CHAPTER IV

GENERAL ITERATIVE METHODS

IN BANACH SPACES

In this chapter, we discuss the strong convergence theorems of general iter-

ative methods for (asymptotically)nonexpansive semigroups.

4.1 The modified general iterative methods for nonexpansive semi-

groups in Banach spaces

Let F be a Banach space which admits a weakly continuous duality mapping
J, with gauge ¢ such that ¢ is invariant on [0,1] i.e. ¢([0,1]) C [0,1]. Let
S ={T(s) : s > 0} be a nonexpansive semigroups from C into itseft. For f € Ilg,
t € (0,1), and A is a strongly positive bounded linear operator with coeflicient

¥>0and 0 <y < wmﬁ, the mapping S; : £ — E defined by
Si(z) =ty f(x)+ (1. —=tA)T(\)z, Ve € E

is a contraction mapping. Indeed, for any @,y € E,

[15:(z) = Sl = lItv(F(@) = @) + U = tA)(T(A)z — T(A)y)
< tllf(=) = F@I + 1 = tANIT (A)e — T(Ayll
< tyalle =yl + (1)1 - )|z -yl
< (L=t(e(1)7 = 7)) ll= -yl (4.1.1)

Thus, by Banach contraction mapping principle, there exists a unique fixed point

x, in F that is
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Remark 4.1.1. We note that [? space has a weakly continuous duality mapping
with a gauge function ¢(t) = 77! for all 1 < p < co. It is clear that ¢ is invariant

on [0,1].

Lemma 4.1.2. Let E be a reflexive Banach space which admits a weakly continuous
duality mapping J,, with gauge p such that ¢ is invariant on [0,1]. Let S = {T'(s) :
s > 0} be a nonexpansive semigroup with F'(S) # 0 and f € g, let A be a
strongly positive bounded linear operator with coefficient % > 0 and 0 <y < %ﬁ,
and let t € (0,1) which satisfying t — 0. Then the net {x,} defined by (4.1.2) with
{Mi}oci<1 is @ positive real divergent sequence; converges strongly ast — 0 to a

common fized point T in F(S) which solves the variational inequality :

(A—~vf)E, Jp(& — 2)) <0,z € F(S). (4.1.3)

Proof. We first show that the uniqueness of a solution of the variational inequality

(4.1.3). Suppose both 7 € F'(S) and z* € F(S) are solutions to (4.1.3), then

(A=~f)F, J (& —27)) <0 (4.1.4)
and

(A—f)z", Jp(e* — %)) <0 (4.1.5)
Adding (4.1.4) and (4.1.5), we obtain

(A=9H)z — (A=f)z", Jp(@ — 2")) 0. (4.1.6)

Noticing that for any =,y € E,

(A= vf)x — (A= )y, Jp(z — )
= (A(z — y), Jo(z — 1)) — Y{f(2) — f(¥), Jo(z — ¥))
> Allz — ylle(lz — yll) — (=) — FOIIT(z — )]

> 3®(|lz — y|l) — va@([lz — )
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= (7 — v2)®(||lz — ¥l

> (1) = v2)2(||lz — yll) = 0. ' (4.1.7)

Using (4.1.6) and 0 < (1) —vya in the last inequality, we get that (|| —2*||) = 0.
Therefore & = z* and the uniqueness is proved. Below we use Z to denote the unique
solution of (4.1.3). Next, we will prove that {z;} is bounded. Take a p € F(S),

then we have

[l — pll ll6vf (@) + (I — tA)T(A)ae — pl|
= T — tAYT(A)z, — (I — tA)p +t(7f () = AR

< M)A = )|z — pll+ tvallze — pll + 17/ (p) — AlP)I])-
It follows that

lze — pl| < W;ZH’U(P) — A(p)]|.

Hence {z;} is bounded, so are {f(z;)} and {AT'(2¢)}. The definition of {z;} implies

that
l|ze — T(A)ze|| = tl|vf(ze) — A(T(A)exe)l| = 0ast — 0. (4.1.8)

Next, we show that ||z, — T'(h)z]| — 0 for all A > 0. Since {T'(t) : t > 0} is
w.a.r. nonexpansive semigroup and lim;_,o A\; = o0, then, for all 2 > 0 and for any

bounded subset D of C containing {z},
lim ||T(A)(T'(Me)z:) — T'(A)ze]| < limsup [|T(R)(T(Ae)ze) — T(Ae)z:e]| = 0.
t—0 t—0 zeD
Hence, when ¢ — 0, for all b > 0, we have
lze = T(R)all < flze = TAd)zell + 1T (A)ze — T(R)(T(N)z )|
HIT ()T (A)ze) — T(h)ze|

< 2w — T(Ae)ae]| + ||T_()\t)9~‘t = T(h)(T(A)ze)|| — 0.
(4.1.9)
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Assume that {¢,}2, € (0,1) is such that ¢, — 0 as n = co. Put =, = =z,
and A, := A,,. We show that {z,} contains a subsequence converging strongly to
z € F(S). It follows from reflexivity of £ and the boundedness of sequence {z,}
that there exists {z,,} which is a subsequence of {x,} converging weakly to w € F
as n — o00. Since J,, is weakly sequentially continuous, we have by Lemma 2.1.31
that

lim sup ®([|zn; — z||) = limsup @([|2n; — w||) + (|l — w|), for all z € E.

j—ro0 j—00

Let

H(z) = limsup (||z,; — «||), for all z € E.

oo

It follows that

H(z) = Hw) + ©(||lz — wl|), for all z € F.

For h > 0, from (4.1.9) we obtain

H(T(h)w) = limsup (||2,; — T'(h)wl|) = limsup &(

j—oo jooo

T(h)xn; — T(h)w||)

< limsup @([|z,; — wl]) = H(w). (4.1.10)

7—=00

On the other hand, however,

H(T(h)w) = H(w) + ®(||T’(h)w — w||). (4.1.11)
It follows from (4.1.10) and (4.1.11) that

O(|T(h)w — w||) = H(T(h)w) — H(w) < 0.

This implies that T'(h)w = w for all h > 0, and so w € F(S). Next we show that
Tn; — was j — oo. In fact, since ®(t) = fot @(7)dT,Vt > 0,and @ : [0,00) = [0, 00)

is a gauge function, then for 1 > k > 0, ¢(kz) < ¢(z) and

D(kt) = /Okt o(T)dr = k/otw(ka;)da: < k"/ﬂtzp(rc)dm = k®(t).
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Following Lemma 2.1.31, we have

(|| — wl])

This implies that

O([|zn; —wl)) < 2

VAN

IA

IA

DT — taA)T (ta)in — (I = taAYw + tu(7£(2) — Aw)))
S(I(I — tn AT (ta)z, — (I — tuAYul)

(7S () — A(w), T(@n —w))

Bp(1)(1 — )l — wll) + tar{Flae,) — F0), Tpln —w))
a1 f (@)~ Aw), Ty, — ©))

P11 = )01z — w])) + Ll F ) = F@)IlITp(@n — )l
Ftalrf (W) — Alw), Jy(en — w))

(D)1 = )02 — wl]) + tavallzn — wllllJp(zn = w)
o (v f(w) — A@w), Jo(@n — w))

(D)L~ ta7) 2l — wl]) + tavad((|z, — w])

ttalrf (w) = Alw), Jolan — w))

(1 = ta(p(1) ~ 70))@(ln — w0]) + (S () — Aw), Jp(wn —w)).

(4.1.12)

i afw) — Al o, = )

Now observing that z, — w implies J,(z, — w) — 0, we conclude from the last

inequality that

®(||zn; — w||) — 0 as j — oo.

Hence z,; — w as j — co. Next we prove that w solves the variational inequality

(4.1.3). For any z € F'(S), we observe that

(I = Tz — (I = T(M))z, Jp(0 = 2))

= (zs — 2, Jp(zt — 2)) + (T(A)z — T (M) 2, Jp(2r — 2))
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= O([lee — 2ll) = (T(M)z — T(M)ae, Jp (2 — 2))
= O(||lze — 2l) = IT(A)z = TA)zellll o (e — 2|
Z O(||lze — 2Il) — llz = zolll o (e = 2]

= P(|lz: — 2[|) — ®(flze — 2[[) = 0. (4.1.13)
Since
xe = Uy f(ay) + (I = tA)T (M),
we can derive that
(A= 1)(a) = =5 (I = TOD)ze+ (AL =Tz
Thus
(A VB Tl = 2)) = =TS TONa ~ (T~ T2, ol = 2)
+{AI —T(N))zpJpl@: — 2))
< {A(I — T(Ap))ze, Jo(my — 2))- (4.1.14)
Noticing that
Tn; — T(/\tnj )Tn; = w — T(w) =w—w=0.
Now replacing ¢ and A, with n; and ,,; in (4.1.14) and letting j — oo, we have
(A= ~vNw, J,(w—z)) <0.

So, w € F(T) is a solution of the variational inequality (4.1.3), and hence w = &
by the uniqueness. Applying Lemma 2.1.38, we can conclude that z; — Z ast — 0.

This completes the proof. O

Theorem 4.1.3. Let E be a reflexive Banach space which admits a weakly con-
tinuous duality mapping J, with gauge ¢ such that ¢ is invariant on [0,1] . Let

{T(s): s> 0} be aw.ar. semigroup of nonexpansive mappings with F(S) # 0 and
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f el let A be a strongly positive bounded linear operator with coefficient %y > 0
and 0 < 7y < i@. Let the sequence {z,} be generated by the following :

;

=z €L,

Y ¥n = Bun + (1= Bu)T(tn)n, (4.1.15)

L1 = a'nf}‘f(:l:n) - (I - Q'HA)ym n=>0

where {a,} C (0,1) and {B,} C [0,1] are real sequences satisfying the following

conditions :
* o0
(C1) lim,,Jof =i8-aend) ~ o, =00

(02) lilnnaoo ,Bn =5 O;

(C3) limgl L., G =Jpo.
Then {z,} converges strongly to @ that is obtained in Lemma 4.1.2.

Proof. Since lim,,_,, a, = 0, we may assume, without loss of generality, that a, <
e(D)||A]|7* for all n. By Lemma 2.1.33, we have ||I — an Al < (1)(1 — a,, 7). We

first observe that {z,} is bounded. Indeed, pick any p € F'(S) to obtain

lyn — 2l = [|Bazn + (@ = Br)T(tn)zn —p|
= “Ign(a'n - p) i (1 - ﬁn)(T(tﬂ)a"ﬂ - T(tn)p)”
< Ballzn —pll + (1 = Ba)llzn — pll

= |lza —2l|, (4.1.16)

and so

lzass —pll = llawyf(za) + (I — cu)yn — pll

= “an("ff(wﬂ) - A(p)) i3 (I - anA)yn - (I - a"A)p“

< anllyf(2a) — AR)] + (D)1 = an)llyn — pll
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< anyllf(zn) = f@) + anllvf () — A + @(1)(1 — @) |lyn — pll
< apvallz, — pll + anllvf () — A + (1)1 — an¥)||zn — ||
< (1 - an(Fe(l) —ya)|lzn — pll + anllvf(zn) — AD)]

I/ () = A@)I

(1~ cnrp(1) = 70l = 2l + cn(rp(1) ~ y@) ==

I

It follows from induction that

[lzn — pl| £ max {”"”o ~ll, ||')’_f(p) — AR } Ripn., (4.1.17)
Yp(1) — o

The boundedness of {z,} implies that {y,}, {T(t,)zn} and {f(z,)} are bounded.
Thus by (4.1.28), (C1) and (C2), we have

Ny — T(tn)enll = Ballzn — T(tn)zn|| = 0

and: there by,
||-’Crl+i o T(tn)xn” S “yn - T(tn):ljn” + ﬂ'n“"/f(!l?“) e A(yn)” 3 D

Since {T'(t) : ¢ > 0} is u.a.r. nonexpansive semigroup and lim, %, = oo, then,

for all A > 0 and for any bounded subset D of C containing {z,},

lim ||T(A)(T(ta)ze) =L (th)za ]S nlim sup ||T(h)(T(tn)zn) — T'(tn)zal| = O.

n—yco =00 zeD

Hence, when n — oo, for all A > 0, we have

l#ns1 = T(W)znmll < Nonis = T(Ea)zall + [T (En)zn — T(R)(T(En)za)ll
T (R)T(tn)zn) — T(R)Tni|
< 2l|zass = T(tn)zall + 1T ()20 — T(RY(T (En)2n)l| = 0.

(4.1.18)

Next, we prove that

limsup(vf(Z) — AZ, J,(z, — Z)) <0, - (4.1.19)

n—o00



Let {z,,} be a subsequence of {z,} such that

Alg&("yf(’i) — A%, J(%n, — ) = limsup(yf(E) — A%, J,(z, — 'i))

n—oo
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(4.1.20)

If follows from reflexivity of E and the boundedness of sequence {x,,} that there

exists {zn, } which is a subsequence of {x,,} converging weakly to w € E as

i — oo. Since J,, is weakly continuous, we have by Lemma 2.1.31 that

lim sup ®(|zn,, — 2|} = limsup @(flw,, = wl|) +L(|lz — wl]), for allz € E.

n—eco n—co

Let
H(z) = limsup ®(||z,,, — zl[), for all z € E.
n—oo
It follows that

H(z) = H(w) + ©(||z — wl|), for all z € E.

From (4.1.18), for each h > 0, we obtain

H(T(hw) = Timsup @ (|, — T(R)oll) = lnsw (T )z, —T()uwl)

i—roo i—00

< limsup ®(||z,,, — wl) = H(w)

i—300
On the other hand, however,

H(T(h)w) = H(w) + @(||T(h)w — w])
It follows from (4.1.21) and (4.1.22) that

O(||T(h)w — w||) = H(T'(h)w) — H(w) < 0.

(4.1.21)

(4.1.22)

This implies that T'(h)w = w for all h > 0, and so w € F(S). Since the duality

map J,, is single-valued and weakly continuous, we get that

n—eco

limsup(yf(&) — AZ, Jp(zn, — &)) = klgn (I (E) — A% JolTn;, — E))

= l_l)m ('Yf(fﬁ) — Az, J‘P(‘Tnki - i))
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(A=7f)2, Jp(Z —w)) <0
as required.

Finally, we show that z, = Z as n — oo.

O(||lznt1 — E|))
= ([l (vf(zn)) + (I = en A)yn = )
= O([lon(vf (z0) — AZ) + (I — cn A)(@n — )]
= O(flan(vf(2n) — 7F(Z)) + an(vf(E) — AZ) + (I — anA)(yn — @)
< O(|lan(vf(@n) — 7/ (&) + (I — cnd)(yn — T)|)
+ 06, (1 (Z) — AL, Jp(@nsa — E))
< ®(||an(vf(mn) = v f@EDIF+ (I — anA)(yn — 2)])
4 +a, (vf(Z) — AZ, Jp(Tpi1 — F))
< ®lanvallz, — &l + (1)1 — an¥)|ly — Z[))
+an(vf(@) = AZ, Jo(Tni1 — T))
< ®(a,yalle, — & + (1)1 = an¥)llz. — ()
+ {1/ (T) — AT, Jp(Tnir = T))
= O((p(1) = anl(1)y = y)||2n — Zl) + n (1F(&) — AZ, Jp(Tn11 — F))
< (1 - an(p(1)7 — 7)) @(l|z — ) + {7/ (&) — AZ, Jp(2n i1 — F)).

(4.1.23)

Apply Lemma 2.1.39 to (4.1.23) to conclude ®(||z,41 — Z||) — 0 as n — oo; that

is, z, — % as n — co. This completes the proof. u

Corollary 4.1.4. Let E be a reflezive Banach space which admits a weakly con-
tinuous duality mapping J, with gauge @ such that ¢ is inveriant on [0, 1] . Let
{T(s) : s > 0} be @ w.a.r. semigroup of nonezpansive mappings with F(S) # @ and

f € llg, let A be a strongly positive bounded linear operator with coefficient 4 > 0
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and 0 < v < 220 et the sequence {z,,} be generated by the following :

a

{
UD:UGE:

Y Vn = Battn + (1 = Bu)T(tn)tn, (4.1.24)

| Unt+1 = a'n7f(T(tn)u'n) F (I — 0y A)vy, 120

where {a,} C (0,1) and {B,} C [0,1] are real sequences satisfying the following
conditions :

(C1) lim, e 0 =0 and ) 2046, = 00

(CZ) lim, & ﬁn =0,

(C3) limgl ks t=d0:
Then {u,} converges strongly to © that is obtained in Lemma 4.1.2.

Proof. Let {z,} be the sequence in given by zy = up and

Un = ﬁn-r":n + (]- f— ﬁn)T(tn)ﬂ:m
(4.1.25)

Tni1 = ORI (Tt Feand)T, > 0.

From Theorem 4.1.3, z,, = #. We claim that u, — Z. From (4.1.26) and (4.1.25),

we have

“yn - Un“ = Hﬁnﬁ:n + (1 - JB-n)T(tn)mn - ﬁnun - (1 - /Bn)T(tﬂ)uﬂ”
< ﬁn”ﬂ:n - Un” £l — ﬂn)“T(tﬂ)ﬂ:n - T(tn)un”

S ﬁn”mn - un“ #: (1 - IBH)”'BR - 7'Li"l”

I

|0 — tnl|-
Again, it then follows that

”-’Bn-l-l — Up+41 ”
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= [lawyf(@a) + (I — @nA)yn — oy f(T(tn)un) — (I — anA)on||
< an¥||f(zn) = F(T(En)un) | + 1 — cnAllllyn — vall
< apyallz, = T(tn)unll + o(1) (1 — an?) @ — |
< anyallzn — T(En)E|| + anyal|T(tn)Z — T (tn)unll
+o(1)(1 — any)llzn — unll
< apvellz, — Z|| + anyalld = un || + (1)1 — an¥) 2 — ul|
= agyal|z, — &l + anyall@ — @l + anyallz, —ull
+ (1)1 an¥)llzn — |
= (L)1 = an¥) + anye)[len — unll + (enre + anya)|lz. — ||
2o

< (L — am(p(1)7 — va))llmn — unl + an(p(1)y — "/ﬂ‘)mﬂﬂtn — .

It follows from ) > ; @y, = 00, lim, . [[#, — Z|| = 0, and Lemma 2.1.39 that |z —

wy|| — 0. Consequently, w, — & as required. U

Corollary 4.1.5. Let E be a reflesive Banach space which admits a weakly con-
tinuous duality mapping J, with gauge ¢ such that ¢ is invariant on [0,1] . Let
{T(s) : s > 0} be aw.a.r. semigroup of nonezpansive mappings with F(S) # @ and

f € llg, let A be a strongly positive bounded linear operator with coefficient y > 0

and 0 < v < W) Let the sequence {x,,} be generated by the following :

a

wy=w € E,

J Up = Ban + (1 — Br)T(tn)wy, (4.1.26)

| W41 = T(ta) (anyf(wy) + (I — anA)v,), n2>0

where {a,} C (0,1) and {B,} C [0,1] are real sequences satisfying the following
conditions :

(CL) Ty ety =0 ond 3 .20 00, =00

(G2) Ly 5658 =,
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(03 limiyaestn = 0.
Then {wy,} converges strongly to & that is obtained in Lemma 4.1.2.

Proof. Define the sequence {u,} and {o,} by
U, = a7 f(wn) + (I — agA)wy, 0p =01 VR 2 0. (4.1.27)

Taking p € F(S), we have

[wnsr —2ll
= [Tt )un — T(ta)pll < llun — pl|
= [lanyf (wn) + (I = anA)w, — (I — anA)p — o, Apl|
< ay[l7f (wn) — Apll + |l = anAlf|[wa — pll
< a7y (wn) — Apll + @(1)(1 = an¥)|[wn — pll
< a7 f(wn) — vF @) + anllv S () — Apll + (1) — ) [wn — 2]
< apyallwn = pll + anllvf () — Apll + ({1 — ) flwn = pl|

= (1 =a,(e(1) = ) |lwn — pll+ an(Fe(1) — ) [é’;i((fl)g - /jzgl

It follows from induction that

|lwns1 — 2l < IllaX{HwU — 7|l i (](i) ( )” }

Thus, both {u,} and {w,} are bounded. We observe that

Unp1r = Opp1 f(Wnp1) + (I — Q1 A)Wnp1 = O f(T(ta)un) + (1 — o, A)T (&, )un.

Thus, Corollary 4.1.4 implies that {u,} converges strongly to some point Z. In this

case, we also have
llwn = &l < llwn = wall + [ltn — E|| = callvSf (wa) — Awn|l + |lun — &|| = 0.

Hence, the sequence {w,} converges strongly to some point Z. This complete the

proof. O]
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By Lemma 2.2.14, we obtain the following corollary.

Corollary 4.1.6. Let E be a uniformly convex Banach space which admits a weakly
continuous duality mapping J, with gauge @ such that @ is invariant on [0,1]. Let
C be a nonempty closed convex subset of E and S = {T'(s) : s > 0} a nonezpansive

semigroup from C into itself such that F(S) # 0. Let f € [[p, and let A be a

strongly positive linear bounded operator with a coefficient ¥y > 0 and 0 < v < :"pfil).
Let the sequence {x,} be generated by the following:
o =12 € Ej
yn = @7 178 G4, /;n T(s)z,ds, (4.1.28)
Tl = oY f(#n) + (I =0, A)gdy @' 0

where {a,} C (0,1) and {B,} C [0,1] are real sequences satisfying the following

conditions :

(C1) limf L /b, =10 @nd/ X oli'of = o9
(C2) lim, %4 S50y

(C3) lim,_so5H = 00"
Then {x,} converges strongly to & that is obtained in Lemma 4.1.2.

Setting £ = H and 3, = 0 a real Hilbert space in Corollary 4.1.6, we have

the following result.

Corollary 4.1.7. [90, Theorem 3.2] Let H be a real Hilbert space. Let C' be a
nonempty closed convex subset of E and S = {T'(s) : s > 0} a nonezpansive
semigroup from C into itself such that F(S) # 0. Let f € [[p, and let A be a
strongly positive linear bounded operator with a coefficient ¥ > 0 and 0 <y < —f;

Let the sequence {z,} be generated by the following :

To=x €E,
(4.1.29)

tn .
Tpy1 = oy f(zn) + (L — anA)t};‘/ T(s)zpds, n >0
0
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where {ay,} C (0,1) is a real sequences satisfying the following conditions :

(C1) limpyeo 0ty =0 and 3 o ; 0= 00

(C2) litn, s t= 00

Then {z,} converges strongly to % that is obtained in Lemma 4.1.2. Then {zn}

converges strongly to & which solves the variational inequality:

{(A—+f)a" 51 ) /E0x € TR (4.1.30)

4.2 The general iterative methods for asymptotically nonexpansive

semigroups in Banach spaces

In this section, we prove the strong convergence theorem of general iterative

methods for an asymptotically nonexpansive semigroups in Banach spaces.

Theorem 4.2.1. Let E be a reflexive Banach space which admits a weakly con-
tinuous duality mapping J, with gauge @ such that ¢ is invariant on [0,1]. Let
S = {T(s) : s > 0} be a strongly continuous semigroup of asymptotically none-
pansive mappings on E with a sequence {L;} C [1,00) and F(S) #0. Let f € llg
with coefficient o € (0,1), A a strongly positive bounded linear operator with coef-
ficient 3 > 0 and0 < vy < ""(Qﬂ and let {a,} and {t,} be sequences of real numbers

such that 0 < o, < 1,t, > 0. Then the following hold:
() If BREETN 1)y, Vn > 0, then there caist E
= o(1)y—7a, Vn > 0, then there exists a sequence {y,} C
defined by

I o
Yn = an¥f(yn) + (1 — a'nA)?f T(s)ynds,n > 0. (4.2.1)
n Jo

(i) Suppose, in addition, that S is almost uniformly asymptotically reqular and

the real sequences {a,} and {t,} satisfy the following conditions:

(B].) ].imn_.}oo t" = OO;
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(B2) lioy, s 00 =0;

(s o™ Lsds—1)
an -

(B3) lirﬂn%oo 0.

Then {y,} converges strongly as n — oo to a common fized point & in F(S) which
solves the variational inequality:

(A —v)E, J (& — 2)) < 0,2 € F(S). (4.2.2)

Proof. We first show that the uniqueness of a solution of the variational inequality

(4.2.2). Suppose both & € F(S) and z* € F(S) are solutions to (4.2.2), then
((A—=7f)2, Jy(& — z7)) <0 (4.2.3)
and
((A—vf)z*, J(z* — %)) < 0. (4.2.4)
Adding (4.2.3) and (4.2.4), we obtain

(A—9f)E = (A—f)a*, Jp(z — z7)) < 0. (4.2.5)

Noticing that for any z,y € E,

(A=1f)z — (A= vy, Jo(z =)
= (A(z — 9), Jo(z — y)) — V{f(2) — (), Jp(z — ¥))
> Allz = ylle(le — yll) — vIf (@) = O Jp(z — )l
> 7% (|l — yll) — va®(lle —yl)
= (7 —v)2(|lz — yl|)

> (p(1) = ya)2(||lz — ) = 0.

Therefore # = z* and the uniqueness is proved. Below we use & to denote the

unique solution of (4.2.2).

Since lim, ,oc 0, = 0, we may assume, without loss of generality, that o, <
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P

For each integer n > 0, define a mapping G,, : E = E by
]
Ga.(y) = vfly) + (I — can)t—/ T(s)yds,Vy € E.
nJo
We show that G, is a contraction mapping. For any z,y € E,

”Gn(m) - Gn(y)”
o, v f(z) +F = n-,IA)t—l— fo : T(s)xds —oyf(y) =1 — anA) /“ T(s)yds

< flow (4(e) = f)I+ | ~aud) [ rmds - - / (uas)

1 fi
< e~ vl o)1 — ) ([ s ) e =]
nJo

ol 1 [t
= (et o [ £t~ oy Lds) o=l
tn 0 tn 0
1 fn 1 tn
< (~ / L.ds — ay, ((p(l)ﬁ/ / Leds — “,ra-)) |z — vl
tn 0 tn 0

In [eds—1

Since 0 < ‘“—O—f < p(1)y — ya, we have
n

fo" sds — 1"t
2 £ w(Dyp—=ga-< (,0(1)”7—] Leds — ya.
p tn 0

It then follows that 0 < (i [5% L. d3prrem (tp(l)“’/ﬁ fot" L.ds — 'ya)) < 1. We have
G,, is a contraction map with coefficient (ﬁ foi" L.ds —ap, ((p(l);/tl: fot" L.ds — ’ya)),

Then, for each n > 0, there exists a unique ¥, € E such that Gy, = yn, that is,

1 [
= @) + (T = ca),- [ T(6)yads,n 0.
nJo

Hence (i) is proved.
(ii) We first show that {y,} is bounded. Letting p € F'(S) and using Lemma

2.1.33, we can calculate the following

lyn — pl|
1 tn )

= [lewrf(um) + (1 — @)~ / T(s)yads —
nJo
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mﬁﬂ%J—amf@%+mﬁﬂm+%f#mﬂﬁ££"T@mds
- (I - a'nA)p - (anA)p”

< Y| f (n) — F(@)I + anllvf () — APl

1 tn 1 tn

%Aiﬁm@—glfmmﬁ

1 =
< an’}'a“yn —])” =+ O'nlhf(p) - A(p)” ¥ 90(1)(1 = Q’rz’}')t‘ / Lsdsllyn —P”
0

n

+o(1)(1 - an?y)

n

1 t'n
< apvalyn — pll + anllvf(p) — AP + tp(l)t/ Lgds||lyn — pl|
0

n

A tn
— Lp(l)a'n"{t—f Lst”yn - p”
0

1 tn
< agraly = pll - ol () — A+ [ Ldsllg =l
n Jo

M s
- c,o(l)a'n'yff Lods||y. — pll-
n Jo

n
Thus, we get. that

a7/ (p) — Alp)|
X 1 tn ]
1-— anyé = 1‘17 / Ls =+ 99(] )QI”;\}?L_/\ LSdS
0 0

‘Tt

lyn —pll < (4.2.6)

Calculating the righthand side of above inequality, we have

anllvfp) — AR
T =il /Otn L, + 90(1)%“7;1; /ﬂtn Lods + p(Lany
anllvf(p) = AQ)|
1—apya— & fo "Lt w(l)an"?% fo " Lods + ()t — pL)o
an|l7f(p) — AW)||
oet e+ 1= [ Luds otz [ Luds = ot
anllvf (@) — APl
an(p(1)7 — ay) - (i f ™ Lt 1) +p(L)any (ﬁ f " Lyds— 1)
aulbri () — A h
an(p(1)7 — a7) — (1 — p(1)any) (i /ﬂt“ Lyds — 1)
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Thus, we get that

v/ (p) — Al -
¥ —ay) —(1—a,y)d,’ (4.2.7)

Isn 211 < o

(é J5" Lyds = 1)
Qn

lvf(p) — AW)I .
— , for all n > N. Therefore, {y,} is bounded and hence { f(y, and
(p(1)7 —70) i Tt

n

{i / T(s)ynds} are also bounded.
0
Let &, (yn) = i th T'(8)ynds. Then, from (4.2.1), we get

. Thus, there exists N > 0 such that ||y, — p| <

where d, =

-~

4 = (Stn(yn)” = (yn) — Adg, @)l — 0 as n.— oo. (4'2'8)

Moreover, the fact that S is almost uniformly asymptotically regular and (4.2.8)

implies that,

”yn T T(h)yn“ = “yn — O, (yn) 1 + 119, (yn) —T'(h)dy, (yn)H
+ [|1Z(R)8¢, (yn) = T (h)ynll
X, A ‘Stn(yn)” i “5111 (¥n) — T(h')(stn(yn)”

+ La||06, (yn) = wall — O (4.2.9)

It follows from reflexivity of E and the boundedness of sequence {y,} that there
exists {y,, } which is a subsequence of {y,} converging weakly to w € FE as j — oo.
Since J,, is weakly sequentially continuous, we have by Lemma 2.1.31 that

limsup ®(||yn; — yll) = limsup O(||yn; — w|) + 2([ly — wl), for all z € E.

j—o0 j—oeo

Let

H(z) = limsup @(||yn, — vll), for ally € E.

j—o0

It follows that

H(y) = H(w) + @(|ly — wl|), for all y € E.
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For h > 0, from (4.2.9) we obtain

HT(yw) = lsup &y, — T(RYwl)) = lim sup (T ()i, — T(h)ol)

j—roo J—oo

< limsup @(|lyn; — wl|) = H(w). (4.2.10)

j—oo

On the other hand, however,

H(T(h)w) = H(w) + (|| T(h)w — w||). (4.2.11)
It follows from (4.2.10) and (4.2.11) that

&(||T(h)w — w|) = H(T(h)w) — H(w) < 0.
This implies that T'(h)w = w for all A > 0, and so w € F(S). Next we show that

Yn; —> w as j — co. In fact, since ®(t) = f[: w(T)dT,¥t > 0, and ¢ : [0,00) — [0, c0)

is a gauge function, then for 1 > k > 0, @(kz) < ¢(z) and

kit t i
(ki) :/0 (r)dr =k /o wlkz)dz < .1:/0 (z)dz = k®(t).

Following Lemma 2.1.31, we have

B(|lyn — wl)

_ a(||(I - a-,IA)tln /0  s)yuds — (1~ ap A)w
+an(7f () — vF(w) + vf (w) — A(w))|)

<3 (Hu - and)y | " T(s)ynds — (1 — and)w + an?(F(ga) — F()
+an(vf(w) — A(w), Jp(yn — w))

<@ (e -am| [Tt - [ Tioyua
+ o y(f (w) — f(w), Jp(yn — w))

<@ (- [ Ludellon = wll + il — )
+an(7f(w) — A(w), Jo(yn — w))

<@ ([(.o(l)(l — ) [ " Gt am] lon wll)

n JO

+ (1 (W) — Aw), Jp(tn — w))

)

+ ool — wn)
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< [ona-anm [ £uds) +ano] @ s —oi)
+an (7f(w) - A(w)1 pr('yn i w))

This implies that

1
1= (10(1)(1 = a'n:f)(g% fot" Lsds) + apyo

2([lyn—wll) < o (7S (w)—A(w), Jp(yn—w)),

also

1
(99(1):7 s CI’Y) o (17ﬁ O‘n:f)d'n

(tlj ]Ot L.ds — 1)

oy

@ (|lyn — w|l) < (vf(w) — Aw), Jo(yn — w)),

. - - ' - , .
where d, = . Now observing that y,, — w implies Sy —w) —

0, we conclude from the above inequality that
@ (flyn; = wlf) > 0 s j - 0.

Hence y,; — w as j — oo. Next we prove that w solves the variational inequality

(4.2.2). For any z € F'(S), we observe that

«%—%A"ﬂmmw—u—iﬁ"ﬂﬂﬁﬂawrw»
A NN

in
o (%f Jnds — —f Z(l,S J yrt == 2))
nJQ

1 tn
& (I)(”y“ - Z”) o ;l yud's '_/ ZdS
1 tn
Wl 2l = [ sl =2l 1o = 2

nJ0

= o(lya— 2l) - | L2y =)

n

:Q—}fwwgmmrwy (4.2.12)

n

17 (wn = 2l

Since

i [t
=t ) + (1~ ) [ T(ahads,
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we can derive that

(A=) == (=& [ el + (Am) - 4G | " T ).

Since @ is strictly increasing and ||y, — p|| £ M for some M > 0, we have

O(|lyn — pll) < @(M). Thus

((A 'Yf)(yn) J (yn -

U ) o ) o)

+ (Al = A 16 ), ulon = 2))

: (;L JitrL.dg— 1)

Qp

(llyn — 21l)

- <A(yn) % A(ti /‘; \ T'(s)ynds), Jv(yn % Z)>

n

(ti Ot" L.ds — 1)
A -d(M)

[ ] a”
1 tn
LA <A (-y,, - 1‘/ T(S)y”ds) y U — 4)> (4.2.13)
T 0

Noticing that

1 tn tn
Yoy = T(8)yn;ds —> w — —/ s)wds =w—w =0.

tn}- 0

Now using (B3) and replacing n with n; in (4.2.13) and letting 7 — oo, we have

(A= 11w, Jo(w = 2)) < 0.

So, w € F(S8) is a solution of the variational inequality (4.2.2), and hence w = Z by
the uniqueness. Applying Lemma 2.1.38, we can conclude that y, — & as n — oo.

This completes the proof.
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If A = I, the identity mapping on F, and v = 1, then Theorem 4.2.1 reduces

to the following corollary.

Corollary 4.2.2. Let E be a reflezive Banach space which admits a weakly con-
tinuous duality mapping J, with gauge ¢ such that ¢ is invariant on [0,1]. Let
S = {T(s) : s > 0} be a strongly continuous semigroup of asymplotically nonex-
pansive mappings on E with a sequence {L} C [1,00) and F(S) #0. Let f € lIg
with coefficient « € (0,1) and let {an} and {t.} be sequences of real numbers such
that 0 < o, <1 and t,, > 0. Then the following hold:

(i) If ﬁ f[:'" Lsds — 1 < a,(1 — a), Vn € N, then there ezists a sequence {yn}

defined by

I
Un N anf(yn) + (1 - 0'”)%— / T(S)yndé', n 2 0.
0

‘n

(ii) Suppose, in addition, that S is almost uniformly asymptotically regular and

the real sequences {a,} and {t,} satisfy the following:

(B1) 1ok, sodp=0

(B2) lim, %50, 7%.0;

(& fo" Lsds—1)
an -

(BS) ].i]nn—}oo 0.

Then {y,} converges strongly as n — oo to a common fized point T in F(S) which

solves the variational inequality :

(I = )3, J(& — 2)) <0,z € F(S).

If E := H is a Hilbert space and § = {T'(s) : s > 0} is a strongly continuous
semigroup of nonexpansive mappings on H, then we have I, = 1 and Theorem 4.2.1

reduces to the following corollary.
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Corollary 4.2.3. [90, Theorem 3.1] Let H be a real Hilbert space. Suppose that
f: H — H is a contraction with coefficient a € (0,1) and S = {T(s) : s = 0} a
strongly continuous semigroup of nonexpansive mappings on H such that F(S) #0.
Let A be a strongly positive bounded linear operator with coefficient ¥ > 0 and let
{o,} and {t,} be sequences of real numbers such that 0 < an <1,, > 0 such that
lim,, 00 £, = 00 and lim, ,o 0, = 0, then for any 0 < v < 7/a, there is a unique

{y.} in H such that

1 tn
U = anYf(ya) + (L = a,,A)t/ T'(s)ynds,n =0
nJo

and the iterative sequence {y,} converges strongly as n — oo to a common fized

point & in F(S) which solves the variational inequality :

(A—~vf)3,%—2) <0, forze F(S).

Theorem 4.2.4. Let E be a reflezive strictly convex Banach space which admits
a weakly continuous duality mapping J, with gauge @ such that ¢ is invariant on
[0,1). Let S = {T'(s) : s = 0} be a strongly continuous semigroup of asymptotically
nonexpansive mappings on E with a sequence {L;} C [1,00) and F(S) # 0. Let
f € Iy with coefficient & € (0,1), A a strongly positive bounded linear operator
with coefficient ¥ > 0 and 0 < ¥ < U por any To € C, let the sequence {x,} be

defined by
T
Zpgr = oy f(za) + (I — a',,A)t— / T(s)znds,n = 0. (4.2.14)
nJo

Suppose, in addition, that S is almost uniformly asymptotically reqular. Let {on}

and {t,} be sequences of real numbers such that 0 < oy, <1,tp > 0,

(C1) limyyeotn =00 ;

(C2) limy 00 an =0, 07 gQp = 00 ;

(& fo Leds—1)

(€3) Iy e — 0.
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Then {x,} converges strongly as n — oo to a common fized point & in F'(S) which

solves the variational inequality (4.2.2).

Proof. First we show that {z,} is bounded By condition (C3) and given 0 < e <

0‘" Leds—

¢(1)7 — ary there exists N > 0 such that J‘—— < € for all n > N. Thus

1 [t I
(1-— 4,0(1)'}'(1,1)(/ Ligds —1) < / L.ds —1 < gay,
tn 0 tn 0
for all n > N. Since lim, . oy = 0, we may assume, without loss of generality,
that o, < (1)||A]|7". We claim that ||z, — p|| < M, n = 0 where

I1f(p) — pll }

(p(1)7 —ay —¢)

M := max { lzo =2, llzx — 2l
Let p € F(S). Then from (4.2.23) we get that

l|$n+1 —ll

i =l
avf(za)+ U - anA)f— f T(s)xpds —p
‘n JO

1 ln
gy f(2, )+ = anA)i— / T(s)xpds — anA(p) — (I — a'nA)pH
‘1 0
< “aanf(‘Tn) 4 n"/f(p) + ay, /f(P) Ci”/l P)“
t,
’(I — apA) (—1-/ §)T,ds — / pds)
tn 0
< |lanvf (@) — anvf(P) 4 0mvf(p) — anA(p)||
t?'l
+H|I — e, A ’ T Fls)oude— g / T(s)pds
n nJo
< anllvf(p) — Apll + anayllzn — pl|

+p(1)(1 — ) (i /0 "’ Lsds) llzn — 2l
— aullvf (o) — Apl + (anm/ +o)(1 - ) | Ls)) llew =1

< ap|lvf(p) — Apll

1 tn ]_ tn
+ (a-na-'v + f Lqds — p(L)on¥— / Lsds) 7 = 2
nJo n Jo

< ||y £ (p) — Apll
+ (1 41— w(l)an'?)(% /0 " Lods — 1) — an(p(1)7 — a“f)) lzn — 2|l

_l__
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< a | f(P) — 2l + (1 — anl0(1)¥ — o) + eay) [|lza — p|

= an|| f(p) — pll + (1 — an(p(1)7 — ay —€)) ||lz. — 2l

@ -pl
< mos{ i eyl ol

By induction,

1/ () — pll
(p(y—ay—e

|z, — p|| < max { y lzn — pH} for all n > N,

1 in
and hence {z,} is bounded, so are {f(z,)} and {t_/ T(s):r:nd..s}.
0

n

Let &8, (z,) = % fo "T(s)z,ds. Then, since o, = 0 as n — oo, we obtain that
|Zni1 — 0c.(zn) |l = anllvf(zn) — Ad, (z.)|} — 0 as n = oo. (4.2.15)

For any A > 0, we have

I7(R)Zns1 — Tnsall
<|T(h)zner — T(h)de, (z0) || + 1T (R)S:,, (2n) = 6. ()l
+“‘55n (En) - $n+1”

b Lh“1:n+1 = dtn(mn)” + | T(h)6, (%n) — Jf-n(:l:”)“ i ”‘Stn(xn) - $n+1”1

it follows from (4.2.15) and § is almest uniformly asymptotically regular that
|7 (h)zns1 — Toa|| = 0 asn— 0. (4.2.16)

Next, we prove that

limsup(yf(Z) — AZ, J,(z, — &)) <0, (4.2.17)

n—o0

Let {zn,} be a subsequence of {z,} such that

lim
k—co

(vf(E) — A%, Jp(zn, — T)) = limsup{vf(Z) — AZ, Jp(z, — &)). (4.2.18)

n—oo

If follows from reflexivity of £ and the boundedness of sequence {z,,} that there

exists {33":.-,-} which is a subsequence of {z,,} converging weakly to w € E as



116

i — co. Since J,, is weakly continuous, we have by Lemma 2.1.31 that

lim sup (||, — 2||) = limsup ®([|zn,, —wl) + ®(||lz — wl|), for all z € E.
i—oo

i—00
Let
H(z) = limsup ®(||z,, — ), for all z € E.
1—00 ;
It follows that

H(z) = H(w) + ®(||]z — w||), for all z € E.

From (4.2.16), for each h > 0, we obtain

H(T(h)w) = limsup ®(|lz,, — T(R)wl|) = limsup &(|[T(h)s, ~ T(h)w|)

1i—00 i—00

< limsup®(||z,,, — wl) = H(w). (4.2.19)

1—00

On the other hand, however,

H(T(h)w) = H(w) + (J|T(h)w — w]|). (4.2.20)
It follows from (4.2.19) and (4.2.20) that

o(||T(h)w — wl||) = H(T(h)w) — H(w) < 0.

This implies that T(h)w = w for all h > 0, and so w € F(S). Since the duality

map J,, is single-valued and weakly continuous, we get that

limsup(y/ (8) — AT, Jy(on —5)) = Jim (v/(&) ~ AR, Jo(tn, — 7))
= 1im (1f(3) — A&, Jp(@m, — D))

as required. Finally, we show that z, — Z as n — 0.

O(||znss — )
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—a(|( - a,,_A)% /0 " P (s)ads — (I — anA)i
Fan(rf (@) = 1 @) + 1) — A@I)
<o (u-atl [*Tmds - (1 - i+ (s - £2)
o (5) A2 4y =5)
< (o -am|; | [" s L [
F @[3 — @), ol — D)
<@ (o001 =6t [ Bl - 2l vl =)
+anf (@) = A@), ol — 5)
< ({9@(1)(1 = m)(i /D A a,pya} o 5,-||)
0 (U E) = A Jin = )
[(nu~a@xijfLﬂﬂ+aﬂ44wwnﬂn
0l f(B) — AG), I (o = )

sklﬂnmﬁxélfLﬂs~n+1auwua—vw]@m%—ﬁm

)

s (1’"’}’0.’”{1,'” - 5:”)

SV F ) — AN S0 — 5))
< (1 (T2 q0)) & ([zX— fm+u—wumﬂx%£ Leds — 1)M
+ ap (7)) — WD)y K wn —F) (4.2.21)

where M > 0 such that ®(||z, — Z||) < M. Putting

Sp = aﬂ((la(l)’? - "}’O’)

and

(1 —pMant\ [ Jo" Deds — 1

= (90(1)“?—70:) ( O )M
1 - = v e

m(’yf(ﬂ?) = A(’U), J(p(a’n s ))

Then (4.2.21) is reduced to

O([|znts — Z[) < (1 — sn)@(|en — Zl) + sntn. (4.2.22)
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Applying Lemma 2.1.39 to (4.2.22), we conclude that ®(||z,+1—Z||) — 0asn — oo,

that is, z, — % as n — oo. This completes the proof. (]

If A = I, the identity mapping on F, and v = 1, then Theorem 4.2.4 reduces

to the following corollary.

Corollary 4.2.5. Let E be a reflezive strictly convex Banach space which admits
a weakly continuous duality mapping J, with gauge @ such that @ is invariant on
[0,1). Let S = {T(s) : s > 0} be a strongly continuous semigroup of asymptotically
nonexpansive mappings from C into C with a sequence {L;} C [1,00), F(S) # 0.

Let f € I with coefficient a € (0,1) and the sequence {x,} be defined by o € C,

1 2
Tl = O SOy A1 - a”)t/ BES (s, n = 0. (4.2.23)
n JQ

Suppose, in addition, that S is almost uniformly asymptotically reqular. Let {oy}

and {t,} be sequences of real numbers such that 0 < a, < 1,1, > 0,

(C1) lim, R\ I o

(C2) lim, ,ootth =10, P N OM=FP;

(?3{ B Lo do—Tf
e o~

(03) limyses 0.

Then {z,} converges strongly as n— oo to a common fived point & in F(S) which

solves the variational inequality

(I = )&, Jy(& — 2)) < 0,2 € F(S).

If E := H is a Hilbert space and S = {T'(s) : s > 0} is a strongly continuous
semigroup of nonexpansive mappings on H, then we have L; = 1 and Theorem 4.2.4

reduces to the following corollary.

Corollary 4.2.6. (90, Theorem 3.2] Let H be a real Hilbert space. Suppose that
f: H— H is a contraction with coefficient a € (0,1) and & = {T'(s) : s = 0} a
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strongly continuous semigroup of nonexpansive mappings on H such that F(S) # 0.
Let A be a strongly positive bounded linear operator with coefficient ¥ > 0 and
0 < v < ¥/ and the sequence {x,} be defined by zy € C,

1 [h
Bt = WY () H (I — a,,A)t—/ T(s)znds,n > 0.
0

n

Let {a,,} and {t,} be sequences of real numbers such that 0 < o, <1,%, > 0,

(C1) limy, o6ty =0y

(C2) limy_s00 fZ QLIS W= 00 ;

Then {z,} converges strongly as n — oo to a common fived point & in F'(S) which

solves the variational inequality:

(A— )3, —2) <0, forzeF(S).

4.3 The general iterative methods for asymptotically nonexpansive

semigroups in Banach spaces

In this section, we obtain the strongly convergence theorems of general

iterative schemes for asymptotically nonexpansive semigroups.

Theorem 4.3.1. Let E be a real Banach space with uniform normal structure
which has o uniformiy Gateauz differentiabie norm and admaits the duality mapping
J,, C be a nonempty, bounded, closed and convex subset of Iv such that C+C C C.
Let S = {T(s) : s > 0} be an asymptotically nonezpansive semigroup on C with
a sequence {k,} C [1,+00), lim, o kn = 1 and sup,>; kn < V/N(E) such that
F(S) # 0. Let f € g with coefficient oo € (0,1), A a strongly positive bounded
linear operator on C' with coefficient ¥ > 0 and 0 < v < @ and let {o,} and
{ta} be sequences of real numbers such that 0 < a, <1, t, > 0. Then the following

hold:
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k,—1
Q) If — < @(1)7 — v, Vn > 1, then there ezists a sequence {yp} C E

defined by

o = €1 f () + (I = Cn AT (t)gy 2> 1. (43.0)

(ii) Suppose, in addition, iMoo ||y — T'(t)yn|l = 0 uniformly in t € [0,00) and

ku=1 _
n—=0.

the real sequence {a,} satisfies limpyoo 0t = 0 and lim,,

Then {y,} converges strongly as n — oo to a common fived pownt T in F(S) which

solves the variational inequality:

(A =~f)Z, J(& — 2)) £0, Vz € F(S). (4.3.2)

Proof. We first show that the uniqueness of a solution of the variational inequality

(4.3.2). Suppose both & € F(S) and z* € F(S) are solutions to (4.3.2), then

(A= 1)z, Jp(@—27)) <0 (4.3.3)
and

(A= v — 2P0 (4.3.4)
Adding (4.3.3) and (4.3.4), we obtain

(A= 1f)E—(A—7f)a*, J,(T — ")) 0. (4.3.5)

Noticing that for any z,y € C,

((A=vH)z = (A= )y, Jo(z — ¥))
= (A(z — y), Jp(z —y)) — ¥{f(2) = fW), Jo(z — ¥))
> 7llz — ylle(llz = yll) — Il f() = Flle(= - )l
> 72 (|lz — yll) — va@(|lz — )

= (¥ —y2)2(llz - yl)
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> (F(1) = va)@(lle — yll) = 0. (4.3.6)

Therefore # = x* and the uniqueness is proved. Below, we use Z to denote the
unique solution of (4.3.2). Since lim,_ o @, = 0, we may assume, without loss
of generality, that o, < @(1)||A||"*. For each integer n > 1, define a mapping
G,:C —= Cby

Gn (U) — anf}!f(y) & (I 2 C"JIA)TH(tn)y: V'(J =3 &

We shall show that G, is a contraction mapping. For any z,y € C,

IGa(z) — Ga@)| = llanvf(2) + (I — 0 A)T"(tn)z — e f () = ([ — an A)T"(tn)yds||
< Jlawy(fla) = Fall + 1 — cnd) (T (Bn)a: = T (E)y)l
< apvallz = yll+ o)1 = an¥)kallz — yll
= (awye +o(1)(1 = an¥)kn) [l =yl
< (k= anva + (L) ankn) (o — o
< (kn— an(p(1)7kn — va)) [l —yll

Since 0 < f2=1 < o(1)7 — ye, we have

IIi“n T
0< \

< p(1)7 — va < p(1)7kn — 70

n

It then follows that 0 < (k, — a, (¢(1)¥k, —ya)) < 1. We have G, is a contraction
map with coefficient (k, — a, (¢(1)¥k, — va)). Then, for each n > 1, there exists

a unique y, € K such that G,,(yn) = yn, that is,
yn = Oln’:(f(yﬂ) + (I - O’nA)Tn(tn)yn’ n Z 1'
Hence (i) is proved.

(i) Define o : K — R by

ﬂ'(y) = LIMn(I)(”yn - y"): yc C»
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where LIM,, is a Banach limit on [*°. Since p is continuous and convex and
g(z) = o0 as ||2]| = oo, and E is reflexive, by Lemma 2.1.37, g attains its infimum

over E. Let u € C be such that
LIM,®(|ly, — ul)) = inf LIM,®({lyn — y1])- (4.3.7)
Let

¥ 1= {z € E: p(z) = inf ,f,(y)} .

yecK

We have that C* is a nonempty, bounded, closed and convex subset of C' and
also has the property (P), indeed, if z € C* and w € wy(z), i.e. w = weak —
limj_yoo 792 as j — co. Notice that, limy, o0 |#n — T'(£)Yn]| = O uniformly in

t € [0, 00), by induction we can prove that forallm > 1
lim ||y — T™(t)ya|| = 0 uniformly in ¢ € [0, 00). (4.3.8)
n—oo

From (4.3.8) and weakly lower semicontinuous of y. For each h > 0, we have that

p(w) £ liminfp(T™(h)z) < limsup (T (h)z)
J—00

nm—oo

= limsup LIM,, ®(||y, — T (h)z||)

m—00

< limsup [LIM,®([lyn — T™ (B)yall + |77 (h)yn = T™ (R)z]|)]

m—oa

= limsup LIML,®(||7™ (h)yn — T™ (h)z||)
m—o

< limsup LIM,® (kv — z|))
m—00

= LIM,®(||y. —|)

= ulz) = inf u(y),

which implies that C* satisfies the property (P). By Theorem 2.2.9, there exists a

element z € C such that z € F(S)NC*.

Since C'+ C C C, we have z +vf(z) — Az € C. By Proposition 2.1.36,

LIM,(z +vf(2) — Az — 2, Jp(Yn — 2)) S 0,
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it implies that
LIM, (vf(2) — Az, Jy(yn — 2)) < 0. (4.3.9)

In fact, since ®(t) = f; @(r)dr, ¥t > 0, and @ : [0,00) — [0, 00) is a gauge function,
then for 1 > k > 0, p(kz) < ¢(z) and

Kt -t t
O (kt) = fo p(r)dr =k /0 p(kz)dz < k‘/o p(z)dz = kP(t).

It follows from Lemma 2.1.31 that

([lyn — 2ll) = (I — cn A)T" (tn)yn — (I — nA)z

+an(7f (¥a) — 1f(2) + 71 (2) = A2)|))

(I — anA) T (ta)yn — (I — cnA)z + anv(f(yn) = f(2)])
+an(vf(2) — Az, Jo(yn — 2))

< @ (p(1)(1 = an¥) [IT" (tn)yn — T ()2l + anvellyn = 2[)

+ o, Y(f(2) — f(2), Jo(ym — 2))

O (p(1)(1 — ) (k) lyn — 2l + anyeliyn — ()

+ a1 f(2) = Az, Jp(yn — 2))

@ ([p(1)(1 — ) (kn) + anyed [fyn — 2|)

+an(vf(2) — Az, Jy(yn = 2))

VAN

A

IA

[A

[‘P(l)(l — @nY )i T Q'HFYO:] P (”yn - Z“)

+ o (vf(2) — Az, Jo(yn — 2)).

This implies that

1
(]- - Cl’,,’_)’)kn + QpyQ

P([lyn — 2[) < 1— (1) an(7f(2) — Az, Jp(yn — 2)),

also

1
q)("yn - z") < ((p(l)'ﬁ’ — a,},) — (1 _ a’n'?)dn ('Yf(z) - AZ, pr(yn = Z)),
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kn—1

n

. Thus

where d,, =

1
(17— a7) — (1 — aw?)dn

LIM,&(yn — ) < LIM,,( ('rf(Z)#Az,Jep(yn—z)))

IA

0,

and hence
(¢(1)7 — ya)LIM,@(|lyn — 2||) < 0.

Since ¢(1)7 > ya, LIM, ®(||lyn — 2|[) = 0, and then there exists a subsequence
{a, } of {ya} such that y,,; — z as j — oo, we shall denoted by {y;}.
Next, we prove that z solves the variational inequality (4.3.2). From (4.3.1), we

have
19 n
(A 1 n/f)yrl i 7;(1 - O-'n“"l)("‘r ~F (t”))y"'

On the other hand, note for all z;,y € C,

(I = T"(tn))z — (L — T"(tn))y; Jo(x — 1))
= (v =y, J(x = y)) — (@ (t)z = T"(ta)ys Jo(& — ¥))
= [lo — yllo(lz = yll) = (T (t)z — T"(ta)ys Jo(2 — ¥))
> O(flz = yll) — kallz — ylle(llz—ull)
> &([lz — yll) — ka®(llz — )

= (1= kn)@(||z — yll).
For p € F(S), we have

(A= 1D ol =) = =T = CuA)T = Tt ol )
= U = T (=T, Tl )
+H{AI — T™(tn))Yns Jo(Yn — D))
= L5l — 1)+ CAUL — T(60)is St — 9))

n

IA




ke — 1 i
< =—=(lle = yll) + [Allllgn — T"(tn)mlI M,

n

where M > sup,>; ¢(||y. — ll). Replacing y, with 3,; and letting j — oo, note

that ||y, — 7" (tn)yn|l = 0 and lim, ""&:1 = 0, we have that
((A=vf)z,Jp(z —p)) <0, Vp € F(S).

That is, z € F(S) is a solution of (4.3.2). Then z = Z. Applying Lemma 2.1.38,
we can conclude that {y,} converges strongly to & as n — co. This completes the

proof. 0

If A = I, the identity mapping on C, and y = 1, then Theorem 4.3.1 reduces

to the following corollary.

Corollary 4.3.2. Let E be a real Banach space with uniform normal structure
which has o uniformly Gateawr differentiable norm and admits the duality mapping
J,, C be a nonempty, bounded, closed and convex subset of E. Let S = {T(s) :
s > 0} be an asymptotically nonexpansive semigroup on C with a sequence {ky,} C
[1,400), limyeyoo by = 1 and sup,»1 kn < o N(E) such that F(S) # 0. Let f € llg
with coefficient a € (0,1) and let {a,} and {t,} be sequences of real numbers such

that 0 < a,, < 1,t, > 0. Then the following hold:

() If k&=l <1—q, Vn>1, then there exists a sequence {yn} C K

Qan

defined by

Y = O f () + (1 — an) T (tn)Yn, 0 > 1. (4.3.10)

(i) Suppose, in addition, im0 [[Yn — T(E)ynll = 0 uniformly int € [0,00) and

fy—1 . 0

the real sequences {c,} satisfies limy, o0 0y = 0 and limp_00 “5
n

Then {y,} converges strongly as n — oo to a common fived point T in F(S) which

solves the variational inequality:

(L= P Jo(5—2) <0, z€ F(S). (4.3.11)
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If f = u, the constant mapping on C, then Corollary 4.3.2 reduces to the

following corollary.

Corollary 4.3.3. Let E be a real Banach space with uniform normal structure
which has a uniformly Gateaux differentiable norm and admits the duality mapping
Jp, C be a nonempty bounded closed convex subset of E. Let S = {T(s):s>0} be
an asymptotically nonezpansive semigroup on C with a sequence {k,} C [1,+0c0),
limy,_yo0 kn = 1 and sup, >y k, < V/N(E) such that F(S) # 0. Let {a,} and {t,}

be sequences of real numbers such that 0 < a, < 1,t, > 0. Then the following hold:

i)y If *=1 <1 Vn>1, then there exists a sequence {yn} C C
Qpn J

defined by

Yn=0ntt + (1 =) (tn)Yn, 1= 1. (4.3.12)

(i) Suppose, in addition, limp_,os ||y — T'(®)yn|| = 0 uniformly in t € [0,c0) and
the real sequences {a,} satisfies lim, o0 0, = 0 and lim,, 0 kaml — .
Then {y,} converges strongly asn — oo to a common fired point & in F(S8) which

solves the variational inequalily:

(# — u, J,(2%>) J0.\% € FI8) (4.3.13)

Next, we present the convergence theorem for the explicit scheme.

Theorem 4.3.4. Let E be a real Banach space with uniform normal structure
which has a uniformly Gateauz differentiable norm and admits the duality mapping
Jp, C be a nonempty, boimded, closed and convez subset of E such that C+C C C.
Let S = {T(s) : s > 0} be an asymptotically nonexpansive semigroup on C' with
a sequence {k,} C [1,400), limy e kn = 1 and sup,s; kn < \/J\—T(f) such that
F(S) # 0. Let f € Ilg with coefficient o € (0,1), A a strongly positive bounded

linear operator on C with coefficient 7 > 0 and 0 <y < "’(;);’. Let {B,} and {t,}

be sequences of real numbers such that 0 < 8, < 1,t, >0,
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(C]-) limy, 00 Bn = 0;
(C2) lim, o0 M5t =0;

(03) Ezo:g Bn = 00.

For any xg € K, let the sequences {z,} be defined by
Tnp1 = Buvf(z) + =B AT (L )ands, T8 (4.3.14)

Suppose, in addition, lim, e ||n — T(£)z,]| = 0 uniformly int € [0,00). Then
{zn} converge strongly as n — oo to the same point  in F(S) which solves the

variational inequality (4.3.2).

Proof. By Theorem 4.3.1, there exists a unique solution Z in F'(S) which solves the

variational inequality (4.3.2) and y,, — & as m — co. Next, we prove that

limsup(7f(&) — AZ, J,(z, — %)) < 0. (4.3.15)

n—oo

For all m > 1,n > 1, we have

Un —Tn = am"."'f(ym) u (I -3 a'mA)Tm(tm)ym — &n
= Qpny (’Yf(ym) = Aym) o= (Tm(tm)ym - Tm (tm)ﬂ:n) ‘

+(Tm(tm)$n o ﬂ;n) . e Qm (Aym = ATm (tm)ym.)-
It follows from Lemma 2.1.31 that

S(lyn —2all) = B — A AYT™ ()i — (I — mA)

+ (Y (Ym) — V(&) +7f (&) — AZ + AT — Az,)||)
(|| = amA)YT™ (b} — (I — A,
V(@) = [()) + AT — Az, )

o (1f(®) — A@), Jplyn = )

IA
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< @ (p(1)(1 — an¥) (T (tn)zn — T" (t)Zl| + anyalle. — &)
+anV(f(Z) = £(&), Jp(yn — T))
@ (p(1)(1 = an¥)knllzn — 2| + anyallz, — ()
tan(Vf(F) — AG), Jo(@n — &)
® ([p(1)(1 = an)kn + anye] |z, — &[])
+an{(vf(Z) = A®), Jp(wn — T))
(1) — an¥)kn + anya] @ (|lon — )
+an{yf(&) = AZ), Jo(zn = E))
(1= @(1)an¥) (kn — 1) + 1 — an(p(1)y — 70)] @ ([l — Z[I)
+o, {(vf (&)= A(Z), Jo(zn — T))
(1= an(p(1)7 — 7)) @ (Jln — ) + (1 — p(Dan7)(kn — 1)M

o {(vf(Z) — A(E), J,(za — T))- (4.3.16)

IA

IA

IA

IA

IA

It follows that

lym — ZalleUlym — znll)
= (VW W) = Aym) + (T ()Y — T™ (Em)2n)
H(T™ (tm)n = Tn) + o (AYm — AT (b )Ym)s Jo(Ym = Tn))
= Q{1 W) — Aty Jp W — Tn)) + (T (b)Y — T () Tn, T (Y — Zn))
HT™(tm)Tn — Zns JpUm — Za)) + Om(AYm — AT™ (En)Ym) Jp(Ym — Ex))
< Y Wm) = Ay JpUm — Tn)) + 1T (Em )y — T () Znllo([[Ym — all)
HIT™ (tm) % — Zall@lgm — zall) + Cml| Ay — AT™ (tn)ymllo(lgm — zall)
< (7 W) — Ay JoUm = ) + km[[ym — Tallo(llym — 2all)
)

HIT™ (b )2 = Zall(ym = Zall) + Cnll Am — T Em)ym) ol — @all)-

Since C is bounded, so that {z,} and {y.} are all bounded, and hence

(Yf(Ym) — AYm, .],p(:cn — )
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M + |A(Ym — T () Ym) || M,

o T () n — 2

(4.3.17)

where M is a constant satisfying M > sup,, e @([|#n — ¥ml|). By our hypothesis,
liMps00 ||2n — T(t)2,]| = 0, uniformly in ¢ € [0,00). By induction, we can prove

that forall m>1

lim ||z, — T™(t)zall =0, uniformly in ¢ € [0, co).

n—oo

Hence for all m > 1, we have
lim ||&, —T™(&a)zn|l =0, as n — oo. (4.3.18)
n—co

Therefore, taking upper limit as n — oo in (4.3.17), we have

lim SUP("/f(ym) o Aym; Jtp(:t:n F ym))

n—eo

ki
< limsup ——— MQ + limsup ||A(yn — L™ (tn)ym) || M. (4.3.19)

n—oo £ m n— 00

Since C' is bounded, it follows from (C1) that
lym — T™ () ¥nll = anllvf (Wm) 4+ AT (& )Ymll — 0 as m— oo. (4.3.20)
And then, taking upper limit as m — oo in (4.3.19), by (C3) and (4.3.20), we get

lim sup limsup{"yf (Ym) — AYin, Jo(Tn — Ym)) < 0. (4.3.21)

m—oo n—oo

On the other hand, since lim,, ;o0 ¥m = & due to the fact the duality mapping J,

is norm-to-weak* uniformly continuous on bounded subset of E, it implies that

(v f (&) — AZ, Jp(@n — Z)) = (Vf(Um) — AYm, Jop(En — Ym))]
= |(vf (&) — AZ, Jp(zn — &) — Jp(Tn — Ym))
+ (V&) — S () + Aym — AZ, Jp(@n — Ym))]
< [vf (&) — A%, Jp(@n — &) — Jp(@n — Ym))]
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+ (@) = 7 @)l + 1AGm — D)) e(l|%n — Ymll) = 0 as m — oco.

Therefore, for any given & > 0, there exists a positive number N such that for all

m=>N

(Vf (&) — AZ, Jp(n — 2)) < (Vf (Um) — AYms Jo(Zn — ym)) +&.

It follows from (4.3.21) that

lim sup(yf(&)— A% J,(Tn T))

n—oo

= lim sup limsup(v f(Z) — AZ, J,(z, — %))

m—»0o0 n—oo

< limsup im sup{(vf (¥m) — AYm, Jp(@n — Ym)) + €

m—co n—oo

<{E.

Since € is arbitrary, we have

limsup(y.f(z) — AZ, J,(z, — 2)) < 0. (4.3.22)

n—oeo

Finally, we show that x, — 2 as n — oo.

(I)(“:En-ﬂ — &[|) (||( —L.A)T" (tn)2n — (I = Brd)z

+Bu(vF(xn) — 1f(E) +7/(E) — A@))])

< O (|(I=BaAT" (tn)Tn — (I = BuA)E + Buy(f(zn) — F(@))
+a(Vf(E) — AE), Jp(yn — E))

< @ (1) = Bu) T (tn)zn — T"(E)E| + Buvellzn — Z[)
B (@) — f(&), Jp(yn — E))

< @ (p(1)(1 — BN kallzn — Z|| + Buyellzn — )
+Bu {1/ (&) — A®), Jp(n — E))

< @ ([p(1)(1 = Bk + Buva] [lan — Z])

a1 (&) — A(3), Jplan — )
< [p(1)(1 — Bk + Buve] ® (2 — 31
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+Bu {1 (&) — A(Z), Jo(an — £))

< (1 = o(1)Ba7) (kn — 1) +1 = Bul(1)7 — v2)] @ ([|lzn — &)
+Bu(1f (&) — A&), Jp(wn — E))

< (1= Balp(D)y — ) @ (lzn — ) + (1 — @(1)B27) (kn — 1) M"

+Ba{1f (&) — AZ), Jp(zn — £)) (4.3.23)
where M” > 0 such that sup,s; ®(||z, — Z||) < M". Put

Sp — ,Bn (ﬂO(l):\f i niro'")

and

_ 14 (:O(l)ﬁnﬁ Jli?n —1 o —]__ ) L \ .
= (l;?(l)";’ A ﬂ,/a-) ( Q. ) M™+ ()7 — ,},a)hf(w) R (R, — )

Then (4.3.23) is reduced to
O(|znrr — Z|) < (1 = 35)@(||zn — Z||) + 5000n- (4.3.24)

Applying Lemma 2.1.39 to (4.3.24), we conclude that ®(||z,41 —Z||) — 0 asn — oo;

that is, z,, — & as n — co. This completes the proof. O

Using Theorem 4.3.4, we obtain the following two strong convergence theo-
rems of new iterative approximation methods for an asymptotically nonexpansive

semigroup S.

Theorem 4.3.5. Let E be a real Banach space with uniform normal structure
which has a uniformly Gateaux differentiable norm and admits the duality mapping
Jy, C be a nonempty, bounded, closed and convez subset of I such that C+C C C.
Let 8 = {T'(s) : s > 0} be an asymptotically nonexpansive semigroup on C' with
a sequence {k,} C [1,400), limyyo0kn = 1 and sup,s; kp, < V' N(E) such that
F(S) # 0. Let f € 1l with coefficient a € (0,1), A a strongly positive bounded
linear operator on C with coefficient 7 > 0 and 0 < v < i{?i. Let {f.} and {t,}

be sequences of real numbers such that 0 < 8, < 1,t, > 0,
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(C1) lim, 300 B = 0;
(C2) limp_ oo 5%:—1 =il;
(C3) 2o5Zgfn = oo
For any wy € C, let the sequence {w,} be defined by

Wntt = BaYF(T" (tn)wn) + (I = BuA)T™(tn)Wny 1 2> 0, (4.3.25)
Then {w,} converges strongly as n — oo to a point & in I (8) which solves the
variational inequality (4.3.2).
Proof. Let {x,} be the sequence given by ¢ = wp and

T =By f(zs) + (L — B A)T"(tn)n, Y 2 0.
By Theorem 4.3.4, z, — &. We claim that w, — . We calculate the following
ons = sl = Al f () = SO taw)l + 1T = BaANIT ) = Tl

JBHA/C'Y“:-‘CR - Tn(tn)‘wnll = (;D(]-)(]- -4y ﬁnzf)(k'n)”wn ¥ ujn“

< Buyallze — T7 (@) + Buyall 1™ (60)% — T (tn)wn||

VAN

Fo(1)(1 = Bn¥) (k) llzn — wal|

< Buavallen — &l + Buyeka||Z — wall
+o(1)(1 = BaT) (n) |2 — wall

< Brralan — &+ Burellwn — all + BurckallE —
+o(1)(1 = Ba¥) (kn)llzn — wll

= 1)1 = Bd) (ka) |20 — wall + Bavellwn — al|
4B (yer + k) lln — &||

= (1)1 = Bu¥) () + Bav) [ — i
RN

< [(1 = @(1)Ba¥) (kn — 1) + 1 = Ba(0(1)7 — v2)] [|zn — wall
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+6n('ya' + kn)”mﬂ - ‘;f"”
< (1= Balp()y — 7)) 1z — wall + (1 — ©(1)Ba7) (kn — 1) M

+4Bn('}/a' g kn)llwﬂ - i”:
where M > 0 such that sup,>; |2, — wa|| < M. Put

Sn = ﬁ;;(@(l);{ — ’YQ)

and
on = (L BT (1) gy, 1oty
n (ga(l)’)f*"fa Bn 1 +((,0(1):/_,‘/Q‘)”“n z||.

Then we have that
Zns1 — watall < (A = sp)l|zn = wall + $p0n. (4.3.26)

It follows from (C3), lim, ;e [|2n — Z]| = 0 and Lemma 2.1.39 that ||z, —w,[| — 0

as n — oo; that is, wy, — T asn — o0o. OJ

Theorem 4.3.6. Let E be a real Banach space with uniform normal structure
which has a uniformly Gateauz differentiable norm and admits the duality mapping
Jy, C be a nonempty, bounded, closed and convez subset of E such that C+C C C.
Let 8 = {T(s) : s > 0} be an asymptotically nonevpansive semigroup on C' with
a sequence {k,} C [1,400), liM, se0kn = 1 and sup,>; k, < /N (E) such that
F(S) # 0. Let f € ll¢ with coefficient a € (0,1), A a strongly positive bounded
linear operator on C with coefficient ¥ > 0 and 0 < v < @. Let {8,} and {t.}

be sequences of real numbers such that 0 < 3, < 1,t, =2 0,
(C1) lim, o0 B =0;
(C2) limy_,e0 L%fl =

(C3) 20z fn = 0
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For any zy € C, let the sequence {z,} be defined by

Znyl = Tn(tn) (ﬁn')’f(zn) - (I - 6,]}1)2,1), n >0, (4327)

Then {z,} converges strongly as n — oo to a point & in F(S) which solves the

variational inequality (4.3.2).

Proof. Define the sequences {w,} and {o,} by
wy, = Bpuyf(za) + (I — BrA)z, and 0, = Bp41, 7= 0.
We have that
W1 = P17 (2ng1) + (I = Bus1A)zn1 = oY F(T (tn)wn) + (I =0, A)T" (tn ) wh.

It follows from Corollary 4.3.5 that {w,} converges strongly to . Thus we have

I A

=4 &l |20 = wel| + [lwn — Z|| = Bullvf(2:) — Az || + [Jwn — &

< PaM + ||w, — Z|| = 0 as n = oo,

where M > 0 such that M > sup,s; |[7/(z.) — Az, ||. Hence {z, } converges strongly

to . O

If A= I, the identity mapping on F, and 7 = 1, then Theorem 4.3.4 reduces

to the following corollary.

Corollary 4.3.7. Let E be a real Banach space with uniform normal structure
which has o uniformly Gateauz differentiable norm and admits the duality mapping
Jp, C be a nonempty, bounded, closed and convex subset of E. Let & = {T(s) :
s > 0} be an asymptotically nonexpansive semigroup on C' with a sequence {k,} C
[1,400), limy, 400 kn = 1 and sup,» kn < \/N(E) such that F(S) # 0. Let f € Il¢
with coefficient o € (0,1). Let {B,} and {t,} be sequences of real numbers such

that 0 < B, < 1,t, >0,
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(Cl) lilnnﬂoo :Bn =0;
(C2) limp o, f2=2 = 0;

(03) E:Q:o ﬁn = 00.

For any xo € K, let the sequence {z,} be defined by
ZTny1 = Buf(za) + (1 = B,) L alisemdemtie 0. (4.3.28)

Suppose, in addition, limy,_ s ||Tn — T(t)z,|| = 0 uniformly in t € [0,00). Then
{z.} converges strongly asn — oo to a point T in F'(S) which solves the variational

inequality (4.3.11).

If f = u, then Corollary 4.3.7 reduces to the following corollary.

Corollary 4.3.8. Let E be a real Banach space with uniform normal structure
which has a uniformly Gateauzx differentiable norm and admits the duality mapping
J,, C be a nonempty, bounded, closed and convex subset of I such that C+C C C.
Let § = {T'(s) : s > 0} be an asymptotically nonexpansive semigroup on C' with
a sequence {k,} C [1,+00), limy ook = 1 and sup,s; ky, < VN(E) such that
F(8) # 0. Let f € llg with coefficient a € (0,1). Let {B,} and {t,} be sequences

of real numbers such that 0 < g, < 1,1, > 0,

(O1): lit, 50008, = O

(C2) lim, o0 B4+ = 0;

(C3) 2 2nlofn = 0.

For any xg € C, let the .éequence {z,} be defined by

Tny1 = Bt + (1 — Bn)T" (tn)2nds, n > 0. (4.3.29)

Suppose, in addition, lim, o ||z, — T'(#)zs|| = 0 uniformly in t € [0,00). Then
{z,} converges strongly as n — oo to a point  in F'(S) which solves the variational

inequality (4.3.13).



