CHAPTER IV

VECTORIAL VERSION OF EKELAND VARIATIONAL

PRINCIPLES AND SADDLE POINT PROBLEMS

4.1 Vectorial form of Ekeland-type variational principle

In this section, we will present the vectorial form of equilibrium version of

vector Ekeland’s principle in the setting of complete metric spaces and w-distances.

Theorem 4.1.1. Let X be a complete metric space, w : X x X — [0,00) be a
w-distance on X, Y be a locally convex space, C be a closed and conver cone in' Y
and D be a closed convez and bounded subset of C' such that 0 ¢ cl(D + C). Let
F:X xX —Y bea function satisfying the following conditions:

(i) F(z,z) =0 for allz € X;

(%) F(z,y) + F(y,2) € F(z,2) + C for every z,y,z€ X;
(i1i) for each x € X the function F(z,-) : X — Y is (D,C)-lower semicontinuous;

(iv) for each firted x € X, F(z,-) : X — Y is C-bounded below.

Then for every zo € X there exists T € X such that

(1) F(z,T) + w(zy,Z)D C —C;

(i) F(Z,z)+w(T,z)D € —C for all x # 7.

Proof. Let r C X x X be a relation defined as following: for any =,y € X

zry & F(z,y)+w(z,y)DC-C.
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We will first show that r is transitive. Suppose that u; r us and uy r ug. Thus, we

have

F(uy, uz) + w(ug, up) D C —C
and F(ug, us) + w(ug, us)D C —C.

This implies that
F(uy,ug) + F(ug, uz) + w(ug, ug) D + w(ug, us)D C —C. (4.1.1)
By the assumption (ii), we obtain
F(uy,u3) € F(uy,uz) + F(ug,u3) — C. (4.1.2)
Therefore, by the convexity of D, we have
(w(u1,u2) + w(uz, uz))D = wlug, up) D + w(ug, ug)D.

Indeed, if w(u1,u2) + w(ug, us) = 0, we are done. If w(uy,us) + w(ug,us) > 0, for

dy,ds € D, we have

w(uhuz) w(uz, ug)
w(uy, ug) + w(ug, uz) ! w(uy, us) + w(usa, uz)

dy € D.

So, we have
w(ul, 'U.g)dl ¢ w(uz, ’U3)d2 & (w(ul, ’LLz) o w(U2, U3))D

Hence w(u1,u2)D + w(ug,uz)D C (w(u1,u2) + w(ug, us))D, which implies that

(wlug, u2) + wluz,uz))D = w(uy, us)D + wlus, usz)D.

By the definition of w-distance, w(uy, u3) < w(u1, u2) + w(ug, uz). Therefore, there

is a real number € > 0 such that

w(u,uz)D = w(uy,us)D + wlug,uz)D —eD (4.1.3)

C w(ul, 'U.Q)D + w(uz, ug)D - C.

From (4.1.1), (4.1.2) and (4.1.3), we have

F(Ul, Ug) - w(ul,ug)D Q —O.
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This implies that u; r us.

We define S : X — 2% by
S()={ye X :F(z,y) +w(z,y)D C —C} forall x € X.

It is easy to see that z € S(z), and so S(z) is nonempty for all z € X. By
assumption (iii), we note that S(z) is closed set for all z € X. We now show that
S(z) is a countably orderable set by a relation r C X x X.
Let
V(z):= inf Fz,
(@)= Inf &0.0)(F(zy))

where {pcy(2) ;=inf{r e R:2€rD—~C} forall z € Y.
Let W be any nonempty subset of A ordered by a relation s satisfying
usv = ur v forevery u,v €W, usuv.
Then, for any u,v € W with u # v, we note that
usv=>urv=urv and S(u)C S(v)

because r is transitive. Since u r v, u # v, thus F(u,v) + w(u,v)D C —C, which

implies that §p ¢)(F(u,v)) < —w(u,v) < 0. Moreover,

Vv = inf F(u,
(u) yéISI(u) f(D,C)( (u y))
< inf F(u
= yéS(U]E(D,C)( ( ,y))

3, €00 (F(w0) + .0 (F,9)

§,0)(F(u,v)) + yég(fv) Ew,o)(F(v,y))

< inf F(v,
yés(v)&D.C)( (v,9))

= V(v)

IA

Thus V(W) C R is well ordered by the relation ” < ” and hence V(W) is at most
countable. Since V' is one-to-one mapping on W, W is at most countable.
For any x € X, we let (y,,) C S(z) with y,, T Y1 for all n € N. We next show that

there is an element y, such that y, r 1y, for all n € N.
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In case Ym = Ym+1 = Ym+2 = ... for some m € N, we can put 3o := ¥,, and
o0

so we have done. Then, it is enough to consider in case E w(¥s, Yir1) > 0. Since
i=1
Yn T Yn+1 for each n € N, we obtain

F(Yn, Yn+1) + W(¥n Yn+1)D € —C. (4.1.4)

From (4.1.4) and the assumption (ii), we observe that

m

F(y1,y2) F(y1,Yym+1) — F(y2,93) — F(y3,9a) — ... — F(Ym, Ymy1) + C
F(Y1,Ym+1) + (@(y2,y3)D + C) + (w(ys, 44) D+ C) + ...
+(@(¥m: Ym+1)D + C) + C

S Fy,ym+1) + Xo(w(wi, yi41) D) + C,

for all m € N. Since F' is C-bounded below, there exists z € Y such that

N

F(yi,y2) €2+ C + Z(w(%,yHl)D)- (4.1.5)

=2

By the convexity of D, we have
> @ y)D) = O w(ys,yi1)) D (4.1.6)
i=1 g=1

for any m € N. Therefore, it follows from (4.1.5) and (4.1.6) that

m

F(y,p) €2+C+ (Z w(¥i, Yi+1)) D.

=2

Since 0 ¢ cl(D + C), by the Separation Theorem, there exists f* € Y* such that
(f*,0) < inf{(f*,d+c),Vd € D,Vc € C}.

This implies that 0 < & < (f*,d+¢) = (f*,d) + (f*, ¢} for some £ > 0, and for any
d€ D, ce C. Hence ‘}gg(f*,d) > 0 and {(f*,¢) > 0 for any ¢ € C. Hence, for each
m € N, we have
(f*: F(ylayZ)) = {f*:z) + (.f*ac) i i Zw(yi:yi-\-lJ(f*vd)
i=2
for some ¢ € C and d € D. Since {f*,¢) > 0 for any ¢ € C, it follows that

(F By v2)) 2 (5 2) + 3wl ven) i (F,d).

=2
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Z

m
Since &n}:{f) (f*,d) > 0, we have that Z w(Ys, Yi+1) is bounded above by S F @y —{f77)
<.

o nf(f7,d)

Moreover, (Xm: w(¥i, ¥i+1)) is a monotone sequence then the series iw(yi,yz-“)
converges. rzI‘:hlis implies that iliglo w(Y, Yiv1) = 0. It is easy to see 1;}=1211t (yn) is a
Cauchy sequence in S(z). By the completeness of X and closedness of S(z), (,)
converges to a certain yo € S(x). Since r is transitive and ¥, © Ypi1, then ¥n © Ym
for all m > n, and so y, r yo. This entails that S(z) satisfied the condition in
Theorem 2.2.23. Now, all of the proof consists in applying Theorem 2.2.23 to show
that S(z) has an r-maximal element Z € S(z). Let us observe that for z € X , any
r-maximal element of S(z) is an r-maximal element of X. Hence, (i) holds for z.
Finally, we show that Z satisfies (ii). Assume that Z r z for some z # Z. Since r is
transitive and Z is r-maximal, z r Z. Consequently, V(Z) > V(2) and V() > V (),

a contradiction. Hence Z satisfies (ii). O

Remark 4.1.2. We see in the proof that we do not use the symmetry condition of
the metric. So, the conclusion in Theorem 4.1.1 still holds if we replace the word

“metric space” by “quasi-metric space”.

By setting D = {ee} for all € > 0 in Theorem 4.1.1, we obtain the following
Corollary which is proven by Ansari [75].

Corollary 4.1.3. [[75], Theorem 3.1] Let (X, d) be a complete quasi-metric space,
w:X XX —[0,00) be a w-distance on X, Y be a locally conver Hausdorff topo-
logical vector space, C' be a proper, closed and convex cone in'Y with apez at origin
and intC # 0, and e €Y be a fized vector such thate € intC. Let F: X x X — Y
be a function satisfying the following:

(i) F(z,z) =0, forallz € X;

(4) F(z,y) + F(y,2) € F(z,2) + C for all z,y,z € X ;

(ii) for each fired x € X, the function F(z,-): X — Y is (e, C)-lower semicontin-
uous and C-bounded below.

Then for every e > 0 and for every o € X, there exists T € X such that
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(a) F(zo,Z) + ew(xo,Z)e € =C
(b) F(z,z) + ew(Z,z)e ¢ —C, for allz € X,z # Z.

If F(z,y) = f(y) — f(z), where f : X — R is lower semicontinuous and

bounded below, then we have the following result.

Corollary 4.1.4. Let X be a complete metric space, w : X x X — [0,00) be a
w-distance on X, Y be a locally convezx space, C be a closed and convex cone in Y
and D be a closed conver and bounded subset of C such that 0 & cl(D + C). Let
f: X =Y be (D,C)-lower semicontinuous and C-bounded below. Then for every
zg € X there exists T € X such that

(i) £(Z) +w(zo,Z)D C f(zo) — C;

(it) f(z) + w(Z,z)D & f(T) — C for all z #Z.

We obtain that Corollary 4.1.4 is extension of the following

Corollary 4.1.5. Let X be a complete metric space, w : X x X — [0,00) be a
w-distance on X, Y be a locally convez space, C be a closed and conver cone in'Y
and D be a closed convex and bounded subset of C such that 0 ¢ cl(D + C). Let
f: X =Y be (D,C)-lower semicontinuous and C-bounded below. Then for every
xo € X there exists T € X such that

(1) (f(zo) — C) N (f(Z) + w(zo,Z)D) # 0;

(i) (f(Z) — C)N (f(z) + w(T,z)D) =0 for allz #T.

Proof. By all conditions of Corollary 4.1.4, we have for every zo € X there exists

Z € X such that

f(@) + w(z0,T)D C f(z0) — C (4.1.7)

flz)+w(E@,z)D € f(z)—C for all z#7. (4.1.8)
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From (4.1.7), we have (i) holds.
If (ii) was not satisfied, we would have (f(Z) — C) N (f(z) + w(ZT,z)D) # 0

for some z % T. Then there are ¢; € C and d; € D such that
f(@) = f(z) + w(z, z)d1 + c1. (4.1.9)

Since 0 ¢ cl(D + C), by the Separation Theorem, there exists y* € Y* such that
0<e< (yd+c)={y.d)+ (y*,c) for some e > 0, d € D and ¢ € C. Hence
ai!gg{y*,d) >0 and (y*,¢) > 0 for any c € C.

From (4.1.9), we obtain that

" f(@) = (" (@) + w(@ 2)d1 + c1) > (v", f(z))-

Using the same method of (4.1.9), we conclude that (y*f(Z)) < (y*f(z)), a contra-

diction. Consequently (ii) holds a

Ifweset Y =R, C = [0,00) and D = {e} for € > 0 in Theorem 4.1.1, we
have the following result which is a well-known Ekeland’s variational principle in a

more general setting.

Corollary 4.1.6. Let X be a complete metric space, w : X x X — [0,00) be a
w-distance on X, f: X x X — R be a function satisfying the following conditions:
(i) F(z,z) =0 for allz € X;
(i) F(z,y) + F(y,z) > F(z,2) for every x,y,z € X;
(iii) for each z € X the function F(z,-) : X — R is lower semicontinuous
and bounded below.
Then for every zog € X and € > 0, there ezists T € X such that
(i) F(z0,Z) + ew(zp,T) < 0;
(it) F(T,z) + ew (T, z) > 0 for all z #T.

Remark 4.1.7. By setting w = d and F(z,y) = f(y) — f(z), where f : X — R
is lower semicontinuous and bounded below in Corollary 4.1.6, we obtain Theorem

4.1.1 proven by Ekeland [24, 76].
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The following theorem provides the equivalence between the equilibrium
version of Ekeland-type variational principle, the equilibrium problem, Caristi-Kirk

type fixed point theorem and Oettli and Théra type theorem

Theorem 4.1.8. Let X be a complete metric space, w : X x X — [0,00) be a
w-distance on X, Y be a locally convezr space, C be a closed and convez cone in
Y and D be a closed conver and bounded subset of C. Let T : X — 2% and
F: X xX =Y bea function satisfying the following condition:

(i) F(z,z) =0 for allz € X;

(i) F(z,y)+ F(y,z) € F(z,z) + C for every z,y,z € X;

(ii) for each z € X the function F(z,-) : X — Y is (D,C)-lower semicontinuous;
(iv) for each fited z € X, F(x,-) : x — Y is C-bounded below;

(v) for eachx € X thereisy € X such thaty € Tz and F(z,y)+w(z,y)D C —C.

Then T has at least one fized point, i.e., there exists x € X such that z € Tz.

Proof. By assumption (i)-(iv) applying in Theorem 4.1.1, there exists T € X such
that
F(Z,2) +w(Z,z)D € —C for all z #7.

On the other hand by assumption (v), there exists y € T(Z) such that
Then we see that T = y and so T € T'(Z), that is T has at least one fixed point. O

Remark 4.1.9. If we set F(z,y) = f(y) — f(z), D = {e} , € > 0 and replace
w-distance by d-distance in Theorem 4.1.8, we obtain Theorem 3.1 in [77] and

Theorem 4.1 in [78] (vectorial Caristi-Kirk fixed point theorem).
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4.2 Existence theorems for the n-vectorial saddle point problems

In this section, we introduce the n-vectorial saddle point problem and prove
the existence of a saddle point for VSP, under assuming compactness and uncom-

pactness by using Fan-KKM Theorem.

Suppose that C' is a closed convex cone in the topological vector space E
such that intC # 0 and 0 ¢ intC where intC denotes the interior of C. For each
i=1, 2, ..., n, we let K; be nonempty convex subsets of Hausdorff topological vector

spaces X; and let f : HKi — E be a vector valued mapping. Considering the

i=1
following n-vectorial saddle point problem is to find z := (1, %o, ..., Tn) € H K
i=1
such that
4
f(z) - f('Tl)i:‘Q? :_E31 ---gjn) g _intc VI] e K]_

f(f'l,.',l’,'g,.’fg., ...,:,'En) = f(Z) ¢ —intC Vg € Ko
V&R, 1 4 f(f],ﬁ:‘z,.’bg, ,.’fn) = f(é) §E' —ntC  Vzz € K,

\ f(Z1, %2, %3, oy Zn) — f(Z) € —intC  Vz, € K,

A point Z is said to be a saddle point of f on ﬁ K;, if it is a solution for
VSP,. Note that when £ =R and C = [0, +o0), probinln V'SP, is reduced to the
s%ddle point problem of a real valued function, i.e., finding z := (%1, Z2,...,Zn) €
H K; such that
i=1
f F(2) — fle1, %2, Bsy00sBn) 20 Vry € Kj

f(Z1,22,Z3,..,%n) — f(Z) 20 Vzp€ K,

S-Pn g f(.’f]_,fg,iﬂg,...,in} == f(Z) VSL‘;; € 1{3

L f(:El:EZ::ES:---uxn)_f(z) 20 V.G‘L'n EKn

At the beginning of this section, we consider and show the existence theo-
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rems for V.S P; that is the problem to find (Z, 7, z) € K; X K, x K3 such that
f(&,7,2) — f(z,9,2) ¢ —intC Vz € Ky,
VSPy: < f(z,v,2) — f(Z,9,2) ¢ —intC Vy€ K,
f(z,9,2) — f(z,5,2) ¢ —intC Vz € Kj.

The following Lemma, is useful for our main result.

Lemma 4.2.1. Let K be a nonempty conver subset of a topological vector space
X, let a vector valued map ¢ : K — FE be C-properly quasiconcave and let A be
a nonempty finite subset of K. For any e € E, if e — ¢(Z) € —intC for some
£ € co(A). Then, there exists z € A such that e — ¢(x) & —intC.

Proof. Let e € E and A = {z1,Z2, ..., To} be a finite subset of K and £ = Zaiﬁ:i

i=1
where Zn:ai =land o > 0 foralli =1, 2, ...,n. We will prove it by the
matheni?mi;ical induction. Let n = 2. Since ¢ is C-properly quasiconcave on K, we
have
e— ¢z +aezs) € e—d(z)—C
or e— a1z +aexs) € e— d(xz) —C.
If e — ¢(z1) € —intC and e — ¢(z2) € —intC, then e — (&) = e — p(ayz; +
@sT3) € —intC, which is a contradiction with assumption so e — ¢(z1) & —intC
or e — ¢(z3) € —intC. This completes the proof of case n=2. Assume that the

statement is true for n € N and for each e € E,
n+1

e— (&) =e— (> ouz:) & —intC (4.2.1)
i=]

n—+1 n
where Zai =lando;>0foralli=1, 2, .., nt+l. Let o := Zai =1—tp

i=1 =1
n n+1

Q & 5 ;
and = = Zl a—xi, thus £ := Zlaixi = T + Qpi1Zny1- Oince ¢ is C-properly
= 1=
quasiconcave and by (4.2.1), we have

e — (AT + Api1Tnr1) € e—P(x) —C

or e— (o + api1Tnt1) € €— @(Tnt1) —C.
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By the same argument in case n=2, we have
e—¢(x) € —intC or e— ¢(xp41) —C.

If e — ¢(z) & —intC, then by the induction hypothesis, there exists z; € A such
that e — ¢(x;) & —intC, which completes the proof. a

Remark 4.2.2. If we replace the assumption of the map ¢ in Lemma, 4.2.1 by C-
properly quasiconvex then we have the result: for any e € E, if ¢(2) — e & —intC
for some £ € co(A), then there exists z € A such that ¢(z) — e & —intC.

Lemma 4.2.3. For each i=1,2,3, let X; be Hausdorff topological vector spaces,
K; C X; be nonempty conver subsets and f : Ky x Ko x K3 — E be a vector valued

function satisfying the conditions (i) and (ii).

(i) fis C-properly quasiconcave and C-u.s.c. in the first argument on the convez

hull of every nonempty finite subset of K

(4) fis C-properly quasiconcave and C-l.s.c. in the second and third argument on

the convex hull of every nonempty finite subset of Ko and Kj respectively.

Then, for each finite subset A; of K; where 1=1,2,8, there ezist & € co(4,), § €
co(Asz), and 2 € co(As) such that

f(i': Qa 2) - f(u: yn: 2) ¢ —intC Vu S CO(AI):
f(Z,v,2) — f(%,9,2) ¢ —intC Vv € co(Az),
f(.%,?j,’w) - f(2,9,2) ¢ —intC Yw € CO(A3).

Proof. Take K := K; x K» x K3 and for (u,v,w) € K, we define the following

subsets
L(u,v,w) ={z€ Ki: f(z,v,w)— f(u,v,w) ¢ —intC},

M(u,v,w) ={y€ Ka: f(u,v,w) — f(u,y,w) ¢ —intC},
N(u,v,w) ={z€ Ks: f(u,v,w) — f(u,v,2) ¢ —intC}.
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By the definition of three sets, they are nonempty sets because (u,v,w) € P(u,v,w) :
L(u,v,w) x M(u,v,w) X N(u,v,w). For each 7 = 1,2,3, we suppose A; is the fi-

nite subset of K; and set A := A; X A; X Az. Define the set-valued mapping

Q : co(A4) — 2™ by

Q(uav:w) = {(Ia Y, 2,’) € CO(A) : (SE, y:z) € P(u:v:w)} V(u,v,w) € CO(A)

We will show that @ is a K KM mapping. Assume that there exists a finite set
({uy -y} X {v1, o0y U} X {01, ..., wn}) C co(A) such that

lmmn

co({ug, -y Wi} X {V1, ey Um} X {wy, ...y wn}) & U Q(us, vj, wi).

i=1,j=1,k=1
Then, there exists

I m n
(UU, Vo, 'UJ()) o= (Z Uy, Z /ijj! Z kak)
i=1 k=1

i=1
€ co({uty -y Ui} X {1,y Um} X {W1, ey Wn})
such that ug & L(u;, v, wg) or vo & M(u;,vj, w) or wo € N(us,v;,w) for ¢ =
L,..,l,3=1,.,mand k = 1,...,n. We consider the case ug & L(u;,v;,ws) for
i == lywgly 4 = 1.uym and &= 1,..,n. Let § € {1,...,m} and & € {I,..,n) be
fixed. Clearly,
fuo, v, we) — f(uo, vy, wi) € —intC.

Since f is C-properly quasiconcave in the first argument and by Lemma 4.2.1, there

exists u; € {uy, ..., u;} such that

f(UO,Uj-;wk) - f(ui!vj!wk) ¢ —z'ntC,

it is a contradiction with ug & L(u;, v;, wy). Similarly on other cases, we also obtain

a contradiction and so we have @) is a K KM mapping.

Next, we will show that Q(u,v,w) is closed for each (u,v,w) € co(A). Let
{(ux, v, wa) hrer € Q(u, v, w) such that (uy, vx, wy) — (¥, 7, w') € co(K). Assume

that (v/,v,w’') & Q(u,v,w), then we have v' & L(u,v,w) or v' € M(u,v,w) or
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w' & N(u,v,w). Consider the case «' ¢ L(u,v,w). Then, we have f(u/,v,w) —

flu,v,w) € —intC, it follows that there is —¢’ € intC such that
—d = f(u,v,w) — f(u,v,w) € —intC. (4.2.2)

Since f is C-u.s.c. in the first argument, there exists an open neighborhood U of

u’ such that for any ¢ € intC there is an Ay € I such that
fW,v,w) € f(up,v,w) — C +intC Vuy € U where A > .
Set ¢ = ¢’ and by (4.2.2), we obtain that
flun, v,w) — fu,v,w) € —intC.

Then uy ¢ L(u,v,w) which is a contradiction. For other cases, the proof is similar
by using the C-lower semicontinility of f. This implies that Q(u, v, w) is closed for
each (u,v,w) € co(A). Since X; x X, x X3 is a Hausdorff space, co(A) is compact
and also Q(u,v,w) is compact. By the Fan-K KM Theorem, we obtain that
N Quu,w)#0.
(uw,vw)Eco(4)

Hence there exist (%, 9, 2) € co(A) such that (£, 9, 2) € P(u,v,w) for all (u,v,w) €
co(A). Then £ € L(u,v,w),§ € M(u,v,w) and 2 € N(u,v,w) for all (u,v,w) €
co(A). Therefore £ € L(u,9,2) Yu € co(41), § € M(Z,v,2) Vv € co(Az) and
2 € N(Z,9,w) Yw € co(Asz). This completes the proof. O

Remark 4.2.4. Lemma 4.2.3 is the generalization of Lemma 3.1 in [38]. Moreover
the idea of the proof in Lemma 4.2.3 similar to that obtained by Chadli and Mah-
dioui [38]. In the same way of the proof in Lemma 4.2.3, we can extend this result

to n-tuples.

Theorem 4.2.5. For each i = 1,2,3, let X; be Hausdorff topological vector spaces,
K; C X; be nonempty compact convex subsets and f : Ky X Ko x Kz — E be a
vector valued mapping satisfying the conditions (i) and (it) in Lemma 4.2.3. Then,
VSP; has a saddle point.
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Proof. Let J¢ be the family of all nonempty finite subsets of K := K; x Ky x K3

and for each A := A; x Ay x A3 € 2, we suppose the following set

Ly ={(z,y,2) 1 z € L(w,v,w),y € M(u,v,w), 2z € N(u,v,w) ¥(u,v,w) € co(4)}

By Lemma 4.2.3, we have %, is nonempty for each A € J#. Next, we will
show that the family {4} ac» has the finite intersection property. Suppose that
A== A] x A} x A and A" := Al x A} x A} are two finite subsets of K. Setting
A:= A"UA", by the definition of the set %4, we obtain that £y C L4 N L4 and
so we have

@%ECZO.—%AH

This leads to {Zs}acx has finite intersection property. Since K is compact,

ﬂ L4y # 0. Let (z,y, z) € K be an arbitrary and (&,7, %) € ﬂ 2, be fixed. Set
Aext Aet
D = {(z,y,2),(%,9,%)}, then we have D € . Since (%, 7, %) € Zp, there exists

a generalized sequence {(ZTa,Yas Za)taer C -Zp such that { e Yoi Za} — (£.7, 2).
Since (zx,¥x, 22) i= (Az + (1 — A)Z, Ay + (1 — A)g, Az + (1 — A)Z) € co(D) and by
the definition of %), for @ € I and X € [0, 1], we note that

Tq € L(ﬂ:)\, X, ZA)'.! Yo € M(.’:CA, Y, ZA), 24 € N(SU,\, Ux, z)t)'
Then, for all « € I and X € [0, 1],

f(l‘o:a Uxs z.\) - f(m)n Y, z)\) ¢ _Zntca
F(@yn 23) = f@2 Y0 23) € —intC,
f@ayn2a) — f(@a,Un 20) € —intC.

By Proposition 2.2.40, we conclude that for all A € [0, 1],
f(i.? Yxs ZA) - f(ﬂf,y,\, Z/\) ¢ _Zntca

f@xny, 20) — f(za, T, 20) € —intC,
flexun 2) — flza,yn, 2) € —indC.
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Therefore, we have
f(£,9,2) - f(z,9,2) ¢ —intC,
f(i: Y, z) - f(fé’ g; 2) ¢ —intC,
f(& §,2) — (& §,2) ¢ —intC.

Since (z,v, z) is an arbitrary element in K; x K> x K3, we complete the proof. 0O

In Theorem 4.2.5, we set for each z € K3, f(z,y, 2) = g(z,y) for all (z,y) €

Ky x K,, where g : K1 x K; — E. Then we have the following corollary.

Corollary 4.2.6. For each i = 1,2, let X; be Hausdorff topological vector spaces,
K; C X; be nonempty compact conver subsets and the vector valued mapping f :
K x Ky — E be C-properly quasiconcave and C-u.s.c. in the first argument on the
convez hull of every nonempty finite subset of K, and C-properly quasiconcave and
C-l.s.c. in the second argument on the convez hull of every nonempty finite subset

of K. Then, there ezists (Z,7) € K1 X K» such that

f(z,9) - f(z,9) ¢ —intC Vz € K,
f(fay) - f(iag) ¢ —intC Vy € K.

VSP:

Setting £ = R and C = [0, +00). Then Corollary 4.2.6 can be reduced to

the following corollary.

Corollary 4.2.7. For each i = 1,2, let X; be Hausdorff topological vector spaces,
K; C X; be nonempty compact convex subsets and the vector valued mapping f :
K; x Ky — R is quasiconcave and u.s.c. in the first argument on the convex hull
of every nonempty finite subset of Ky and quasiconcave and ls.c. in the second
argument on the convex hull of every nonempty finite subset of Ko. Then, there

ezists (Z,7) € K1 x Ky such that

f&y) 2 f(2,9) 2 f(z,§) for all (z,y) € K1 x Ka.

The next theorem presents the existence solution for V.S P; without assum-

ing compactness of the subsets.
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Theorem 4.2.8. For each i =1,2,3, let X; be Hausdorff topological vector spaces,
K; C X; be nonempty convex subsets and f : K1 x Ko x K3 — E be a vector value

mapping satisfying the conditions (i)—(ii) and if it satisfies the following condition:

(i1i) (The coercivity) there is a nonempty compact set B := By x By X B3 C K :

K, x Ko x K3 and there is a nonempty compact convex set B:= B1xByxB; C

K such that if (z,y,2) € K N BC, then

f(Z,9,2) — f(z,9,2) € —intC,
f("f"a Y, 2) i f("f’.i g: E) = _intca
f(&,4,2) — f(&,9,2) € —intC.

for some (%,,%) € B.Then VSP; has a saddle point.

Proof. Let ¢ be the family of all nonempty finite subsets of K := K; X K3 x K3

and for each A := A; x Ay x A3 € £, we suppose the following set
Zs={(z,y,2) € B:z € L(u,v,w),y € M(u,v,w),z € N(u,v,w) Y(u,v,w) € co(AUE’)}

It is easy to see that co(A U B) is compact for every A € J¢. By Theorem 4.2.5,

there exists (Z,, 2) € co(A U B) such that

f(&3,2) — f(z,7,2) ¢ —intC for all z € co(A, U By),
f(&vy,2) — f(£,9,2) ¢ —intC forally € co(AU By),
f(&7,2) — f(&7,2) ¢—intC for all z € co(Az U Bz).

By the contrary of coercivity condition (iii) and since B C co(AUB), we deduce
that (%,9,%) € B. This means that %4 is nonempty for all A € . Similarly
proved in Theorem 4.2.5, it implies that the family {-%4}acx has the finite in-

tersection property and hence m %, is also nonempty by the compactness of
AeH
B. Let (z,y,2) € K be an arbitrary and (Z,7,2) € ﬂ 24 be fixed. Setting
Aex
D ={(=,y, 2), (%, 7, 2)}, then we have D € % . Since (%,7, %) € Zp, there exists a



72

generalized sequence {(Za, Yas Za) Yaer C Zp such that (Za, Yo, 2a) — (Z,7, Z). By

the same argument of Theorem 4.2.5, we conclude that

[(Z,9,2) — f(=,7,2) ¢ —intC,

f&,y,2) - f(Z,4,2) ¢ —intC,

f(Z,9,2) - f(z,9,2) ¢ —iniC
for all (z,y, z) € K, which implies that V.S P; has a saddle point and completes the
proof. O

Remark 4.2.9. In Theorem 4.2.8, if we set for each z € K3, f(z,v,2) = g(z,v)
for all (z,y) € K1 X K, where g : K; x K2 — E then we have Theorem 3.2 in [38].
In addition to this, if we let E =R and C = [0,+00) then we also have Corollary
3.1 in [38].

The following theorem presents the existence solution for V.SF, which gen-

eralizes Theorem 4.2.5.

Theorem 4.2.10. For each i =1, 2, ..., n, let K; C X; be a nonempty compact con-
ver subset and [ : HK" — F be a vector valued mapping satisfying the following

=1

conditions:
(I) fis C-properly quasiconcave, C-u.s.c. in the first argument and C-properly

quasiconvez, C-l.s.c. in the other arguments on the convex hull of every
n

nonempty finite subset of H K
=1

Then, VSF, has a saddle point.
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Proof. For each (uj,uz, ..., u,) € H K;, we define the following subsets

=1
Ly(uy, ug,...,ttn) = {21 €K F(@1,u2, ey Un) — Fug, Uz, Uz, ooy Un) € —intC}
Lo(uy, ug, .eryty) = {22 € Ky : Flur, ug, ... un) — flui, 29, us, ..., un) & —intC}

L(ur, ugy .oy tn) = {23 € Kz : f(u1, %z, e, uUn) — f(ug, us, s, ey Un) & —intC}

Ln(u1, Uz, -osUn) = {Zn € Kpn: flug, g, ..., upn) — flu, ug, us, ..., z,) & —intC}.
By the definition of these sets, they are nonempty sets because (U1, Uz, ey Up) €
n

HL«;(H:{,'ELQ, .y Un). Let £ be the family of all nonempty finite subsets of HKi
=1

=1

and for each A = H A; € 2, we suppose the following set

=1
-S-"oA = {(xlax?.v 1$n) & ]:[Kz 1L € Li(w1:w21 "':wn) V(wl,?l.?g, 1wn) € CO(A)}
i=1
By Remark 4.2.4, we have .%, is nonempty for each 4 € ¢ Using the similar idea

of the proof in the Theorem 4.2.5, we have ﬂ Z, #£ 0. Let (21,23, ., %x) € H K;
Aext =1
be an arbitrary and (Z;, Zs, ..., Z,) € ﬂ Z4 be fixed. In the same way as the proof

Aex
in the Theorem 4.2.5 once more, we conclude that

(

f(:Z') o f(:L‘I, .’22, .’.33, ...,.’fn) g —intC V.’L‘]_ € K1
f(ff‘-].-,- 352;.3_.':3, aaay fn) —' f(Z) g _3ntc VIz - K2
VEF, : 4 f(.’f;,i‘z,xg, ...,Sl_?n) - f(f) é —intC V3 € K3

{ f(Z1,%2, %3, o, zn) — f(2) & —intC  Vz, € K,

a

If we set E =R and C = [0,+0c0), then Theorem 4.2.10 is reduced to the

following corollary.

Corollary 4.2.11. For each i =1, 2, ..., n, let K; C X; be a nonempty compact

convez subsets and f : HK,- — R is quasiconcave, u.s.c. in the first argument and

=1
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quasiconvez, l.s. c in the other arguments on the convex hull of every nonempty

finite subset of H K;. Then, there exists a saddle point z € H K; for SP,.

t=] i=1

The following theorem presents the existence solution for V'SP, which gen-

eralizes Theorem 4.2.8.

Theorem 4.2.12. For each i=1, 2, ..., n, let K; C X; be a nonempty convex
subsets and f : H K; — E be a vector valued mapping satisfying the condition (I)

i=1
and if it satisfies the following condition:

(II) (The coercivity) there is a nonempty compact set B = ]___[Bi - ]._[Ki and

i=1 i=1
n

there is a nonempty compact convex set B = HEZ C HK?' such that if
=1 g=]

(L1053 %n) € H K; N BC, then
i=1
f(é) - f(z‘.la 527 553: seny fén) = —th’
f(i.iil, T, 53, seiy :-f.'n) = f(i) = —intC
F(&1, %2, 23, oy En) — F(2) € —intC

f(‘ilai% seay £'.".v.—ly-A'TJ".!'.-,) = f('z') e —intC

for some zZ = (%, %2, %3, ..., %) € B.
Then VSP, has a saddle point.

n
Proof. For each (ui,uy, ...,u,) € HKé, we define L;(uy, us, ..., u,) same as Theo-
i=1

rem 4.2.10. Let £ be the family of all nonempty finite subsets of HK*' and for
i=1

each A = H A; € 2, we consider the following set

i=1

La = {(z1, %2, ..., Tn) € B : z; € Li{wy, wa, ..., wn) € co(AU B)}.
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it is easy to see that co(A U B) is compact for every A € J¢. By Theorem 4.2.10,

there exists (%1, T2, 3, .., Zn) € co(A U B) such that

f(z) - f(xl, '%2: '%3: sy in) ¢ —intC
.f(ila $27:E37 LX) :‘En) - f(z) ¢ —intC
f(.'i‘l,ffg,ﬂ',‘;;,...,in) - f(é) ¢ —intC

f(.’f?l, 5’.72, ...,:I—Zn_l, Ll’:n) - f(E) ¢ —intC

VI;[ < CO(Al U Bl)
Vzy € co(Az U éz)
Va3 € co(Az U 5’3)

Yz, € co(A, U f?n)

Since B C co(A U B) and by the contrapositive coercivity condition(II), we con-

clude that (Z;,%s,...,Z,) € B. This implies that ¥4 # 0 for all A € J¢. By

the compactness of B, we now follow an idea similar to that in Theorem 4.2.5

which implies that n Ly # 0. Let (51,59, .0,%0) € HK" be an arbitrary and

Aest

(Z1,Z2y .-, Tn) € ﬂ %4 be fixed. Setting D = {(z1,%2, ..., %n), (F1, Ea, ..., Tn) }

Aex’

=1

7

then we have D € J¢. By the same argument of Theorem 4.2.8 applying to n-

tuples, it implies that (Z, Zo, ..., Z,) is a saddle point for VSP,.

a





