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CHAPTER III TR

EXISTENCE RESULTS FOR FIXED POINT
PROBLEMS, EQUILIBRIUM PROBLEMS

AND QUSI-EQUILIBRIUM PROBLEMS

3.1 On the existence results for system of generalized strong vector

quasi-equilibrium problems

In this section, we introduce a different kind of systems of generalized
strong vector quasi-equilibrium problem without assuming that the dual of the
ordering cone has a weak™ compact base. Let X, ¥ and Z be real locally convex
Hausdorff topological vector spaces, K C X and D C Y be nonempty compact
convex subsets, and C' C Z be a nonempty closed convex cone. We also suppose
that S$1,8 : K - 25X 1. T, : K — 2P and F,F5 : K x D x K — 27 are set-
valued mappings. We consider the following system of generalized strong vector
quasi-equilibrium problem (in short, SGSVQEP): finding (Z,2) € K x K and
7 € T1(Z),§ € T5(w) such that T € Sy(T),a € S2(@) satisfying

Fl(.’.f, g,Z) cC Vze 81(4"‘_3),

{3.1.1)
Fy(4,7,2) CC  Vz € S(n).

We call this (Z, @) a strong solution for the SGSVQEP. We apply Kakutani-
Fan-Glicksberg fixed point theorem to prove an existence theorem of strong solu-
tions for the system of generalized strong vector quasi-equilibrium problem. More-
over, we also prove the closedness of the strong solution set for the system of

generalized strong vector quasi-equilibrium problem.

Theorem 3.1.1. For each i = {1,2}, let S; : K — 2K be continuous set-valued
mappings such that for any z € K, S;(z) are nonempty closed convex subsets of K.

Let T; : K — 2P be upper semi continuous set-valued mappings such that for any
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z € K, Ti(z) is nonempty closed convex subsets of D and Fy : K x D x K — 2% is
set-valued mappings satisfying the following conditions:
(i) for all (z,y) € K x D, Fi(z,y,Si(z)) C C;
(it) for all (y,z) € D x K, F(-,y,z2) are properly C-quasiconvez;
(iit) F;(-,-,-) are upper C-continuous;

(i) for ally € D, Fy(-,y,-) are lower (—C)-continuous.

Then SGSVQEP has a solution. Moreover, the set of all strong solutions is closed.

Proof. For any (z,y) € K x D, define set-valued mappings A, B : K x D — 2K by

A(z,y) = {a € S1(z) : Fi(a,y,2) C C,Vz € S(x)}

and

B(z,y) = {b € Sa(x) : Fa(b,y,2) C C,Vz € S(x)}.

Step 1. Show that A(z,y) and B(z,y) are nonempty.
For any z € K, we note that S;(z) and S>(z) are nonempty. Thus, for any

(z,y) € K x D, we have A(z,y) and B(z,y) are nonempty.

Step 2. Show that A(z,y) and B(z,y) are convex subsets of K .
Let a1, a2 € A(z,y) and A € [0,1]. Put a = Aa; + (1 — A)as. Since a1,a2 €
S1(z) and Si(z) is convex set, we have a € S;(z). We claim that a € A(z,y). In

fact, if a ¢ A(z,y), then there exists z* € S;(z) such that
Fi(a,y,2*) € C. (3.1.2)

But since Fi(a,y,2*) € Fi(a,y, Si(z)) and by (i), Fi(a,v, Si(z)) C C. We see that
(3.1.2) possess a contradiction. Therefore a € A(z,y) and hence A(z,y) is a convex

subset of K. Similarly, we have B(z,y) is a convex subset of K.
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Step 3. Show that A(z,y) and B(z,y) are closed subsets of K.

Let {aq} be a net in A(z,y) such that a, — a*. Thus, we have a, € S;(z).
Since S1(z) is a closed subset of K, it follows that a* € Si(z). By the lower
semicontinuity of S and Lemma 2.4.8(iii) , for any 2* € S;(z) and any net {z,} —

z, there exists a net {2} such that z, € Si(z,) and z, — z*. This implies that
Fl(aa,y, Za) c C. (313)

Since Fi(-,y,-) is lower (—C)-continuous, for any neighborhood U of the origin in

Z, there is a subnet {ag, 2} of {aq, 2o} such that
Fi(a",y,2") C Fi(ag,y,25) + U + C. (3.1.4)
From (3.1.3) and (3.1.4), we have
Fi(a",y,2") CU+C.

We claim that Fi(a*,y,2*) C C. Assume that there exists p € Fi(a*,y,2*) and
p & C. Thus, we note that 0 ¢ (C — p) and C — p is closed. Hence Z \ (C — p)
is open and 0 € Z \ (C — p). Since Z is a locally convex space, there exists a
neighborhood Uy of the origin such that Uy € Z\ (C —p) is convex and Uy = —U.
This implies that 0 ¢ Uy + (C — p), ie., p & Up + C, which is a contradiction.
Therefore Fy(a*,y, 2*) C C. This mean that a* € A(z,y) and so A(z,y) is a closed

subset of K. Similarly, we have B(z,y) is a closed subset of K.

Step 4. Show that A and B are upper semicontinuous.

Let {(%a,¥a) : @ € I} C KX D be given such that (z4,¥s) — (z,7) € KxD,
and let ay € A(Zqa,Ya) such that a, — a. Since a, € Si(z,) and S; is upper
semicontinuous, it follows by Lemma 2.4.8 (ii) that a € S;(z). We now claim that

a € A(z,y). Assume that a ¢ A(z,y). Then, there exists z* € S;(z) such that
Fi(a,y,2") € C,
which implies that there is a neighborhood Uy of the origin in Z such that

Fl(a‘vya z*) + UU ,a_ ¢,



28

Since Fj is upper C-continuous, for any neighborhood U of the origin in Z, there

exists a neighborhood U; of (a,y, 2*) such that
Fi(a,9,2) C Fi(a,y,2")+ U+ C, V(&,9,2) € Uy.
Without loss of generality, we can assume that Uy = U. This implies that
Fi(a,7,2) C Fi(a, 4,2+ U+ CELC+CCC, V(a9 2) €U
Thus there is ag € I such that
Fi(ta,Yar2a) £ C, Ya > ay,

which contradicts to as € A(Zq,Ye). Hence a € A(z,y) and therefore A is a closed
mapping. Since K is a compact set and A(z,y) is a closed subset of K, we note
that A(z,y) is compact. Then A(z,y) is also compact. Hence, by Lemma 2.4.8
(i), A is a upper semicontinuous mapping. Similarly, we note that B is a upper

semicontinuous mapping.

Step 5. Show that SGSVQEP has a solution.
Define the set-valued mappings H, : K x D — 2K*P and G, : K x D —
QKXD by
Ho(z,y) = (A(z,9),T1(a)) ¥(z,y) € K x D
and

Go(z,y) = (B(z,y), T2(b)) V(z,y) € K x D.

Then H, and G, are upper semicontinuous and, for all (z,y) € K x D, Hy(z,y)

and Gy(z,y) are nonempty closed convex subsets of K x D.

Define the set-valued mapping M : (K x D) x (K x D) — 2EXDIx(KxD) by
M((z,y), (u,v)) = (Hu(z,9), Gz(w,v)),  Y((2,9), (u,v)) € (K x D) x (K x D).

Then M is also upper semicontinuous and, for all ((z,y), (u,v)) € (K x D) x (K x
D), M((z,y), (u,v)) is a nonempty closed convex subset of (K x D) x (K x D).
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By Theorem 2.5.1, there exists a point ((Z, ), (%,7)) € (K x D) x (K x D) such
that ((Z, ), (2,9)) € M((Z,9), (8,)) , that is
(Z,9) € Ha(Z,9) and (,9) € G=(, 7).

This implies that T € A(Z,7), ¥ € T1(a), @ € B(%,?) and © € T5(Z). Then, there
exists (Z,7) € K x K and § € T1(z), 7 € T2(Z) such that Z € Si(Z), @ € S2(@),

F(z,9,2) CC, Vze€ S8 (Z)and Fp(a,7,2) CC, Vze& Sy(a).
Hence SGSVQ@EP has a solution.
Step 6. Show that the set of solutions of SGSVQERP is closed.
Let {(Za,ua) : @ € I} be a net in the set of solutions of SGSVQEP such

that (zq, ue) — (z*,u*). By definition of the set of solutions of SGSVQEP, we note

that there exist vy € T1(Za), Yo € T2(Ua), Ta € S1(Za) and uy € S2(ue) satisfying

Fi(Za, Yoy 2) CC, Yz € S1(zq) and Fo(tg,va, 2) CC, Vz € Sa(uq).

Since Sy and S, are continuous closed valued mappings, we obtain z* € S;(z*) and
u* € Sa(u*). Let v, — v* and y, — y*. Since T} and T5 are upper semicontinuous
closed valued mappings, it follows by Lemma 2.4.8 (ii) that 77 and 75 are closed.
Thus, we note that v* € T1(z*) and y* € To(u*). Since Fi(-,y* ) and Fo(-,v*, )

are lower (—C)-continuous, we have

Fi(z*y*,2z) CC, Vze Si(z*)and Fop(u*,v*,2) CC, Vze Si(u®).
This means that (z*,u*) belongs to the set of solutions of SGSVQEP. Hence the
set of solutions of SGSVQEP is a closed set. This completes the proof. a

If wetake S =S5, =9, F=F, =F and T =T, = T5. Then from
Theorem 3.1.1, we derive the following result.

Corollary 3.1.2. Let S : K — 2% be a continuous set-valued mapping such that

for any z € K, S(z) is nonempty closed convex subset of K. Let T : K — 2P
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be an upper semicontinuous set-valued mapping such that for any z € K, T(z) is
a nonempty closed convez subset of D and F : K x D x K — 2% be set-valued

mapping satisfy the following conditions:
(i) for all (z,y) € K x D, F(z,y,S(z)) C C;
(i) for all (y,z) € D x K, F(-,y, 2) is properly C-quasiconvez;
(i) F(-,-,-) is an upper C-continuous;
(i) for ally € D, F(-,y,-) is a lower (—C)-continuous;
(v) if z € S(z) and u € S(u), then T(z) = T'(u).

Then GSVQEP has a solution. Moreover, the set of all solutions of GSVQEP is

closed.

Now we give an example to explain that Theorem 3.1.1 is applicable.

Example 3.1.3. Let X =Y =Z =R, C = [0,+00) and K = D = [0,1]. For
each z € K, let S1(z) = [z,1], Sa(z) = [0,2] and Ti(z) = [1 — x, 1], Ta(z) = [z, 1].
We consider the set-valued mappings Fy, Fa : K x D x K — 2% defined by

Fi(z,y,2) =[x —y+2z,+00) forall (z,y,2) € K x D X K,

Fy(z,y,z) =y —z+ z,+00) forall (z,y,2) € K x D x K.

Then it 1s easy to check that all of condition (i) —(iv) in Theorem 3.1.1 are satisfied.
Hence, by Theorem 8.1.1, SGSVQEP has a solution. Let E be the set of all strong
solutions for SGSVQEP. Then we note that

E = {(z,4,7,7) € K x K x T5(2) x Ty(Z) : 7 € S1(Z), 1 € Sz(@) such that
Fi(z,7,z) CC, Vz€ 8,(Z) and Fy(4,7,z) C C, Vz € S»(2)}

= U U@} x1-a2]x[0,1-ax[1-a1)).

1
1<a<05
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3.2 Existence results of generalized vector quasi-equilibrium problems

in locally G-convex spaces

Let X, Y and Z be real locally G-convex Hausdorff topological vector spaces,
K C X and D C Y be nonempty compact subsets, and C C Z be a nonempty
closed convex cone. We also suppose that F': K x D x K — 2% S : K — 2K and

T : K — 2P are set-valued mappings.

The generalized vector quasi-equilibrium problem of type (I) (GSVQEP I)
is to find z* € K and y* € T'(z*) such that

z* € S(z*) and F(z*,y*,2) CC Vz € S(z*).

The generalized vector quasi-equilibrium problem of type (II) (GSVQEP II)
is to find z* € K and y* € T(z*) such that

z* € S(z") and F(z",y%,2) € C ¥z € S(z*).

We denote the set of all solutions to the GSVQEP I and GSVQEP II by
Vs(F) and V,,(F), respectively. We prove the existence theorems of the general-
ized strong vector quasi-equilibrium problems in locally G-convex spaces, by using
Kakutani-Fan-Glicksberg fixed point theorem for upper semicontinuous set-valued

mappings with nonempty closed acyclic values, and the closedness of V,(F') and

Vu(F).

Theorem 3.2.1. Let X, Y and Z be real locally G-convex Hausdorff topological
vector spaces, K C X and D C Y be nonempty compact subsets, and C C Z be a
nonempty closed conver cone. Let S : K — 2% be a continuous set-valued mapping
such that for any x € K, the set S(z) is a nonempty closed contractible subset of
K. LetT : K — 2P be an upper semicontinuous set-valued mapping with nonempty
closed acyclic values and F : K x D x K — 2% be a set-valued mapping satisfying

the following conditions:
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(i) for all (z,y) € K x D, F(z,y,S(z)) C C;
(i) for all (y,z) € D x K, F(-,y,2) is properly C -quasiconvez;
(i) F(-,-,-) is upper C-continuous;

(i) for ally € D, F(-,y,-) is lower (—C)-continuous.

Then, the solution set V;(F) is a nonempty and closed subset of K.

Proof. For any (z,y) € K x D, we define a set-valued mapping G : K x D — 2K
by
G(z,y) = {u € S(x) : F(u,y,2) C C,¥z € S(z)}.

Since for any (z,y) € K x D ,S(z) is nonempty. So, by assumption(i), we have

G(z,y) is nonempty. Next, we divide the proof into five steps.

Step 1. To show that G is acyclic.

Since every contractible set is acyclic, it is enough to show that G(z,y) is
contractible. Let u € G(z,y), thus v € S(z) and F(u,y,2) C C Vz € 5(z). Since
S(z) is contractible, there exists a continuous mapping & : S(z) x [0,1] — S(z)
such that h(s,0) = s Vs € S(z) and A(s, 1) = u Vs € S(z). Now, we set H(s,t) =
tu+ (1 —t)h(s,t) for all (s,2) € G(z,y) x [0,1]. Then H is a continuous mapping
and we see that H(s,0) = s Vs € G(z,y) and H(s,1) = u Vs € G(z,y). Let
(s,t) € G(z,y) %[0, 1]. We claim that H(s,t) € G(z,y). Infact, if H(s,t) ¢ G(z,v),

then there exists z* € S(x) such that
F(H(s,t),y,2") ¢ C.
Since (-,y, z*) is properly C-quasiconvex, we can assume that

F(u,y,2") C F(tu+ (1 —t)h(s,t),y,2z*) + C.
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It follows that
F(u,y,2z") C F(H(s,t),y,2")+C g C+C CC,

which contradicts to v € G(z,y). Therefore H(s,t) € G(z,y), and hence G is con-

tractible.

Step 2. To show that G(zx,y) is a closed subset of K.

Let {a.} be a net in G(z,y) such that a, — @*. Then a, € S(z). Since
S(z) is a closed subset of K, a* € S(z). Since S is a lower semicontinous, it follows
by Lemma 2.4.8 (iii) that, for any z* € S(z) and any net z, — =z, there exists a

net {z,} such that z, € S(z,) and z, — z*. This implies that
B Gy 0 2 W O (3.2.1)

Since F(-,y,-) is lower (—C)-continuous, we note that, for any neighborhood U of

the origin in Z, there exists a subnet {ag, 25} of {aq; 2o} such that

F(a",y,2") C F(ag,y,28) +U + C. (3.2.2)
From (3.2.1) and (3.2.2), we have

F(a*,y,2") cU+C. (3.2.3)

We claim that F(a*,y,2*) C C. Assume that there exists p € F(a* y,2") and
p ¢ C. Then we note that 0 ¢ (C — p) and the set C — p is closed. Thus,
Z\(C—p)isopenand 0 € Z\ (C —p). Since Z is a locally G-convex space, there
exists a neighborhood Uy of the origin such that Uy C Z \ (C — p) and Uy = —Up.
Thus, we note that 0 ¢ Up + (C — p) and hence p ¢ Up + C, which contradicts
to (3.2.3). Hence F(a*,y,z*) C C and therefore a* € G(z,y). Then G(z,y) is a
closed subset of K.

Step 3. To show that G is upper semicontinuous.
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Let {(%a, Ya) : @ € I'} C K x D be given such that (zq, ya) — (z,y) € KxD,
and let a, € G(%q, Yo) such that a, — a. Sincea, € S (z4) and S is upper semicon-
tinuous, it follows by Lemma 2.4.8 (ii) that a € S(z). We claim that a € G(z,y).
Assume that a ¢ G(z,y). Then, there exists z* € S(z) such that

F(a,y,2") £ C,
which implies that there is a neighborhood Uy of the origin in Z such that
Fla,y,2")+ Uy & C.

Since F' is upper C-continuous, it follows that, for any neighborhood U of the origin

in Z, there exists a neighborhood U of (a,y, z*) such that
F(a,9,2) C F(a,y,2") +U+C, V(a,4,3) € U,.
Without loss of generality, we can assume that Uy = U. This implies that
F(a,9,2) C Fla,y,2")+ Uy +C ¢ C+CCC, Y(a,g,2) € U;.
Thus there is o € 1 such that
F(ao, Yo, 2a) € C, Ya > ap,

it is a contradiction to a, € G(%4,¥a). Hence a € G(z,y) and therefore G is a
closed mapping. Since K is a compact set and G(z,y) is a closed subset of K ,
G(z,y) is compact. This implies that G(z, y) is compact. Then, by Lemma 2.4.8

(i), we have G is upper semicontinuous.

Step 4. To show that the solution set V,(F) is nonempty.
Define the set-valued mapping Q : K x D — 25%D by

Qlz,y) = (G(z,y),T(z)) Y(z,y) € K x D.

Then @ is an upper semicontinuous mapping. Moreover, we note that Q(z, y)is a

nonempty closed acyclic subset of K x D for all (z,y) € K x D. By Lemma 2.3.5,
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there exists a point (Z,7) € (K x D) such that (Z,7) € Q(Z,7). Thus we have
T € G(%,§), § € T(Z). It follows that, there exist z € K and § € T(Z) such that
z € §(z) and

F(z,7,z) CcC Vze S(z)

Hence, the solution set V,(F) # 0.

Step 5. To show that the solutions set V,(F) is closed.
Let {z4 : & € I} be a net in V,(F) such that £, — z*. By definition of the

solution set V;(F), we note that £ € S(z,) and there exists y, € T(z,) satisfying

Pl o 2) €0 Y2 € S{2.):

Since S is a closed mapping, z* € S(z*). From the compactness of D, we can
assume that y, — y*. Since T is an upper semicontinuous mapping, it follows by
Lemma 2.4.8 (ii) that T is closed. Thus, we have y* € T(z*) . Since F(-,3*,-) is

lower (—C')-continuous, we have
Fla"y"2) CC Yz e 8z

This means that z* belongs to V,(F). Therefore, the solution set V,(F) is closed.

This completes the proof. |

Theorem 3.2.1 extends Theorem 3.1 of Long et al.[18] to locally G-convex

Hausdorff topological vector spaces.

Corollary 3.2.2. Let X, Y and Z be real locally convex Hausdor{f topological vector
spaces, K C X and D C Y be two nonempty compact convex subsets, and C C Z
be a nonempty closed conver cone. Let S : K — 2K be a continuous set-valued
mapping such that for any x € K, S(z) is a nonempty closed convex subset of K.
Let T : K — 2P be an upper semicontinuous set-valued mapping such that for any
z € K, T(z) is a nonempty closed convex subset of D. Let F: K x D x K — 2%

be a set-valued mapping satisfy the following conditions:
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(i) for all (z,y) € K x D, F(z,y,S8(z)) C C;
(i) for all (y,z) € D x K, F(-,y,z) is properly C-quasiconvez;
(i) F(-,-,-) is upper C-continuous;

(w) for ally € D, F(-,y,-) is lower (—C)-continuous.

Then, the solutions set V,(F) is a nonempty and closed subset of K.

Theorem 3.2.3. Let X, Y and Z be real locally G-convex Hausdorff topological
vector spaces, K C X and D C Y be nonempty compact subsets, and C C Z be a
nonempty closed convex cone. Let S : K — 2X be a continuous set-valued mapping
such that for any x € K, the set S (z) is a nonempty closed contractible subset of
K. LetT : K — 2P be an upper semicontinuous set-valued mapping with nonempty
closed acyclic values and F : K x D x K — 2% be a set-valued mapping satisfying
the following conditions:

() for all (z,y) € K x D, F(z,y,S(z)) ¢ C;

(i) for all (y,z) € D x K, F(-,y,z) is properly C-quasiconver;

(1ii) F(-,-,-) is upper C-continuous;

() for ally € D, F(-,y,-) is lower (—C)-continuous.
Then, the solutions set V,,(F) is a nonempty and closed subset of K.

Proof. For any (z,y) € K x D, define a set-valued mapping B : K x D — 2X by

B(z,y) = {u € S(z) : F(u,y,2) ¢ C,Vz € S(z)}.

Proceeding as in the proof of Theorem 3.2.1, we need to prove that B(z,y) is closed

acyclic subset of K x D for all (z,y) € K x D. We divide the remainder of the
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proof into three steps.
Step 1. To show that B(z,y) is a closed subset of K .

Let {aqc} be a net in B(z,y) such that a, — a*. Then a, € S(z) and
F(aq,y,2) ¢ C,Vz € S(z). Since S(z) is a closed subset of K, we have a* € S(x).
By the lower semicontinuity of S and Lemma 2.4.8 (iii), we note that, for any
z € S(z) and any net z, — z, there exists a net {2,} such that z, € S(z,) and

Zo — 2. Thus, we have
F(aa,y,2) £ C, (3.2.4)
which implies that there exists a neighborhood Uy of the origin in Z such that
Flawt,2.) +Uo & C. (3.2.5)

Since F(-,y,-) are lower (—C)-continuous, it follows that, for any neighborhood U

of the origin in Z, there exists a subnet {ag, 25} of {@a, 24} such that
F(a*,y,z) C F(ag,y,25) + U + C. (3.2.6)

Without loss of generality, we can assume that U = Uy. Then, by (3.2.4), (3.2.5)and
(3.2.6), we have

F(a*,y,2) C F(ag,¥,2.) + Uy +C ¢ C+C CC.

This means that a* € B(z,y) and so B(z,y) is a closed subset of K.

Step 2. To show that B is upper semicontinuous.

Let {(Za; ¥a) : @ € I} C K x D be given such that (24, ¥a) — (z,y) € KxD,
and let aq € B(%a,Yo) such that a, — a. Then a, € S(z4) and Flaa,y,2) ¢
C,Vz € S(zq). Since S is closed mapping, it follows by Lemma 2.4.8 (i) that
a € S(z). We claim that a € B(z,y). Indeed, if a ¢ B(z,y), then there exists a

zy € S(z) such that

F(a,y,2) C C. (3.2.7)
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Since F is upper C-continuous, we note that, for any neighborhood U of the origin

in Z, there exists a neighborhood Uy of (a, v, 2) such that

F(a",y",2") C F(a,y,20) + U+ C, V(a",y",2*) € Up. (3.2.8)
From (3.2.7) and (3.2.8), we obtain

F(a*,y*,z*) cU+C, VY(a* y*, 2*) € U (3.2.9)

As in the proof of Step 2 in Theorem 3.2.1, we can show that F(a*,y*, 2*) C C for

all (a*,y*, z*) € Up. Hence there is og € I such that
F(as,Ya:22) CC, Ya 2> ap,

1t is a contradiction to aq, € B(Zq,y). Hence a € B(z,y) and therefore B is a
closed mapping. Since K is a compact set and B(z,y) is a closed subset of K,
B(z,y) is compact. This implies that B(z,y) is compact. Then, by Lemma 2.4.8

(i), B is upper semicontinuous.

Step 3. To show that the solution set V,,(F) is nonempty and closed.
Define the set-valued mapping P : K x D — 2K%D by

P(z,y) = (B(z,y),T(z)) Y(z,y) € K x D.

Then P is an upper semicontinuous mapping. Moreover, we note that P(z,v) is a
nonempty closed acyclic subset of K x D for all (z,y) € K x D. Hence, by Lemma
2.3.5, there exists a point (Z,%) € (K x D) such that (Z,7) € P(Z,7). Thus, we
have € B(Z, ) and § € T(Z). This implies that there exists Z € K and § € T(Z)
such that z € S(Z) and

F(z,7,2) ¢ C Vze 5(z)

Hence Viy(F) # 0. Similarly, by the proof of step 5 in Theorem 3.2.1, V,,(F) is

closed. This completes the proof. O
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Next, we discuss the stability of the solutions for the generalized strong
vector quasi-equilibrium problem GSVQEP II Let X, Y be Banach spaces and let
Z be a real locally G-convex Hausdorff topological vector space. Let K C X and
D C Y be nonempty compact subsets, and C C Z be a nonempty closed convex

cone. Let,

E:={(5T)|S: K — 2X is a continuous set-valued mapping with
nonempty closed contractible values and T : K — 20
is an upper semicontinuous set-valued mapping with

nonempty closed acyclic values }.

Let B;, B> be compact sets in a normed space. Recall that the Hausdorff

metric is defined by

H(By, By) := maz{sup d(b, By), sup d(b, B;)},
beB, beBs
here d(b, Bs) := inf ||b — a|.
where d(b, Bs) Jnf |6 —all
For (S1,71),(S2,T») € E, we define

p((51,T1), (82, T2)) == s Hy(S1(x), S2(z)) + 8D Hy(Th(z), To(x)),

where H;, H, are the appropriate Hausdorff metrics. Obviously, (E, p) is a metric
space. Now we assume that F satisfies the assumptions of Theorem 3.2.3. Then,

for each (S,T") € E, GSVQEP II has a solution z*. Let
0S5, T)={zxre K :z¢€ S(z) and Jy € T(z), F(z,y,2) ¢ C Vz € S(z)}.

Thus (S, T") # 0, which conclude that ¢ defines a set-valued mapping from E into
K.

We also need the following lemma in the sequel.

Lemma 3.2.4. [15, 73] Let W be a metric space and let A, A,(n = 1,2,...) be

compact sets in W. Suppose that for any open set O D A, there exists ng such
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that A, O O for alln = ny. Then, any sequence {T,} salisfying x, € A, has a

convergent subsequence with a limit in A.

In the following theorem, we replace the convex set by the contractible
set and acyclic set in Theorem 4.1 in [18]. All of this reason, we referred to the
above Lemma 3.2.4, we could acquire the as same as result that it appeared in the
following theorem. Now, we need only to present stability theorem for the solution

set mapping ¢ for GSVQEP II.

Theorem 3.2.5. ¢ : E — 2K is an upper semicontinuous mapping with compact

values.

Proof. Since K is compact, we need only to show that ¢ is a closed mapping. In
fact, let ((Sn,Tn),za) € Graph(yp) be such that ((Sp, T7), zn) — ((S,T),z*). Since

Tn € ¢(Sn, T), we have z, € S,(z,) and there exists y, € T,(z,) such that

Flie: Ua: 2) € C Yz €8:(%,). (3.2.10)

By the same argument as in the proof of Theorem 4.1 in [18], we can show that
z* € S(z*) and y* € T(z*).

Since S is lower semicontinuous at z* and z, — z*, it follows by Lemma
2.4.8 (iii) that, for any z € S(z*), there exists z, € S(z,) such that z, — z.
To finish the proof of the theorem, we need to show that F(z*,y*,2) ¢ C for all
z € S(z*). Since p((Sn,Tn), (S,T)) — 0, it follows by the same argument as in the
proof of Theorem 4.1 in [18] that there exists a subsequence {z,, } of {z,} such

that z,, € Sp, (), Yni € Tn(Tny)s Zny € Sny(Tn,) and

F(xﬂkuynk:-znk) gZ C.

From the upper C-continuous of F, we have

F@y',2) ¢C VzeS().
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Then ((S,T),z*) € Graph(y), and so Graph(y) is closed. The theorem is proved.
O

3.3 Existence solutions of vector equilibrium problems and fixed point

of multi-valued mappings

In this section, we assume that X and Y are Hausdorff topological vector
spaces, K is a nonempty convex subset of X and C is a pointed closed convex cone
in Y with intC # 0, T : K — 2K is a set-valued mapping and for a given vector
valued mapping F : K x K — Y such that F(z,z) = 0 for each z € K , let us
present the fixed point problem of a multi-valued mapping together with the vector

equilibrium problem, in particular, it is to find z € K such that
z€T(z), F(z,y)¢ —C\{0}forally € K. (3.3.1)

This problem shows the relationship in sense of intersection between fixed points
of the multi-valued mapping and the vector equilibrium problem so the set of all
solutions of the problem (3.3.1) is denoted by F(T) N VEP(F). This problem
includes vector quasi-equilibrium problems (in short, VQEP) and vector quasi-

variational inequalities (in short, VQVI) as special cases.

For the main purpose of this section, we provide sufficient conditions and
prove the existence solutions of intersection between the set of all fixed points of the
multi-valued mapping and the set of all solutions for vector equilibrium problem by
using the generalization of the Fan-Browder fixed point theorem . We also study
the existence solutions of intersection between the set of all fixed points of the
multi-valued mapping and the set of all solutions for vector variational inequality.
Consequently, our results extend the existence theorems of vector quasi-equilibrium
problems and vector quasi-variational inequalities. To do this, the following lemma

is necessary.

Lemma 3.3.1. Let K be a nonempty and conver subset of X. Let T : K — 2K
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be set-valued mapping such that for any z € K, T(z) is a nonempty convez subset
of K. Assume that F : K x K — Y is a hemicontinuous in the first argument, C-
convez in the second argument and C-strong pseudomonotone. Then the following

statements are equivalent:
(i) Find z € K such that x € T(z) and F(z,y) ¢ —C \ {0} Vy € K
(%) Find z € K such that z € T(z) and F(y,z) € —C Vy € K.
Proof. (i) — (i) It is clear by the C-strong pseudomonotone.
(#) — () Let = € K such that
z€T(z) and F(y,z) € —C forall y € K. (3.3.2)

For any y € K and a € (0,1), we set z, = ay + (1 — @)z and so we have z, € K

because K is convex. By the assumption, we conclude that
z€T(z) and F(z4,2) € —C. (3.3.3)
Since F' is C-convex in the second argument and by (3.3.3), we get

0 = F(zq,0y+ (1 — @)z)
€ aF(2,,y) + (1 — @)F(2e,7) — C
C aF(2,y) + (—=C) + (—C)
C aF(z4,y) - C.

This implies that aF'(z,,y) € C and since C is a convex cone then we have
F(z4,y) € C. Since F is a hemicontinuous in the first argument and z, — z

as a — 0%, we have F(zx,y) € C for all y € K. Therefore we obtain that
r €T (z) and F(z,y) ¢ —C\ {0} Yy € K.

This completes the proof. O
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Theorem 3.3.2. Let K be a nonempty compact convez subset of X and F : K x
K —Y be a C-strong pseudomonotone, hemicontinuous in the first argument, C-
conver and l.s.c. in the second argument such that 0 = F(z,z) for al z € K.
Let T : K — 2% be a set-valued mapping such that for any z € K, T(z) is
nonempty convez subset of K and for any y € K, T~ (y) is open in K. Assume
the set P := {z € X | z € T(x)} is open in K and for any z € K, T(z) N {y €
K | F(y,z) ¢ =C} #0. Then F(T)NVEP(F) # 0.

Proof. For any z € K, we define the set-valued mappings A4, B : K — 2K by

Alz) ={ye K| F(y,z) ¢ -C}
and B(z) ={ye€ K| F(z,y) € —C \ {0}}.

Since F(z,z) = 0 for all z € K, we get that A(z) and B(z) are nonempty sets. We
define the set-valued mapping H : K — 2K by

H(z) = B(z) if ze€P

T(z) if ze K\P
Clearly, H(z) is nonempty for each z € K and we have H(z) is convex. Indeed,
let y1, y2 € B(z) and a € (0,1). Since F is C-convex in the second argument, we

have

Fz,oy+ (1 —-a)ye) € aF(z,y1)+ (1 —a)F(z,y) — C
c(-Cc\{0})-C
= -\ {0}

Then ay; + (1 — @)y, € B(z) and hence B(z) is convex. Since T'(z) is convex, then

H(z) is also convex.

By the defining of H, we see that H has no fixed point, Indeed, suppose
that there is z € K such that z € H(z). It is impossible for z € K\ P, then z € P
and so x € B(x). Thus F(z,z) € —C'\ {0}, a contradiction with 0 = F(z, z). Using
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the contrapositive of Theorem 2.5.3, we obtain that A has no the local intersection
property. Define the set-valued mapping G : K — 2¥ by

A(z) if z€ P

Glz) =

Alz)NT(z) if z€ K\ P.
From the C-strong pseudimonotonicity of F', we have G(z) C H(z) for any z € K.
Next, we will show that for each y € K, G7!(y) is open in K. For any y € K, we
denote the complement of A~}(y) by [A~(y)]¢ = {z € K|F(y,z) € —C}. Since C
is closed and F is l.s.c. in the second argument, we have [A7}(y)]° is closed in K

and so A™1(y) is open in K. We note that

G y) =AM NPIUAT(Y)NT(y) N (K\P))
=AU ATTYNTH Y NE\P)IN[PU(ANy)NT(y) N (K \ P))]
={A7 W) N[A (Y V(EN\ P} N{[PU(A~ ) NT y)]N K}
=A"')N[PU(A ) NTHY)]

Since for any y € K, T~ (y), A~'(y) and P are open, we have G~!(y) is open in
K. Thus, by the contrapositive of Lemma 2.4.10, we have
Kg )6
vekK
Hence, there exists Z € K such that £ & G~*(y) for all y € K. That is G(z) = 0. If
Z € K\ P then A(z)NT(z) = @, which contradicts with the assumption. Therefore
X € P and A(z) = (0. This implies that Z € A(Z) and F(y,z) € —C for all y € K.

This completes the proof by Lemma 3.3.1. a

The following example guarantees the assumption that the set T'(z)NA(z) #
0 where A(z) = {y € K| F(y,z) ¢ ~C}

Example 3.3.3. Let X,Y =R, K =[-1,1] and C = [0,00). For any z,y € K,
we define two mappings F : K x K —2Y¥ and T : K — 2% by
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F(z,y)=z—y Vz,y€[-1,1]
and

T(z) = (-1-=z,1 i —-1<z<0

(z—1,1] if 0<z<1.
Clearly, T(z) is a nonempty convez subset of K and T~'(y) is open in K. If
F(z,y) ¢ —C\ {0} Vz,y € K, then = > y and it implies that for > y, F(z,y) €
—C. This shows that F is C-strong pesudomonotone. Let z,Y1,Y%2 € K and o €
(0,1] and since 0 € K, we obtain that

Flz,oy+ (1-a)ye) =z~ (ayr+ (1 - a)y)
=a(z—y)+(1-a)yp-0
€ aF(x:yl) = (1 T Q)F(x:y2) - .
Then F' is C-convez in the second argument and it is easy to see that F is a

hemicontinuous in the first argument and Ls.c. in the second argument. Note that

Figure 2: Example 3.3.3

Alz) ={yeK | F(y,z)¢ -C }
={yel[-L1]|y>=z}

= (z,1] where z<1.
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If =1 <z <0, then T(z) = (-1 — =z,1] which including (0,1]. Also (0,1] ds
contained in A(z) for all =1 < x < 0. Otherwise, (z,1] C (z — 1,1] for any
0 < z < 1. This is to confirm that the set T(z) N A(zx) # 0 for each z € K.
Moreover, this ezample asserts that the set P={z € X | z € T(z) } is open in K

because it equal to the set (—0.5,1] which is open in K.

Taking T'(z) = K Vz € K in Theorem 3.3.2, we have the following results.

Corollary 3.3.4. Let K be a nonempty compact convexr subset of X and F :
K x K —Y be C-strong pseudomonotone, hemicontinuous in the first argument,
C—convez and Ls.c. in the second argument such that 0 = F(z,z) forallz € K.

Then, VEP has a solution.

If we set the vector-valued mapping F = 0 then Theorem 3.3.2 is reduced

to the following Corollary introduced by Browder (see Theorem 1, in [2]).

Corollary 3.3.5. Let K be a nonempty compact conver subset of X. LetT : K —
2% be a set-valued mapping such that for any z € K, T(z) is a nonempty convex
subset of K and for anyy € K, T Y (y) is open in K. Then there exists T in K
such that T € T(Z).

If we set ¥ = R and C = [0,00) in Theorem 3.3.2 together with Remark

2.2.30, we have the following result.

Corollary 3.3.6. Let K be a nonempty compact conver subset of X and F :
K x K — R be a monotone, hemicontinuous in the first argument, convez and Ls.c.
in the second argument such that 0 = F(z,z) forallz € K. Let T : K — 2K be q
set-valued mapping such that for any z € K, T(z) is nonempty convez subset of K
and for anyy € K, T~ (y) is open in K. Assume the set P:={z € X |z € T(z)}
is open in K and for any z € K, T(z)N{y € K | F(y,z) > 0} # 0. Then
F(TYNEP(F) # 0.
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Now, we let L(X,Y’) be a space of all linear continuous operators from X
to Y. A mapping A : K — L(X,Y) is said to be C-strong pseudomonotone if it

satisfies
Vz,y € K, (A(z),y—1z) ¢ —-C\{0} = (A(y),z—y) € -C

and it is called hemicontinuous if, for all z,y € K and for all A € [0, 1], the mapping
A= (T(z+ Ay — z), )} is continuous at 0+.

As a direct consequence of Theorem 3.3.2, we obtain the following result.

Theorem 3.3.7. Let K be a nonempty compact conver subset of X and A : K —
L(X,Y) be C-strong pseudomonotone and hemicontinuous. Let T : K — 2K be q
set-valued mapping such that for any z € K, T(z) is a nonempty convez subset of K
and for anyy € K, T™'(y) is open in K. Assume the set P := {z € X | z € T(z)}
is open in K and for anyz € K, T(z)N{y € K | (A(y),z—y) ¢ —=C} £ 0. Then

there exists T € K such that

zeT(Z) and (A(Z),y—1z)¢ —-C\{0} VyeK.

Proof. We define the vector value mapping F : K x K — Y by
Flz,y) = (Az,y— 1),

We will show that F satisfies all conditions in Theorem 3.3.2. Clearly F(z,z) =0
and by the assumptions of A, we have F is C-strong pseudomonotone and hemicon-
tinuous in the first argument. Let z € K by fixed. For any y,z € K and 6 € [0, 1],

we obtain that
F(z,0y+(1—-0)2) = (Az,(@y+ (1 -0)z) —z)
=0(Az,y—z)+ (1 —0) (Az,z — x)
€0{Az,y—z)+(1—-0))Az,z—z) - C
=0F(z,y) + (1 - 6)F(=z,z) — C.

Then F is C- convex in the second argument.
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Next, we will show that F' is l.s.c. in the second argument. Let z € K
be fixed. Let yp € K and N be a neighborhood of F(z,y). Since the linear
operator Az is continuous, there exists an open neighborhood M of gy, such that
Vy € M, (Az,y — z) € N because N is a neighborhood of {Az,y, — z). Thus for
ally € M, F(z,y) € N. Hence F is continuous in the second argument and so it is
l.s.c. in the second argument. Then all hypotheses of the Theorem 3.3.2 hold and

hence there exists £ € K such that
ZeT(Z) and F(Z,y) =(AZ,y—z) ¢ —C\ {0} Yy e K.

This completes the proof. O

If we take T(z) = K Vz € K in previous Theorem 3.3.7, we have the

following corollary.

Corollary 3.3.8. Let K be a nonempty compact convex subset of X and A :
K — L(X,Y) be C-strong pseudomonotone and hemicontinuous. Then, VV I has

a solution.

If weset Y = R and C = [0,00) in Theorem 3.3.7, we have the following

result.

Corollary 3.3.9. Let K be a nonempty compact convex subset of X and A : K —
L(X,R) be monotone and hemicontinuous in the first argument. Let T : K — 2K
be a set-valued mapping such that for any x € K, T(x) is a nonempty convex subset
of K and for anyy € K, T~*(y) is open in K. Assumethe set P:={z € X |z €
T(z)} is open in K and for anyz € K, T(z)N{y € K | (A(y),z —y) > 0} # 0.
Then F(T) N VI(K, A) # 0.

Remark 3.3.10. (1) Theorem 3.3.2 and Theorem 3.3.7 are the extensions of vector
quasi-equilibrium problems and vector quasi-variational inequalities, respectively.

(2) If X is a real Banach space, then the Corollary 3.3.4 come to be Theorem
2.3 in [49].
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3.4 The existence results for the new type of generalized strong vector

quasi-equilibrium problems

In this section, we assume that X and Y are Hausdorff topological vector
spaces, K is a nonempty convex subset of X and C is a pointed closed convex
cone in Y with intC' # @. For a given multi-valued bi-operator F : K x K — 2Y
such that {0} C F(z,z) for each z € K, where 2¥ denotes the family of subsets of
Y, the new type of generalized strong vector quasi-equilibrium problem (for short,

GSVQEP) is the problem to find z € K such that
z € Alz), F(z,y) £ —C\ {0} forall y € A(z) (3.4.1)

where A : K — 2% is a multi-valued map with nonempty values. If we set F(z,y) =
(Tz,n(y—=)) Vz,y € K then the GSVQEP reduces to the following generalized
quasi-variational like inequality problem (for short, GQV LIP) which is the problem
to find z € K such that

z € A(z), (Tz,n(y —z)) £ —C\ {0} for all y € A(z), (3.4.2)

where T' : K — 2LXY) js 3 multi-valued mapping, n : K x K — X is a nonlinear
mapping and L(X,Y) is denoted by the space of all continuous linear operators for

X to Y.

We shall investigate the existence results for GSVQEP and GQV LIP with
monotonicity and without monotonicity. First, we present the following lemma

which is the Minty’s type for GSVQEP.

Lemma 3.4.1. Let K be a nonempty and convex subset of X, let A : K — 2K pe
set-valued mapping such that for any z € K, A(z) is a nonempty convez subset
of K and let F : K x K — 2¥ be g.h.c in the first argument, C-convez in the
second argument and C-strongly pseudomonotone. Then the following problems

are equivalent:

(1) Find z € K such that x € A(z), F(z,y) € —C\ {0}, Yy € A(z).
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(it) Find z € K such that z € A(z), F(y,z) C —C, Vy € A(x).

Proof. (i) — (éi) It is clear by the C-strong pseudomonotonicity.
(i) — (i) Let x € K. For any y € A(z) and 6 € (0,1), we set zp = Oy + (1 — )X

By the assumption (ii) and the convexity of A(x), we conclude that
z € A(z), F(z,z) C —C.
Since F is C-convex in the second argument, we have

0 € F(z,2)
C OF(20,3) + (1~ 0)F(z5,2) — C
C QF(ZQ, y) -C

Then, we have F(zp,y) N C # @, because C is a convex cone. Since F' is g.h.c in
the first argument, we have z € A(z), F(z,y)NC # @, Vy € A(z). It implies that
z € A(z), F(z,y) £ —C\ {0}, Yy € A(z). This completes the proof. O

In the following theorem, we present the existence result for GSVQEP by

assuming the monotonicity of the function.

Theorem 3.4.2. Let K be a nonempty compact convex subset of X. Let A : K — 2K
be a set valued mapping such that for any x € K, A(z) is a nonempty convez subset
of K and for eachy € K, A™'(y) is open in K. Let the set P := {z € X| z € A(z)}
be closed. Assume that F : K x K — 2¥ is C-strongly pseudomonotone, g.h.c. in
the first argument, C-convez and l.s.c in the second argument. Then GSVQEP is

solvable.

Proof. For any z € K, we define the set-valued mappings S, T : K — 2K by

S(z) = {ye€K|F(y,z) ¢ -C},
T(z) = {y€K|F(z,y) C—-C\{0}},
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and for any y € K, we denoted the complement of S~(y) by (S~1(y))¢ = {z €
K| F(y,z) C —C}. For each z € K, we define multi-valued maps G, H : K — 2K
by
Olz) = { S(z)NA(zx) ifxeP
A(z) if 7 € K\ P
and
) = { T(z)NA(z) ifxeP
A=) ifze K\ P
Clearly, G(z) and H(z) are nonempty for all z € K, and by the C-strong pseudomonotonic-
ity of F', we have G(z) C H(z) for all z € K. We claim that H(z) is convex. Let

Y1,¥2 € T(z) and 6 € (0, 1). Since F is C-convex in the second argument, we have

F(z,0y1+(1—=0)y2) € 6F(z,y1) +(1—0)F(z,92) — C

(-C\{op)-C
c —C\{0}.

IN

Then we have T'(z) is convex and so H(z) is convex by convexity of A(z). Next,
we will show that G~'(y) is open in K for each y € K. Since F is Ls.c. in the
second argument and by the definition of (S7'(y))¢, we have (S~1(y))¢ closed and

so S71(y) is open in K. By assumption, we obtain that
G y) = (ST WNAT () U (A (y)N K\ P)

is open in K. It is easy to see that the mapping H has no fixed point because
0 € F(z,z),Vz € K From the contrapositive of Generalization of the Fan-Browder
fixed point Theorem and Lemma (2.4.10), we have
K¢ )G w-
yeK
Hence, there exist 7 € K such that G(z) =@. If T € K\ P, we have A(Z) = @,
which contradicts with the assumptions. Then Z € P and hence S(Z) N A(Z) = @.
This means that Z € A(Z) and F(y,Z) C —C Vy € A(Z). This completes the proof
by Lemma 3.4.1 a
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The following example shows that GSVQEP has a solution under the con-
dition of Theorem 3.4.2

Example 3.4.3. Let Y =R, C= [0,00) and K =[-1,1]. Define the mappings A :
K—2K gqnd F: K x K — 2¥ by

[—0.5,z + 0.5) if -1<z<0
Alz) = ¢ (-0.5,0.5) if =0
(z — 0.5,0.5] if 0<z<1
and
p(x,y)={ Oy-3] i a<y
y—=0] if 2>y,
respectively. By the definition of A, we have the set P = {z € X |z € A(z)} =
[—0.5,0.5] which is closed and for each y € K, A~(y) is open in K

Figure 3: Example 3.4.3

We see that F is C-strongly pesudomonotone. Indeed, if F(z,y) € C\{0}

then we only consider in the case x <y, so F(z,y) = [0,y — z|. That is

Fly,z)=[z — 4,00 C -C forallz <y.



53

Letz,y,z€ K and A€ [0,1]. If z < Ay + (1 — A\)z, then

Flz, y+(1-XNz) =0, y+(1—X)z—1]
= [0, Ay —2) + (1= N)(z — )]
C [0\ —2)+ (1= Nz —2)] - C
= A0,y —z]+ (1 -N)[0,z—z]-C
= AF(z,y) + (1 = A\)F(z,y) - C.

Similarly in another case, we have F is C-convez in the second argument.

Clearly, F is g.h.c. in the first argument and l.s.c. in the second argument.

Moreover, this example asserts that -0.5 is one of the solutions because if
z = -0.5 then A(z) = [-0.5,0). Note that for ally € A(z), y > z. Therefore
F(—-0.5,y) — [0,y + 0.5] £ C\{0} Vy € [-0.5,0).

When F is not necessarily monotonicity, we have the following result.

Theorem 3.4.4. Let K be a nonempty compact conver subset of X, let A : K — 2K
be a set-valued mapping such that for each z € K, A(z) is a nonemply convex
subset of K and let the set P := {z € X| z € A(x)} be closed. Assume that
F: K x K —2¥ is C-convez in the second argument and for each y € K, the set

{z € K| F(z,y) C —C\ {0}} is open. Then GSVQEP has a solution.

Proof. We proceed by the contrary statements, that is, for each z € X, z ¢ A(z)

or there exists y € A(z) such that
F(z,y) € —C\ {0} (3.4.3)
For every y € K, we define the set N, as follows:
Ny={z e K:F(z,y) € -C\{0}},

and define
M, := N, U P¢;
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By the assumption, we have the set M, is open in K and we see that {My}yek is an
open cover of K. Since K is compact, there exists a finite subcover {M,,}2; such
that K = U M,,. By a partition of unity, there exists a family {;}7, of real valued
=1
continuous functions subordinate to { My, }7_; such that forallz € K, 0 < 8i(z) < 1
and Zﬁ,—(x) =1 and for each x ¢ M,,, B;(z) = 0. Let C := co{y1,y2, -, ¥a} C K.
=1

Then C is a simplex of a finite dimensional space. Define a mapping S : C — C
by

S(z)=> Biz)y: VzeC. (3.4.4)

i=1

Hence, we have S is continuous since 5; is continuous for each 7. From Brouwer’s

fixed point theorem, there exists o € C such that o = S(zo). We define a set-

valued mapping T : K — 2¥ by
T(z) = F(z,S(z)) forallz € K. (3.4.5)

Now, we note that for any z € K, {i| z € M,,} # . Since F is C-convex in the

second argument, it follows from (3.4.3), (3.4.4) and (3.4.5), we have
T(z) = F(z,)_ Lx)y)
i=1

c -C\{0}-cC

- -0\ {0},
for all z € K. Since zo € K and it is a fixed point of S, 0 = F(z,z) = F(z,S(z)) =
T(z) € —C'\ {0}, which is a contradiction. This completes the proof. O

If we set A = I, then Theorem 3.4.2 and Theorem 3.4.4 are reduced to
Theorem 1 and Theorem 3 in Kom and Wong [74], respectively and Theorem 3.4.2

is also a multi-valued version of Theorem 2.3 in Kazmi and Khan [49].
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Let F(z,y) = (Tz,n(y,z)) for all z,y € K, where  : K x K — X and
T : K — 2LXY) As a consequence of Theorem 3.4.2 and using the same argument

in Kum and Wang ([74],Theorem 2), we have the following existence result for

GQVLIP.

Corollary 3.4.5. Let K be a nonempty compact convex subset of X, Let A: K —
2K be a set-valued mapping such that for any z € K, A(x) is a nonempty convex
subset of K and for each y € K, A7 (y) is open in K. Let the set P := {x €
X| z € A(z)} be closed, let n : K x K — X be affine and continuous in first
argument and hemicontinuous in second argument and let T : K — 2LXY) pe g
C-strong pseudomonotone and g.h.c. with nonempty compact values where L(X,Y")

is equipped with topology of bounded convergence. Then GQV LIP has a solution.

As a consequence of Theorem 3.4.4, we obtain the following existence result

for GQVLIP

Corollary 3.4.6. Let K be a nonempty compact convexr subset of X. Let A :
K — 2% be a set-valued mapping such that for each z € X, A(z) is a nonempty
convez subset of K and let the set P := {z € X|z € A(z)} be closed. Assume that
n: K x K — X is affine in the first argument and T : K — 2XX5Y) 45 g nonlinear
mapping such that, for every y € K, the set {z € K|(T(z),n(y,z)) € —C\ {0}} is
open. Then GQV LIP has a solution.





