CHAPTER II1

ON THE EXISTENCE THEOREMS OF GENERALIZED

EQUILIBRIUM PROBLEMS

3.1 Existence theorems of the hemivariational inequality governed by
a multi-valued map perturbed with a nonlinear term in Banach

spaces

In this section, we present the existence of solutions for hemivariational
inequality governed by a multi-valued map perturbed with a nonlinear term when

C is a bounded(unbounded) subset of .

Let C' be a nonempty, closed and convex subset of a real reflexive Banach
space F withits dual B*, F': C = 2" a multi-valued mapping. Let {2 be a bounded
open set in RN, T': E — LP($);R¥) a linear continuous mapping, where 1 < p < oo,
k>1andj: QxR = R afunction. We shall denote @ := T, j°(z,y; h) denotes
the Clarke’s generalized directional derivative of a locally Lipschitz mapping j(z, )
at the point y € R¥ with respect to direction h € R¥, where z € Q. For the
bifunction f : C' x C — [—00,+0o] imposed the condition that the set D;(f) =
{ueC: f(uv)# —o0, Yo € C} is nonempty, in this research, we discuss the
following hemivariational inequality governed by a multi-valued map perturbed with

a nonlinear term(HVIMN):

Find u € D;(f) and v* € F(u) such that
(u*, v —u) + flu,v) + [, 7°(z, @(z); O(x) — 4(z))dz > 0, (3.1.1)
Yv e C.

For proving our results, we first list all conditions of a bifunction f.

A bifunction f: C x C — [—o0, +00] is said to satisfy the condition A if
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(i) Di(f) ={ueC: f(u,v)# —oo, Yv € C} is nonempty;
(i) f(z,z) =0 for all z € C;

(iii) f(z,y) + f(y,z) > 0 for all z,y € C,

(iv) for all y € C, f(:,y) is weakly upper semicontinuous;

(v) for all z € C, f(z,-) is convex.

Theorem 3.1.1. Let C be a nonempty, closed, bounded and convez subset of a real
reflexive Banach space E. Let f : C x C — [—00,+00] be a bifunction satisfying
the condition A. Let J : LP(§; RF) = R be a function

J() = / i),

and T : E — LP(5);R*) be a linear compact operator, where 1 < p < 0o,k > 1 and
Q is a bounded open set in RY. Let F : C =3 E* be a lower hemicontinuous set-
valued mapping and stably f-quasimonotone with respect to the set U(J,T) defined
in (2.3.1). Suppose further that j satisfies either (j1) and (j2) or (j1) and (j3)—(j4).

Then HVIMN has a solution.

Proof. For any v € C define a multi-valued mapping G : C' =3 F as follows:

Gv):={ueC: inf (v, v—u)+ f(u,v)+ J@v—-4) =0} (3.1.2)

vt EF(v)
Consider two cases of G: (a) G is not a KKM mapping, and (b) G is a KKM

mapping.

Case (a) If G is not a KKM mapping, then there exist u; € C and \; € [0, 1],
b= 1.9, c.s N with Zf‘;l A; = 1 such that ug = Zil A ¢ Uil G(u;), that is,

inf | (u:, Up — ’ltg) +f(ug, 'lti) + Jo(’lfo; ‘ﬁ-,; — 'lIG) < U,V'i € {1, 2, ey N} (313)

u EF(u;

We claim that there exists a neighborhood U of up such that for all v € UNC,

inf )(u}‘,ui—v)+f(v,u;)+J°(ﬁ;'&i—_t“J) <0,Vvie{l,2,...,N}

u: EF(H,‘
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If not, for any neighborhood U of ug, there exist vp € UNC and 4o € {1,2,...,N}

such that

inf (uj,ui, —vo) + f(vo, uip) + J°(o; Uiy — Do) = 0.

u;‘DEF(u,—O)

Putting U = B(ug, 1), so there exists v, € B(uo, ) N C such that

inf  (u], %, — Un) + f(Un, Uig) £ J°(0n; Bhig — 0,) = 0.
u;fUGF(uiD)

By Lemma 2.3.5 (ii), v, — up and A (iv), we obtain that

inf (U], uiy — wo) + Fuo, i) + J°(Dn; Uig —Uo) = 0,

¥ i io?
uiGGI‘(u,'D) :

which is a contradiction with (3.1.3), so we have the claim.
From Remark 2.3.7 and (3.1.3), there exists a neighborhood U of uy such
that for all v € U N C,

inf  (ul,u; = v) + f(v,w) + (2, 4 —v)

ufeF(u;)

:\ W7 e\ ) + f(v,w) + J°(6; 14 — )
u; €F(u;)

<0, Vie{l,2, ., N},

which can be rewritten as

inf (uf —(—2}), s —v)+ f(v,) <0, Vi€ {1,2,...,N}.
ui€F(uy)

By the stable f-quasimonotonicity of F' with respect to the set U(J, 1), we get that
sx;[z )(v* — (=22),u; —v) + f(v,u;)) <0, Vie {1,2,...,N},
v EeEF(v
which is equivalent to
s%g )('U*,u.,- —v) + f(v,w;) + J°(0; @ — 9) <0, Vie {1,2,...,N}.
vrel(v
From (i) of Lemma 2.3.5, A (v) and the linearity of 7', we have that

sup (v¥,uo — v) + f(v,u0) + J°(9; fig — )
v eF(v)
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N N N
= sup <v*, Z Aty — v> + f ('U, Z,\iui) + J° ('&; Z)\i'ﬁ,i — '8')
i=1 i=1

v*eF(v) =1

N
< Z’\" [ sup (v*,w —v) + f(v,u) + J° (D51 — 1‘))]
1=1

v eF(v)
<0 (314

By subadditivity of v — J°(z;v), gives that

J° (59 — 1) + J°(B; 00 — D) = J°(3;0) = 0.
"Combining the last inequality with (3.1.4), we obtain that

vti;}f(”) (v*,v—ug) — f(v,u0) + J°(0;0 —1g) = 0, Vv €UNC. (3.1.5)
It follows from A (iii) that

v"iGnFi:(U) (v*, 0 —ug) + f(ug,v) + J°(0;0 = ) 2.0, Vv e UNC. (3.1.6)

Let v' € C be any element and define

1 1 \
Up = —0 + (1 = —)up for all m € N.
m m

Thus, 1, — up as m — oo and hence there exists M € N such that
Uy, € UNC for all m > M.

For any given uj, € F(ug), since F' is lower hemicontinuous, there exists a sequence
{ut,} in F(u,,) converging weakly star to ug. It follows from (3.1.6) that for any

m > M,
(u:uum - “0) + f(uﬂpum) 4 Jo(ﬁ'm;ﬁm - '&0) >0,

By (i) of Lemma 2.3.5, linearity of 7, (A1) and (A4), we have that

1 1 1.
0 < <ufn, —(v' — ug)> + f (ug,ug + = - uo)) +J° (ﬁm; — (2 —'tfo))
m m m
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1 R
< — [(ufn,v’ — ug) + flug,v') + J° ('&m;v’ —ﬁﬂ)] .

Multiplying the last inequality by m and letting m — oo, from (ii) of Lemma 2.3.5,

we obtain that
(ug, v — ug) + f(uo,v') + J° ('&o; v — ﬁo) >0, Yo' € C. (3.1.7)

Since J () = [,, j(z, p(z))dz and j satisfies either (j1) and (j2) or (j1) and (j3)-(j4),

by Lemma 2.3.6, we get that
L.’}'o(l‘-, w(x); o(z) — w(z))dz > J°(@; 0 — @), Ya,v € C.
It follows from (3.1.7) that
(ug,v' — uo) + f(uo,v') + /p §°(e, @o(z); ' (2) — dio(z))da > 0,Yv" € C.

Hence HVIM N has a solution.

Case (b) If G is a KKM mapping. We consider the following mapping:

U il}f( ]('u’:', v—u) + flu,v) + J°(4; 0 —1). (3.1.8)
v ey

We claim that the above mapping is weakly upper semicontinuous. For given a
sequence {/z,} C C such that p,, — pg, it follows from linearity and compactness
of T that T, — Tpp; that is [, — fip as n —» oco. Since f(-,y) is weakly upper
semicontinuous for all ¥ € C' and Lemma 2.3.5 (ii), we have that
lim sup [ inf {(v*,v — ptn) + f(ptn, v) + J°(tn; 0 — fin)
nooo |V EF(v) _
< limsup ( inf (v*,v— ,un)) + limsup f(itn, v) + limsup J°(fh,; 0 — fin)

n—oo v*EF(v) n—o0 n—yco

< inf (v",v — jo) + f(1t0,v) + J°(Ho; 0 — flo)-

vteF(v)

Thus we have the claim. Then G(v) is weakly closed. It follows from the convexity
boundedness and closedness of a subset C' in a reflexive Banach space FE, we have

that C is weakly compact. Since G(v) C C, we get that G(v) is weakly compact for
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each v € C. Thus, all conditions of Lemma 2.2.3 are satisfied in the weak topology

and so we obtain that (),., G(v) # 0. Taking ug € [),¢c G(v), we have

1E1117f( )(’u*,v —up) + f(ug,v) + J°(@o; v — o) = 0, Vv € C. (3.1.9)

Let vy € C be arbitrarily fixed and define u,, = ug + %(vo — ). Then u, € C
for all n > 1. For any uf, € F(u), since F is lower hemicontinuous, there exists a
sequence {u*} in F'(u,) converging weakly star to ug. From (3.1.9), for any n > 1,

we have
(uf, u, — up) + fuo, un) + J°(tig; Un — 1) = 0.

In view of the linearity of T, A (v) and Lemma 2.3.5 (i), we have

! A 1 [ oo 5
0 o (H;, H(UO 4 ‘llg)) + f ('UU, Ug + ;(’UU =3 'llg)) -+ J° (’u(}; S(UD n 'll(]))

1 ' o .
< ¥ [{2%, vo — ug) + f (w0, vo) + J (2ip; o — to)] -

Multiplying the inequality above by n and letting n — co, we obtain that
{ug, vo — o) + f(uto, Vo) + J°(lig; ltg — i1g) > 0, Vo € C. (3.1.10)

Since J(¢) = [, i(x,¢(x))dx and j satisfies either (j1) and (j2) or (j1) and (j3)—(j4),

by Lemma 2.3.6, we get that
Lf(m,ﬁ(a;);ﬁ(x) —a(z))dz > J°(u4;0 — @), Yu,v € C.
This together with (3.1.10), we get
(ug, vo — ug) + f(‘U--Q,’U[]) - /gf(’a,,ﬂ('c),ﬁ(m) —a(z))dz > 0, Yy, € C.
Hence g is a solution of HVIMN. This completes the proof. O

Remark 3.1.2. Theorem 3.1.1 generalizes and improves some recent results. In

fact,



(i)
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If f(u,v) = ¢(v) — ¢(u), where ¢ : X — RU {400} is a proper, convex
and lower semicontinuous function such that Cy = C N dom¢ # B, then
Dy (f) = Cy, then Theorem 3.1.1 reduces to Theorem 4.1 of Tang and Huang
[38];

If f =0, then Theorem 3.1.1 reduces to Theorem 3.1 of Zhang and He [37];

If f =0 and the mapping / in Theorem 3.1.1 is single-valued, then Theorem
3.1.1 extends Corollary 1 of Costea and Radulescu [25] by relaxing the stably
pseudomonotonicity of F' in Corollary 1 of [25] to F' being stably quasimono-

tone;

Theorem 3.1.1 generalizes and improves Theorem 2 of Motreanu and Radulescu
[30] by extending I from the single-valued case to the set-valued one and by
relaxing the monotonicity of F' in Theorem 2 of [30] to F being stably f-

quasimonotone;

If f = 0 and the mapping F is single-valued, then Theorem 3.1.1 generalizes
and improves Theorem 2 of Panagiotopolos et al. [89] be relaxing the mono-
tonicity of I in [89] to F being stably quasimonotone and by extending F

from the single-valued case to the set-valued one.

Next, we omit the boundedness of C' in Theorem 3.1.1, we need to introduce

the concept of f-coercivity.

Proposition 3.1.3. Consider the following f-coercivity conditions:

(A) There exists a nonempty subset Vo contained in a weakly compact subset V;

of C such that the set
B={unelC: n}?f( )(v*,"u —u) + f(u,v) + J°(4;0 — @) > 0, Vv € W}
veF(v

is weakly compact or empty.



45

(B) There exists ng € N such that for every u € C\By,, there ezists some v € C
with ||v|| < ||u|l such that

sup (a0 —u) + f(u,0) + J°(@5 0 — @) < 0.
u*€F(u)

(C) There evists ng € N such that for every u € C\By,, there exists some v € C
with ||v|| < ||u|| such that

sup (u*,v—u) + f(u,v)+ / 7%z, u(x); 9(x) — @(z))dz < 0.
Q

u*€F(u)

Then we have

(i) (A) = (B), if F is stably f-quasimonotone with respect to the set U(J, T).

(ii) (C) = (B), if J(¢) = [, i(z, (x))dz, j satisfies either (j1) and (j2) or (j1)
and (j3)-(j4).

Proof. (i) If D = ), since V, is nonempty and contained in a weakly compact
subset V; of C, then there exists a natural number M < oo such that [|z|| < M
for all z € V. Taking np = M, we obtain that for every « € C\B,,, there exists

v € Vy # 0 such that v € B, and

inf {(v*,v—u)+ flu,v) +J° (&0 — @) <O. (3.1.11)

v* EF(v)

If D < 0, then D is weakly compact. Since DU Vy C DU V;, which is a weakly
compact subset, we conclude that there exists a natural number M < oo such
that ||z|| < M for all z € DU Vp. Taking ng = M, for every u € C\B,, and
(3.1.11) holds. Hence, from the proves of both case we can conclude that there
exists np € N such that, for any u € C'\B,,, there exists v € By, such that (3.1.11)
holds. Therefore,

0 > inf (v*,v—u)+ flu,v)+(z,v—u)
v*eF(v)

= inf (v",v— T80 — @
U*IGI};.(v)(U v —u) + f(u,v) + J°(4;0 i),
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and hence

sup (v* — (—2}),u —v) + f(u,v) > 0.
vrEeF(v)

Since F is stably f-quasimonotonicity with respect to U (J,T), we have

inf (u* —(—z),u—v)+ f(u,v) >0,
u*eF(u)

and then

sup (u*,v—u) + fu,v) + J°(4;0 = 4) < 0.
u*€F(u)

This complete the proof.

(ii) By Lemma 2.3.6, we get that

-/Qjc’(:c, W(z); 0(x) — w(z))de = J°(0; 0 — @), Vu,v € E.
Combining with (C), we get (B). 0
Remark 3.1.4. (1) If f(u,v) = ¢(v) — ¢(u), where ¢ : C — R, then the f-

coercivity conditions of Proposition 3.1.3 reduce to ¢-coercivity conditions of

Proposition 4.1 in [38].

(2) If f(u,v) = 0, then the f-coercivity conditions of Proposition 3.1.3 reduce to

coercivity conditions of Proposition 3.1 in [37].

Next, we present the main theorem for the unbounded constrained set.

Theorem 3.1.5. Let C be a nonempty, closed, unbounded and convexr subset of
a real reflexive Banach space E. Let f : C x C — [—o0,400] be a bifunction

satisfying the condition A. Let J : I?(Q;R*) — R be a function

39) = [ dtopla)ie
and T : £ — LP(S;RY) be a linear compact operator, where 1 < p < oo,k = 1 and
Q is a bounded open set in RN. Let F': C =% E* be a lower hemicontinuous sel-
valued mapping and stably f-quasimonotone with respect to the set U(J,T') defined
in (2.3.1). Suppose further that j satisfies either (j1) and (j2) or (j1) and (j3)-(j4).
If the condition (B) holds, then HVIMN has a solution.
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Proof. Take m > ng. Since B,y is bounded and convex, from (3.1.7) or (3.1.10) in
Theorem 3.1.1, we can conclude that there exists 4, € B, NC and uj, € F(un)

such that
(u’ng: um) + f(unn )+ Jo(u;n; 'ﬁ - u;n) 2 0, V'U e Bm ﬂ C- (3.1.12)
We consider two cases.

(a) If ||ttm|| = m, then ||unm]| > no. Since the condition (B) holds, there is

some vy € K with ||up|| < ||ttm|| such that
(“‘jm y & 7 (s UU) + St Yo — Up) <O (3.1.13)

Let v € C. Since ||vol| < |[wm]| = m, thereis ¢ € (0, 1) such that v, = vo+t(v—uo) €
B,, N C. Notice that T is a linear mapping and f(z,-) is a convex function. By

(3.1.12), (3.1.13) and (i) of Lemma 2.3.5, Tt follows that

0 < (U;I U — “m) i f(um; 'Ut) T JO(“-;n; Ug — “’;n)
= (u},, (1 —t)ug +tv — up) + f(tm, (1 — t)vo + tv)

LIy T ('l[m (1 = f)UO S P m)

S (1 y t) [( mu ry um) <= f(uma 'UO) 1z Jo(uﬂm; ﬁO i 'U:n)]
+t [(ul v = Uy [ (i, v) + I (s D — Unm)]
< t[{ul, v — Unm) F o (U, v) I (U T = 2)], YU € C. (3.1.14)

Dividing by £, we have that

(um? ’Um) g f(umv )+ Jo(um: um) >0, VweC. (3.1.15)

(b) If ||Jum|| < m, then for any v € C, there is ¢ € (0,1) such that v, =
N +1(v — V) € B,, NC. Notice that T is a linear mapping and f(z, -) is a convex

function. By (3.1.12) and (i) of Lemma 2.3.5, It follows that

0 < (um! Hm) F f(um! Ut) + Jo(um: (Y )
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< t[{,, v — ) + f(Um, ) + J° (U O — )], Yo € C.

Dividing by ¢, we have that (3.1.15) holds.

Since J(p) = [, j(z, p(z))dz and j satisfies either (j1) and (j2) or (j1) and
(33)-(j4), by Lemma 2.3.6, we have that

fj“’(n;, w(z); 0(z) — a(z))dz > J°(u;0 — 1), Yu,v € E,
0

and so

0 < (uf,v =W + fltmv) + I (Un; 0 — )

< 1,0 — ) + f(um,v) + / 7%z (2); 0(z) — U (z))dz, Yv e C.
0

This shows that HVIMN has a solution. O

Remark 3.1.6. (1) If f(u,v) = ¢(v) — ¢(u), where ¢ : C — R, then Theorem
3.1.5 reduces to Theorem 4.2 of [38].

(2) If f = 0, then Theorem 3.1.5 reduces to Theorem 3.2 of [37]. Theorem 3.1.5 also
generalizes and improves Theorem 2 of [25] by extending [ from single-valued
case to set-valued one and relaxing the corresponding coercivity condition and

stable pseudomonotonicity of the operator in [25].

If the constraint set ' is bounded, then the solution set of HVIMN is
obviously bounded. In the case of constraint set C' is unbounded, the solution set
of HVIMN may be unbounded. In the sequel, wé provide a sufficient condition
to the boundedness of the solution set of HVIMN, when C is unbounded. The

following theorem also generalizes Theorem 4.3 of [38].

Theorem 3.1.7. Let C' be a nonempty, closed, unbounded and convex subset of
a real reflexive Banach space E. Let f : C x C — [—o0,+00] be a bifunction

satisfying the condition A. Let J : IP(Q;R*) — R be a function

J(p) = f i(, o)) dz,
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and T : E — LP(S4;R¥) be a linear compact operator, where 1 < p < 00,k > 1 and
Q is a bounded open set in RN. Let F': C =3 E* be a lower hemicontinuous set-
valued mapping and stably f-quasimonotone with respect to the set U(J,T) defined
in (2.3.1). Suppose further that j satisfies either (j1) and (j2) or (j1) and (j3)-(34).
If the condition (C) holds, then HVIMN is nonempty and bounded.

Proof. From Proprsition 3.1.3, we have (C) = (B). By Theorem 3.1.5, we know
that the solution set of the problem (3.1.1) is nonempty. If the solution set is

unbounded, then there exist 1y € C and ujj € F(ug) such that [lug|| > no and
{(ug, v — uo) + flug,v) + / 3°(x, o (z); 9(x) —dp(z))dz > 0, Vv € C. (3.1.16)
Q

Since ||ug|| > no, it follows from condition (C) that, there exists vo € C' with
lvoll < ||uoll such that
sup (u*,vp — ug) + f(uo,v0) + /;j"(:v,iig(:v); Yo(z) — p(z))dz <0,
u* €F(up) JO

which is a contradiction with (3.1.16). This complete the proof. d

Remark 3.1.8. (1) If f(u,v) = ¢(v) — ¢(u), where ¢ : C = R, then Theorem

3.1.7 reduces to Theorem 4.3 of (38].

(2) If f =0, then Theorem 3.1.7 reduces to Theorem 3.3 of [37].

3.2 New generalized mixed equilibrium problem with respect to re-

laxed semi-monotone mappings in Banach Spaces

In this section, we introduce the new generalized mixed equilibrium problem
with respect to relaxed semi-monotone mappings. Using the KKM technique, we
obtain the existence of solutions for the generalized mixed equilibrium problem in
Banach spaces. Furthermore, we also introduce a hybrid projection algorithm for
finding a common element in the solution set of a generalized mixed equilibrium

problem and the fixed point set of an asymptotically nonexpansive mapping. The
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strong convergence theorem of the proposed sequence is obtained in a Banach space
setting.

Let f : CxC — R be a bifunction, n : C'xC — E** amapping, § : E** — R,
¢ : C — R two real-valued functions and let A : C x C — E* be a -§ semi-

monotone mapping. We consider the problem of finding u € C' such that
[(u,v) + (A(u, u), n(v,w)) + ¢(v) > o(w), YveC, (3.2.1)

which is called the generalized mized equilibrium problem with respect to relaved n-§
semi-monotone mapping (GMEP(f, A, 1, ¢)). The set of such u € C is denoted by
GMEP(f, A, n,¢), ie.

GMEP(f, A n,¢) ={u€ C: flu,v)+{A(u,u),n(v,u))+e(v) = o(u), YveC}

3.2.1 Existence Theorem

In the first part, we obtain the existence theorem for (GMEP(f, 4,7, ¢)).

For solving the mixed equilibrium problem, let us assume the following

conditions for a bifunction f: C'x C' — R:

(A1) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e. f(z,y)+ f(y,x) <0 for all 2,y € C;
(A3) for all y € C, f(-,y) is weakly upper semicontinuous;

(A4) for all z € C, f(z,-) is convex.

The following lemmas can be found in [9].

Lemma 3.2.1. [9] Let C be a nonempty, bounded, closed and convex subset of
a smooth, strictly conver and reflerive Banach space E, let T' : ¢ — E* be an

n-hemicontinuous and relazed n-€ monotone mapping. Let f be a bifunction from
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C x C to R satisfying (A1) and (A4) and let ¢ be a lower semicontinuous and

convez function from C toR. Let r > 0 and z € C. Assume that

(i) n(z,z) =0, VzeCl.

(i) for any fived u,v € C, the mapping x — (T'v,n(z,u)) is convez.

Then the following problems (8.2.2) and (3.2.3) are equivalent:

Iind © € C such that

£(@,) + ) + (T, n(w,2)) + -y — 5, (= 2) 2 ola), Vy € Cs
(3.2.2)

and

Find xz € C such that

f(2,9) () + Ty, 2) + -y~ 2, I~ 2) > o) +E(y — o), Vy € C.

(3.2.3)

Lemma 3.2.2. [9] Let C be a nonempty, bounded, closed and convex subset of
a smooth, strictly convex and reflezive Banach space E, let T : C — E* be an
n-hemicontinuous and relaved n-€ monotone mapping. Let f be a bifunction from
C x C to R satisfying (A1), (A3) and (A4) and let ¢ be a lower semicontinuous

and convex function from C' to R. Let v >0 and z € C. Assume that

(i) n(z,y) +n(y,z) =0 for all z,y € C;

(i) for any fized w,v € C, the mapping & v (Tv,n(z,u)) is convex and lower

semicontinuous;

(iii) £ : E — R is weakly lower semicontinuous; that is, for any net {zs}, {zs}

converges to z in o(E, B*) implies that £(z) < liminfg £(zp).
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Then, the solution set of the problem (3.2.2) is nonempty; that is, there exists

xg € C such that

f(zo,y) + (Tzo, n(y, o)) + (y) + %(y — xg, J (o — 2)) 2 p(x0), VyeC.

we prove the following crucial lemma concerning the generalized mixed equi-
librium problem with respect to relaxed ¢ semi-monotone mapping (GMEP(f, A, 7, ¢))

in a real Banach space with the smooth and strictly convex second dual space.

Lemma 3.2.3. Let E be a real Banach space with the smooth and strictly convex
second dual space E**, let C' be a nonempty bounded closed convex subset of E**,
let A: C x C - B* be a relazed n-€ semi-monotone mapping. Let f :C xC = R
be a bifunction satisfying (A1), (A3) and (Ad) and let ¢ : C = RU {400} be a
proper lower semicontinuous and convezx function. Let r > 0 and z € C'. Assume

that

(i) n(z,y) + 1(y,z) =0 forall z,y € C;

(ii) for any fized u,v,w € C, the mapping & — (A(v,w),n(z,u)) is convezx and

lower semicontinuous,

(iii) for each z € C, A(z,-): C — E* is finite-dimensional continuous: that s, for

any finite-dimensional subspace F' C E**, A(z,-) : CNF — E* is continuous;

(iv) £€: E** = R is convex lower semicontinuous.

Then there exists uy € C such that

s ) LA o 150 1,300 +(p(?})+%(v—uo, J(tp—2)) = plu), YveC.
(3.2.4)
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Proof. Let ' C E** be a finite-dimensional subspace with Cr := F'N C # 0. For

each w € C, consider the following problem: Find 4o € CF such that -

fug, v)+{(A(w, up), n(v, TI()))'{‘(P(U)"(‘“?];‘(U—‘HQ, J(ug—2)) —p(uo) = 0, Vv € Cp.

(3.2.5)

Since C C F' is bounded closed and convex, A(w,-) is continuous on Cpr
and relaxed 1-£ monotone for cach fixed w € C, from Lemma 3.2.2, we know that
problem (3.2.5) has a solution ug € Cp.

Now, define a set-valued mapping G': Cp — 2°F as follows:

Gw = {u € Cp: f(u,v) + (A(w, u),n(v,u)) + ©(v)

1
+ (v = J(u —2)) — p(u) 20, V0 Cp}.
It follows from Lemma 3.2.1 that, for each fixed w € Cp,

{u € Cp: flu,v) + (A(w, u), n(v,u)) + (v)

1
+ ?—(U —u,J(u— 2)) — p(u) 20, Vv e Cr}

={u € Cp: flu,v) 4+ (A(w,v),n(v,u)) + ¢(v)

it %(’U —u, J(u—2z)y—o(u) = €(v = u), Vo € Cr}.

Since every convex lower semicontinuous function in Banach spaces is weakly lower
semicontinuous, the proper convex lower semicontinuity of ¢ and &, condition (ii),
(A3) and (A4) imply that G : Cp— 2°F has nonempty bounded closed and convex
values. Using (A3) and the complete continuity of A(-, ), we can conclude that G
is upper semicontinuous. It follows from Theorem 2.2.4 that G has a fixed point

w* € CF, i.e.,

fw*,v) + (A(w*, w*), n(v,w*)) + (v)

+1(v —w*, J(w* — 2)) —p(w*) 20, Vvelp. (3.2.6)

r

Let _
F = {F C E** . F is finite dimensional with F'NC # 0}
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and let

Wr = {ue C: f(u,v) + (A(x,v),n(v,v)) + ¢(v) + 1—1_(@ —u, J(u — 2))

—o(u) > &(v—u),Yv € Cr}, VF € F.

By (3.2.6) and Lemma 3.2.1, we know that ¥ is nonempty and bounded.
Denote by W; the weak*-closure of Wy in E**. Then, W: is weak® compact in

E**.

For any F; € F, i = 1,2,...,N, we know that I"Vﬂ;.‘;lF,- C ﬂ:\;l Wk, so

W : F € F} has the finite intersection property. Therefore, it follows that
F

() Wi #0.
FeF
Let up € (\per W - We claim that

f(’l[g,‘U)*}'(A('UU.'Ug).'T](U,'Ug))—i‘ip('l))—l‘;l‘(?)‘—"llo, J(ug—2))—p(ug) 2 0, Vv eC.

Indeed, for each v € C, let I € F be such that v € Cg and ug € Cp. Then, there

exist u; € Wy such that u; — u. The definition of Wy implies that
1
fuj, v) + (A(ug,v), (v, u5)) +o(v) + ’—(v —u, J(uj— 2)) — p(uz) = (v —1uy),
that is
1 5
(a5, 0)+(A g, ), 1 0,0 @) (w2, T(ag—2)) = =5l = (u5) > (),

for all j =1,2,.... Using the complete continuity of A(-,u), (A3), (ii), the conti-
nuity of J, the convex lower semicontinuity of ¢, £ and || - ||* and letting j — oo,

we get
f (o, 9)+{Auo, v), 1)(v,u.g))+90(v)+?1j(v—ug, J(uo—2))—p(uo) > E(v—uo), Vv € C.
From Lemma 3.2.1, we have

(o, )+ (Ao, o), (v, u0)) +0(v) + (0 —0, T g —2)) — () 2 0, Vo € C.

Hence, we complete the proof. O



Setting A = 0 and ¢ = 0 in Lemma 3.2.3, we have the following result.

Corollary 3.2.4. Let E be a real Banach space with the smooth and strictly convex
second dual space E**, let C' be a nonempty bounded closed convex subset of E**.
Let f: C x C = R be a bifunction satisfying (A1), (A3) and (A4). Letr > 0 and

z € C. Then there exists ug € C such that

f(ug,v) + %(U —ug, J(ug —2)) 20, Yvel.

If E is reflexive (i.e. E = E**) smooth and strictly convex real Banach

space, then we have the following result.

Corollary 3.2.5. Let E be a reflexive smooth and strictly convex Banach space,
let C be a nonempty bounded closed convex subset of E, let A: C x C — E* be a
relazed n—€¢ semi-monotone mapping. Let f : C' x C — R be a bifunction satisfying
(A1), (A3) and (Ad) and let ¢ : C' — RU {400} be a proper lower semicontinuous
and convex function. Let r > 0 and z € C. Assume that

(i) n(z,y) +n(y,z) =0 for all z,y € C;

(i) for any fived w,v,w € C, the mapping & — (A(v,w), n(z,u)) is convex and

lower semicontinuous;
(iii) for each z € C, A(z,-) : C — E* is finite-dimensional continuous.

(iv) £€: E — R is convex lower semicontinuous.
Then there exists ug € C such that

[ (ug,v) + {(A(ug, ug), (v, uo)) + @(v) + %(v —ug, J(ug — 2)) = p(ug), YveC.

If E is reflexive (ie. E = E**) smooth and strictly convex, A is semi-

monotone, then we obtain the following result.
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Corollary 3.2.6. Let E be a reflexive smooth and strictly convex Banach space,
let C' be a nonempty bounded closed convex subset of E, let A: C x C' — E* be a
semi-monotone mapping. Let f : C x C — R be a bifunction satisfying (A1), (A3)
and (A4) and let  : C — RU {400} be a proper lower semicontinuous and convex

function. Assume that, for anyr >0 and z € C,

(i) for any fired u,v,w € C, the mapping z = (A(v,w),z — u)) is convez and

lower semicontinuous;

(ii) for each z € C, A(z,-) : C — E* is finite-dimensional continuous.
Then there exists ug € C such that
1
flug,v) + (Alug, o), v — ug) + @(v) + ?—(U —ug, J(ug — 2)) > plug), VYveC.

Theorem 3.2.7. Let E be a real Banach space with the smooth and strictly convex
second dual space E**, let C' be a nonempty, bounded, closed and convex subset of
E* let A:C x C — E* be a relazed n—€ semi-monotone mapping. Let f be a bi-
function from C x C to R satisfying (A1)~(A4) and let v be a lower semicontinuous
and convez function from C to R. For-anyr > 0, define a mapping ®, : E* — o

as follows:

B z) = {u € C: f(u,v) + (A(u,u), n(v,u)) + ¢(v)

+ %('U —u, J(u— 1)) > p(u),Vv € G} (3.2.7)

for allz € E. Assume that

(i) n(z,y) +n(y,z) =0 for all z,y € C;

(ii) for any fived u,v,w € C, the mapping x — (A(v,w),n(z, u)) is convex and

lower semicontinuous;
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(iii) for each z € C, A(z,*) : C — E* is finite-dimensional continuous: that is, for
any finite-dimensional subspace ' C E**, A(%,-) : CNF — E* is continuous;
(iv) €: E** — R is convez lower semicontinuous;
(v) for any z,y € C, £(x —y) +&(y —2) 2 0;

(vi) for any z,y € C, A(z,y) = Ay, z).
Then, the following holds:

(1) @, is single-valued;
(2) (@2 — D,y,J(D,x — z)) < (Px — Ppy, J(@,y — y)) for adll z,y € F;
(3) F(2,.) =GMEP(f,A,np);

(4) GMEP(f,A,n,¢) is closed and convex.

Proof. For each & € E**, by Lemma 3.2.3, we conclude that ®,.(z) is nonempty.

(1) We prove that @, is single-valued. Indeed, for z € E™ and r > 0, let z,

29 € ®,.(2). Then,

fz1,v) + (A(z1, z1), (v, 21)) +(v) + %(U — zyJ(z1 — 2)) = (z1), Vel

and

F(z2,0) + (A, 22), 10, 2)) + 9(0) + (0 — 22, T2 = ) = 0(a), Yo € C
Hence |

Fler, ) + (Ao 1), 1o, ) + () (2 — 1, T = ) 2 ()
and

f(z2, 21) + (A(z2, 22), 1(21, 22)) + p(21) +-%(Z1 — 23, J (22 — 2)) = p(2).



Adding the two inequalities, from (i) we have
flz2,21) + f(21, ) + (A2, 21) — Al22, 22), 022, 21))
1
From (A2), we have
1
(A(ZI,Z]) - A(ZQ, ZQ),'U(ZQ, 21» + ;(ZQ — 21, J(Zl = 3:) = J(Zg = ’L)) > 0.
(3.2.9)

That is,

%(22 — 21, (7 — &)= J(za — 7)) > (A2, 22) — A1, 21), (2, 1)) (3.2.10)

Calculating the righthand side of (3.2.10), we have

(A(z3, 22) = A(z1, 21), (22, 1))
= (A(zg,2) — Alz2y 21) + Alza, 21) — Alz1, 22) + Alz1, 22) — Az, 21), (22, 21))
= (A(22,22) — Az, 21), (22, 21)) + (A2, 21) = A(21, 22), (22, 21))
+ {A(21, z2) — A(z1, 21)s (22, 21))

2 25(32 - Zl) -+ (A(Zz, 21) -~ A(Zh Z‘Z)a 17(22, Zl));

and so,

Y 1, I —2) — Tz —2)) S 22 = ) + (Alzn, 21) — Az, 22), 12, 21))

7
(3.2.11)
In (3.2.11) exchanging the position of z; and z3, we get
1 .
;(Zl — Z9, J(Zg = SE) — J(21 — ’L)) 2 26(.21 = Zg) + (A(ZI, 22) — A(Zg, 21), 'I](Z], Zz))
(3.2.12)

Adding the inequalities (3.2.11) and (3.2.12) and using (v) and (vi), we have

(Zg -z, J(Zl - ’L) - J(Zg - IL‘)) 2 i (5(22 = Zl) +§(z1 = Zg)) 2 0. (3213)



Hence,
0< (29— 21,d(21 — %) — J(22 — 2)) = ((22 — @) — (21 — 2), J (21 — @) — (22 — 7))

Since J is monotone and E** is strictly convex, we obtain that z; —x = 23 — 2 and
Y )

hence z, = z. Therefore @, is single-valued.
(2) For z,y € C, we have

f(@,z, ,y) + (A(Dz, D,2), 9(Dry, P.2)) +9(2,y) — @(D)2)

1
+ - (B — 2,0, J(Brw — ) 2 0
and

[(@py, @)+ (A(2ry, D,1), 1( 212, 1Y) + @(Prz) — 0(2ry)

1
+ =Pz — Dy, J(Pry —y)) = 0.
v
Adding the above two inequalities and by (i) and (A2), we get

(A(Pp, D,20) — A(Dpy, Bpy), 1( D1y, D,2))

1
+ ?—‘((D,.y — &2, J(O,z—2a) - J(Py—y)) =0, (3.2.14)
that is

%((I)r'y—(l)rw: J(@,z—2)—J(Pry=7)) > (A(P;7, @) — A(D,z, ), n(P,y, P,z)).

(3.2.15)
After calculating (3.2.15), we have

%((Iﬂ,y — ®,z, J(P,z —z) — J(Ppy — ¥))

> 2%(D,y, ®,z) + (A(D,y, P,z) — A(P,z, 2,y),n(Dry, Pr2)). (3.2.16)
In (3.2.15) exchanging the position of ®,x and ®,y, we get

1 .
7_((1):3' = (I)ry: J((I)ry - y) - J((I),.’L - :L))
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> 26(®,x, D,y) + (A(Prz, 0,y) — A(Dyy, Br2), (21, ®,y)). (3-2-17).
Adding the inequalities (3.2.16), (3.2.17), use (i) and (vi), we have
(D, — Oz, J(Dx — ) — J(Dy —y)) > r(€(Prz, Bry) +£(Pry, 7). (3.2.18)

It follows from (iv) that

(@, — @z, J(P,z — z)— J(Qy — 7)) 2 0. (3.2.19)
Hence
(@2 — @y, J(Prz — z)) < (02— Dy, J(Pry —¥)). (3.2.20)

(3) Next, we show that F(®,) = GMEP(f, A,n, ). Indeed, we have the following:

ue F(P®,) & u=9>ou
& flu,v) + (A(u,u), n(v, w)) + o(v)
| :
+;<'U —u, J(u—u)) > pu), Vel

s flu,v) + (A(w, w), v, w)) + o) > e(u), Yvel

& uwe GMEP(f.A,n,¢). (3.2.21)

Hence, F(®,) = GMEP(f,A.n,¥).

(4) Finally, we prove that GMEP(f, A,7, ) is nonempty closed and convex. For

each v € C, we define the multi-valued mapping G : C — 2" by
G(v) = {u € C: f(u,v) + (Alu,u),n(v,w)) + p(v) = p(u)}.
Since v € G(v), we have G(v) # 0.

First, we prove that G(y) is closed for each y € C. For any y € C, let {z,}

be any sequence in G(y) such that =, — zo. We claim that 2y € G(y). Then, for
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each y € C, we have
F(@n,y) + (A(Zn, T0), 1y, 20)) + 0(y) 2 @(22).
By monotonicity of A, we obtain that

f(@n, y) + (A(@n, 1), 1Y, 2)) +0(y) = @) +E(y — ).

By (A3), (i), (ii), (iv), lower semicontinuity of ¢ and the completely continuity of

A, we obtain the following

(o) + (Ao, y), (@ y)) < liminf () + Him it (Al ), 00, 1))

n—oo

< liminf(p(zn) + (Al2n, y), (70, )))
= liminf(p(zn) = (A(@n, ¥), (Y, 2a)))
< limsup(p(zn) — (A(zn, y), 1(¥, 21)))
< li;zszp(f (@, y) +0(y) — &y — @)
< flzo,y) + o(y) — &€(y — o).

Hence,

f(@o,y) + (Alz0, ), n(y; @0)) + (y) = w(0) +€(y — x0); Vy € C.
From Lemma 3.2.1, we have

f(@o,y) + (A(2o, %o). My, Z0)) + ©(y) = w(x0), Vy € C.

This shows that zy € G(y) and hence G(y) is closed for each y € C. Thus
GMEP(f,A,n,¢) =(,cc G(y) is also closed.

Finally, we prove that GMEP(f, A,n, ¢) is convex. In fact, let v,v € F(®,)

and z, = tu+ (1 —t)v for t € (0,1). From (2), we know that
(Pou — Dpzg, J(Ppzg — ) — J(Pruu — w)) > 0.

This yields that

('U, = (I‘rzt, J((I)TZL £ Zt)) Z 0. (32.22)
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Similarly, we also have
Y,

(v— P2, J (P2, — 7)) > 0. (8.2.23)

It follows from (3.2.22) and (3.2.23) that

”Zf = (I),‘zf_ ”2 (Zt — (I)?‘Zt) J(Z[ == @,.Z:)}
= tlu—=D@.z, J(z — Orz)y + (1 = 1) (v — Pz, J(2 — Priz))
=0

Hence z € F(®,) = GMEP(f,A,n,¢) and hence GMEP(f, A,n,¢) is convex.

This completes the proof. (|
If E isreflexive (i.e. E = E**)smooth and strictly convex, then the following
result can be derived as a corollary of Theorem 3.2.7.

Corollary 3.2.8. Let E be a reflexive smooth and strictly convex Banach space,
let C be a nonempty, bounded, closed and convex subset of E, let A: C x C — E*
be a relazed n-¢ semi-monotone mapping. Let f be a bifunction from C x C' fo
R satisfying (A1)-(A4) and let ¢ be a lower semicontinuous and convex function

from C toR. Let r > 0 and z € C and define a mapping @, : E — C' as follows:
B.(g) = {u € C: f(u,v) +{A(u,u),n(v,w)) + ©(v)
1
+ ;(v —u, J(u—z)) > p(u),Yv € C‘}

for all z € E. Assume that

(i) n(z,y) +n(y,z) =0 for all z,y € C;

(ii) for any fived u,v,w € C, the mapping & — (A(v,w),n(z,w)) is convezx and

lower semicontinuous;

(iii) for each x € C, A(z,) : C — E* is finite-dimensional continuous;



63

(iv) £: E — R is convex lower semicontinuous;
(v) for any z,y € C, {(z —y) +&(y —2) 2 0;

(vi) for any z,y € C, A(z,y) = A(y, ).
Then, the following holds:

(1) @, is single-valued,
(2) (2rz — Dpy, (P2 — @) < (Pvx — Dy, J(Rry — y)) for all 2,y €
(3) F(®,) =GMEP(f,A,n¢);

(4) GMEP(f, A, n,¢) is closed and convex.

3.2.2 Stirong Convergenve Theorems

In this section, we prove a strong convergence theorem by using a hybrid projection
algorithm for an asymptotically nonexpansive mapping in a uniformly convex and

smooth Banach space.

Theorem 3.2.9. Let E be a real Banach space with the smooth and uniformly
convez second dual space E**, let C' be a nonempty, bounded, closed and convex
subset of E**. Let f be a bifunction from C'xC toR satisfying (A1)~(A4) and let @
be a lower semicontinuous and convez function from C toR. Let A: CxC — E* be
a relazed n-€ semi-monotone and let S : C' — C be an asymptotically nonexpansive

mapping with a sequence-{kn} C [1,00) such that k, — 1 as n — oo. Assume that
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Q= F(S)NGMEP(f, A, n,) # 0. Let {x,} be a sequence in C' generated by

[ #€C,Dy=Co=C,

C, =7t0{z € Cy_1 : ||z — S™2|| < tu|lzn — S"zn||}, n 20,

u, € C such that

 fun,y) + oY) + (A, wa), (Y, tn)) (3.2.24)
+2{y — up, J(up — 2,)) > o(u,),Vy € C,n = 0,

Tn

D, = {2z € Dy 1 Jof =277 (%0 - un))}, n2>1,

\ $n-+-1 - PC,-'I"]D":EU) n 2 0)

where {t,} and {r,} are real sequences in (0,1) such that lim, st = 0, and

liminf, o 7mn > 0. Then {z,} converges strongly, as n — o0, to Pawo.

Proof. Firstly, we rewrite the algorithm (3.2.24) as the following:

Ty € C, DU = Cz‘u = C,
C, Fico{z € Cui: |25 2|\ < tyllzn = St} =10,

n — {Z € Dn—l : ((I),‘“;L‘” — Z, J(:E” - (I)r'n-q—;n” = U}; nz 1:

(3.2.25)

| Tt = Pe.np,%oy 120,

where ©, is the mapping defined by

. (z) = {2z € C: f(z,9) + (A(z, 2),n(y, 2)) + ©(y)

+ }('q — z,J(z —®)) 2p(z), Vy € C}. (3.2.26)

We first show that the sequence {x,,} is well defined. It is easy to verify that C,ND,
is closed and convex and Q C C,, for all n > 0. Next, we prove that Q C C, N D,.
Since Dy = C, we also have 2 C CoN Dy. Suppose that Q C Cr_1N Dy for k = 2.

It follows from Theorem 3.2.7 (2) that
(@, 21 — Ppott, J(Pru — u) — J(Rp 2 — zx)) >0,
for all v € §2. This implies that

((I)rkmk — U, J(mk - (I’rka:k)) = 0)
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for all u € Q. Hence Q C D,. By the mathematical induction, we get that
Q c C,N D, for each n > 0 and hence {z,} is well-defined. Put w = Pnx,. Since

Qc C,NnD, and z,41 = Pc,np,, we have

Znt1 — 2oll < llw — zol|, » = 0. (3.2.27)
Since z,,2 € D41 C D, Eu.id Tny1 = Pe.np, %o, we have

|#n11 — @oll < llTasa — 2oll-

= d for some a constant

Since {||z. — @o||} is bounded, we have lim,_, ||z, — Zo

d. Moreover, by the convexity of D,,, we also have %(:z:nﬂ + &,42) € Dy, and hence

1

< 5 (Il = wsall + 3o = 2nsal])

3373:}-1 - Tni2

”fUO ¥ :EnJrl“ S Top — — 9

This implies that

1 |

H ap Fi 9
5(5’30 Ty a) + 5(550 — Tn+2) ol LA

2

= lim =3d.

n—od

lim
n—oo

Tg —

By Lemma 2.1.25, we have

nlglolo |z, — zalafh= O (3.2.28)
Next, we show that

nlgl;zo ||zn — Sz|| = 0. (3.2.29)

To obtain (3.2.29), we need to show that lim,,_, [|:1,,I — 'S“*""a;n“ =0, Yke N.
Fix k € N and put m = n — k. Since z, = Pg,_,np, &, we have 2, € Cp,1 C

. C C,,. Since t,, > 0, there exist y1,...,yn € C and nonnegative numbers

ALy Ay with A + -+ + Ay = 1 such that

N
Tp — E Aili
i=1

< tm, (3.2.30)
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and ||yi—S™ || < ti||Tm—S™%m|| foralli € {1,...,N}. Put M = sup,ec ||lzl|, v =
Ppsyz and 1o = sup,s; (1 + kn)||#n — u|. Since C and {ky,} are bounded, (3.2.30)

implies

1 N
Tp — E;f\i?}i

N
Tn — Z Ai’yi
i=1

< (1 _ %) Mt

(3.2.31)

1 1
< = e ol =
_Q %>MHM

and "yl o Smyz’” S tm”:Em - S’”g_;m” S tm(l - "\"n])”l‘:n s ‘IL” S T‘Oim for all 2 €

{1,..., N}. Therefore

1 1
Hy,- - ?‘—Smyi‘ < (1 - *) M + 1ot (3.2.32)
foralli € {1,..., N}. Moreover, asymptotically nonexpansiveness of S and (3.2.27)

give that

1 -
_ﬁw(gpm)_gmn
=1

kLA

1
< (1 - )Mthm. (3.2.33)

It follows from Theorem 2.2.10, (3.2.31)—(3.2.33) that

N N
VITL 1 1 1171
”-’L‘n —0 3311“ < Tp — r Z)‘z’yi + f\_ Z/\i(yi B ?}i)
L P moliq
1 N N
+k— Z )\!-S’”yg L% Sm (Z /\iyg) ‘
he Ve i=1
1 &
+les" (Z /\iyg) — 5"z,
i=1
1 Tgtm
< 2(1-— M+ 2t, + ——
< 21 ) Mt

— 1 m m
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Since lim, o b, = 1 and lim, o t, = 0, it follows from the last inequality that

lim,, 0 |20 — S™a,|| = 0. We have that

llzn = Szall = [l — 8" all + 15" 20 — Sl

< |z = Sz + k1 ||S" 2, — za|| — 0 as n — oo.

Since {z,} is bounded, there exists a subsequence {z,,} of {z,} such that z,, —
& € C. Therefore, we obtain & € F(S). Next, we showthat Z € GMEP(f, A, n,¢).
By the construction of D,,, we see from Theorem 2.1.35 that @, z, = Pp_ z,. Since

ZTps1 € Dy, we get
|zn = @r.2nll < 20 — Tagal| = 0. (3:2.34)

From (C2), we also have

2

T

HJ(:BH 2 (I)rn:l:n)

1
= —||lzn — D, za]| -0, (3.2.35)
Tn

as n — co. By (3.2.35), we also have ¢, x, — &. By the definition of ®,, , for

each y € (', we obtain

f ((I)rﬂimn.‘:y) e (A ((I)?‘ui:vni’ q)'"n,-"rni)

1
1
R <y = (I)r,ll.mn” J ((I)Fnl.ﬂ’.r‘l,' . :L‘n,')> >

Fis

('I ) q)rniwn,‘)> g (P(y)
(67

((I)r"‘.mn,-) .

By (A3), (3.2.35), (ii), the weakly lower semicontinuity of ¢ and complete

continuity of A we have

p(Z) < liminf (p(@rnia;n,.)

i—00
it hfl'gglff ((I)rnimni: y) + h:]_],!)?f (A ((I)rn‘.ﬂ;n,‘: (Er“..fcn,-) ;7](3!: q)rﬂl.ﬂ';n.-))

1
+ ¢(y) + lim inf - (y — @, T, J (P, Ty, — mm))
i— 00 ‘ni s J

[(@,y) + o(y) + (A(Z, 2), n(y, T))-

IA
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Hence,
(&) + oY) + (A, ),n(y, 2)) = (Z).

This shows that # € GMEP(f, A,n,¢) and hence & € Q := F(S)YNGMEP(f, A,n, ¢).

Finally, we show that 2, — w as n — oo, where w := Pozy. By the weakly
lower semicontinuity of the norm, it follows from (3.2.27) that

[lzo — w|| < [Jzo — 2| < lig(i;)lf lzo — 2, ]| < ]ilili}s;lp |lzo — zn; |l < [lzo — w]l.

This shows that

Jim [l — a5 = e — wl = lloo— |

and ¥ = w. Since E** is uniformly convex, we obtain that zo — z,, — zy — w.
It follows that @,, — w. By Lemma 2.1.38, we have z, — w as n — oco. This

completes the proof. Ol

If S is a nonexpansive mapping in Theorem 3.2.9, then we obtain the follow-
ing result concerning the problem of finding a common element of GMEP(f, A, 0, ¢)

and the fixed point set of a nonexpansive mapping in a Banach space setting.

Theorem 3.2.10. Let E be a real Banach space with the smooth and uniformly
convex second dual space E**, let C be a nonempty, bounded, closed and convex
subset of E**. Let f be a bifunction from C x C to R satisfying (Al)-(A4) and let
@ be a lower semicontinuous and convez function from C toR. Let A: CxC — E*
be a relaxed n-¢ semi-monotone and let S : C — C be a nonezpansive mapping such

that Q == F(S)NGMEP(f, A,n,¢) # 0. Let {z,} be a sequence in C' generated



(4 €C,Dy=Co =G,
C,=t0{z€Cp_y:|lz— 52| < tullzn — Szall}, n =0,
u, € C such that
¢ S, y) + 9(Y) + (Atn, Un), 1(Y, un))
(Y — tn, J(un — 7)) = (un),Vy € Cim 20,
D, ={z € D, : (ud™ otttz 1,

L Tnyl = PCnﬂanEO? nZ 07
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where {t,} and {r,} are real sequences in (0,1) such that lim,ot, = 0, and

liminf,_ o 7 > 0. Then {z,} conuverges strongly, as n — oo, to FPaly.

Putting A = 0 and ¢ = 0 in Theorem 3.2.9, then we have the following

result in a Banach space.

Theorem 3.2.11. Let E be a real Banach space with the smooth and uniformly

conves, second dual space E**, let C' be a nonempty, bounded, closed and convex

subset of E**. Let f be a bifunction from C' x C to R satisfying (ALl)-(A4). Let S :

C — C be an asymptotically nonexpansive mapping with o sequence {k,} C [1, 00)

such that Q == F(S)NEP(f) # 0. Let {x,} be a sequence in C generated by

29 € C, Dy = Cy =0,

C, = @{z € Cp_"MZ=S7Z|| <t || n—B20f[}, n >0,
U, € C such that

Fun, ) + 2y — o, J(tn — 7)) 2 0,¥y € Cyn 2 0,

Dy ={2€ Dn1: {un—2,J(za —wa))}, n21,

. $H+1 = PC"r]Dﬂfv(}, n -—>— 03

where {t,} and {r,} are real sequences in (0,1) such that limy oo tn = 0, and

liminf,_eo 7 > 0. Then {z,} converges strongly, as n — oo, to PaZq.

Putting f = 0,A =0, ¢ = 0 and 7, = 1 in Theorem 3.2.9 and applying

Lemma 2.1.35, we get ©, = u,. Then we have the following new approximation
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method concerning the problem of finding a fixed of an asymptotically nonexpansive

mapping in a Banach space.

Theorem 3.2.12. Let E be a real Banach space with the smooth and uniformly
convex second dual space E**, let C' be a nonempty, bounded, closed and convex
subset of E**. Let S : C — C be an asymptotically nonexpansive mapping with a
sequence {k,} C [1,00) such that F(S) # (. Let {z,} be a sequence in C' generated
by

zy € C,Cp = C,

C, =fF 2[E 0.7 |z — S™2| < tallz. — S"zll}, e O

zo /= Be.zof 7 20,

where {t,} and {r,} is a real sequence in (0,1) such that lim, ;s t, = 0. Then

{z,} converges strongly, as n — 00, to Pr(s)%o.

If 5 is reflexive (i.e. E = E**) smooth and uniformly convex, then the

following results can be derived as a corollary of Theorem 3.2.12.

Corollary 3.2.13. Let E be a reflezive smooth and uniformly convex real Banach
space, let C' be a nonempty, bounded, closed and conves subset of 5. Let S : C'— C
be an asymptotically nonezpansive mapping with o sequence {k,} C (1, co] such that

F(S) # 0. Let {z,} be a sequence in C generated by

Tg € C, C() = C,
C, =to{z € Cy—y : ||z — S™2|| < tullzn — 5"z}, = =0,
Tpp1 = PCH:L‘D} a2,
where {t,} and {r,} is a real sequence in (0,1) such that lim, ,eot,, = 0. Then

{z,} converges strongly, as n — co, to Pp(s)%o.
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3.3 Existence and strong convergence theorems for generalized mixed
equilibrium problems of a finite family of asymptotically nonex-

pansive mappings in Banach spaces

In this section, we first prove the existence results of solutions for GMEP
under the new conditions imposed on the bifunction f. For a real Banach space £
with the dual E* and for C a nonempty closed convex subset of E, let f : CxC = R
be a bifunction, ¢ : C' — R a real-valued function and T': C — E* be a relaxed
n-€ monotone mapping. We consider the following generalized mixed equilibrium

problem (GMEP) :
Find z € C such that f(z,y) + {Tz,n(y, x)) + o(y) = w(z), Yye€C. (3.3.1)
The set of such 2 € C' is denoted by GMEP(f,T), i.e.,

GMEP(f,T)={z € C: f(z,y) + {Tz,n(y,z)) + ¢(y) > ¢(z), Yy € C}.

Next, we introduce the following iterative algorithm for finding a common
element in the solution set of the GMEP and the common fixed point set of a finite
family of asymptotically nonexpansive mappings {5y, Ss, ..., Sy} in a uniformly

convex and smooth Banach space : g € C, Dy = Cy = C, and

{ &1 = Foynpeo = Fowo,
'
Ol = -C'—O{Z e C: IIZ — Slzll S t1[|$1 = Slﬂ:l”},

u; € C such that

¢ Flu,y) + @y) + (T, 0y, w)) + -y — w, J(wa — 1)), Vy € G,
D1 = {Z eC: ('Uq —Z,J(:'Cl —‘ltl)) > 0},

T9 = PCle-TO:




2

Cy =co{z € Cn_1: ||z — Snz|| < ta]lzn — Svawl|l},

uy € C such that

4 flun,y) + o) + (Tun, 0y, un)) + -0y — un, J(un — ), Vy € C,
Dy ={z€ Dy_1: (uxy — z,J(zn —un)) = 0},

TNt1 - FPeynpy®o,

Cnp1 =@0{z € Cy : ||z = Si2| < tillonr — Stonvall},

un4+1 € C such that

flunst,y) +0(y) + (T, 0y, unr))

+r1\-1+] (y—uny1, J(uys1 — Tn41)), Yy € C,

Dy = {Z € Dy : ('M_N-+-1 —Z, J(-TN+1 . UN+-1)> = U},

INER— Pci\-“nDN“ Lo,

Con = t0{z € Con_1: ||z — Skz| < tillzen — S zanll},

ugn € €' such that

\ fluan, y) +o(y) + (Tuan, (Y, uon)) + i(y — Uy J(uan — man)), Vy € C,
Don = {z € Don—1 : (uany — 2z, J(zony — uan)) = 0},

TNyl = PCQ(\-HDQ‘\':I:IM

Cony1 = 00{z € Con i ||z — 72|l < tillwonsa — Sizanaall},

ugns1 € C such that

fuansr, v) + @) +{Tuan11,1(y; ani1))

1
TaN+1

Dony1 = {2z € Dan : (uant1 — 2, J(@an41 — Uani1)) = 0},

<’£f — UsN41, J (Uan 1 — Tangn)), VY € C,

ToaNy2 = PC;;N+1ﬂD2N+1:Bﬂ)

The above algorithm is called the hybrid iterative algorithm for a finite family of
asymptotically nonexpansive mappings from C' into itself. Since, for each n > 1, it
can be written as n = (h— 1)N +1, where ¢ = i(n) € {1,2,...,N}, h=nh(n) > 1is

a positive integer and h(n) — co as n — co. Hence the above table can be written
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in the following form:

;

20 € C, Dy = Cy =C,

Co =0{z € Cpr : Iz — S5zl < tullzn — Sy zall}, 21,

u,, € C such that

W F(tn,y) + @) + (T, (Y, un)) + 7(y = tny J (U — 20)),Vy € Cym 2 1,
D,={2€ Dp_y: (g —2,J(Za=ua)) >0}, n>1,

Tni1 = PC,?ﬂan(h n 2 0.

(3.3.2)

3.3.1 Existence theorems for generalized mixed equilibrium problems

In this scction, we prove the existence results of solutions for GMEP(f,T) under
the new conditions imposed on the bifunction f. We first assume that a bifunction
f satisfied conditions (A1)—-(A4) in Section 3.2. The following lemma is obtained

from Kamraksa and Wangkeeree [9].

Lemma 3.3.1. [9, Lemma 3.3] Let C' be a nonempty, bounded, closed and convex
subset of a smooth, strictly convex and reflezive Banach space E, let T : C — E*
be an n-hemicontinuous and relaved n-£ monotone mapping. Let f be a bifunction
from C x C to R satisfying (A1)~(Ad) and let @ be a lower semicontinuous and
convez function from C to R. Letr > 0 and and define a mapping @, : E — C as

follows:

3, (z) = { €C: flzy) + (Tl 2) + ()

+ %(y —z,J(z—x)) = p(2),Vy € C}

for all x € E. Assume that

() n(z,y) +n(y,z) =0, for all z,y € C;
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(i) for any fized u,v € C, the mapping x (Tv,n(z,u)) is convexr and lower

semicontinuous and the mapping x — (Tu,n(v,x)) is lower semicontinuous;
(ili) €: E — R is weakly lower semicontinuous;

(iv) for any z,y € C, &(z —y) +&(y — ) 2 0.
Then, the following holds:

(1) @, is single-valued;
(2) (@2 — Dy, (D% — z)) < (Prz — 0.y, J(Ry —y)) forallz,y € E;
(3) F(®) =EP(f,T);
(4) EP(f,T) is nonempty closed and convex.
Now, we ready present the existence results of solutions for GMEP(f,T)
under the new conditions imposed on the bifunction f.

Theorem 3.3.2. Let C' be a nonempty, bounded, closed and convex subset of a
smooth, strictly convex and reflezive Banach space E, let T : C = E* be an 1-
hemicontinuous and relazed n-€ monotone mapping. Let f be a bifunction from
C x C to R satisfying the following conditions (A1),(A3) and (A4) as in lemma
3.8.1 and (A2') as follows.

(A2) f(z,y) + f(y,2) <min{é(z —y),&(y — )} for all 2,y € C;
For anyr > 0 and z € E, define a mapping @, : E — C as follows:

D,.(z) = {z € C: f(zy)+ {Tzn(y,2)) + )

Fily=5J(z—2) 2 p(2) Wy eC) (333

where ¢ is a lower semicontinuous and convez function from C to R. Assume that



75

i) n(z,y) +n(y,z) =0, for all z,y € C;

(ii) for any fived u,v € C, the mapping x — (Tv,n(z,u)) is convez and lower

semicontinuous and the mapping x v (Tu,n(v,z)) is lower semicontinuous;

(iii) &: E — R is weakly lower semicontinuous.
Then, the following holds:

(1) @, is single-valued;
(2) (@2 — Dy, J(®,z — z)) < (P2 — Dy, J(®,y —y)) forallz,y € E;
(3) F(¢,)=GMEP(f,T);

(4) GMEP(f,T) is nonempty closed and convex.

Proof. For each z € E. It follows from Lemma 3.2.2 that ®.(x) is nonempty.

(1) We prove that @, is single-valued. Indeed, for € E and r > 0, let #,

z9 € ®,z. Then,

(o1, 22) + ALy ez o0)) +0(2) + =1 = 22, T = ) 2 ()
and

ez 2) + (L1121, 22) + 0len) + o2 = 21, I = ) 2 ()

Adding the two inequalities, from (i) we have

[z, 21) + f(21, 22) + (e =Ley, (20, 21)) + 71(32 21, J[#—8)—~ J(z —x)) 20,
(3.3.4)

Setting A := min{£(z; — #),&(22 — z1)} and using (A2'), we have

1 .
A+ (T2 — Tz, (22, 21)) + ;(Z‘g —z1,d(z1 — ) — J(z22 —x)) = 0, (3.3.5)
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That is,
%(32 —z,J(z1 — x) — J(z2 — )) > (Tzg — Tz1,1(22, 21)) — A. | (3.3.6)
Since T is relaxed 7-€ monotone and r > 0, one has
(zg— 21, J(z1 —2) = J(za—2)) > 1r(E(a —21) —A) =0 (3.3.7)

In (3.3.6) exchanging the position of z; and 23, we get

%(Zl — Z9, J(Zg = ’L) - J(Zl — "L)> > (Tz1 = TZQ, 7](31, Zg)) — A, (338)
that is,
(z1 — 20, (29 — ) — J(z1 —2)) > 1(E(21 — 22) — A) = 0 (3.3.9)

Now, adding the inequalities (3.3.7) and (3.3.9), we have
2(z0 — 21, d(z1 — &) = J(zo — z)) = 0. (3.3.10)

Hence,
0<{2zg— 2, (21 — 2) ~J(zs = 2)) = (22 — &) = (21 — 2), J(21 — &) — J(2z — 2)).

Since J is monotone and F is strictly convex, we obtain that z; — 2 = 2, — z and

hence z; = z9. Therefore S, is single-valued.

(2) For z,y € C, we have
F(@5, D)+ (T, 1(,, D)) (By) —p(B0) - (B,y— By, J(Brz—2)) 2 0
and

1
f(@,9, ®,2) TPy, n(P,z, D,y))+@(2rz)—o(Pry)+ = (22— Ppy, J(Pry—y)) = 0.

r
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Setting A, , = min{¢(®,z — ®,y),£(P,y — ©,z)} and applying (A2), we get

y ,
(T2,x = TPy, n(®ry, Pr)) + (Lry — 2, I (Brz — ) = J (Dry — y)) 2 Ay

(3.3.11)

that is,

IV

1
;((I’,.y — @2, J(Px — 2) — J(Py— ) (T, y — TPz, 7Py, Dra)) — Agy

AV

@,y —Dyz)— A, > 0. (3.3.12)
In (3.3.12) exchanging the position of @,z and ®,y, we get
1
P,z — By, J(P,y —y) — J(@,z—2)) > 0. (3.3.13)
3

Adding the inequalities (3.3.12) and (3.3.13), we have

—(®,y = &z, J (2,2 ~ z) - J(P,y — y)) = C. (3.3.14)

-

It follows that

(D,y — Oz, J (B2 — z) = J(Pry —y)) = 0. (3:3.15)
Hence

(@, — @y, J(P,z — ) < (Prz — Dy, J (DY — ¥)). (3.3.16)
The conclusion (3), (4) follows from Lemma 3.3.1. O

Example 3.3.3. Defineé . R—>Rand f: RxR =R by

ey = (& ;y)z and &(z) = 2? for adll z,y € R.

It is easy to see that f satisfies (A1), (A3), (A4), and (A2) : f(z,y) + f(y,z) <
min{é(z ~ ), £@ ~y)}, V(zy) ERXR.
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Remark 3.3.4. Theorem 3.1 generalizes and improves [9, Lemma 3.3] in the fol-
lowing manners.

(i) The condition (A2), i.e., f(z,y) + f(y,2) < 0 has been weakened by
(A2"), i.e., f(z,v) + f(y,2) < min{é(z —y),&(y — =)} for all z,y € C.

(i) The control condition £(z — ) + &(y — =) > 0 imposed on the mapping

£ in [9, Lemma 3.3] can be removed.

If T is monotone i.e. T is relaxed 7—£ monotone with 7(x, y) =« —y for all

z,y € C and £ = 0, we have the following results.

Corollary 3.3.5. Let C be a nonempty, bounded, closed and convex subset of a
smooth, strictly convex and reflevive Banach space E. Let T : C — E* be a
monotone mapping and f be a bifunction from C x C to R satisfying the following
conditions (i)-(iv):

(i) f(z,z) =0 forallz € C;

(i) f(z,y)+ f(y,2) <0 for all z,y € C;

(ili) for ally € C, f(-,vy) ts weakly upper semicontinuous;

(iv) for allz € C, f(z,-) is convez.

For anyr > 0 and z € E, define a mapping @, : E — C as follows:

@, (z) = {z €C: f(z,y) +({Tzy—2) +o(y) + %(y* z,J(z— ) = ¢(2),Vy € 0}

(3.3.17)

where ¢ is a lower semicontinuous and convex function from C' to R. Then, the

following holds:

(1) @, is single-valued;
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(2) (®,2 — Dy, J(Rrx — z)) < (Ppz — Dpy, J(ry — y)) for dll z,y € E;
(3) F(®,) = GEP(f);

(4) GEP(f) is nonempty closed and convex.

3.3.2 Strong convergence theorems

In this section, we prove the strong convergence theorem of the sequence {z,}
defined by (3.3.2) for solving a common element in the solution set of a generalized
mixed equilibrium problem and the common fixed point set of a finite family of

asymptotically nonexpansive mappings.

Theorem 3.3.6. Let E be a uniformly convex and smooth Banach space and let
C be a nonempty, bounded, closed and convex subset of E. Let f be a bifunction
from C x C to R satisfying (A1),(A2),(A3) and (Ad). Let T : C'— E* be an n-
hemicontinuous and relaxed n-€ monotone mapping and @ o lower semicontinuous
and convex function from C to R. Let, for each 1 <1 < N,S5; : C = C be an
asymptotically nonexpansive mapping with a sequence {kn;}5, respectively, such
thatk,; — 1 asn — oo. Assume that ) .= NN F(S;))NGMEP(f,T) is nonempty.
Let {z,,} be a sequence generated by (3.3.2), where {t,} and {r,} are real sequences
in (0,1) satisfying lim, oo tn = 0 and liminf, o7, > 0. Then {x,} converges

strongly, as n — oo, to Pqxg, where Py is the metric projection of E onto (1.

Proof. First, define the sequence {k,} by k, := max{k,; : 1 < i < N} and so

ko, — 1 as n — oo and

15§z — Siedy|| < kullz — y| for all @,y € C,

where h(n) = j +1if jN <n < (j+1)N,j = 1,2,... and n = jN +i(n);i(n) €
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{1,2,..., N}. Next, we rewrite the algorithm (3.3.2) as the following relation :
zp € C, Do = Cy =C,
Cp = @0{2 € Cu1 : ||z = SN2l < tallzn — S aall}, n >0,

Dn = {z & Dngl : ((I)rnmn -z J(:En - q)rnxn)) = 0}: n 2 11

(3.3.18)

1§ Tpt1 = PC“nanU(), n 2= 0:

where @, is the mapping defined by (3.3.17). We show that the sequence {z,} is
well defined. It is easy to verify that C, N D, is closed and convex and 2 C C,, for
all n > 0. Next, we prove that Q C C,, N D,,. Indeed, since Dy = C, we also have
Q C.CyN Dy. Assume that @ C Ci_y N Dy._; for k > 2. Utilizing Theorem 3.3.2

(2), we obtain

(D, p, — Pty J(Pp 0 — w) — J(Dp b — 2)) 2 0, for all w € £,
which gives that

(P r — u, J(@ — Ppor)) = 0, for all u € 9,

Hence Q) C Dy.. By the mathematical induction. we get that 2 C C,, N D, for each

n > 0 and hence {z,} is well defined. Now, we show that
lim ||z, — RSN = Inemmadde
n—oo

Put w = Paxg. Since Q € C, N D, and %,,1 = Pg,ap,, We have

st — zoll < llw — 2o,V n > 0. (3.3.19)
Since T,49 € Dyyq C Dn_and Zns1 = Pe,np, To, We have

%541 = zoll < llZnse — zoll-

Hence the sequence {||z, — 20|} is bounded and monotone increasing and hence

thére exists a constant d such that

lim ||z, — 2o = d.
n—oo
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Moreover, by the convexity of D, we also have %(x,hq + Zpy2) € D, and hence

$n+1'+'$n+2

oo — @il < [lz0 — 2T < 2 (= | + 2o — sl
This implies that
A 1 1 : €T +14’$ 2
12]1_1)1(}0 5(1'0 — i) + 5(330 — Tnya)|| = ulglola To — % =d.
By Lemma 2.1.25, we have
lim ||z, = 2,1}l =0. (3.3.20)
n—oo
Furthermore, we can easily see that
ling |z i F=0,. Vi 11 2| S0 (3.3.21)
n—00
Next, we show that
lim ||z, — S:I(HH hh) L, |20, forany s'€{1,2,. 1 yNT: (3.3.22)
n—oo
Fix k € {1,2,...,N} and put m = n — k. Since 2, = FPc,_inp,_4%, We have

x, € Cp_y C -+ C Cyp. Sinee t,, > 0, there exists 43, .., yp € C and a nonnegative

number Ay, ..., Ap with Ay +--- + Ap =1 such that

P
S
i=1

< tms (3.3.23)

and

llyi = St ill < tonllzm — Sy @mll, for all 4 € {1,..., P},

By the boundedness of C' and {k,}, we can put the following
M =sup ||z]l,u = Py psyo and 1o = sup (1 + kn)|zn — ull.
zeC n=1

This together with (3.3.23) implies that

P
1 1 i}
t'n_iit)‘ii 4 | = ; =
i Fom i=1 Y ( km)”m"_*-km

< (1= ) Mt
Kom

P
Ty — E Aili
i=1
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llyi —

forallie {1/ 5

H’yi

Moreover, since each S;, 7 € {1,2,...,

obtain that

It follows from Theorem 2.2.10 and the inequalities (3.3.24) -

“:r:ﬂ —

h(m)
r's (m)

1 1(m
L_' 1(1:111 (Z Ai J’) e S: En))a’n
h(m) AN h(m)
= ,._Sr(m (Z A yl) Sz(m)

1 P
Tn — F Z Aiy‘i
moi—

S < tmllzm — Sy
< tllzm — Sponull + t | St — Sy Tl
< tpllzm — wl| F tnkmllu — 2|
< (1 + k)@ —
< tmTo,

N}. Therefore, for each i € {1,...
h(m)

pu = T 9l

1
< robmik (1 b A_) M.

Sh(m)

(m)

1
< /\ifi_“n 1l—— | M
S

1
(1)

h(m) .

(m) Tn ”

Z,\ (oe—

1(m) J‘)

, P}, we get

o oh(m),
Yi F Sz{m) H

(m)

”_Sh(m)

SJ.‘l(m):L‘nl
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(3.3.24)

(3.3.25)

(3.3.26)

N}, is asymptotically nonexpansive, we can

(3.3.27)

(3.3.27) that
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e Z’\ Sim) Y = Di(m) 2’\1'%‘
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=2 1= M + 2t
( km) = + ‘llm
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h(m)
i(m)

h(m)
T!(m)

255 ()
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l (m)
:(m) Y5

1
e | r | et h(m) o h(m)
7 (15111212N (”yi y«’” k ~ ||Sz{m) Yi ~i(m) y}”))
l trn
§2<1¥T—) M+2tm+?2
7 (e (T~ S50l + Nl — Sl
IKI<EN bk, i) T I t(m} b
TDtnz

1
| AN

‘I

o

) M + 2, + .

. 1
= o 2 l_k

) M+ 2T‘Utm) |

1 m

Since lim,_, o ky = 1 and lim,,_,., £, = 0, it follows from the above inequality that

n— (m)

Hence (3.3.22) is proved. Next, we show that

lim ||z, — .Sh(’") v || = 0.
o0

nlil)‘l;g |8 STENTAY N 51, 2, =iY. (3.3.28)
From the construetion of C,, one can easily see that
lonsr = 810 Tl < tufln = Sigall
The boundedness of C' and lif, 00 £, = 0 implies that
Tim 211~ Sy @nil] = 0. (3.3.29)

On the other hand, since for any positive integer n > N, n = (n —

and n = (h(n) — 1)N + i(n), we have

N) (mod N)

n— N = (hn)—1)N +i(n) = (h(n — N) — 1)N +i(n— N).

That is

hin — N) = h(n) — 1, i(n — N) =i(n).
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Thus
Iz — Suzall < llon — Bnsall + lnsa — Sy @naall + ';,:;’mnﬂ S|
< l#n = zppall + lJ2n — S,(n) Tpa || + ” (n) V%041 — SnBnsa
+ || SnZnr1 — Saznl|
< (L4 k) lln = Tasall + (201 — Sipyniall + killSiy ~ Tnta = Tl
< (I + ke = zngall +llonia — 5':25:1)%“”
e[Sy~ wnsr = Sigy @l + 186 B = Tall + lln — @l
£/ (R L, — 2ol + l|1Z0sa — 5,(51" Tniil
S s — Sh P all + | Sieey T - @l
< (1 +260) |20 = gl F IBmss — Sicy Tasa
itk ll@ner = @all 4k l|Siony Zn — @l
< (14 2k + kiknew)llen = @ngall + [[@na1 — S:I(E,n}}fb‘n+1||

+ EllSie e n — -

Applying the facts (3.3.20), (3.3.22), and (3.3.29) to the above inequality, we obtain
lim ||z, —Spea| =0.
n—eo

Therefore, for any j =1,2,..., N, we have

lZn — Snti@all < 120 — Tnasll + 2nts — Snaj@nasll + [OntiTnts — Snt |

AN

< on = Bl + s — Sesgarll + Fallzns —

(1 + ko)llen — Znggll + [|#nss — SniTnrsll — 0 as n = 00,

which gives that

lim ||z, — Sizn]|=0; VI=1,2,...,N

n—00

as required. Since {z,} is bounded, there exists a subsequence {@y,} of {z} such

that z,, — & € C. It follows from Lemma 2.2.11 that & € F(S;) V{=1,2,...,N.
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That is z € N, F(S;).

Next, we show that £ € GMEP(f,T). By the construction of D,, we see

from Theorem 2.1.35 that ¢, x, = Pp_x,. Since T,yiep,, we get
|z, — @, zall £ |20 — Zppal| = O. (3.3.30)

Furthermore, since lim inf,, ., 7, > 0, we have

1
T'n

i
==z, — @

n

HJ(&:n - <I),.“:1:n)‘

raZall = 0, (3.3.31)

as n — co. By (3.3.31), we also have ®,, x,, — Z. By the definition of &, , for

each y € C, we obtain

f (@, y) + (TP, T 1 (¥, Prayni) ) +0(Y)

1 3
+‘_ <’U i (I)rni:l:n,a J ((I)r,,iﬂ;ni i 35:1,—)) > P ((Pr”!fl)m) .

g
Hence

f ((Drnimnia ?}) 9] W(L’) = i <y o (I)r‘,l'.ﬂ;ng:n J ((I)r,,imn,- 8 :Eng)>

T'n;

> (T®,,, a1 (Pry, Ty ) ) + 0 (Br 2n,) -

By (A3), (3.3.31), (ii), the weakly lower semicontinuity of ¢ and £ and relaxed

n-&-monotonicity of T we have

o(&) + (Ty,n(&,y)) + &y — &)
< liminf o (®y,, &a,) +lIimnf(Ty, n(®y, Tu;, y)) + liminf E(y — D, )
< liminf (¢ (Pr, @n) + (0% 1 Loy, Zn ¥)) +EU = Pro, i)
< iminf (¢ (Rr,, 2n;) + (T Pr, T N Bro, Tnis V)

< limsup (tp (@,nim,,,.) + (Tdér“'_:z:ni, n@rnimm, y)))

i—00



86

< limsup (f (P, Znin y) +0(y) + % (Y — Pry, Tnys J (P, T, — ’Ln‘)))
i—oo ni

= limsup f ((I),.n,.a:n,-,y) + ¢(y)

i—00

< f(@,y) + »(y).
Hence,

(&) + o) + Ty n(y,&) = o) +{y=2), Yy € C.

By Lemma 3.2.1, we have that

F(@y) + o) + (T3 0y, %)) 2 (2), Yy € C.
This shows that & € FP(f,T) and hence & € {2 := ﬂ:\; F(SYNGMEP(f,T).

Finally, we show that z, — w as n — 00, where w := Pqxg. By the weakly
lower semicontinuity of the norm, it follows from (3.3.19) that

lzo — w|| < |lwg — &|| < liminf ||@p — z,,]| < limsup ||z — @n; || < |20 — w]].
e i—00

This shows that

,]223 lzo = Znll = |70 — w|| = ||zo — 2|
and £ = w. Since F is uniformly convex, we obtain that zg — z,, — T — w.
It follows that z,, — w. By Lemma 2.1.38, we have @, — w as n — oo. This

completes the proof. |

Setting S; = S, an asymptotically nonexpansive mapping, in Theorem 3.3.6

then we have the following result.

Theorem 3.3.7. Let E be a uniformly convex and smooth Banach space and let
C be a nonempty, bounded, closed and convez subset of E. Let f be a bifunclion
from C x C to R satisfying (A1),(A2),(A3) and (A4). Let T : C' — E* be an n-
hemicontinuous and relazed 1-€ monotone mapping and ¢ a lower semicontinuous

and convex function from C to R. Let S be an asymptotically nonexpansive mapping
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with a sequence {k,}, such that k, — 1 as n — oo. Assume that ) := F(S)N
GMEP(f,T) is nonempty. Let {z,} be a sequence generated by

;

.’EQEC,DQ =C|]:C,
Cp = T0{z € Cp-1: ||z — S"2|| < tyl|zn — Sz}, 2= 1,

u, € C such that

T

Dn - {Z = Drzul : <un — Z, J(Tn - Un)) = 0}1 n > 11

J (s 9) + @(y) + (Tun, 1y, Uun)) + %:(y = Uy, J(Uy — 7)), VY ECin 2 1,

| Tnt+1 = Founp,To, 1 2 0.

(3.3.32)

where {t,} and {r,} are real sequences in (0,1) satisfying lim,otn = 0 and
liminf, e 7, > 0. Then {z,} converges strongly, as n — co, to Poxg, where Py

is-the metric projection of E onto §1.

It’s well known that each nonexpansive mapping is an asymptotically non-

expansive mapping, then Theorem 3.3.6 works for nonexpansive mapping.

Theorem 3.3.8. Let E be a uniformly conver and smooth Banach space and let
C be a nonempty, bounded, closed and convez subset of E. Let f be a bifunction
from C x C to R satisfying (Al),(A2'),(A3) and (A4). LetT: C — E* be an 7-
hemicontinuous and relazed n—€ monotone mapping and @ a lower semicontinuous
and convez: function from C to R. Let S be @ nonexpansive mapping of C' into itself

such that  := F(S)NGMEP(f,T) # 0. Let {x,} be the sequence in C' generated
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{

29 €C,Dg=Cy=C,
Cp =c0{z € Cp1: ||z = Szl| < tallzn — Szall}, n 21,
un € C such that f(un,y) +@(y) + (T, (Y, un))
+1{y = wn, J(un — 20)) > 0(un),Vy € Cyn > 0,

B {Z C Dn—l : <un -z, J(:Bn -~ u‘n)) 2 O}: n 2 1:

i kgjn+1 - PC,lﬂDnmﬂm n =0,

where {t,} and {r,} are real sequences in (0,1) satisfying lim,400t, = 0 and

liminf,,_,o 7 > 0. Then, the sequence {z,} converges strongly to Paxo.
If we take 7' = 0 and ¢ = 0 in Theorem 3.3.6, then we obtain the following
result concerning an equilibrium problem in a Banach space setting.

Theorem 3.3.9. Let E be a uniformly convez and smooth Banach space and let C

be a nonempty, bounded, closed and convex subset of E. Let f be a bifunction from

/ C x C to R satisfying (A1),(A2'),(A3) and (Ad). and let S be an asympotically

nonezpansive mapping of C into itself such that Q := (ooy F(Sn) N EP(f) # 0.

Let {z,,} be the sequence in C generated by

Ty € Cr,DO — C(]: C,
Co=0{z € Cp1: ||z — 82| < tullzn — Sxll}, n21,
\ Un € C' such that f(u,,y)+ %ﬂ(y — Uy J(Un — ) 2 0,Vy € Cyn > 0,

D, = {(z€ Dpy : (un — 2, J (@0 —wn)) 20}, n2>1,

\ﬂ;n+1 = PC,;ﬁDn:ED: n 2 0:

(3.3.33)

where {t,} and {r,} are real sequences in (0,1) satisfying limy oty = 0 and

liminf, e 7 > 0. Then the sequence {z,} coﬁfuerges strongly to Paxyg.
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If we take f =0 and T = 0 and ¢ = 0 in Theorem 3.3.6, then we obtain

the following result.

Theorem 3.3.10. Let E be a uniformly convexr and smooth Banach space, C' a
nonempty, bounded, closed and convex subset of E and S an asympotically nonex-
pansive mapping of C into itself such that Q := (oo, F(Sn) # 0. Let {z,} be the

sequence in C' generated bt
g Y

Tg € C, C'o = Cr,

§ C,, = ol € Cler 1282 < ]z, =Stz 2% (3.3.34)

- - 4T ‘ P
T~ oamayh = 0.

If {t,} C (0,1) and lim,_,t, =0, then {z,} converges strongly to Pa%o.



