LIST OF CONTENT

Chapter		Page
I	INTRODUCTION	1
	Background and significance of the research problem	1
	Objective	4
	Scope of research.	4
	Expected benefits	4
II	BACKGROUND KNOWLEDGE	5
	Cosmic rays	5
	Cutoff Rigidities	8
	Neutron monitor	9
	Differential response functions of neutron monitors	17
	The calibration neutron monitor	18
	Calibration neutron monitor observations in Thailand	23
III	RESEARCH METHODOLOGY.	26
	Monte Carlo modeling techniques.	26
	FLUKA (FLUktuierende KAskade)	28
	PSNM geometry	32
	Monte Carlo model of the calibration neutron monitor	35
	Calibration monitor geometry	35
	Beams of atmospheric secondary particles	41

LIST OF CONTENT (CONT.)

Chapter	Page
IV RESULTS AND DISCUSSION	50
Distribution of particle energy in the calibration monitor and	
the neutron monitor	50
Count rate as a function of height of calibration monitor and	
water below it	62
Count rates inside and outside the PSNM station	68
V CONCLUSIONS	70
Conclusions	70
REFERENCES	72
APPENDICES	76
BIOGRAPHY	84

. LIST OF TABLES

Γ	Table		Pag
	1	The comparison of the specifications between 6NM64 and IGY	
		monitors	13
	2	The specifications of neutron counter LND25382 type from LND, INC	
		(private communication)	21
	3	The electrical specifications of LND25382	21
	4	Moderator	22
	5	Producer	22
	6	Reflector	23
	7	Uncertainty as a function of number of points, N	27
	8	The transport limits of FLUKA	28
	9	The chemical composition of materials.	39
	10	The percentages of the secondary particles in the neutron monitor and	
		the calibration monitor	61
	11	Ratio of the count rate of the calibration monitor/neutron monitor	
		at calibrator 70 cm.	62
	12	Ratio of the count rate of the calibration monitor/neutron monitor	
		at calibrator 140 cm	63
	13	Ratio of the count rate inside vs outside the PSNM station	68
	14	The ratio of the count rate experiment vs simulation inside station	68

LIST OF FIGURES

Figures	
1	A world map of vertical cutoff rigidity including the location of various neutron monitor stations. The maximum cutoff
	rigidity of ≈17 GV is found in and around Thailand
2	Princess Sirindhorn Neutron Monitor station in 2009
3	The relation between solar activity and intensity of cosmic rays
	as indicated by the number of sunspots
4	The energy spectrum of cosmic rays which are measured on the Earth
5	A schematic diagram of cosmic ray shower
6	The worldwide neutron monitors of various stations around the world including PSNM in Thailand
7	Atmospheric cosmic ray shower, and components of neutron monitor.
8	International Geophysical Year (IGY) 12 counters
9	The neutron monitor (6NM64), 6 tubes
10	The cross – sections of 10 B(n, α) 7 Li and 3 He(n, p) 3
11	The calibration neutron monitor
12	The separate components of a calibration neutron monitor
13	The neutron counter type LND25382
14	The front electronics head of the calibration neutron monitor
15	The ratio of calmon/NM at Doi Inthanon and the Potchefstroom
	as function of varying heights of water beneath the
	calibration neutron monitor
16	The cross sectional top view (xy plane) geometry plot inside the
	PSNM station at height of 25 cm from the ground

LIST OF FIGURES (CONT.)

Figures	
17	The yz plane geometry plot of the PSNM station
18	3D sketch of the calibration neutron monitor installation inside
	the PSNM station
19	3D sketch of the calibration neutron monitor installation at
	70 cm above ground without water
20	3D sketch of the calibration neutron monitor installation at
	70 cm above ground and at the height of 65 cm of water
21	3D sketch of the calibration neutron monitor installation of
	140 cm above ground without water
22	3D sketch of the calibration neutron monitor installation of
	140 cm above ground at the height of 65 cm of water
23	Top view of calibration monitor
24	3D xy-plane sketch of the calibration monitor
25	3D yz-plane sketch of the calibration monitor
26	Illustration of the beam area in FLUKA simulation
27	The neutron density plot from the simulation result of neutron
	beam on yz plane where x, y, z axes are in cm and color scale
	shows the neutron density
28	Illustration of the beam area with source routine in FLUKA
	Simulation
29	The neutron density plot from the simulation result of beam with
	source routine on yz plane where x, y, z axes are in cm and
	color scale shows the neutron density
30	Front view image of the weight beam in the calibration monitor
	Simulation
31	Top view of the weight beam areas and directions as used in the
	calibration monitor simulation
32	position of (x, y)

LIST OF FIGURES (CONT.)

Figures	
33	Direction and incident angle of beam
34	Neutron density plot from the simulation result of weight
	beam on yz plane where x, y, z axes are in cm and color scale
	shows the neutron density
35	The flow chart of the FLUKA simulation
36	Distribution of counts issued by secondary neutron
	in the calibration monitor
37	Distribution of counts issued by secondary proton
	in the calibration monitor
38	Distribution of counts issued by secondary muon (+)
	in the calibration monitor
39	Distribution of counts issued by secondary muon(-)
	in the calibration monitor
40	Distribution of counts issued by secondary pion (+)
	in the calibration monitor
41	Distribution of counts issued by secondary pion(-)
	in the calibration monitor
42	Distribution of counts issued by secondary photon
	in the calibration monitor
43	Distribution of counts issued by secondary electron
	in the calibration monitor
44	Distribution of counts issued by secondary positron
	in the calibration monitor
45	Distribution of counts issued by secondary neutron
	in the neutron monitor
46	Distribution of counts issued by secondary proton
	in the neutron monitor

LIST OF FIGURES (CONT.)

igures?		Page
47	Distribution of counts issued by secondary muon (+)	
	in the neutron monitor	57
48	Distribution of counts issued by secondary muon(-)	
	in the neutron monitor	57
49	Distribution of counts issued by secondary pion (+)	
	in the neutron monitor	58
50	Distribution of counts issued by secondary pion(-)	
	in the neutron monitor	58
51	Distribution of counts issued by secondary photon	
	in the neutron monitor	59
52	Distribution of counts issued by secondary electron	
	in the neutron monitor	59
53	Distribution of counts issued by secondary positron	
	in the neutron monitor	60
54	Comparison of the count rate ratio between simulations and	
	experiments at the PSNM station for the calibrator and	
	neutron monitor	63
55	Neutron density plot on yz plane in the pool area for the	
	calibrator at height of 140 cm without water	65
56	Neutron density plot on yz plane in the pool area for the	
	calibrator at height of 140 cm above pool with water level at	
	65 cm	66
57	Count rate ratio as a function of height of calibration monitor	
	for the calibrator and neutron monitor	67