CHAPTER V

CONVERGENCE THEOREMS IN CAT(0) SPACES

In this chapter, we study A-convergence and strong convergence theorems

in complete CAT(0) spaces.

5.1 A-convergence for generalized hybrid mappings in CAT(0) spaces

In this section, we give convergence theorems for a generalized hybrid map-
ping. Finally, we give an example of a («, 3)-generalized hybrid mapping in CAT(0)

space which is not a nonexpansive mapping.

Let (X, d) be a CAT(0) space and C' a nonempty, closed and convex subset
of X. A mapping T : C — C is called (o, 3)-generalized hybrid mapping if there

exist a. 3 € R such that
ad?(Tz, Ty) + (1 — a)d*(z, Ty) < Bd*(T=z,y) +(1— B)d*(z,y). (5.1.1)

In [91], Kocourek, Takahashi and Yao obtained the demiclosed principle of (e, 8)-

generalized hybrid mapping in a Hilbert space.

It is easy to see that an (o, B)-generalized hybrid mapping with F(T') # 0

is a quasi-nonexpansive, i.e., F(T") # () and

d(Tz,p) < d(z,p) for all z € C and p € F(T). (5.1.2)

Firstly, we present the demiclosed principle of (o, 8)-generalized hybrid

mapping in a CAT(0) space.

Proposition 5.1.1. Let (X,d) be a CAT(0) space and C be a nonempty, closed
and convez subset of X. Let T : C — C be an (o, f)-generalized hybrid mapping
such that « > 1 and 8 > 0. Let {x,} be a bounded sequence in C such that

limy_e0d(zn, T(2,)) =0 and {x,} A-converges to w. Then T'(w) = w.
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Proof. Notice that T : C' — C' is an («, 3)-generalized hybrid mapping, i.e., there

exist a, f € R such that

ad*(Tz, Ty) + (1 — a)d*(z, Ty) < Bd*(Tz,y) + (1 — B)d*(z, ). (5.1.3)
Since T is generalized hybrid mapping, we have that

ad®(Tz,, Tw) + (1 — @)d*(zp, Tw) < Bd*(Tz,, w) + (1 — B)d*(zn, w). (5.1.4)

Since a > 1, f > 0 and (5.1.4), we get that

ad*(Tzp, Tw) < B(d(Tzn, zp) + d(@0, w))? + (1 — B)d* (2, w)

+(a — 1)(d(zn; T2n) + d(Tzy, Tw))?.
Hence

(@ — (o= 1))d*(Tz,, Tw) < B+ (1 - B8))d*(zn,w) + (8 +a— 1)d*(z,, Tz,)

+2(8 + a — 1)(d(@n, w) + d(T 'z, Tw))d(T,, ),
and so

& (Tz,, Tw) < d¥z,,w)+ (B +a—=1)d*(z,,Tz,)

+2(B + o —1)(d(z,,, w) + d(T2Zy, Tw))d(T'z,, z,). (5.1.5)

Since {z,} is bounded and lim, ,e d(T%n,z,) = 0, we get that {1T'z,} is also

bounded. Thus (5.1.5) reduces to

d*(Tz,, Tw) < (f?(ﬂ:m w) + (B +a —1)d*(zn, Tzn)

+2(8 + a — 1)d(Tzp, z,) M, (5.1.6)

where M > sup,>, d(%n, w) + d(T'%,, Tw). Since {z,} A-converges to w, we then

have that Ac({z,}) = {w} and also A({z,.}) = {w}. Assume that Tw # w. Then
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By Opial’s conditions,

limsup d*(z,,w) < limsupd®(z,, Tw)

n—oo n—oo

limsup(d(n, T2p) + d(Tz, Tw))?

n—eo

lim sup d*(T'z,,, Tw)

n—eo

lim sup (d?(:c,,,w) +(B+a— Dz, Tzs)

n—oo

A IA

[A

12(B +a —1)d(Tzn, xn)M)

= limsup d?(zn, w).
n—00

This is a contradiction. So, we have T'w = w. U

Proposition 5.1.2. Let (X, d) be a CAT(0) space and C be a nonemply, closed
and convez subset of X. Let T': C — C be an (a, B)-generalized hybrid mapping
with F(T) # 0. Let v be a real number with 0 < v < 1 and define the mapping
S5:C— C by:

5 =% S —WI (6.1.7)

Then, for each © € C, d(S"*z, S"z) converges to 0.

Proof. 1t is easy to prove that F(T) = F(S). Since F(T) # 0, we have T and S

are a quasi nonexpansive mapping. For any z € C' and p € F(71'), we get
] o

d(S™*'z,p) = d(SS"z,p)

d(vS"z @ (1 —v)T'S"z,p)

2d(S™z,p) + (1 — 7)d(T'S", p)
yd(S"z,p) + (1 —y)d(S"z, p)

d(S™z,p).

IA 1A

Il

Hence d(S"z, p) is decreasing sequence and bounded below, and so limy, ;00 d(S"z,p)

exists. Therefore {S"xz} is bounded and {7'S"x} is also. It follows from Lemma
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2.4.9 that

FisM g = Pl se(l —T8 %)

< 4d®(S"z,p) + (1 — 7)d* (TS z,p) — v(1 — v)d*(S"z, T'S"z)
< Ad*(S"z,p) + (1 — 7)d*(S"w,p) — (1 — 7)d*(S"z, TS"z)
< &(5"3,p) — 7(1 - 7)d(S", TS™)

and so
(1 —~)d(S"z, TS™z) < d*(S™z,p) — (S, p).

Since lim,,_, o d*(S™z, p) exists and 0 < 7y < 1, we have that lim,_, d(S"x, T'S"x) =

0. On the other hand,
d(S*T /TS ) =dA(aS" s/ (L= NPS"w, TS x) < vd(S"w, TS %)

We get that

d(SE 2 Tl Codle i, ISta) +d(T e 50k)

< yd(S"z, TS"z) + d(TS"z,S"z) = 0 as n —» oo.

This completes the proof. O

Theorem 5.1.3. Let (X, d) be a CAT(0) space and C' be a nonempty, closed and
convex subset of X. Let T + C — C be an (a,f)-generalized hybrid mapping
with F(T) # 0. Let v be a real number with 0 < v < 1 and define the mapping
S:C— C by:

S=yI®(1—7)T. (5.1.8)

Then, for each x € C, {S"z} A-converges to an element in I'(T).

Proof. For each n > 1, let z, = S"z. Since F(T') # 0, we have that 5 is a

quasi-nonexpansive mapping. For any p € F(T), we get that

d(xn—l—lap) e d(Sn+1$s p)
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< d(S"z,p) = d(z,,p).

This implies that {z,} is bounded. By Proposition 5.1.2, it follows that

lim d(Szn,z,) = lim d(S"'z, S"z) = 0.

n—oo n—oo

Since {z,} is bounded, there exists a subsequence {x,} of {z,} such that {zy}
A-converges to u € C. By Proposition 5.1.1, w € F(T'). Let {z,;} be another
subsequence of {z,} such that {z,;} A-converges to v € C. Supose u # v. Again
by Proposition 5.1.1, v € F(T), and s0 lim,_ e d(zn, u) and lim,_, o, d(z,,v) exist.
By Opial’s condition, we have

lim d(z,,u) = limsupd(z,,u)
n—oed i—00

< limsup d(z,,,v)
100

= lim d(z,,v)
n—00

= limsup d(:b‘n,- , V)
J—e0

< limsup d(z,;, u)
j—o0

= (3., 1)
n—oo

This is contraction. Thus u = v. Hence {z,} A-converges to u € I'(T). d

Theorem 5.1.4. Let (X,d) be a CAT(0) space and C' be a nonempty, closed and
convex subset of X. Let T : C — C be an (a, B)-generalized hybrid mapping such
that « > 1 and B = 0 with F(T) # 0. Let {v,} be a sequence of real number with

0<a<v, <b<1 and defined a sequence {z,} in C as follows:

=% €,
(5.1.9)
Tpi1 = TnZn ® (L — 1)Tx,, VREN

Then {x,} A-converges to an element u € F(T").

Proof. Since F(T) # §, we have that 7' is a quasi-nonexpansive mapping. For any
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p € F(T), we get that

d(Zns1,0) = A(VZn ® (1 — )10, p)
'Ynd(wr:sp) + (1 - "}fn)d(Tmep)

'Tnd(ﬂ;mp) E 3 (1 - 7n)d($mp)

IA

IA

d(zy, p).

This implies that {z,} is bounded, and so {T'(z,)} is also bounded since T is quasi-

nonexpansive. Moreover, we have that the limit of d(z,, p) exists. By Lemma 2.4.9,

dg(lb‘n—i—lyp) =~ dg(ﬁfnﬂ:n S5 (]- . Tn)Tﬂ;nap)

S Afndz(mmp) ee (]- — Al/n)di!(T:Enap) - »)‘fn(]- - ’Tn)dz(mna T:En)

A

d*(zn, ) — (1 = 1) (Tn, TTy),

and so
Y1 =)0y Tz) £ @ (T, p) — d*(zpy1, D)- (5.1.10)

Since the limit of d(z,,p) exists and 0 < a <, < b < 1, it follows from (5.1:10)

that,

lim d(is,,, T%,) = . (5.1.11)

It follows from the proof of Theorem 5.1.3 that {z,} A-converges to an element

z € F(S) = F(T). m)

Theorem 5.1.5. Let (X,d) be a CAT(0) space and C' be a nonempty, closed and
convez subset of X. Let T : C — C' be an (a, B)-generalized hybrid mapping such
that « > 1 and B > 0 with F(T) # 0. Let {y.} and {o,} be sequences of real

numbers with 0 < @ < Y, 0, < b < 1 and define a sequence {z,} in C as follows:

T =z € C,
(5.1.12)

Tnt1 = TnTn B (1 — Vo) T(0nn @ (1 — 0,)T2y,), VR €N
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Then {z,} A-converges to an element u € F(T).

Proof. For any n, let y, = 0,2, ®(1—0,)T,, then zp41 = VnETn®(1—Yn)TYn. Since
F(T) # B, we have that T is a quasi-nonexpansive mapping. For any p € F(T),

we get that

d’(yn:p) = (£(071$r1 5 (1 - Uu)T\’UmP)
< 0,d(@n,p) + (L —0m)d(Tzn; p)
g Und(ﬂ;mp) i (1 - Un)d(mn:p)

AT\ D)t

and

d(j-:n-i-l:p) = ] d(ﬁfng;n & (1 Y ’Tn)Tyn:p)

< And(Tn, p) + (1 — %) d(TYn, p)
< Ypd(@nyp) + (1 =9)d(Yn, P)
< Ypd(@n, )+ (1 — Ya)d(zn, p)

d(zn,p).

This implies that {z,} is bounded, and so are {y.}, {Tz,} and {Ty,}. Moreover,

we have that the limit of d(z,,p) exists. For any p € F(T'), we have that

d2($n+1:p) = d2(7n-$n @ (1 R 'Yn)Tyn:p)

S 'Yndz(-'cmp) + (1 - 'Yn)dg(Tymp) - 'Yn(l - 'Yn)d2(mmTyn)
< @ (@n, ) + (1 — )2 W0y ) — V(L — Vo) (@, Tn)
< Yl (@n, ) + (1 — ¥0)d*(Yn, 1), (5.1.13)

and

d2(yn,p) = dz(crn:z:n ®(1—0,)T2n,p)
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< 0nd (2, p) + (1 — 0)P (T, p) — 00(1 — 02)d* (@0, TZ)
< 0pd¥(@n, p) + (1 — 00)d% (@0, p) — 0n(1 — 0,)d* (%0, Tn)
< A (Tn,p) — on(1 — 0,)d% (0, Ty). (5.1.14)

Hence

d‘z(ﬁ:rwrl:p) i 7’11(12(3:7131)) - - (]- - ’)’,2)(([2(:1}”,])) - gn(l = Jn)dz(mmTQ:n))
- q'ndz(:vmp) + (1 — Yo ) (Zn, p) — (1 = Yn)on (1 — 0,1)012(3;,“T:cn)

- (12(112,”])) " (1 - Af'n)o‘n(l - 071)(i2(3;r1;T$r1)1

that is,
(1 = Ya)ou(l = @) d* (20, T2y) < d(@nyp) = & (Ty1, D).
Since 0 < a < Vp,0, < b < 1, we have that
a(l— b)z{']?(ﬂ),],T:En) < (L—=n)oa(l— Un)dz(:z:”,T:tn) < dQ(ﬂ:,,, p)— (f2(27,1+1,]J).
It follows that

lim d*(z4Fz,)= 0.

n—oo

By the same argument as in the proof of Theorem 5.1.3, {z,} A-converges to an

element u in F(T). O

We now present the strong convergence theorem for an (a, f3)-generalized

hybrid mapping. We recall a following useful lemma.

Lemma 5.1.6. [92] The fized point set of a quasi-nonexpansive selfmap of a metric

space is always closed.

Theorem 5.1.7. Let (X,d) be a complete CAT(0) space and C' be a nonempty,
closed and convex subset of X. Let T : C — C be an («, B)-generalized hybrid
mapping such that « > 1 and B > 0 with F(T) # 0. Let {v.} be a sequence of real
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numbers with 0 < a < v, < b < 1 and a {z,} generated by (5.1.12). Then {z,}
converges strongly to an element u € F(T) if and only if liminf, e Ay, F()) =
0, where d(z, F(T)) = infperr) d(z, p).

Proof. We observe that the necessity is obvious. Next, we prove the sufficiency.
As proved in Theorem 5.1.5, we have d(z,41,p) < d(z,p), for all p € F(T). This

implies that
d(zni1, F(T) Az 80T)),

and so the limit of d(z,, (1)) exists.

It follows by our assumption that lim, e d(2,, F(T)) = 0.

We claim that {z,} is a Cauchy sequence in C'. Since limy ;00 (2, I'(T)) =

0, for any £ > 0 there exists N > 1 such that
€
d(®N L)) ¥ & Vn > N.
Therefore d(zy, F(T)) < §. From the definition of d(zx, F'(T')), there exists ¢ €
F(T) such that d(zn,q) < §. For any n,m > N > 1, we have

(2, Tm) < d(@n, @) + d(Tm, q) < 2d(zN,q) < 2% e

Hence {z,} is a Cauchy sequence in a closed subset of a complete CAT(0) space.
Hence {x, } converges to some p* € C. Note that (o, )-generalized hybrid mapping
with nonempty fixed point set is a quasi-nonexpansive. Since lim,, ;0 d(Zy, F() =

0 and F(T) is closed, then p* € F(T). This completes the proof. 0

Remark 5.1.8. Consider R? with the usual Euclidean meter d(-,-) and || - || are

defined by

d(z,y) = |z —yll = \/($1 —hP + [~ ¥2)?,



where & = (21,72) and y = (y1,%2). We define the radial metric d, by

d(z,y), if y = tx for some t € R;
dr(z,y) =
d(z,0) +d(y,0), otherwise.

Then X := (R?,d,) is an R-tree with the radial meter d, (see [93] and [94, page
65]). We show that X is not inner product space. We prove this by showing that
the norm does not satisfy the parallelogram equality. Indeed, if we take z = (0, 1),

7 = (—1,0),%2 = (1,0) and yo = (0,0), a midpoint of y; and y», then

1 1 1 1 1 1L
1= (l?.(l', y(]) < 'é‘d?(’L, yl) + 5(1,2_(217,@’2) - Zldf(yl,yg) = 54 S “2‘4 - Efl = 3.

Therefore X does not satisfy Parallelogram law, and so X is not an inner product

space.

The following is an example of a («, )-generalized hybrid mapping in CAT(0)

spaces which is not a nonexpansive mapping.

Example 5.1.9. Let X be an R-tree with the radial meter d,.. We put

= {(t,O) :t € [0,2)U [4,5%}}U{(0,t):t€ (0,2 U [4%” C R?

and define T : C' — C by

T(t, 0) = (O, O)t, . ift e [0, 2);
(0, %) . ifte[4,51],
and
T(0,1) = (0,0), ift €[0,2];

(57.). yechsl

Clearly, F(T) = {(0,0)}. Claim that T is (2,1)-generalized hybrid mapping, i.c.,

2d}(Txz, Ty) < d2(Tx,y) + d;(z, Ty).



Case 1. z = (5,0),y = (£,0).
If 5,t € [0,2], then we have done.
If s,t € [4,5%], then Ta: = (U, is;—‘i)?) and Ty = ((}, (—t%)z), and so

sy - 2555 < () + ()
< 4244
< (L) (o4 954

d*(Tz,y) + d(z, Ty).

If s €[0,2],t € [4,53), then Tz = (0,0) and Ty = (0, U_;)g), and so

oo Y (5 (¥
)4 (S+ (t24)2)2

= | &(Tz,y)+ &(z, Ty)

[\

Ifs € [4,55],t €0,2], then Tz = (0, (S?ﬁ) and Ty = (0,0), and so

= (t+(£‘132—4)2))2+(3)2
= d&(Tx,y) + &z, Ty).

Case 2. z = (s,0),y = (0,1).
If s,t € [0,2], then we have done.
Ifs,t e [4,5%], then Tz = (0, (i_;—)2) and Ty = ((t—;ﬁ,{]), and so

st = (¢35 SE) < (5) + (5)

(-8 +(=3)

IA
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<

(-5 0 (-5
(57 (457

d(Tz,y) + d>(z, Ty).

If s €[0,2],t € [4,51], then Tz = (0,0) and Ty = ((‘“4)2,0), and so

2

s (Y (G

<

)
7o)

If s € [4,53] ,t €0,2], then Ta = (D, (S”{E) and Ty = (0,0), and so

2d? (T, Ty)

[\

IA

2

CUECTHC)
9
8

4(—5—34—)2)2+(s)2

(t - @) + (s5)? = d*(Tz,y) + (=, Ty).

Case 3. = (0,s),y = (0,t) the proof is similarly to case 1.

Case 4. z = (0,s),y = (t,0) the proof is similarly to case 2.

2
) = d*(Tz,y) + d*(z,Ty).
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Hence we have the claim. By the similar argument, we can conclude that T is also

(1,1)-generalized hybrid.
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But T is not nonexpansive. Indeed, if x = (O, 5%) = (0,5%), then © =

%,0) U= %,0). Thus, we have

4,(T3,Ty) = | = 9’ T ‘51

5 5l = 3= 1= |F1 ~ 8= wlmuk

5.2 Viscosity approximation methods for nonexpansive mappings in

CAT(0) spaces

In this section, we present strong convergence theorems of Moudafi’s vis-
cosity methods in CAT(0) spaces. Our first result is the continuous version of
Theorem 2.2 of Shi and Chen [55]. By using the concept of quasilinearization, we

note that the proof given below is different from that of Shi and Chen.

The following two key lemmas can be obtained from elementary computa-

tion. For convenience of the readers, we include the details.

Lemma 5.2.1. Let X be a CAT(0) space. Then for all u,z,y € X, the following

inequality holds

(2, u) < d*(y,u) + 2(TY, T0).
Proof.

dZ(y, u) - dz(:v:'”') - 2(?"1%) = dg(ys ) —d 1’:“’) o Q(y—ﬁ: ﬁ) - 2(6%:3'——}“)

z, ’UL) - 2(1?-5, ﬁ}L)

(
= &(y,u) — d*(z,u) — 2(yt, Th) + 2d*(z, )
= d*(y,u) + d*(

(

> d(y,u) + d(z,w) - 2d(y, u)d(z,v)

The proof is completes. O
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Lemma 5.2.2. Let X be a CAT(0) space. For any u,v € X and t € [0,1], let
w, = tu® (1 —t)v. Then, for all z,y € X,

() (wd, wd) < t(ud, wd) + (1 —t)(vi, wd);

(if) (e, i) < t(d,wg) + (1~ t)(vd, uf) and
(m,v‘m < t(U—%ﬂﬁJ) b (1 - t)<ﬁ)@>

Proof. (i) It follows from (CN)-inequality that,

Wi, ) = AP (ug,y) + (@, u) — & (w,w) — (2, y)
< tdP(u,y) + (1 — )P (vy) — (1 — t)d?(u, v)
+ (1) — d(ugy we) — & (z,)
= td*(u,y) + td*(z,w) — td? (u, u) — td*(z, y)
+ (1 — )P, y)+ (1 — ) (@, 1) — (1 - t)d*(v, )
— (1 = (2, y) +td® (u,w) + (1~ )2 (v; ue) = t(1 — t)d*(u,v)
L[ g) () — ) = )
+ (1 —t) [d*(v,y) +d*(@, 1) ~ (v, 1) — d*(z,y)]
F (1 = )2d?(u, v) + (1 — ) (u,v) = t(1— t)d*(u,v)

= t(ud, ud)+ (1 — £)(vE, wh).
(ii) The proof is similar to (i). O
Now, we ready to present the convergence theorems of viscosity approxima-

tion methods for nonexpansive mappings.

For any ¢ € (0,1], and a contraction f with coefficient o € (0,1). Define

the mapping S; : C — C by

G =tfx)yd(1—-t)Tz, VzeC. ‘ (5.2.1)
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It is not hard to see that G, is a contraction on C. Indeed, for z,y € C, we have

d(Gi(2), Ge(y)) = d(tf(z) ® (1 —-t)Tx,tf(y) & (1 —t)Ty)

< d(tf(z) ® (1 —8)Tz, tf(y) & (1 - t)Tx)
+d(tf(y) ® (1 — )T, tf(y) ® (1 —1)Ty)

< td(f(z), f(y)) + (1 — 1)d(Tz,Ty)

< tad(@,y) + (1 =t)d(z,y)

(1 —t(1 — ))d(z,y).

This implies that G is a contraction mapping. Then there exists a unique u € C

such that
u =G ) =tf(v) oL —t)Tu.
Let x; € C be the unique fixed point of G;. Thus
z, 20 (FreA \oh) N, (5.2.2)

Theorem 5.2.3. Let C be a closed convex subset of a complete CAT(0) space
X, and let T : G — C be a nonexpansive mapping with F(T) # 0. Let f be a

contraction on C with coefficient 0 < a < 1. For each t € (0,1}, let {z,} be given

by

Then {z;} converges strongly ast — 0 to & such that & = Ppr)f(Z) which is

equivalent to the following variational inequality:

Gf@),78) 20, ©eFT). (5.2.4)
Proof. We first show that {z,} is bounded. For any p € F'(T), we have that

d(wnp) = d(tf(w) ® (1 —0)Tx,p)
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IA

td(f(we),p) + (L — t)d(T'ze, p)

td(f(mt)}p) + (1 - t)d(xhp)'

IA

Then

d(f (), p) < d(f(@0), f(p)) + (£ (P), P)

ad(z;, p) + d(f(p), p)-

d(z¢, p)

IA

IA

This implies that
D) € (@)
d(z,p) £ T, P),p).

Hence {z} is bounded, so are {Ta;} and {f(z:)}. We get that

limd(z, Tx;) = %in& dtf(z:) ® (1 — )Tz, Txy)
iy

i—0

< lim [td(f(z), Tz:) 4 (1 — t)d(Tze, Ty))

t—0

< limtd(f(z), T2z) = 0.
t—0

Assume that {¢,} C (0,1) is such that ¢, — Oasn — oco. Put z, = zy,. We
will show that {z,} contains a subsequence converging strongly to such that

& = Pp(r)f(&) which is equivalent to the following variational inequality:

@@, 23) >0, =€ P

Since {z,} is bounded, by Lemma 2.4.11, 2.4.13, we may assume that {z,} A-

converges to a point #, and & € F(T). It follows from Lemma 5.2.2 (i) that

— —3

({5, 3) = {Tuk, Tult)
o N
S an(f(wn)fﬁyﬁ_;%> + (1 = CY,;)(T.’C,,::{:, J?L)
STIE N
< an{f(@n), 2aZ) + (1 — a)d(Tzy, &)d(2n, %)
—
< an(f ()it ) + (1 — 00)d(30, B).



It follows that,

P(@n ) < (F@n)s, ad)
= (Fan @ 2ad) + (@)%, za)
A(f (), (2)) A, B) + (F(E) nd)

—
ad®(z,, %) + (f(&)z, ?L),

A

SR VAN

and thus

'y —

(F(Z)djerrz).

&z, &) 3

1 —a
Since {z,} A-converges to &, by Lemma 2.4.16, we have

3 P
lim sup(f(£)&, z,%) < 0.

n—oo

It follows from (5.2.5) that {z,} converge strongly to Z.
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(5.2.5)

(5.2.6)

Next, we show that & solves the variational inequality (5.2.4). Applying Lemma

2.4.9, for any q € F(T),

(z1,q) = E(f(z)® (1—8)T'z40)

< ([ (2)y0) + (- DETw1,q) = 11— P (F (), Te)

It implies that
d(ze,q) < d*(f(2e),q) — (1 — O)d*(f (o), Te)
Taking the limit through ¢ =¢,, = 0, we can get that
&*(&,q) < &*(f(%),q) — d*(f (%), 7).
Hence

0=

Do =

< td(f(m),q) + (1 — t)dP(zy, q) — (1 — )P (f (1), Txy).

[d‘z(i)i) + dz(f(i’):(I) - dg('%:Q) - dz(f(:l:)!‘%)] = (Wl ?E>’ Vg e F(T)



That is, % solves the inequality (5.2.4).
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Finally, We show that the entire net {z;} converges to &, assume z,, — &, where

s, — 0. By the same argument, we get that & € F(T) and solves the variational

inequality (5.2.4), i.e.,

(F7(@),73) <0,

4

&
=

and

= (3%, 2%) ~ (F@)[ (), 3%)
> (@, 54) — d(f(@), S (@)d(#, F)

IV

(1 - a)d™(&,%).

(5.2.7)

(5.2.8)

Since 0 < o < 1, we have that d(Z, £) = 0, and so & = &. Hence the net x, converge

strongly to & which is the unique solution to the variational inequality (5.2.4). This

completes the proof.

0

Remark 5.2.4. We give the different proof of [55, Theorem 2.2]. In fact, the

property P imposed on a CAT(0) space X is removed.

If f = u, then the following result can be obtained directly from Theorem

5.2.3.
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Corollary 5.2.5. [95, Lemma 2.2] Let C be a closed convex subset of a complete
CAT(0) space X, and let T : C — C be a nonezpansive mapping with F(T) # 0.
For each t € (0,1], let u be fived and {z,} be given by

o =tu® (1 —1t)Tz,. (5.2.9)

Then {=;} converges strongly ast — 0 to & € F(T) which is nearest to u which is

equivalent to the following varietional inequality:

(T, 78) > Off /7 (D). (5.2.10)

Theorem 5.2.6. Let C be a closed convex subset of a complete CAT(0) space
X, and let T : C -3 C be a nonexpansive mapping with F(T) # 0. Let f be a
contraction on C with coefficient 0 < a < 1. For the arbitrary initial point zo € C,

let {z,} be generated by
Tpi1 = O f (@) (1 — an)Tz,, Y20, (5.2.11)

where {a,} C (0,1) satisfies the following conditions:

(i) lim, o 0, B8,
(ii) Zzo:o Q, = 00y

(iii) either ) oo o |ng1 — | < 00 or limye0(Qnir/an) = L.

Then {x,} converges strongly as n — oo to & such that & = Pper)f(Z) which s

equivalent to the variational inequality (5.2.4).

Proof. We first show that the sequence {x,} is bounded. For any p € F(T'), we

have that

d($ﬂ+1sp) = d(anf(ﬂ"ﬂ) @ (1 - an)T:En;p)
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A

nd(F(5n),1) + (1~ )T, )
< (d(f@n), F@) + ), P) + (1= )T )
< max {dlon) 1S d0G)0)}

A

By induction, we have

d(z,,p) < max {d(:r;g,p), d(f(p),p)} :

1. et
for all n € N. Hence {&,} is bounded, so are {T,} and {f(z,)}. Next, we claim

that Hmy_eo d(Ted 14 Tn)="0./ To this'end, we observe that

d($n+1) xn) F d(o-nf(g:n) @b (1 _ Q'n)T:En:an—lf(mnfl) @b (1 - a'nfl)T:Un—l)

IA

(l((_).‘nf(:l?n) D (1 = ﬂ'n)T$n~, O.‘,]f(fb‘n) SP) (1 - Q‘n)Tﬂ:nfl)
+d'(a'ﬂf($n) S5 (1 = Q'n)T,ﬂ"nfla Q‘nf(:l:nﬁl) @ (1 L) a’n)Tﬂ;n—l)

"Fd(anf($n~1) @ (1 J a’n)T:Enfl‘ O-n—lf(fﬂnfl) © (]- v, O'nfl)T:L‘n—l)

IA

(1 — e )d(T'Zyn, Trp—1) + aad(f (%), f(Zn-1)) + lom
Z tp nJdl(f (1), T 1)

(1 = ) d(@ps Tna) +0nd(f(20), [ (2n-1)) + |

o, W d (@), Pon=t)

(1 — a)d(Tn; Zaz1) + Cnod(Tn, Bao1) + |Qn
—ap|d(f(@n-1)s TZn-1)

= (1— (1 —a))d(@p, Tn) +|on — an_1|d(f(@n-1), TTn-1).

VAN

IA

By the conditions (ii) and (iii) and Lemma 2.1.39, we have

lim d(zp41, %) = 0. (5.2.12)

n—od

It follows from (5.2.12) and condition (i) that

d(mm Tﬂln) < d(mm 3311—}-1) + d(mn—kl: Tﬂ:n)

= d(@n, Tny1) + d(anf(2n) ® (1 — )T, TTn)
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< d(@y Tnp1) + nd(f(2n), Tx,) — 0 as n = oco. (5.2.13)

Let {z;} be a net in C such that
x, = tf(z) ® (1 —t) Tz

By Theorem 5.2.3, we have that {z,} converges strongly as t — 0 to a fixed point

& € F(T) which solves the variational inequality (5.2.4). Now, we claim that

—
lim Sup(f(ffj):’i,:s,?) <0,

n—oo

It follows from Lemma 5.2.2 (i) that

dz(i‘-ts xn) i (ﬂ:tﬂ:m :I:t.ﬂ;n)
S t(f(ﬂft)fl.‘n, -'Et:l:ri) 5 o (1 = t)(Tmtf’:m ﬂ;tﬂ:n>

T =t T Ty o = o A IR -
= t{f(z) f(Z), Temn) + t{f(E)Z, Texn) + T2, TeTn) + t(TeTm, Lo )
— —
+ (1 — T2 Txn, 220) + (1 = )T TaTn, TeTn)

£ et —_ - 2
tad(,, &)d(zy, T,) + H{f(E)Z, Texn) + td(E, 2)d(we, z0) +2d (¢, Tn)

IA

+ (1 =) d* (g, o) + (1 — )d(Txr, 24)d(2t, Tn

T
tad (v, )M +t{f(2)z, Tan) + tA(E, 2) M + td* (e, )

IA

+ (1 = t)d?(@t, ) + (1 — )d(Tmy, 20) M

A

P (xy, @) + tod(zg, )M + td(E, z) M + d(Txn, Ta) M

(@), B,

where M > sup,, ,>1{d(z¢, z,)}. This implies that

d(Tzn, zn)

M (5.2.14)

(W Tnzy) < (14 a)d(ze, B)M +

Taking the limit as n — oo first, and then ¢ — 0 inequality (5.2.14) yields that

—
lim sup lim sup(f(Z)Z, z,2;) < 0.
t—0 n—co
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Since z, — % as t = 0 and continuity of metric distance d, we have for any fixed

n >0,
i (@R E) = L [P((@), ) + (@) — E(F(E),3) — L@ 0]
= NP@),8) + (@ w) — E(@),0n) — d(3,5)
Sieliiol

= {f(B)%, z.7).
It implies that, for any € > 0, there exists a d > 0 such that

1@, ) < (J@Emmy +e, Vi e (0,6). (5.2.15)

{

Thus, by the upper limit as n — oo first, and then ¢t — 0 inequality in (5.2.15), we

get that
Z 4
limsup{f(Z)z, :%> <eE.
n—oo

Since ¢ is arbitrary, it follows that
: oA
lim sup{f(2)z, z,Z) < 0.
n—od
Finally, we prove that z, — Z as n — co. For any n € N, we set y, = ant @ (1 —

a,)Tz,. It follows from Lemma 5.2.1 and Lemma 5.2.2 (i), (ii) that

P(@nin, @) < (g, B)+ 2ETaril, T )
< (ond(®,8) + (1~ an)d(T2n, ©) +2[ (F o)y Tnrrl)
(1= ) Toatin Zarid)]
< (1= ), &)+ 2[0na () 1)
F (1 — )T @) Ty Bd) + (1 = )0 (T Tnys)
+(1—ay,)(1— crn)(Ta:nTrz::, :1;,,+1.%)]
< (1 - 0 d(@n, ) + 2000 F (@) Bnr)

? 2 —— ——F
+ an(1 — ap){f(@n)T2n, TnpaZ) + (1 — 0t ) (s Taki L)

+(1 — ay)?d(Tzy, T:nn)d(rvnﬂri)]
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— (1- @) () + 2[R (), B
(1~ an)(T@)E, Turid)]
= (1= ) (@, 8) + 200 (@), Basid)
= {1~ an)de(mm )+2an f(zn) f('LS Tni1) '}‘QQn(.f('L)T 'Ln+13')
ey e
< (1 - an)*d(wn, &) + 20,0d(Tn, B)d(Tn 41,2 Z) + 20, (f(Z)Z, Tpy1 T)
S (1 . an)gdz(' ) + anpa (d (’l’m ) 3 d ((Ln+1) 7))

A
+ 20y (f(ﬂ)).l‘, a:rt+1$),

which implies that

20,

d*(z 1, %)

1—(2— a)a, +a?
( )U + n 12(17111)+
s acy, — QQy

3= ( Q)OH 2071 =% " g 2
———————d" (T, ¢ T A ™ M,
1l £ (%, &) + -aa,l(f(q)q Tn11) +a

(@)% Tarr)

IA

where M > sup, 5o{d?(¢n,@)}. It then follows that
A (Zps1, %) < (1 —al)d* (@0, &) + By,

where

2(1 = a)ay ;
a,:(__ﬂ)i and f.=

n

(1 — aay)a, 1
~ M
1—aay ? 2(1—a) ’ (1—a)

(}(—i)—%a $!1+1$)

Applying Lemma 2.1.39, we can conclude that z, — @ This complete the proof.

0

Remark 5.2.7. We give the different proof of [55, Theorem 2.3]. In fact, the

property P imposed on a CAT(0) space X is removed.

If f = u, then the following corollary can be obtained directly from Theorem

5.2.6.

Corollary 5.2.8. (95, Theorem 2.3] Let C be a closed convex subset of a complete
CAT(0) space X, and let T : C — C be a nonespansive mapping with F(T) # 0.



Let u, o € C are arbitrary chosen and {x,} be generated by
1 = 00 B (1 —0,)T 2y, Vo =0, (5.2.16)

where {o,} C (0,1) satisfies the following conditions:

(1) lim, 0 an =0;

(]1) Z‘;o:[) ap = GO,

(iii) either Y oo |Qnpr — an| < 00 or Jim,, Mo 1 e, =N

Then {x,} converges strongly as n — oo to & € F(T') which is nearest to u which

is equivalent to the following variational inequality (5.2.10).

5.3 Viscosity approximation methods for nonexpansive semigroups in
CAT(0) spaces

A family S := {T(t) : t € R*} of self-mappings of C' is called a one-

parameter continuous semigroup of nonexpansive mappings if the following condi-

tions hold:
(i) for each t € R*, T'(t) is a nonexpansive mapping on C, ie.,
d(T(t)z, T (t)y) < d(z,y), Yo,y € C,
(ii) T(s+t) =T(t) o T(s) for all ¢, s € RY;

111 or each = € , the mappin * ) 1Irom mto 1S continuous.
iii) for each z € X, tl ing 7'(-)a: from R* into C' is conti

A family S := {T(t) : t € Rt} of mappings is called a one-parameter
strongly continuous semigroup of nonexpansive mappings if conditions (i),(ii), and

(iii) and the following condition are satisfied:

(iv) T(0)z =z forall z € C.
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We shall denote by F the common fixed point set of S, that is,

F=F©S)={zeC:Tt)z=xtecR}= () F(T{)

tcRt

Next, we present the strong convergence theorems of the Moudafi’s viscosity ap-
proximation methods for a one-parameter continuous semigroup of nonexpansive

mappings S := {T'(t) : t € R*} in CAT(0) spaces.

For any a, € (0,1), ta € [0,00), and a contraction f with coeflicient o €

(0,1). Define the mapping G, : C = C' by
Gn(z) = anf(2).6 (1 —eq,)T(t,)z, Vz€C. (5.3.1)

It is not hard to see that G, is a contraction on C. Indeed, for =,y € C, we have

d(Gr(z), Gn(y)) = d(anf(z) @ (1= )Tz, anf(y) @ (1= o, )T (tn)y)

< d(anf(z) @ (1 - an)T(ta)z, anf(y) © (1 = an)T(tn)2)
td(anf(y) ® (1 — )T (tn), anf(y) © (1 — an)T(ta)y)

< aud(f(2), F(y) + (1 — 0n)d(T(tn)2, T(ta)y)

< apad(z,y) + (1 — an)d(z, y)

I

(1 —a,(1— a))d(z,y).

Therefore we have that G, is a contraction mapping. Let z, € C be the unique

fixed point of G,; that is
T = o f(z) ® (1 — ) T(tn)z,, foralln>0. (5.3.2)
Now we are a position to state and prove our main results.

Theorem 5.3.1. Let C be a closed conves subset of a complete CAT(0) space X,
and let {T(t)} be one-parameter continuous semigroup of nonexpansive mappings
on C satisfying F # 0 and uniformly asymptotically regular (in short, w.a.7. ) on
C, that is, for all h > 0 and any bounded subset B of C,

lim sup d(T'(h)(T(t)z), T(t)z) = 0.

t—=00 pc R
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Let f be a contraction on C with coefficient 0 < o < 1. Suppose t,, € [0, 00),
a, € (0,1) such that limp_ o tn = 00, limy 00 = 0 and let {z,} be given by
(5.3.2). Then {x,} converges strongly as n — oo to & such that & = Prf (&) which

is equivalent to the following variational inequality:
(5%,28) >0, Vz € F. (5.3.3)

Proof. We first show that {,} is bounded. For any p € F, we have that

d(apf(z,) ® (1 — an)T(ts)Tn, P)
and(f(z,),p) + (1 — an)d(T(t2)zn, p)

and(f(2n),p) + (1 — ap)d(z,, p).

d(z,, p)

I\

[A

Then

I A

d(f(zn)yp) < d(f(zn), f(p)) +d(f(p),P)

ad(z,,p)+ d(f(p),p)-

d(Zp, D)

A

This implies that

1 L
d(zn,p) < Ed(f(?f’)ap)-

Hence {x,} is bounded, so are {T'(t;)x,} and {f(z,)}. We get that

AT, T(t)zn) = danf(2) ® (1 — )T (tn)n, T(tn)zn)

nd(f(@n), T(tn)zn) + (1 — an)d(T(tn)n, T'(n)2n)

IN

< 0 d(f(zn), T(ty)zs) — 0 as n — 00.

Since {7T'(t)} is w.a.r. and lim,_, t, = 0o, then for all A > 0,

lim d (T(R)(T (b)), T(ta)e) < Jim supd (T(R)(T(ta)2), T(tn)2) =0,

n—oo
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where B is any bounded subset of C' containing {z, }. Hence

d(xn, T(h)zn) < d(@n, T(tn)zn) + AT (tn)2n, T(R)(T(tn)zn)) + d(T(ﬁ) (T(t)za); T(h)xw)
< 2d(Tn, T(tn)wn) + d(T(tn)zn, T(R)(T(tn)2,)) = 0asn— 0. (5.3.4)

We will show that {z,} contains a subsequence converging strongly to &

such that & = Pp(7)f(Z) which is equivalent to the following variational inequality:

|

z8) > 9% (5.3.5)

(&f3
Since {x,} is bounded, by Lemma 2.4.11, there exists a subsequence %in; ) of {=.}
which A-converges to a point &, denoted the {a,,} by {z;}. We claim that Z € F.
Since every CAT(0) space has Opial’s property, for any h > 0, if T(h)Z # & we
have

limsupd(z;, T'(h)Z) lim sup{d(z;, T'(h)x;) + d(T'(h)z;, T(h)Z)}

j—oo o0

limsup{d(z;, T'(h)z;) + d(z;, %)}

j—ro0

[pee | A

lim sup d(z;, &)
j—oo
limsup d(z;, T(h)Z).

j—oo

A

This is a contradiction, and hence & € F. So we have the claim. It follows from

Lemma 5.2.2 (i) that

dz(:ﬂj: ) = (';J%! 3_’;%)
< oy{f(e3),258) + (1 - o) (T (G )z, 258
< a{(f(@s), 58) + (1 — ay)d(T(t;);, 5)d(z;, 5)
= — o) s
< oy{f(z;)%, 2%} + (1 —o0y)d" (5, F).
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It follows that,

P 7) < (Flay)i,o58)
= (@I @), 53 + (f@), 2%)
< d(f(z;), F@)d(w;,7) + (@), 258)
< ad(z;,7) + (F@R, 558),
and thus
(25,8 £ == (@) 778). (5.3.0)

Since {z.} A-converges to z, by Lemma 2.4.16, we have
4 o y DY ’

AL,
limsup(f(Z)z, ’r?) =.0.

n—o0

It follows from (5.3.6) that {z;} converges strongly to &. Next, we show that &

solves the variational inequality (5.2.4). Applying Lemma 2.4.9, for any g € F,

d(xj,q) = d*(agf(x;) & (1= a)T(t;)z),9)
o d*(F(x5), q) + (1 =) (T(t5)z59) = a5(1 = a)d*(f (2;), T (#5)25)

< oyd®(f(z;), ) + (1 — 05)d(z,q) — (1= a)d(f(25), T'(t;)z;)-

IA

It implies that
& (z5,9) < P(f(25),q) — (L= az)d®(f (), T(t;)z;)-
Taking the limit through j — oo, we can get that
&*(&,q) < &(f(2),q) — P(f(%), 7).
Hence

0 < L 26,8) + P&, q) - PG ) - P(E), D) = @@, ), Vg € F.

B | =
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That is, & solves the inequality (5.3.3). Finally, We show that the sequence {z,}
converges to Z, assume z,, — &, where ¢ — co. By the same argument, we get

that & € F and solves the variational inequality (5.3.3), i.e.,

(Z1%,78) < 0, (5.3.7)
and
(@%,3%) < 0. (5.3.8)

(e
IV
_——
=
)
—~
=
=
H)\L
S~
|
_——
=
~
o~
=
-Qll
(o tad
e

— @] (@), )+ (J(@)] (@), 50) — (83, 58) — (Bf(2), 52)
= (@,5) - (J@)/F), %)

> (&, 58) - d(f(2), /(2))d(3, 7)

> &3 (@ ) — ad(E,3)d(Z, T)

> d*(%,8) — ad*(3, %)

> (1 =a)d*(&,).

Since 0 < a < 1, we have that d(z,%) = 0, and so & = 2. It follows from Lemma
2.1.38 that the sequence z,, converge strongly to & which is the unique solution to

the variational inequality (5.3.3). This completes the proof. O

If f = u, then the following result can be obtained directly from Theorem

5.3.1.

Corollary 5.3.2. Let C be a closed convex subset of a complete CAT(0) space X,
and let {T'(t)} be one-parameter continuous semigroup of nonexpansive mappings

on C satisfying F # O and uniformly asymptotically regular (in short, u.a.r.) on
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C, that is, for all h > 0 and any bounded subset B of C,
1|Elim supd(T'(h)(T(t)z), T(t)x) = 0.

Let u be any element in C'. Suppose t, € [0,00), a, € (0,1) such that lim,_e0 tn =

oo and lim,_e an =0 and let {z,} be given by

Tp = u® (1 = Q'n)T(tn)IL'n.
Then {z,} converges strongly as n — oo to & such that T = Pr& which is equivalent
to the following variational inequality:

(Fu, 73 3 0y TEF. (5.3.9)

Theorem 5.3.3. Let C be a closed convex subset of a complete CAT(0) space X,
and let {T(t)} be one-parameter continuous semigroup of nonexpansive mappings
on C satisfying F # 0 and uniformly asymptotically reqular (in short, w.a.r.) on
C, that is, for all h > 0 and any bounded subset B of C,

zli;gj ?Lelg d(T(h)(T(t)x), T(t)x) = 0.
Let f be a contraction on C with coefficient 0 < a < 1. Suppose t,, € [0, 00),

a, € (0,1), o € C, and {z,} be given by
Tny1 = a'nf(g;n) @ (1 = QR)T(tn):Em Vn > 0; (5310)

where {a,} C (0,1) satisfies the following conditions:

(1) B, e t=0;
(ii) D 2,0 =00 and
(i1) limy 00ty = 00.

Then {x,} converges strongly as n — oo to & such that & = Prf(Z) which is

equivalent to the variational inequality (5.3.3).
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Proof. We first show that the sequence {z,} is bounded. For any p € F, we have

that

d($n+lsp) = d(anf(mﬂ) © (1 . an)T(tr!)mmp)
and(f(2n),p) + (1 — an)d(T (tn)2n, )
an (d(f(za), f(p)) +d(f(P),p)) + (1 — an)d(T(tn)2n, p)

o {dlamp), AT}

IA A

IA

By induction, we have

d(z,,p) < max {d(mg,p), d(f(p),p)} ,

L~
for all n € N. Hence {z,} is bounded, so are {T'({,)z,} and {f(zn)}. Using the

assumption that lim, ., a, = 0, we get that

d(2p 11, Bt en) < and(f(za), Ttn)zh) =2 085 5> o0.

Since {T'(t)} is w.a.r. and lim,_, ¢, = 0o, then for all h > 0,

lim d (T(h)(T(tn)zn), T(tn)zn) < lim supd (T (h)(T(tn)z), T(tn)z) = 0,

n—oo H—)OO:CGB

where B is any bounded subset of C' containing {z,}. Hence

A(@ a1, T(R)Tar)
< d(@ar1, T(ta)Tn) + AT ()T, T(R) (T (t)0)
+d(T(h)(T (tn)n), T(R)Tus1)
< 2(@ 1, T(tn) ) + AT (n)2n, T(R)(T (tn)2n)) — 0 25 1= 00,

(5.3.11)

Let {z.} be a sequence in C such that

Zm = O f(zm) ® (1 — )T (tm) Zm-
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It follows from 5.3.1 that {z,,} converges strongly as m — oo to a fixed point £ € F
which solves the variational inequality (5.3.3). Now, we claim that
—_—
lim sup{f(%)z, n4+1Z) < 0.
n—oo

It follows from Lemma 5.2.2 (i) that

dz(zm; "L‘n-}fl)

= (zm:l:n+ia Zinfl"n%‘i)
—— 5 e ;
E a’m(f(zm)a:n+1) Zm£n+l> + (1 N Q'm)<T(tm)Zm$n+1; zm:gn-}-l)
,.3 S TP AL o, TR |
= Oy (V’(‘(‘fn':)‘][‘("L 3 Zrn$n+1> + C\'m<f($)(l?, zmxn—t—l) + a??1($ZM) szﬂn+1)

A\

s
+ O (zmﬂ:-n-{i: Z,,;.’L’n+i> . (1 8L a’m)(T(trml)zan(t771)$rl+ly zmmn+1)

\

3
+ (1 — Qi (T(tm)ﬂ:n+1$n+1: Zmﬁ;n+1>

< amed(zm, E¥(2Zm, Tnyr) + am (m, Zn@ats) + Cmd(Zy 2 ) A2y Tns1)
I md? (zinzdr1) H(1 S o) P (2md Byt
+ (1 = )T (Cm)Tnt1, Tut1)d(Zm, Tus1)
<N otl( 2, B) N Fyomy (m, m) + o d(E, zm) M
+ U@ (Zin, Tns1) F (1= 0) (7, Tnia)
+ (1 — ap)d(T () Tni1s Tny1) M
< d*(Zmy Tny1) F @uad(zm, T) M + apd(Z, 2)M

— 5
+ fl(T(tJrl)$71+la :En—i—l)l\/lr + ayy, (f(;i'){; zr:13:11+1)7

where M > sup,, ,>1{d(%m, ®x)}. This implies that

d(T(tm):Br:+1: mn-}-l)

Ay

—} V
(F(@)%, Tomizn) < (1+ &)d(zm, 8)M + M. (5.3.12)

Taking the upper limit as n — oo first, and then m — co inequality (5.3.12) yields

that

— 5
lim sup lim sup(f (%)%, Tnt12m) < 0. ; (5.3.13)

m—co n—oo
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Since

T@imird) = (@) Torizn) + (F@)E, 2md)

< (F@)% Ty + d(f(7), 7)d(2m, 5).

Thus, by taking the upper limit as n — oo first, and then m — oo the last

inequality, it follows from z,, — Z and (5.3.13) that

— ——
lim sup{f (%), p12) < 0.

n—oo
Finally, we prove that =, — & as n — co. For any n € N, we set y, = o, ® (1-

an)T(t,)z,. It follows from Lemma 5.2.1 and Lemma 5.2.2 (i), (ii) that

d2(£n+1 3 TNJ)
- e
3 dz (ym :E) =+ 2<$n+1 Yn, $r1+1$>

< (apd(%, %) + (1= ap)d(T(t,)2n, 'i))z

. 4 5 —_— ——
L Z[Q'n(f(:l:n)ym a:n-}-]:i‘> 1 (1 - Qy <T(tn)$nym :L‘n—t—lﬂ:)]
’ —_— —
< (1 an)*d*(@n, &) +2 [an(xn(f(:::,,):f:, Tuaf L)

3 )

1 a’n‘(l L an)(f(mn)T(tn):Er!u ﬂ;n—i—lé) it (1 "4 a’n)an (T(trz)$n3—:: :1:714—1-{:)

A

+ (]- Sk a’n)(l - an)<T(tn)$nT(tn)$7;a $r1+1%)]

— —
i (1 . an)gdz(mnafﬁ) ~ E[Ctrza'?:(f(mn)i: R:IH-1$>

(1= )T (), Tt} ) A1)
= (1= (e, ) + 2o (o), Barad) + (L = ) () 2 )]
— (1~ 002, B) + 2000 ([ (@n)s B
= (1= ) d(5n, ) + 200 (@) T (& Tar1) + 2000 (F @), Tari)

—_— —
< (1 — ap)?d*(zn, &) + 20p0d(Tn, )d(Tni1, ) + 20, (f ()T, Tny1Z)

—_— —
< (1 - an)?d*(@n, &) + ane (A (0, &) + & (Tni1, ) + 200 (f(£)Z, TpyaT),
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which implies that

= 1-(2-a)ant+of - 2  gapnd ——2
Plend) < AL p g 5) 1 2 (G )
1—(2—a)ay, = 200 oo —2
< —T(_—m.%—dz(wm :L) + 1—_Tn<f(’l.)2,, $n+1£L‘) + ().'i.ﬂf[,

where M > sup,so{d*(zn, )}. It then follows that

P (Zng1, %) < (1 — o) dP (2, @) + B,

n-n?

where

2(1 — a)ay, /
Al = 2(1 - ojan and B, =

1 —aa,)a
n ( )—M n) L M +
17— e,

1
2(1 — a) (=a)

Applying Lemma 2.1.39, we can conclude that z, — &. This complete the proof.

<f(7’—>~)‘€: $r1+15‘3).

O

If f = u, then the following corollary can be obtained directly from Theorem

5.3.3.

Corollary 5.3.4. Let C be a closed conver subset of a complete CAT(0) space X,
and let {T(t)} be one-parameter continuous semigroup of nonerpansive mappings
on C satisfying F # 0 and uniformly asymptotically regular (in short, v.a.r.) on
C, that is, for all h > 0 and any bounded subset B of C,

lim supd(T'(h)(T(t)z), T(t)x) = 0.
=00 2cB
Suppose t, € [0,00), o, € (0,1), wo € C and {x,} be given by

Tpp1 = apu ® (1 — a,)T(80)zn, Yn >0, (5.3.14)

where {a,} C (0,1) satisfies the following conditions:

(1) limy e 0n =0;

(i) Yooy an =00 and
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(i) limp—ye0 tn = 0.

Then {z,} converges strongly asn — co to & such that & = Pr which is equivalent

to the variational inequality (5.3.9).



