBa C
(Py)a.

From two cases, we conclude that o < ya by Corollary 5.1.2. This shows that « is right
compatible with < on Tsg(X). O

5.3 Minimal, maximal and covering elements

To characterize maximality respect to the natural order, the following lemma is

needed.

Lemma 5.3.1. Let o, 8 € Tsp(X) be such that « < 8 and A € X/E. If Ao = A, then
za=z0 for allz € A.

Proof. Assume that Aa = A. Let z € A. By n(B) is a partition of X, z € Q for some
Q@ € m(B). Since a < B and Theorem 5.1.1, there exists P € w(a) such that Q C P.
Hence z € P. It follows that z8 = Qf. and za = Pa,. By assumption and Proposition
2.2.9(3), z8 € AB C A = Aa. Since o, : (@) — X is surjective, there exists P’ € 7(a)
such that z8 = P'e.,. We note by Theorem 5.1.1 that P'a, € P’B. Then z8 = yg for
some y € P’ which implies that y € Q. This means that PN P’ # (. Since (a) is a
partition of X, P = P'. Therefore

z8 = P'a, = Pao, = z0.

The proof is complete. O
Theorem 5.3.2. Let o € Tsp(X). If for every A € X/E, A\Aa =0 or |P| =1 for all

P ema(a), then a is a mazimal element.

Proof. Assume that for every A € X/FE, A\dAa = 0 or |P| = 1 for all P € m4(a).
Suppose that o < 3 for some 8 € Tsp(X). To verify that o = 3, let z € X. Then
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z € A for some A € X/E. It follows from assumption that A\Aa = 0 or |P| =1 for
all P € my(a). If A\Aa = 0, then by Lemma 5.3.1, we have za = z[3. Suppose that
|P|=1forall P € my(c). Since 7(f) is a partition of X, there exists Qe m(B) such that
z € (). By assumption and Theorem 5.1.1, Q C P for some P & m(a) and Pa, € PS.
Since z € AN P, we get P € ma(e). It follows from assumption that |P| = 1, then
@ = P = {z}. Hence zao = Pa, € P8 = {zB} and so o = B. Thus « is a maximal

element. O

Theorem 5.3.3. Let a € Tsp(X). If there exists A € X/E such that A\Aca # (0 and

|P| > 1 for some P € wa(a), then a has an upper cover.

Proof. Suppose that there exists A € X/E such that A\Ae # § and |P| > 1 for some
P e my(a). Choose a € A\Aa and o’ € P. Clearly, a,a’ € A. Define §: X — X by

{ a; iz=d;
zf =

za, otherwise.

We see that

(z,z0) = { (e',a) € B, ifz=ad

(z,za) € E, otherwise

for all z € X, thus 8 € Tsg(X). Since |[P| > 1, P\{a'} # 0. It is easy to verify that
7(8) = m(a)\{P} U {P\ {a'}, {a’}} and then m(3) refines m(a). For Q € m(a),

0 Pa, € {Pay,,d'} = P3, ifQ = P;
Qg =
QRBx € QB, otherwise.

By Theorem 5.1.1, we conclude that o < 3. Clearly, a # 3.

Suppose that o < § < 8 for some § € Tsp(X) and § # a. To show that § = 3,
let z € X. Since m(B) is a partition of X, there exists Q € x(8) such that z € Q. By
6 < 8 and Theorem 5.1.1, we have Q C P’ for some P’ € n(8). Similarly, we conclude
that P’ C Q' for some @' € 7(a). Thus QC P/ C Q. IfQ € 7(a)\{P}, then we have
Q= Q' and hence Q = P’ = Q. It follows from a < § < 8 and Theorem 5.1.1 that
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Qo €Q6=P§={Ps,}C PB={QB.}.

Hence zo: = 26 = z3. This implies that z/a = /6 = 2/ B for all ' € X\ P.
Assume that Q & 7(a)\{P}. Therefore Q = {a’} or Q = P\{a’}. We note that
Q € P. Since 7(a) is a partition of X, we have P’ CQ =P.If P =P, then bya<é

and Theorem 5.1.1, we have
To = Pay € P§ = P'§ = {6}

which implies that 2’ = 2/§ for all =/ € X. This is a contradiction, thus P’ £ P. There

are two cases to consider :

Case 1. Q = {da'}. Claim that P’ = Q, assume that P\{a'} # 0. Let p
P\{a'}, then p € P\{a'}. We note by P\{a'} € 7(B) and Theorem 5.1.1 that P\{d'} C
P for some P” € w(d). This means that P’ N P # 0. By w(6) is a partition of X,
P’ = P". Consider,

P={d}UP\{d} CP'CP.

We observe that P’ = P which is a contradiction. So, we have the claim.
Case 2. Q@ = P\{a'}. Similarly, we conclude that P’ = Q.

It follows from two cases that P’ = Q. Since § < B and Theorem 5.1.1,
zd = P'S. € P'B = QP = {z8}.
Therefore § = 8 and hence £ is an upper cover of o O

As a direct consequence of Theorem 5.3.2 and Theorem 5.3.7, we have the fol-

lowing corollaries.

Corollary 5.3.4. Let a € Tsp(X). Then the following statements are equivalent.

(1) « has an upper cover.
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(2) a is not a mazimal element.
(3) There ezists A € X/E such that A\Aa # 0 and |P| > 1 for some P € Ta().

Corollary 5.3.5. Leta € Tse(X). Then a is a mazimal element of Tsg(X) if and only

if for every A € X/E, aly is injective or surjective.

Theorem 5.3.6. Let o € Tsp(X). If a is not a minimal element, then there ezists

A € X/E such that |ma(a)| > 1.

Proof. Assume that 8 < a for some 8 ¢ Tsp(X) and B # . Then there exists
z € X such that 28 # za. We note by X/E is a partition of X that 2 € A4 for some
A€ X/E. It follows from Proposition 2.2.9(2) that z € P for some P ¢ wa(a). By
assumption and Theorem 5.1.1, there exists Q 7(8) such that P C Q and QB, € Qa.
Since ax : m(e) — Xa is surjective, Q@B+ = P'a, for some P’ € w(a). We note that
zo # zf = QB = P'a.. Then z & P’ which implies that P # P’. From z € A
and Proposition 2.2.9(3), we then have 28 € A8 C A. Choose &/ € P’, we note that
(z,28) = (z/,x’a) e Eby o € Tse(X). This means that 2/ € 4 and then P’ € ma(a).

Therefore |74 ()| > 1 as desired. 3
Theorem 5.3.7. Let a € Tsp(X). If there exists A € X/E such that |wa(c)| > 1, then

a has a lower cover.

Proof. Suppose that there exists 4 € X /E such that |r4(a)| > 1. Then we choose two
distinct sets P, P’ € w4(a). This means that Pa, # P'a,. By Proposition 2.2.9(2) that
P,P'C A. Define B: X — X by

Pay, ifze PUP,;
20 =
ra, otherwise.

By Proposition 2.2.9(3), we conclude that Pa, € Ao € A. Hence (z,zB) € E for all
z € X which implies that 8 € Tsg(X). Note that

7(6) = w(@)\(P, P} U{PU P'}.
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This means that 7(a) refines 7(8). Moreover, by the definition of B, we see that

0B, — Qou € Qa, if Q € n(a)\{P, P'};
" Poy, €Qa, fQ=PUP,

for all Q € w(B). It follows from Theorem 5.1.1 that B < o and clearly, 8 # a.

Assume that 8 < § < o for some § € Tse(X). We note by Theorem 5.1.1 that
m(a) refines 7(8) and () refines 7(G). We will verify that m(a) = 7(8) or w(8) = =(B).
Suppose that 7(8) # 7(8). To show that 7(§) = m(a), let Q € () and z € Q. Since
() refines 7(3), there exists @ € w(83) such that Q C Q.

Case 1. Q' € m(e)\{P,P'}. By n(«) is a partition of X, z € Q" for some
Q" € m(a). Since m(a) refines 7 (8), there exists O 7(8) such that Q” C Q. This
implies that z € Q N Q. It follows from 7(8) is a partition of X that Q@ = Q. Thus
Q" S Q C Q. Since @,Q" € n(a) and 7(a) is a partition of X, we conclude that
Q" = Q' and hence Q = Q" € 7(a).

Case 2. Q' =PUP. If Q = Q, then it is easy to see that m(8) = mw(8) which
lead to a contradiction. Thus @ # @'. Since z € Q' = PU P’ ,wehave z € Por z € P.

Subcase 2.1. z € P. We observe that P C Q C P U P'. To show that Q=Pr,
assume that P # Q. Let a € Q\P. From Q C PU P, we get a € P'. Since 7(a) refines
m(0), we conclude that P’ C Q. Thus PUP’ C Q C PU P’ which implies that Q = Q’.

It is impossible. Hence Q = P € n(a).
Subcase 2.2. z € P'. By symmetry, we then have Q = P’ € n(a).

It follows from two cases that 7(§) C w(a). Let Q € m(a). Since 7(a) refines 7(8), there
exists Q' € 7(J) such that Q C Q’. Hence we get from 7(§) C 7(c) that Q' € w(a). By
m(e) is a partition of X, we have Q = Q'. Thus () C 7(§). Therefore m(a) = n(d) as

required. Next, we will show that & = § or § = 3. There are two cases to consider :

Case 1. m(6) = n(c). To verify that § = e, let x € X. By 7(a) is a partition of
X, z € Q for some Q € m(e). Since § < o and Theorem 5.1.1, Q C R and Ré, € Ro for

some R € 7(d). Since 7(8) = m(), @ = R and then 26 = zc. Hence § = a.
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Case 2. 7(§) = =(B). Similarly, we have § = .
This means that 3 is a lower cover of . Therefore theorem is proved. O

Corollary 5.3.8. Let o € Tsp(X )- Then the following statements are equivalent.

(1) @ has a lower cover.
(2) o is not a minimal element.

(3) There exists A € X/E such that [ma(a)| > 1.

Corollary 5.3.9. For o € Tsg(X )- Then o is a minimal element if and only if for every
A€ X/E, als is a constant mapping.





