CHAPTER II

PRELIMINARIES

This chapter includes some notations, definitions, and some useful results.

2.1 Metric spaces and Banach spaces

In this section, we recall the basic definitions and elementary properties of

metric spaces and Banach spaces.

Definition 2.1.1. [56] A metric space is a pair (X, d), where X is a set and d is a

metric on X (or distance function on X), that is, a real valued function defined on

X x X such that for all z,y, z € X we have:
(My) d(z,y) = 0;

(M3) d(z,y) =0 if and only if x =y;

(M3) d(z,y) = d(y,z) (symmetry);

(My) d(z,y) <d(z,z) + d(z,y) (triangle inequality).

The element of X are called the point of the metric (X, d).

Definition 2.1.2. [56] A sequence {z,} in a metric space X = (X, d) is said to be

convergent if there is an € X such that

lim d(z,,z) =0.

n—oo

z is called the limit of {z,} and we write

lim z, = z or, simple, z, — z.
n—oo

(2.1.1)

In this case, we say that {z,} converges to z. If {z,} is not convergent, it is said

to be divergent.



Definition 2.1.3. [56] A sequence {z,} in a metric space X = (X,d) is said to
be Cauchy if for every € > 0 there is an N € N such that d(z,,, z,) < € for every

m,n > N.

Definition 2.1.4. [56] If every Cauchy sequence in a metric space (X, d) converges

then the metric space (X, d) is said to be complete.

The concepts of open, closed and bounded subsets of normed spaces are

given as follows.

Definition 2.1.5. [56] Let (X, d) be a metric space and A be a subset of E.

(i) Given a point zg € X , the ball centered at xy and with radius v > 0 is the

 set Blzoy={EeL : dizo, 3) SF)
(ii) A is open if for each 25 € A there exists a d > 0 such that B (@p,0) C A.
(iii) A is closed if the complement A° is open.

Theorem 2.1.6. [56] For a subset A of a metric space (X, d). Then

A is closed if and only if the situation &, € A, x, — « implies that z € A.

Definition 2.1.7. [56] Let A be a nonempty subset of a metric space (X, d). Then

A is said to be bounded if diam(C) := sup,, ,c 4 d(z,y) < +00.

Definition 2.1.8. [56] A metric space (X, d) is said to be compact if every sequence
in X has a convergent subsequence. A subset M of X is said to be compact if M
is compact considered as a subspace of X, that is, every sequence in M has a

convergent subsequence whose limit is an element in M.

Definition 2.1.9. [56] A norm on a (real or complex) vector space FE is a real-
valued function on F whose valued at an & € F is denoted by ||| and which has

the properties

(M) [lll > 0;



(Vo) ||zl =0 2 =0;

(N3) [laz|| = |af]l];

(Na) llz+yll = llzll + llyll,

where z and y are arbitrary vectors in E and a is any scalar. A normed space F

is a vector space with a norm defined on it which is denoted by (£, || - ||) or simply

by F.

Convergence of sequences and related concepts in normed spaces follow from

the corresponding definition 2.1.2 and 2.1.3 for metric spaces and the fact that now

d(z,y) = [l= -yl
Definition 2.1.10. [56] A Banach space is a complete normed space.
Definition 2.1.11. [57] Let A be a subset of normed space £. Then A is said to
be convez if (1 —=A)z+ Ay € A for all 2,y € A and all scalar A € [0, 1].
Next, we discuss some properties of linear operators.
Definition 2.1.12. [56] Let X and Y be linear spaces over the field K.
(i) A mapping T': X — Y is called a linear operator if for all z,y € X and
a €K,
T(z+y)=Tx+Ty and T(az)=aT'x,
(ii) A mapping T : X — K is called a linear functional on X if T is a linear
operator.

Definition 2.1.13. [56] Let X and Y be normed spaces over the field K and
T: X — Y alinear operator. T is said to be bounded on X, if there exists a real

number M > 0 such that | T'(z)|| < M||z||,Vz € X.
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Definition 2.1.14. [56] Let E and Y be normed spaces over the field K, T': £ = Y
an operator and xo € E. We say that 1" is continuous at z if for every € > 0 there
exists & > 0 such that ||T'(z) — T(xo)|| < € whenever ||z —xo|| <dandz € E. If T

is continuous at each = € E, then T is said to be continuous on E.

Definition 2.1.15. [56] Let E be a normed space. Then the set of all bounded

linear functionals on E is called a dual space of E and is denoted by E*.

Weak convergence is defined in terms of bounded linear functionals on F as

follows.

Definition 2.1.16. [56] A sequence {z,} is a normed space F is said to be weakly

convergent if there exists an « € I such that for every f € E7,

lind f (ze=0f (F)-

n—eo

This is written @, — z. The element z is called the weak limit of {z.}, and we say

that {z,} converges weakly to z.

A subset C of E is weakly closed if it is closed in the weak topology, that is,
if it contains the weak limit of all of its weakly convergent sequences. The weakly
open sets are now taken as those sets whose complements are weakly closed. The
resulting topology on E is called the weak topology on E. Sets which are compact
in this topology are said to be weakly compact.

Remark 2.1.17. [57] The weak topology of a normed space is a Hausdorft topology,
i.e., if z,y are two distinct points in E, there exist two open sets G and H such

that z € G,y € H,and GN H # 0.
Definition 2.1.18. [57] A normed space F is said to be reflexive if the canonical
mapping G : E — E* (ie. G(z) = g, for all z € E where g,(f) = f(z) for all

f € E*) is surjective.

Next, we present some useful properties of duality mappings and Banach

spaces having geometric structures such as convexity and smoothness.
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Definition 2.1.19. [57] A Banach space I is said to be strictly convez if || *3%|| < 1

for all z,y € E with ||z|| = ||y|| =1 and z # ¥

Definition 2.1.20. [57] A Banach space I is said to be uniformly convex if for
each 0 < & < 2, there is § > 0 such that Vz,y € E, the condition ||z|| = [ly[| = 1,

and ||z — y|| > € imply || 55| < 1—0.

Definition 2.1.21. [57] Let E be a Banach space and S = {z € E : ||z|| = 1}.

Then F is said to be smooth if the limit

x4+ tyll — ||z
iy 12l =il (2.1.2)
t—0 t

exists for all &,y € 5. It is also said to be uniformly smooth if the limit (2.1.2) is

attained uniformly for z,y € S.

Remark 2.1.22. [57]

(i) £ is uniformly convex if and only if £* is uniformly smooth.
(ii) £ is smooth if and only if E* is strictly convex.
Definition 2.1.23. [57] Let S(E) = {z € E : ||z|| = 1} denote the unit sphere of

a Banach space E. A Banach space F is said to have

(i) @ Giteauz differentiable norm (we also say that I is smooth), if the limit

L+ eyl

lim ; (2.1.3)

exists for each z,y € S(F);

(ii) @ uniformly Giteaux differentiable norm , if for each y in S(E), the limit

(2.1.3) is uniformly attained for = € S(FE);

(iii) a Fréchet differentiable norm, if for each & € S(F), the limit (2.1.3) is attained

uniformly for y € S(E);
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(iv) a uniformly Fréchet differentiable norm (we also say that [ is uniformly
smooth), if the limit (2.1.3) is attained uniformly for (z,y) € S(E) x S(E).
Definition 2.1.24. [57] A Banach space E is said to have Kadec-Klee property if
a sequence {z,} of E satisfying that 2, — = € E and ||z,|| — [|z[|, then z, — z.
Tt is known that if F is uniformly convex, then E has the Kadec-Klee prop-
erty.

Lemma 2.1.25. [58] Let E be a uniformly convez Banach space, let {an} be a
sequence of real numbers such that 0 <b <o, <c <1 foralln > 1, and let {z,}
and {y,} be sequences in E such that limsup,_ [|z.]| < d, limsup,_, [yl < d

and lim, e ||0nZn + (1 — a)yull = d. Then lim,, o [lzn — yull = 0.

Definition 2.1.26. [57] Let E* be dual space of a Banach space £. The mapping
J : E — 2F" defined by

J(@)={j € E*:(j,2) = ||z||* = l7)l3}, for allz € E,
is called the duality mapping of E.

Definition 2.1.27. [57] A continuous strictly increasing function ¢ : R* — R¥ is

said to be gauge function if ¢(0) = 0 and tlim p(t) =oo.
— 00

Definition 2.1.28. [57] Let E be a normed space and ¢ a gauge function. Then

the mapping J, : E — 2% defined by

Jo(x) = {7 € E* : {z,5) = l=lllldlls, Ndll« = e(llzl)}, Vo€ E. (2.1.4)

is called the duality mapping with gauge function .

In the particular case @(t) = t, the duality mapping J, = J is called the

normalized duality mapping in Definition 2.1.26.
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Definition 2.1.29. [59] A Banach space E is said to has a weakly continuous
duality mapping if there exists a gauge ¢ for which the duality mapping Ja{m) is
single-valued and continuous from the weak topology to the weak* topology, that

is, for any {z,} with z, — z, the sequence {J,(z,)} converges weakly* to Jy(z).
Remark 2.1.30. For the gauge function ¢, the function @ : R — R defined by
t
O(t) = / p(s)ds (2.1.5)
0

is continuous convex strictly increasing function on R*. Therefore, @ has continu-

ous inverse function ®'.

The first part of the next lemma is an immediate consequence of the subd-

ifferential inequality and the proof of the second part can be found in [54].
Lemma 2.1.31. ([54]) Assume that o Banach space E has a weakly continuous

duality mapping J, with gauge @.

(i) For all z,y € E, the following inequality holds:
B({lo-+ ) < ) + (> Tola+ )
In particular, for all x,y € F,
2+ ylI* < ll=l* + 20y, J (= + ).

(ii) Assume that a sequence {z,} in E converges weakly to a point x € E.

Then the following identity holds:

lim sup ®(||z, — yl|) = limsup ®(||z, —z|]) + ©([|ly — =), Vz,y € E.

n—oo n—oo
Definition 2.1.32. [60] Let £ be a Banach space having a weakly continuous
duality mapping J,, with a gauge function ¢, an operator A is said to be strongly

positive if there exists a constant 7 > 0 with the property

(Az, Jp()) = ll=lle(lll) (2.1.6)
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and
|t = BA| = sup [{(al — BA)z, Jp(2))|, o €[0,1], € [-1,1],

Lemma 2.1.33. [60, Lemma 3.1] Assume that a Banach space E has a weakly
continuous duality mapping J, with gauge @. Let A be a strong positive linear

bounded operator on E with coefficient ¥ > 0 and 0 < p < @(1)||A||"". Then
I — pAll < (1)(1 — p7).
Now, we introduce the concept of best approximation in normed spaces.

Let C be a nonempty subset of a normed space E and let € E. An element

yo € C is said to be a best approzimation to z if
e = goll = dfe, C),

where d(z, C) = inf,cc |z — y||. The number d(z, C) is call the distance from z to

C. The (possibly empty) set of all best approximations from z to C'is denoted by
Pe(z) = {y € C: |z =yl = d(z,C)}.

This defines a mapping P from E into 2€ and is called the metric projection onto

C.

Existence and characterization of best approximations are shown in the

following two theorems.

Theorem 2.1.34. [57] Let C be a nonempty, closed and convex subset of a strictly
convez reflexive (e.g, uniformly convez) Banach space I and let x € E. Then there

exists a unique element yo € C' such that |z — wl| = d(z, C).

Theorem 2.1.35. [57] Let C be a nonempty closed convex subset of a smooth

Banach space E and let © € E and y € C. Then the following are equivalent:

(a) y is a best approzimation to x 1y = Pox.
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(b) y is a solution of the variational inequality :

(y — z,Jp(x —y)) =0 for all z € C|

where J,, is a duality mapping with gauge function ¢ and Pg is the metric projection

from E onto C.

Next, we present the concept of normal structure.

Let C be a nonempty, bounded, closed and convex subset of a Banach space E.
The diameter of C be defined by d(C) := sup{||z —y]| : z,y € C}. For each x € C,
denote r(z, C) = sup{||lz —y|| : v € C} and denote by r(C) :=inf{r(z,C): x € C}
the chebyshev radius of C relative to itself. The normal structure coefficient N(E)
of E is defined by

dc)
r(C)

A Banach space E is said to have uniform normal structure if N(E) > 1. It

N(E) = inf{

C is a bounded, closed and convex of E with d(C) > O} .

is known that every Banach space with a uniform normal structure is reflexive.
Every uniformly convex and uniformly smooth Banach spaces have uniform normal

structure.

In order to prove our main result, we need the following lemmas and defi-
nitions.
Let [*® be the Banach space of all bounded real-valued sequences. Let LIM be

a continuous linear functional on [ satisfying ||[LIM|| = 1 = LIM(1). Then we

know that LIM is mean on N if and only if
inf{a, : n € N} < LIM(a) < sup{a, : n € N}

for every a = (a1,as,...) € I®. Occasionally, we shall use LIM,,(a,) instead of

LIM(a). A mean LIM on N is called a Banach limit if

LIM,(a,) = LIM,(an41)
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for every a = (ay, ag, ... ) € I°°. Using the Hahn-Banach theorem, or the Tychonoff
fixed point theorem, we can prove the existence of a Banach limit. We know that

if ;¢ is a Banach limit, then

liminf a, < LIM,(a,) < limsupa,
n—oo

n—oo
for every a = (aq,az,...) € [*.
Subsequently, the following result was showed in [61].
Proposition 2.1.36. [61, Propesition 3.2] Let C' be a noneapty, closed and convex
subset of a real Banach space E which has a uniformly Gateaux differentiable norm

and admits the duality mapping J,. Suppose that {z,} is a bounded sequence of C

and let LIM,, be a Banach limit and z € E. Then
LIM, ®(||z, — 2||) = 12£ LIM, ®(||z, — y|),
Yy
if and only if

LIM, (y — 2, jo(en = 2)) <0, Vy € C.

In the following, we also need the following lemma.

Lemma 2.1.37. [57] Let C be a nonempty, closed and convex subsel of a reflexive
Banach space E and f : C — (-00,00| a proper lower semicontinuous convex
function such that f(z,) = 00 as ||z,|| — co. Then there exists xg € D(f) such

that f(z) = infzec f(2).

Lemma 2.1.38. [62] Let {a,} be a sequence of real numbers. Then, a, — 0 if
and only if for any subsequence {an,} of {a.}, there exists a subsequence {a.,h.j} of

{an} such that {an, } converges to 0.

Lemma 2.1.39. [63] Assume that {a,} is a sequence of nonnegative real numbers

such that

Un41 S (]- - an)an + bn,

where {a,} is a sequence in (0,1) and {b,} is a sequence such that
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(a) Z:O:l Q, = Q)

(b) limsup,_yo0 bu/an <0 07 377 by < 0.

Then lim,_,o, a, = 0.

2.2 Some nonlinear operators

In this section, we first recall some definitions related to the single-valued
and multi-valued operators. Next, we introduce the notation of stable f mono-
tonicity which will be used in Section 3.1 and give some examples. Throughout of
this section, let & be a reflexive Banach space with the norm [ - ||, £* be its dual

and let (-,-) denote the duality pairing of £ and E.

Definition 2.2.1. [57] Let f : E = (—o00,00] be a function and {z,} C E. Then

f is said to he
(i) lower semicontinuous on E if for any zo € E, f(zp) < liminf, e Flzs)
whenever z,, — g.

(ii) upper semi (or hemi) conlinuous on E if for any zo € E, limsup,,_, ., f(%a) <

f(z¢) whenever z, — .

(iii) weakly lower semicontinuous on E if for any &g € E, f(wo) < limint, e f (zn)

whenever z, — xp.
(iv) weakly upper semicontinuous on E if for any zg € E, limsup,_,,, f(z.) <
f(z¢) whenever z, — 0.
The following definition of continuity for multi-valued mappings can be
founded in [64].

Definition 2.2.2. Let F': C =3 E* be a muli_;i—va.lued mapping. the F' is said to
be
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(i) lower semicontinuous at zy if, for any zj € F'(xo) and sequence {z,} C C with
T, — Ty, there exists a sequence z;, € F(x,) which converges to = — zg;
(i) lower hemicontinuous if, the restriction of F' to every line segment of C' is
lower semicontinuous with respect to the weak topology in E*.
The following version of the KKM theorem is due to Ky Fan [65].

Lemma 2.2.3. [65] Let C be a nonempty subset of a Hausdorff topological vector
space X and let G : C =3 X be a multi-valued mapping satisfying the following
properties:

(i) G is a KKM mapping, i.e.,

colz1 3, 2% KT U G(z;), fore; € K,i=1,2,...,n;
1=1

(ii) G(z) is closed in X for every x € C;

(iii) G(wp) is compact in X for some zg € C'.

Then (), .o G(B) % V-

Theorem 2.2.4. [66](Kakutani-Fan-Glicksberg Fixed Point Theorem) Let
E be a locally conver Hausdorff topological vector space, C' be a nonempty, convez,
compact subset of 5. Suppose T : C = C 1s a upper semi-continuous mapping with

nonempty, closed and convex values. Then T has a fized point in C.

Definition 2.2.5. [57] T': E — E be a mapping.

(i) 7T is said to be Lipschitzian if there exists a constant L > 0 such that for all

z,y € E,

Tz — Ty|| < Lz —y]|.
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(i) T is said to be contraction if there exists a constant 0 < ar < 1 such that for

all 2,y € F,
1Tz — Tyll < allz —yl|.
(iii) 7T is said to be nonezpansive if for all z,y € E,
1Tz — Tyl < [z =yl

(iv) T is called an asymptotically nonexpansive mapping if there exists a sequence

{k,} C [1,+00) with lim k, = 1 such that for all z,y € E,

n—roo

T'z —T"y|| < kullz =y, ¥Vn > 1.

(v) T is called an uniformly Lipschitz mapping if there exists a constant k > 0

such that for all z,y € E,

\T"z — T y|| < kllz - y||, V2> 1.

From the definition we have every nonexpansive mapping is asymptoti-
cally nonexpansive mapping with a sequence k, = 1 and every asymptotically
nonexpansive mapping is a uniformly Lipschitz mapping with Lipschitz constant

k = sup,,cy kn-

Definition 2.2.6. [57] An element z € £ is said to be

(i) a fized point of a mapping 7" : £ — E provided Tz = .

(ii) a common fized point of two mappings S,T : X — X provided Sz =z = T'2.

The set of all fixed points of T" is denoted by F(T').

The following existence theorem of a contraction mapping and an asymp-

totically nonexpansive mapping are useful tools for our main results.
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Theorem 2.2.7. (Banach contraction principle, [67]) Let (X,d) be a com-
plete metric space and T' : X — X be a contraction mapping. Then we have the

following:
(i) There exists a unique fived point * € X.
(ii) For an arbitrary xo € X, the Picard iteration process defined by
Tpy1 = T,, g0

converges to x*.

Theorem 2.2.8. [68] Let C be a bounded closed convex subset of @ Banach space
E and let T : C — C be a nonexpansive mapping. If E is a reflexive Banach space

with normal structure, then T has a fived point.

Theorem 2.2.9. [54, Theorem 1] Suppose E is a Banach space with uniformly
normal structure, C is a nonempty bounded subset of £, and T : C = C is a
uniformly k-Lipschitzian. mapping with k < \/N(E). Suppose also there exists a

nonempty bounded closed convex subset C* of C with the following property (P):
z € C* implies w,(z) C C7,

where w,, () is the weak w-limit set of T' at =, i.c. the set
{y € E : y = weak — j“_ﬁ}o T iz for some nj — oo},

Then T has a fized point in C*.

Theorem 2.2.10. [69] Let C be a bounded, closed and convex subset of a uni-
formly convez: Banach space E. Then there ezists a strictly increasing, convex and

continuous function v : [0,00) — [0,00) such that v(0) = 0 and

4 (kl,. Sm ( ;El Ai:cf) - zj; AiS™ @i

for alln € N, {z1,%2,...,2.} C C, {A1, Ag,..., A} C [0, 1] with Yo Ai=1 and

1 m m
) < max ([lz; — @l - 15" — 5™ wl)

T 1<j<ksn

an asymptotically nonexpansive mapping S of C into E with the sequence {k,}.
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Lemma 2.2.11. [70, Lemma 1.6] Let E be a uniformly convex Banach space, C
be a nonempty closed convex subset of £ and S : C — C' be an asymptotically
nonezpansive mapping. Then (I — S) is demiclosed at 0, i.e., if v, = x and

(I — S)xz, — 0, then z € F(S5).

We next present the concept of Nonlinear semigroup.

Definition 2.2.12. A family & = {7'(s) : 0 < s < oo} of mappings of C' into itself
is called an asymptotically nonexpansive semigroup on C' if it satisfies the following

conditions:
(S1) T(0)z =z for all z € C;

(S2) T'(s+1t) =T(s)T(t) for all s5,t = 0;

(S3) there exists a sequence {k,} C [1,00) with lim,_, k, = 1 such that for all
z,y € C
|77 ()2 — T@)yll < kallz — yl|, ¥Vt >0, Vn > 1;

(S4) for all z € C, the mapping t — T'(t)z is continuous.

An asymptotically nonexpansive semigroup § is called nonexzpansive semi-
group if k, = 1 for all n > 1. We denote by F(S) the set of all common fixed points
of &, that is,

F(S)={ze€C:T(t)z =2,0<t < o0} = |F(T(t)).
£>0
A family S = {T'(s) : 0 < s < oo} of mappings of C' into itself is called

a strongly continuous semigroup of Lipchitszian mappings on C if it satisfies the

following conditions (S1), (S2), (S4) in previous and (S3'):

(S3") for each ¢ > 0, there exists a bounded measurable function L; : (0,00) —

[0,00) such that ||T'(¢)z — T'(t)yl| < LiJlz —yll, VYz,y € C.
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A strongly continuous semigroup of Lipchitszian mappings & is called sirongly
continuous semigroup of nonezpansive mappings if Ly = 1 for all ¢ > 0, and strongly
continuous semigroup of asymptotically nonexpansive if limsup, ., Ly < 1. Note
that for asymptotically nonexpansive semigroup S, we can always assume that the
Lipchitszian constant {L;}o are such that L, > 1 for each ¢ > 0, L; is non-
increasing in ¢, and lim, ,, I, = 1; otherwise we veplace L,, for each £ > 0, with
L, := max{sup,s, L,, 1}. We denote by I'(S) the set of all common fixed points of
S, that is,
E(S) =4z € 0" T(t)x = 2,0 < t < o= | E(T(®)-
t>0

Theorem 2.2.13. [71] Suppose C is a weakly compact, convex subset of a Banach
space E, and suppose that C has complete normal structure. Let S be a commutative
nonexpansive semigroup of C into itself. Then, there is a point x € C such that

T(x) =z for each T € S.

Now, we present the concept of uniformly asymptotically regular semigroup.
S is said to be uniformly asymptotically regular (in short, u.a.r.) on C'if for all

h > 0 and any bounded subset B of C,

lim sup ||T(R)(T'(s)z) — T'(s)z| = 0.

$700 B
The nonexpansive semigroup {o; : ¢ > 0} defined by the following lemma is an

example of u.a.r. nonexpansive semigroup. Other examples of u.a.r. operator

semigroup can be found in [72, Examples 17, 18].

Lemma 2.2.14. (sce [73, Lemma 2.7]). Let C be a nonempty closed convex subset
of a uniformly convexr Banach space I£, B a bounded closed convex subset of C, and
S ={T(s): 0 < s < oo} a nonezpansive semigroup on C such that F(S) # (. For
each h > 0, set oy(z) = %/ﬂt T(s)xzds, then

lim sup ||o¢(z) — T'(h)o(z)|| = 0. ‘ (2.2.1)

t—00 e
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Example 2.2.15. The set {0, : t > 0} defined by Lemma 2.2.14 is u.a.r. non-
expansive semigroup. In fact, it is obvious that {oy : t > 0} is a nonezpansive

semigroup. For each h > 0, we have

loe(z) = onan(z)]| =

oy(z) — %f T(s)oi(z)ds

|h f o) — T()(x))ds

IIffr(fb) T(s)oi(z)l|ds.

IA

Applying Lemma 2.2.14, we have

1 h
lim sup ||o(2) — onoy(z)]|| < h/ lim Sup llos(z) = anow()||ds = 0.
0 {—oo

{—oo zEB

Now, we collect some notations of monotonicity. The following definitions
(i),(ii) and (iii) are well-known definitions, (iv) can be found in [74], (v) and (vi)

can be found in [37], and (vii)-(x) can be found in [38].

Definition 2.2.16. Let ¢ : C — R be a function, and F': C =3 E* a multi-valued

mapping. Then F is said to be

(i) monotone if, for each u,v € C,

(v* —u*u=u) >0, Vu* € F(u) and v* € F(v);

(i) pseudomonotone if, for each u,v € C,

(w*,v—u) > 0= (v*,v—u) >0, Vu* € F(u) and v* € F(v);

(iii) quasimonotone if, for each u,v € C,
(u*,v—u) > 0= (v*,v—u) >0, Yu* € F(u) and v* € F(v);
(iv) relaxed 7—¢ monotone if there exist a mapping 7 : C x €' — F and a function

€ : E — R positively homogeneous of degree p, that is, £(tz) = tP£(z) for all

t > 0 and z € F such that

(TiL_T?J,’?(‘Tay)) Zf(-’b—y), V&:,yEC,
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(v) stably pseudomonotone with respect to the set U C E* if, I and F'(-) — £ are

pseudomonotone for every £ € U;

(vi) stably quasimonotone with respect to the set U C E* if, F' and F(-) — £ are

quasimonotone for every &€ € U;
(vii) ¢-pseudomonotone if, for each u,v € K,

(u*, v—u)+p(v)—¢(u) > 0 = (V' v—u)+d(v)—¢(u) = 0, Vu* € F(u) and v* € F(v);

(viii) ¢-quasimonotone if, for each u,v € K,
(u*, v—u)+d(v)—d(u) > 0 = (v, v—u)+¢(v)—d(u) > 0, Yu* € F(u) and v* € F(v);
(ix) stably ¢-pseudomonotone with respect to the set U C E* if, F' and F'(-) — ¢
are ¢-pseudomonotone for every £ € U;
(x) stably ¢-quasimonotone with respect to the set U C E* if, F'and F'(:) — € are
¢-quasimonotone for every £ € U.
We introduce the concept of stable f-quasimonotonicity with respect to the
set U C E* which is useful for establishing existence theorems for the main results.

Definition 2.2.17. Let f : C x C' — R be a bifunction, and F' : C =3 E* a

multi-valued mapping. Then F'is said to be

(i) f-pseudomonotone if, for each u,v € C,

(u*, v—u)+ f(u,v) > 0= (¥*,v—u)+f(u,v) >0, Vu' € F(u) and v" € F(v);

(ii) f-quasimonotone if, for each u,v € C,

(u*, v—u)+f(u,v) > 0= (v*,v—u)+f(u,v) = 0, Vu* € F(u) and v" € F(v);

(iii) stably f-pseudomonotone with respect to the set U C E* if, F and F(-) — ¢

are f-pseudomonotone for every £ € U;
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(iv) stably f-quasimonotone with respect to the set U C E* if, F' and F(-) —ﬁ@ﬁﬂﬁaﬁym

are f-quasimonotone for every £ € U.

Remark 2.2.18. 1. If f(u,v) = ¢(v) — ¢(u), where ¢ : C' = R, then the no-
tations of f-pseudomonotonicity, f-quasimonotonicity, stable f-pseudomono-
tonicity and stablé f-quasimonotonicity of the operator F' reduce to ones of ¢-
pseudomonotonicity, ¢-quasimonotonicity, stable ¢-pseudomonotonicity and
stable ¢-quasimonotonicity of the operator F, respectively. Those concepts

are introduced in [38].

2. If f = 0, then the notations of f-pseudomonotonicity, f-quasimonotonicity,
stable f-pseudomonotonicity and stable f-quasimonotonicity of the opera-
tor F reduce to ones of pseudomonotonicity, quasimonotonicity, stable pseu-
domonotonicity and stable quasimonotonicity of the operator I, respectively.

Those coneepts are introduced in [37].

Remark 2.2.19. We represent the implications between monotonicity and some

kinds of generalized monotonicity through the following diagrams:

(D1): monotonicity = stably psuedomonotonicity w.r.t. U =  psuedomonotonicity
4 4

stably quasimonotonicity w.r.t. U = quasimonotonicity

(D2) : monotonicity = stably ¢-psuedomonotonicity w.r.t. 7 = ¢-psuedomonotonicity

I |

stably ¢-quasimonotonicity w.r.t. U = ¢-quasimonotonicity

(D3) : monotonicity = stably f-psuedomonotonicity w.r.t. U = f-psuedomonotonicity

4 4

stably f-quasimonotonicity w.r.t. U = f-quasimonotonicity.

The inverse direction of each implication relationship mentioned by three diagrams
above does not hold in general. Example 2 in [75] had shown that a stably pseu-

domonotone mapping with respect to a closed line segment is not necessarily mono-
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tone; Example 3.1 in [76] had shown that a quasimonotone mapping may not be
pseudomonotone; Example 4.1 in [37] had shown that a stably quasimonotone
mapping is not necessarily stable pseudomonotone; Example 3.1 in [38] had shown
that stably ¢-pseudomonotone mapping may not be monotone, while Example
4.1 in the same paper had shown that a stably ¢-quasimonotone mapping is not
necessarily stably é-psendomonotone and ¢-guasimonotone mapping may not be

¢-pseudomonotone.

Let A, A; and A; denote the sets consisting of generalized monotonicity
in diagrams (D1), (D2) and (D3), respectively. Example 3.1 [38] had shown that
each of generalized monotonicity taken from the set A is independent of any one
taken from A, if ¢ = Ic. Also, the following two examples illustrate that cach of
generalized monotonicity taken from the set A, is independent of any one taken

from A; if f(u,v) # ¢(v) — ¢(u), where ¢ : ' = R.

Example 2.2.20. Let £ = R? and C = [3,5] x {0}. Let f: C x C' = [—00, 400,
F:C—E'=R?and ¢:C — R Dby

f(z,y) =y} —zyn and F(z)=[-5,1}x {0} and ¢(z) = z?,

where z = (2,,0),7 = (¥1,0). Then F is stably ¢-pseudomonotone with respect
to the set V := {(0,m) : m € R} but not f-quasimonotone. Indeed, we first show

that F' is ¢-pseudomonotone on C. If

0< (2% y—2) +6(y) —d(x) = 2y —21) +yi — 2

= (2] +w +z1)(y1 — 1)

Since &% € [~5,1] and 21,31 € [3,5], we get that 2] + 31 + 21 > 0. It implies that

11 — 21 > 0. Thus, we have

(v ,y —z) + oY) — d(z) = (Y1 + v +21) (Y1 — 21) 2 0.

Hence F is ¢-pseudomonotone on C.
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Next, we show that F'(-) — £ is ¢-pseudomonotone for each £ = (0,m) € V.
If

0< (2 —&y—a) + oY) —d(x) = 21 —z1) +yi — 2

= (21 +1 +z1) ([ — 1)

Since z; € [—5,1] and z1,y; € [3,5], we get that ] +y; +2; > 0. It implies that

¥y — 1 > 0. Thus, we have
(y' — & y—a)+ dy) — d(z) = (v +y1 + 21) (1 — z1) 2 0.
Hence F is stably ¢-pseudomonotone with respect to the set V.
Finally, we show that F' is not f-quasimonotone on C. Take z = (3,0),y =

(4,0),z* = (1,0) and y* = (—5,0). Then we have

(z*,y — o)+ f(z,y) = 21y — 1)+ — 1)
= (zy + 1)1 — 1)
= (14 (4)(41=3) >0,

but
'y —z)+ f(z,9) = nly—21) vy — 1)
= (¥i +y)m — 1)
= (-5+4+4)(4-3) <0,
Hence I is not f-quasimonotone on C. O

Example 2.2.21. Let £ =R? and C = [-1,2] x {0}. Let f : C xC — [—00, +0],
F:C—E*=R?and ¢:C — Rby

f(z,y) =y — =11 and F(z) = [%,3] x {0} and ¢(z) = a3,
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where z = (21,0),y = (y1,0). Then F' is f-pseudomonotone with respect to the
set V := {(0,m) : m € R} but not ¢-quasimonotone. Indeed, we first show that I’

is f-pseudomonotone on C. If

0< (a*y—a)+ f(z,y) = 27(v1— 1) + (v — 31)

= (a7 + 1)y —21).

Since ] +y1 > 0, we have 1 — 21 = 0.

Thus

0< (¥ y—ay+f(z,y) = vilyn —2) + 1 — 1)

= (g + )y —z1)

Hence F' is f-pseudomonotone on C'.

Next, we show that F(-) — £ is pseudomonotone for all £ € V. If

0< (6" —&y—a)+£(2,y) = o — 21+ ply — 1)

= (2] +y1)(y1 — 1)

Since =] + y1 > 0, we have y; — 21 > 0.

Thus

0< (@ y—a)+ flz,y) = vilyr— 1)+ vy —21)

= (y; + )y — 1)

Hence F' is stably f-pseudomonotone with respect to the set V.

Finally, we show that F' is not ¢-quasimonotone on C. If we take 2 = (—1,0),y =

(—3,0),z* = (3,0) and y* = (3,0), then we have that

(%, y—z) +d(y) — d(z) = 2i(y— 1)+ Y2 — 2}
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= zi(y1 —21) + 9] — 2] — =y +nn

= (zi4+z1+y)(n — 1)

1 1 g 1
= B-1-3)(5- (D=3 5=5>0
but
'y — @) +y) — ¢(a) = yilyr—a1) —yi+ ]
= yi(y — 1) — ¥ + 23 = Ty + w1y
= (i—z—y)(h—71) <0
4 1 1 Ny 1
= (=—1—N—=—-(-1)=—— ==——
3 N3 - ==5"5= 13 <0
Hence F' is not ¢-quasimonotone on C. O

2.3 Clarke’s generalized derivative
The purpose of this section is to present the basic facts of the theory of

generalized differentiation for a locally Lipschitz function.

Definition 2.3.1. [77] A function g : 2 — R is called locally Lipschitz on E if for
every 2 € I there exists a neighborhood U of z and a constant L, > 0, so called

Lipschitz constant, such that
l9(v) — g(w)| = Laflv — wil, Vo,wcU.

Definition 2.3.2. [77] The Clarke’s generalized directional derivative of the locally
Lipschitz mapping ¢ : E — R at the point € E with respect to the direction

v € F, denoted by ¢°(x;v), is defined by

t _
¢°(z;v) = limsup 9(y +tv) — 9(y)
y—x,tl0 t

We observe that in contrast to the usual directional derivative, the general-

ized directional derivative ¢° is always defined.
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Definition 2.3.3. [77] Let ¢ : E — R be a locally Lipschitz function. The Clarke’s
generalized gradient of p at z € E, denoted by dg(z), is a subset of a dual space
E* defined as follows

dg(z) = {{ € B* : (§,v) < ¢°(w;v), Vv € E},
where (-,-) denotes the duality pairing between E* and E.

Example 2.3.4. In this case, E =R and f(z) = |=| (f is Lipschitz by the triangle

inequality). If x > 0, we calculate

s 4 y+iv—1y
*(z;v) F = =
f (’7 ' U) y—%:{:l,llf.LO 1

v
so that df(x), the set of numbers f satisfying v > &v for all v, reduces to the

singleton {1}. Similarly, df(z) = {~1} if & < 0. The remaining case is = 0.
We find

. v, ifv>0
[P O3v) =
—v, ifv <0,

that is, f°(0;v) = |v|. Thus df(0) consists of those ¢ satisfying |v| = Cv for all v,
that is, 9f(0) = [—1,1] .

The following lemmas provide basic properties of the generalized directional
derivative and the generalized gradient.

Lemma 2.3.5. [77, Proposition 2.1.1] Let g : C — K be Lipschitz of rank L, near

z. Then

(i) the function v +» ¢°(z;v) is finite, positively homogeneous, and subadditive

on F, and satisfies
|9° (5 v)| < Lal|vll;

(ii) ¢°(z;v) is upper semicontinuous as a function of (z,v) and, as a function of

v alone, is Lipschitz of rank L, on F;
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(iii) ¢°(z; —v) = (=9)°(&;v);
(iv) for every v € E, we have ¢°(z;v) = max{(z,v), z € dg(z)};

(v) for every z € E the gradient dg(z) is nonempty, convex and weakly*-compact

subset of E* which is bounded by the Lipschitz constant L, of g near z.

Let € be a bounded open subset of RY and 7' : E — LP(§2;R¥) be a linear
compact operator, where 1 < p < co and k > 1. We shall denote % = T'(u) and ¢
i 1 . :
by the conjugated exponent of p, i.e., =+— = 1. Let j: {2 X R* — R be a function
P g

such that the mapping
i(-,y) : © - R is measurable, Vy € R". (j1)

We assume that the following conditions holds: either there exists { € L(§2; R)

such that

i@, 3) — (@, w)l < @)y — val, Vo € Q, Vyi,y2 € R, (j2)
or
the mapping j(z, -) is locally Lipschitz, Yz € (, (33)

and there exists C' > 0 such that
|zl < C(1+ [ylP™), Ve eQ,Vze dji(z,y) ()

Lemma 2.3.6. (77, Proposition 2.7.5]If J(¢) = [,ij(z,¢(z))dz, and j satisfies
either (j1) and (j2) or (j1) and (j3)-(j4), then J is uniformly Lipschitz on bounded

subsets, and one has

8J(p) C ] 0j(z, p(z))dz.

Let J : I?(Q;R*) — R be an arbitrary locally Lipschitz functional. For

each v € E there exists (see, for example [77]) z, € 9J (i) such that

J*(@;€) = (2, §) = max {(w,£),w € 8J()}.
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Denoting by T* : LI(S;RF) — E* the adjoint operator of T, ie., (z,T*y*) =
(Tz,y*) for all z € E and y* € L1(Q;R*). We define the subset U(J,T) of E* as

follows:
UJ,T)={-2z,:ue K,z, =T"2,}. , (2:3.1)

Remark 2.3.7. It is easy to obtain that J°(@; 0 — @) = (2}, v —u) for all u,v € E.

Indeed, Since 7™ is an adjoint operator of 7', for any u,v € E, we have

T(@59— ) = {zuy— 1)
— {2, T(v) — T(w))
— {2, T —u))
= (T2, v — 1)

= {5 v —h):

ul

2.4 CAT(0) spaces

In this section, we present the special metric space which has the geometry

defined on it. We also introduce the concept of several types of convergence on it.

Definition 2.4.1. [78] A geodesic path joining « € X to y € X (or, more briefly,

a geodesic from x to y) is a map ¢ from a closed interval [0,{] C R to X such that

(i) ¢(0) = z,c(l) =

(i) d(e(t),c(t)) = |t — | for all ¢, € [0, ).

In particular, ¢ is an isometry and d(z,y) = . The image « of c is called a geodesic

(or metric) segment joining x and y.

When it is unique this geodesic segment, is denoted by [z, y].
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Definition 2.4.2. The space (X,d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there

is exactly one geodesic joining z and y for each z,y € X.

Definition 2.4.3. A subset C of a CAT(0) space is convex if [z,y] € C for all

z,y € C.

Definition 2.4.4. A geodesic triangle A(z;, #s,23) in a geodesic metric space
(X, d) consists of three points @1, 29, z3 in X (the vertices of AA) and a geodesic seg-
ment between each pair of vertices (the edges of A). A comparison triangle for the
geodesic triangle A(zy, T2, 23) in (X, d) is a triangle Az, 2o, 23) = A(T1, T2, T3)
in the Euclidean plane E? such that dgz (Z;,T;) = d(z;,x;) for all 4,7 € 1,2,3 (see

Figure 1).

X 2

a7y T,

Figure 1 Comparison triangle

Definition 2.4.5. A geodesic space is said to be a CAT(0) space if all geodesic
triangles of appropriate size satisfy the following comparison axiom.

CAT(0) : Let A be a geodesic triangle in X and let A be a comparison triangle
for A. Then A is said to satisfy the CAT(0) inequality if for all z,y € A and all

comparison points Z,y € A\,
d(:’l;, y) < dE"’ (ﬁ? ?7)

(see Figure 2).
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Figure 2 CAT(0) inequality

Definition 2.4.6. Let x,y;,ys be the points in a CAT(0) space and y, be the

midpoint of the segment [, y2], then the CAT(0) inequality implies
2 Lo L Lo
d*(z, yo) < 5(1- (z91) + éd- (z,12) — Zd (Y1, Y2)- (CN)
This is the (CN) inequality of Bruhat and Tits [79]. In fact (cf. [78], p. 163),
a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

It is well known that any complete, simply connected Riemannian manifold
having nonpositive sectional curvature is a CAT(0) space. Other examples include
Pre-Hilbert spaces, R-trees (see [78]), Euclidean buildings (see [80]), the complex
Hilbert ball with a hyperbolic metric (see [81]), and many others. Complete CAT(0)

spaces are often called Hadamard spaces.
Next, we collect some useful lemmas in CAT(0) spaces.

Lemma 2.4.7. [78, Proposition 2.2] Let X be a CAT(0) space, p,q,7,s € X and
A€ [0,1]. Then

dAp e (1= XN)g, r @ (1 —A)s) < M(p,r) + (1 = N)d(q, s).

Lemma 2.4.8. [82, Lemma 2.4] Let X be a CAT(0) space, z,y,z € X and A €
[0,1). Then

dz @ (1= Ny, 2) < M(@, 2) + (1 — Nd(y, 2).
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Lemma 2.4.9. [82, Lemma 2.5] Let X be a CAT(0) space, x,y,z € X and A €
[0,1]. Then

POz @ (1 - Ny, 2) < AP (z,2) + (1 = Nd2(y, z) — A1 = N (z,y).

We give the concept of A-convergence and collect some basic properties.

Let {z,} be a bounded sequence in a CAT(0) space X. For z € X, we set

r(z, {z. } )&~ Am gap e, 'on).
n—oo

The asymptotic radius r({z,}) of {z,} is given by
r({}) = m{r(z, fa)) 10 € X,

and the asymptotic center A({z,}) of {z,} is the set
A{7}) = {2 &€ X t1(2, {2a)) = r({wa))}.

It is known from Proposition 7 of [83] that in a CAT(0) space, A({z,}) consists of

exactly one point.

Definition 2.4.10. A sequence {z,} C X is said to A-converge to € X if

A({zn,}) = {z} for every subsequence {x,, } of {z,}.

Uniqueness of asymptotic center implies that CAT(0) space X satisfies
Opial’s property, i.e., for given {z,} C X such that {z,} A-converges to x and

given y € X with y # =z,

lim sup d(z,,, z) < limsup d(z,,y).

n—eo n—eo
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Since it is not possible to formulate the concept of demiclosedness in a CAT(0)
setting, as stated in linear spaces, let us formally say that “I — T is demiclosed
at zero”if the conditions, {z,} C C A- converges to z and d(zy, Tz,) — 0 imply

z € F(T).

Lemma 2.4.11. [53] Every bounded sequence in a complete CAT(0) space always

has a A-convergent subsequence.

Lemma 2.4.12. [84] If C is a closed convez subset of a complete CAT(0) space
and if {x,} is a bounded sequence in C, then the asymptotic center of {x,} is in

C.

Lemma 2.4.13. [84] If C' is a closed convez subset of X andT : C — X s a nonez-
pansive mapping, then the conditions {x,} A-convergence to x and d(z,, Tz,) — 0,

and imply © € C' and Tz = x.

Definition 2.4.14. [85] Let X be a CAT(0) space and a,b,c,d € X. Then quasi-

linearization is defined as a map (-,+) : (X x X) x (X x X) — R defined by

(ab, cd) = % (P(a, d) +d2(b,¢) — d*(a,c) — d(b,d)) (2.4.1)
— B\ — — -3
It is easily seen that (@, cd) = (ed, ab), (@, Zf) = —(ba, cd) and (a%, cd) +
(J, c—>d) = (J,c—}d) for all a,b,c,d,z € X. We say that X satisfies the Cauchy-

Schwarz inequality if
(ab, cd) < d(a, b)d(c, d) (2.4.2)

for all a,b,c,d € X.

Having the notion of quasilinearization, Kakavandi and Amini [86] intro-

duced the following notion of convergence.
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Definition 2.4.15. A sequence {z,} in the complete CAT(0) space (X,d) w-
converges to z € X if limyoeo(ZZ, 24) = 0, i.€., liMps00 (*(Tn, ) — d*(Tn,y) +

d*(z,y)) =0 forally € X.

It is obvious that convergence in the metric implies w-convergence, and it
is easy to check that w-convergence implies A-convergence (86, Proposition 2.5],
but it is showed in ([87, Example 4.7]) that the converse is not valid. However the
following lemma shows another characterization of A-convergence as well as, more

explicitly, a relation between w-convergence and A-convergence.

Lemma 2.4.16. (87, Theorem 2.6] Let X be a complete CAT(0) space, {z,} be a

sequence in X and x € X. Then {z,} A-converges to « if and only if

limsup(zz,,, z}) < 0 for aly € X.

n—eo

Theorem 2.4.17. [78] Let X be a complete CAT(0) space, and let C be a nonempty

closed convez subset of X. Then,
(i) for every x € X, there exists a unique point yo € C, denoted by Fez, such
that d(z, ) = d(z, C) = infyec d(z,y);
(ii) if 2’ belongs to the geodesic segment |z, yo), then Pex’' = Foa.

Theorem 2.4.18. [88] Let C be a nonempty convex subset of a complete CAT(0)

space X, z € X and u € C. Then

w=Pex  if and only if (yh,ud) >0, fordlyeC.



