CHAPTER II

PRELIMINARIES

In this chapter, we give some notations, definitions, and some useful results

that will be used in the later chapter.

2.1 Topological vector spaces

Definition 2.1.1. {16] Let X be a nonempty set and 7 be a collection of subsets
of X. Then 7 is said to be a topology on X if the following conditions are satisfied;
(@) PerTand X €7
(¢¢) the union of every class of sets in 7 is a set in 7;
(#3t) the intersection of every finite class of sets in 7 is a set in 7.
The ordered pair (X, 7) is called a topological space and the sets in class 7
are called the open sets of the topological (X, 7). It is customary to denote the
topological space (X, 7) by the symbol X which is used for its underlying set of

points.

Definition 2.1.2. [17] Let X be a topological space, let U be a subset of X and
let some x € X be a given element. The set U is called a neighborhood of z, if
there is an open set V with @ € V' C U and z is called an interior element of U, if
there is a neighborhood V' of  contained in U. The set of all interior elements of

U is called the interior of U and it is denoted by intU.

Definition 2.1.3. [17] A set F in a topological space X whose complement FC =

X — Fis open is called a closed set.

Definition 2.1.4. [17] Let F be a subset of a topological space X. Then the
closure of F' is the smallest closed set containing F. The closure of F is denoted

by F.



Theorem 2.1.5. [17] Let F' be a subset of a topological space X. Then F is closed
if and only if F = F.,

Definition 2.1.6. [17] A linear space or vector space X over the field K (The real
field R or the complex field C) is a set X together with an internal binary operation
“+” called an addition and a scalar multiplication carrying (o, z) in K x X to ax
in X satisfying the following for all z,v,2 € X and o, 8 € K:

(3) z+y=y+re,

(i) (z4+y)+z=a+(y+2),

(#i4) there exists an element 0 € X called the zero vector of X
such that x + 0=z for all z € X,

(iv) for every element z € X, there exists an element —z € X
called the additive inverse or the negative of = such = + (—z) = 0,

(v) ez +y) = az + ay,

(vi) (a+ B)z = az + fa,

(vid) (o) = a(B),

Wiisll S = .
The elements of a vector space X are called vector and the elements of K are called

scalars. In the sequel, unless otherwise stated, X denotes a linear space over field

R.

Definition 2.1.7. [17] Let X be a linear space over a field K and let 7 be a topology
on X. Then (X, 7) is called a topological vector space if addition and multiplication
with scalar are continuous, i.e. the maps
(z,y)—z+ywithz,ye X
and (o,z)— oz withaeKandze X
are continuous on X X X and K x X respectively. In many situations we use, for

simplicity, the notation X instead of (X, 7) for a topological vector space.

Definition 2.1.8. [18] Let X be a topological vector space over the filed R.

(4) A sequence {z,} C X is bounded if \,z, — 6 whenever A, — 0



in R.

(43) A set A C X is bounded if every sequence in A is bounded.

Definition 2.1.9. [17] Let (X, 7) and (Y,7’) be two topological spaces. A map
f 1 X — Y is called continuous at some x € X, if for every neighborhood V of f(z)
there is a neighborhood U of & with f(U) C V and f: X — Y is called continuous

on X, if f is continuous at every z € X.

Definition 2.1.10. [17] Let X be a topological space. Then X is said to be
Hausdorff topological space if & and y are two distinct points in X, there exist two

open sets G and H such that z € G,y € H, and GnN H = §.

Definition 2.1.11. [16] A topological space X is said to be compaet if every open
cover has a finite subcover, i.e., if whenever X = U G;, where (G; is an open set,
then X = UJ G; for some finite subset J of I. -
ic
Definition 2.1.12. [16] A subset C' of a topological space X is said to be compact
if every open cover has a finite open subcover, i.e., if whenever C' C U (7;, where
G; is an open set, then C' C UjGi for some finite subset J of I. I~
i€

Remark 2.1.13. [16]

(i) Every finite set of a topological space is compact.

(%) Every closed subset of a compact space is compact.

(#4) In a compact Hausdorff space, a set is compact if and only if

it is closed.

Definition 2.1.14. [17] A subset C of a linear space X is said to be a conves set
i X if Az + (1 — M)y € C for each z,y € C and for each scalar A € [0, 1].

Definition 2.1.15. [16] Let C' be an arbitrary subset (not necessarily convex) of
a linear space X. Then the convez hull of C in X is the intersection of all convex

subsets of X containing C'. It is denoted by co(C). Hence

co(C) = n{D CX:CCD, D is convex}



Thus, co(C) is the unique smallest convex set containing C. Clearly,

n

co(C) = {ala:l +azi+...+aom iz €C, a; >0 and Za,- = 1} ;

i=1
Definition 2.1.16. Let X be a Hausdorff topological vector space with dual space
X*, K anonempty compact convex subset of X. A mapping T : K — X* is said to
be relazed n-a monotone if there exist a mapping n: K x K — K and a function
a : X — R positively homogeneous of degree p, i.e., a(tz) = tPa(z) for all t > 0

and z € X such that
(be ol Tyan(a’ay» = G(T = y): V.’B, ye I{:

where p > 1 is a constant; see [19]. In the case of 7(z,y) =z —y for all z,y € K,
T is said to be relezed a-monotone. Moreover, every monotone mapping is relaxed

1-c monotone with 7(z,y) =z —y for all 2,y € K and a =0.

Definition 2.1.17. (20, 21] Let X be a topological space. A subset D of X is call
contractible, if there exist a point v € D and a continuous mapping g : D x [0,1] —

D such that g(u,0) =« for all w € D and g(u,1) = v, for all u € D.

We note that if D is convex, it is contractible since for any v € D, the
mapping g(u,t) = tu+ (1 — t)v would satisfy the above property. In addition a set

star shaped at v also contractible to v.

2.2 Normed spaces and Banach spaces

Definition 2.2.1. [22] Let X be a linear space over the field K (R or C). A function
| -]l : X — Kis said to be a norm on X if it satisfies the following conditions:

(@) llz]| = 0,Vz € X;

(é) [lz]| =0 & = = 0;

(@) |l +yll < llll + llyll, Vo, y € X;

(i) |laz| = |el||lz|, Vz € X and Vo € K.



Definition 2.2.2. [22] Let (X, || - ||) be a normed space.

() A sequence {z,} C X is said to converge strongly in X if there
exists « € X such that 111520 lzn — z|| = 0. That is, if for any & > 0 there exists a
positive integer N such that ||z, — z|| < &,¥n > N. We often write n]ll’lolo T, =T Or
Zn — 2 to mean that z is the limit of the sequence {z,}.

(i) A sequence {z,} C X is said to be a Cauchy sequence if for
any € > 0 there exists a positive integer N such that ||z,, — Tyl < &,V m,n > N.
That is, {x,} is @ Cauchy sequence in X if and only if ||z, —2,|| — 0 as m,n — oo.

(¢23) A sequence {x, } C X is said to be a bounded sequence if there

exists M > 0 such that |[z,| < M,Vn € N.

Definition 2.2.3. [22] A normed space X is called to be complete if every Cauchy

sequence in X converges to an element in X,

Definition 2.2.4. [22] A complete normed linear space over field K is called a

Banach space over K

Definition 2.2.5. [22] Let X and Y be linear spaces over the field K.
(¢) A mapping T': X — Y is called a linear operator if
T(z+y) =Tz +Ty and T(az) =aTz, Yz,y € X, and Vo € K.
(¢¢) A mapping T : X — K is called @ linear functional on X if T

is a linear operator.

Definition 2.2.6. [22] Let X and Y be normed spaces over the field K and T :
X — Y a linear operator. T is said to be bounded on X, if there exists a real

number M > 0 such that ||T'(z)|| < M||z||,Vz € X.

Definition 2.2.7. [22] Let X and Y be normed spaces over the field K, T : X — Y
an operator and xg € X. We say that T is continuous at xg if for every € > 0 there
exists 6 > 0 such that ||T'(z) — T'(20)|| < € whenever ||z — z|| < 6 and 2 € X. If

T is continuous at each & € X, then T is said to be continuous on X.



Definition 2.2.8. [22] Let X be normed spaces. A mapping T : X — X is said

to be Lipschitzian if there exists a constant k£ > 0 such that for all z,y € X
ITz — Ty|| < kl|lz —yl| (2.2.1)

The smallest number k for which (2.2.1) holds is called the Lipschitz constant of T

and T' is called a contraction mapping if k € (0,1).

Definition 2.2.9. [22] Let X be normed spaces. A mapping T of X into itself is

said to be nonezpansive if ||Ta — Ty|| < ||z — || for each z,y € X.

Definition 2.2.10. [22] An element z € X is said to be

(i) a fized point of a mapping T : X — X provided Tz = z.

(i) a common fized point of two mappings S, T : X — X provided
Sz =z = Tx. The set of all fixed points of T is denoted by F(T).

Definition 2.2.11. [22] Let X be a normed space. Then the set of all bounded

linear functionals on X is called a dual space of X and is denoted by X*.

Definition 2.2.12. [22] A normed space X is said to be reflexive if the canonical
mapping G : X — X** (i.e. G(z) = g, for all z € X where g,(f) = f(z) for all

f € X*) is surjective.

Definition 2.2.13. [16] A sequence {xz, } in a normed space X is said to be converge
weakly to x € X if f(x,) — f(a) for all f € X*. In this case, we write 2, — z or

weak- lim z,, = .

n—co

Definition 2.2.14. [23] Let X be a normed space, {z,} C X and f : X —
(—00,00]. Then f is said to be

(¢) lower semicontinuous on X if for any zy € X,
flzo) € li,{g ilgf f(zn) whenever z, — z.

(#2) upper semicontinuous on X if for any zy € X,

limsup f(z,) < f(z¢) whenever z, — .
n—oo
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Remark 2.2.15. [23] Let X be a normed space and f : X — (—o0,00]. Then f

is continuous if and only if f is lower semicontinuous and upper semicontinuous.

Definition 2.2.16. [23] Let X be a normed space and let C' be a convex subset
of X. A function f : C — (—o00,00] is convez on X if for any 2,2, € X and
t€[0,1],

fltzy + (1= t)me) < tf(z1) + (1 — 1) fl20)

and f is concave if —f is convex.

Definition 2.2.17. [16] Let X be a nonempty set and d : X x X — [0, oo) be a
function. Then d is called a metric on X if the following properties hold:
(i) d(z,y) = 0 if and only if z = y,
(it) d(z,y) = d(y,z) for all z,y € X,
(4i1) d(z, 2) < d(z,y) + d(y, 2) for all z,y,z € X.
The value of metric d at (z,y) is called distance between = and y, and the

ordered pair (X, d) is called a metric space.

Remark 2.2.18. [17] Every metric space is a Hausdorff space.

Remark 2.2.19. [22] Every normed space is a metric space with respect to the

metric d(z,¥) = ||z — y||, z,y € X.

Definition 2.2.20. [24] Let (X, d) be a metric space. Let 2% be the collection
of all nonempty subset of X and CB(X) be the collection of all nonempty closed
bounded subset of X. Define Hausdorff metric on CB(X) by

H(A, B) = max {sup d(z, B),sup d(y, A)} , forall A, B € CB(X),

z€A yeB

where d(z, A) = i2£ d(z,y).
y

For any a Banach space E, define a Hausdorff pseudo-metric D : 2F x 28 —
[0, +00] by

b _ —_— —
U, V) mw{iggggvllu vll,igg;g[,llu vll}
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for any given U,V € 2%. Note that if the domain of D is restricted to closed

bounded subsets, then D is the Hausdorff metric.

Definition 2.2.21. [19] Let E be a Banach space with the dual space E* and K
be a nonempty subset of E. Let T : K — E*and n: K x K — E be two mappings.
The mapping T' : K — E* is said to be n-hemicontinuous if, for any fixed z,y € K,
the function f : [0,1] — (—oc0,00) defined by f(t) = (T((1 — t)z + ty), n(z,y)) is

continuous at 0F.

Definition 2.2.22. [23] Let E be a Banach space with the dual space E* and K be
a nonempty subset of F. The mapping A : K — E* is said to be hemicontinuous if
for any =,y € K, the mapping f : [0,1] — E* defined by f(t) = (A((1-t)z+ty), 2)

is continuous, for all z € E.

Lemma 2.2.23. [25] Let K be a nonempty closed convex subset of a strictly convex
Banach space E and S+ K — K a nonezpansive mapping with F(S) # 0, where
F(S) is the set of all fized points of S. Then F(S) is closed convex.

Theorem 2.2.24. (Mazur’s Theorem, [16]). The closed convex hull co(C) of a

compact set C' of a Banach space is compact.

2.3 Inner product spaces and Hilbert spaces

Definition 2.3.1. [22] The real-valued function of two variables (-,-) : X x X — R
is called inner product on a real vector space X if it satisfies the following conditions:

(@) {az + By, z) = oz, z) + By, 2) for all z,y,z € X and all real
number « and 3;

(43) (z,y) = (y,z) for all 2,y € X; and

(#47) (z,x) > 0 for each z € X and (z,z) = 0 if and only if = = 0.

A real inner product space is a real vector space equipped with an inner product.

Remark 2.3.2. [22] Every inner product space is a normed space with respect to

the norm ||z|| = |(z,z)|2,z,y € X.
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Definition 2.3.3. [22] A Hilbert space is an inner product space which is complete

under the norm induced by its inner product.

Definition 2.3.4. [22] A sequence {x,} in a Hilbert space H is said to converge
weakly to a point z in H if lim (z,,y) = (z,y) for all y € H. The notation z,, —
n—oo

is sometimes used to denote this kind of convergence.

Definition 2.3.5. [22] The metric (nearest point) projection Px from a Hilbert
space H to a closed convex subset / of H is defined as follows: given = € H, Pxzx

is the only point in K with the property
|& — Pxz|| = inf{||z — 9| : y € K}

Lemma 2.3.6. (23] Let H be a real Hilbert space, K a closed convex subset of H.

Given x € H andy € K. Then y = Py if and only if there holds the inequality
(x—vy,y—2)>0,Vze K.

Remark 2.3.7. It is well known that Py is a nonexpansive mapping of H onto K

and satisfies
(@ — 9, Pxx — Pxy) > ||Pxz — Pgyl|? (2.3.1)

for every x,y € H. Moreover, Pxx is characterized by the following properties:

PK(L' € K and

(2 — Pgz,y — Prz) <0, (2.3.2)

lz = ylI* > |lz — Pxxl® + |ly — Prax||? (2.3.3)
forallz € Hyye K.

Definition 2.3.8. [14] A mapping T of a Hilbert space H into itself is said to be

firmly nonexpansive if for each z,y € H,

1Tz — Ty|* < (Tz — Ty,x —y).
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Remark 2.3.9. Every firmly nonexpansive mapping is a nonexpansive mapping,.

Definition 2.3.10. [26] Let K be a subset of a Hilbert space H and A is a mapping
of K into H.

() A is called monotone if

(Au— Av,u—v) >0

(i) A is called a-inverse-strongly monotone if there exists a positive

number « such that
(Au — Av,u —v) > | Au— Av|)?
for all u,v € K.

Remark 2.3.11.

Imonotone < |a-Inverse-strongly monotone | = | Lipschitz continuous

Figure 1: Relation between monotone and

Lipschitz continuous mappings

Definition 2.3.12. Let H be a real Hilbert space, K be a nonempty bounded
closed convex subset of H. Let g,h: K x K - R, A : K — H be a monotone
mapping, and let 7" : K — H be a relaxed n-o monotone mapping. For any r > 0,

the resolvent operator T, : H — 2 defined by

Tilz)y= {"L € K :g(z,9) + iz, y) + (Tz,n(y, z)) + (Az,y — z)

+%(x—z,y—x) > 0, for all yEK}. (2.34)

Lemma 2.3.13. [27] Let {c,} and {k,} be two real sequences of nonnegative num-
bers that satisfy the following conditions:

(1) 0<kn<1 for n=0,1,2,..., and limsupk, < 1;

n

(44) cny1 < kpen for n=0,1,2,....

Then, ¢, converges to 0 as n — oo.
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2.4 Convexity, smoothness and duality mappings

Definition 2.4.1. [23] A Banach space E is said to be strictly conves if || 2| < 1

for all z,y € E with ||z|| = |ly|| =1 and z # y

Definition 2.4.2. [28] A Banach space E is said to be uniformly convez if for each
0 <& < 2, there is § > 0 such that Vz,y € E, the condition ||z|| = ||y|| = 1, and

le — yll > & imply (|22 < 1.
Definition 2.4.3. [28] Let E be a Banach space. Then the modulus of convexity of

Eiséd:[0,2] — [0, 1] defined as follows:

T+y
2

8(c) = inf {1 -

H el < Ll < 1 le—yl > }

Theorem 2.4.4. 28] Let E be a Banach space. Then B is uniformly conves if
and only if 6(¢) > 0 for all € > 0.

Definition 2.4.5. [29] Let E be a Banach space and S = {z € E : ||z] = 1}.
‘Then E is said to be locally uniformly convez if for each € > 0 and z € S, there
exists d(g,z) >0 fory € S,

|z —y|| > e implies ||IT+y|| <1 4~d(eT), (2.4.1)

r+y

where §(g) = inf {1 -

oy e B ol = Iyl = 1 Jls — ]| > e} -

Remark 2.4.6.

uniformly convex | = |locally uniformly convexl = Istrictly convex

Figure 2: Relation on convex spaces

Definition 2.4.7. [23] Let E be a Banach space and S = {z € E : ||z|| = 1}.

Then E is said to be smooth if the limit

e+t ]
t—0 t

(2.4.2)
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exists for all z,y € S. The norm of E is said to be Fréchet differentiable if for each
x € S(E), the limit (2.4.2) is attained uniformly for y € S(E). The norm of E is
said to be uniformly Fréchet differentiable (E is said to be uniformly smooth) if
the limit (2.4.2) is attained uniformly for z,y € S(E).

Theorem 2.4.8. (23] Let E be a Banach space with a Fréchet differentiable norm.

Then, the duality mapping J : E — E* is norm to norm continuous.

Definition 2.4.9. [23] A Banach space F is said to have Kadec-Klee property if a

sequence {z,} of E satisfying that z, — z € F and ||z,|| - ||z||, then z,, — .

Remark 2.4.10. It is known that if £ is uniformly convex, then E has the Kadec-

Klee property.

Remark 2.4.11. The following properties are well-known (see [29] for details):

(¢) If E is a uniformly smooth Banach space, then the normalized
duality mapping J is uniformly continuous on each bounded subset of E.

(#) If E is a smooth, strictly convex and reflexive Banach space, then
the normalized duality mapping J : £ — 27" is a single valued bijective mapping.

(iiz) If E is a smooth, strictly convex and reflexive Banach space
and J* : E* — E is the duality mapping in E*, then J~! = J*, JJ* = Ig and
S = 1g

(iv) If B is a strictly convex and reflexive Banach space, then J~! is
hemi-continuous, i.e., J~! is norm-weak-continuous.

(v) E is uniformly smooth if and only if E* is uniformly convex.

(vi) If E is a uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, then both the normalized duality mappings J : E — E*
and J* = J1: E* » F are continuous.

(vii) Each uniformly convex Banach space E has the Kadec-Klee
property.

(vidi) If E is a uniformly smooth, then E is reflexive and smooth.
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Lemma 2.4.12. (23] Let E be a strictly convex, smooth, and reflexive Banach
space, and let J be the duality mapping from E into E*. Then J™! is also single-

valued, one-to-one, and surjective, and it is the duality mapping from E* into E.

Lemma 2.4.13. [30] Let E be a reflevive Banach space and E* be strictly convez.
Then the following statements are hold.

(¢) The duality mapping J : E — E* is single-valued, surjective and
bounded.

(it) If E and E* are locally uniformly convez, then J is a homeomor-

hism, that is, J and J~! are continuous single-valued mappings.
) ? J

Definition 2.4.14. [23] Let E* be dual space of a Banach space E. The normalized

duality mepping J : E — 22" is defined by
J(@)={f € E*: (z,f*) = ||z|> = ||f*||*)}, forall z€E.

Definition 2.4.15. [23] For each ¢ > 1, the generalized duality mapping J, : E —
2E" is defined by

Jo(z) ={a* € B*: (z,2”) = ||=||%, ||*|| = [|lz||*""}, forall z€ E. (2.4.3)

It is known that, in general, J,(z) = ||z[|?"'J5(2) for all z # 0 and J, is single-
valued if E* is strictly convex. In the sequel, we always assume that E is a real

Banach space such that J, is single-valued.

Definition 2.4.16. Let £ be a norm linear space with dimE > 2. The modulus

of smoothness of E is the function pg : [0, 00) — [0, 00) defined by

c+y|+ |z —
pE(t)=sup{“ I+ y"—1:||x[1=1,||y||=t}.

2

The space E is said to be smooth if pg(t) > 0, V¢t > 0. E is called uniformly
smooth if and only if lirgk @@ =0. Let ¢ > 1. E is said to be g-uniformly smooth
t—

(or to have a modulus of smoothness of power type q) if there exists a constant

¢ > 0 such that pp(t) < ct?, t > 0. Note that J, is single-valued if E is uniformly
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smooth. In the study of characteristic inequalities in g-uniformly smooth Banach

spaces, Xu [31] proved the following result.

Lemma 2.4.17. Let E be a real uniformly smooth Banach space. Then E is g-
uniformly smooth if and only if there exists a constant ¢, > 0 such that for all
x,y € F,

&+ yl1* < lzl|? + aly, Jy(2)) + ¢ ly||".

Let E be a Banach space. Define a function ¢ : E x E — R by

$(@y) = llell* — 2(z, Jy) + |y|* (2.4.4)
for all 2,y € E. We see that

@) (lull = 1l=1)? < dy, ) < (llyll + [|=])?, for all 2,y € E.

(#) ¢(z,y) = p(z,2) + ¢(2,9) + 2(x — z,Jz — Jy), for all ¢, 9,2 € E.

(%) ¢(z,y) = (2, Jo — Jy) + {y = 2, Jy) < |lz[|| /= — Jyl| + ly — z[[ly]], for
all z,y € E.

(¢v) In a Hilbert space H (the next section), we have ¢(z,y) = ||z —y||? for

all z,y € H.

Definition 2.4.18. [32, 33] Let K be a nonempty closed convex subset of a Banach
space E. For any & € F, the mapping Il : B — K defined by Iz = g, where

Ty € K such that ¢(zp,z) = mi}(l $(y,x), is called the generalized projection.
ye

Lemma 2.4.19. [33] Let E be a smooth, strictly convex and reflevive Banach space
and K be a nonempty closed convex subset of E. Then the following conclusions
hold:

(¢) Ifx € E and z € K, then

z=[[ee (y—2Jz-Jz) >0, foral yeK; (2.4.5)
I

(i) [, is a continuous mapping from E onto K.
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Remark 2.4.20. If E is a real Hilbert space, then J = I (identity mapping) and

[1x is the metric projection Py from E onto K.

Lemma 2.4.21. [13] Let E be a real Banach space, K be a nonempty closed convex
subset of E with 0 € K and [[,, : E — K be the generalized projection. Then for

each x € E, we have ||, | < ||z|.

For any a real Banach space E with dual space E*, consider the functional

V : E* x E — R defined by
Vip,z) = |lo|l* = 2(p,2) + ||lz||?, forall ¢ € E* and z € E.

It is clear that V' (¢, z) is continuous and the map z — V¢, z) and ¢ — V(p,z)
are convex and ([l — [lz])> < V(p,2) < (||l¢|l + ||lz||)2. We remark that the
main Lyapunov functional V' was first introduced by Alber [33] and its properties
were studied there. By using this functional, Alber defined a generalized projection
operator on uniformly convex and uniformly smooth Banach spaces which is further

extended by Li [34] on reflexive Banach spaces.

Definition 2.4.22. [34] Let E be reflexive Banach space with its dual E* and K
be a nonempty, closed and convex subset of E. The operator mx : F* — K defined

by
() ={z € K : V(p,z) = igjf{ V(p,y)}, for all p € E*, (2.4.6)
Y

is said to be a generalized projection operator. For each ¢ € E*, the set mx(¢p) is

called the generalized projection of ¢ on K.

Lemma 2.4.23. [34] If E is a reflexive Banach space with dual space E* and K is
a nonempty closed convex subset of E, then mx () is a nonempty, closed, convex

and bounded subset of K, for any point ¢ € E*.
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Lemma 2.4.24. [34] Let E be a reflevive Banach space with its dual E* and K be
a nonempty closed convex subset of E, then the following properties hold:

(¢) The operator my : E* — 25 is single-valued if and only if E is
strictly convex.

(¢¢) If E is smooth, then for any given ¢ € E*,x € g if and only if
(p—J@)z—-y) >0, WeKkK.

(123) If B is strictly convez, then the generalized projection operator

i : E* — K is continuous.

Lemma 2.4.25. [31, 35] Let E be a uniformly convexr Banach space, r > 0 be a

positive number and B,(0) := {z € E : ||z|| < r} be a closed ball of E. Then

for any given finite subset {x1,zs,...,x5} C B.(0) and for any given positive

numbers Ay, Ag, . .., Ay with %1 An = 1, there exists a continuous, strictly increasing
-

and convez function g : [0,2r) — [0,00) with g(0) = 0 such that for any i,5 €
{1,2,...,N} withi < j, the following holds:

2

N N
Do Anall <D Aallaall? = Aedsg(lz —a5). (2.4.7)
n=1 n=1

Lemma 2.4.26. [36] Let E be a real reflezive, smooth and strictly convex Banach

space. Then the following inequality holds:

17 +al* < IFI* +2(g, TN (f +9)), forall fgeE". (2.4.8)

Definition 2.4.27. Let E be a Banach space. Let Hn: ExE — FE be two
single-valued mappings and A, B : E — E be two single-valued mappings.

() A is said to be accretive if

(Az — Ay, Jy(z — y)) > 0, forall 2,y € F;
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(i2) A is said to be strictly accretive if A is accretive and
(Az — Ay, Jy(z —y)) =0, forall 2,y € E;

if and only if z = y;
(4ii) H(A,-) is said to be a-strongly accretive with respect to A if there

exists a constant o > 0 such that
(H(Az,v) — H(Ay,u), Jo(z —y)) > allz — y||?, for all z,y,u € E;

(iv) H(+, B) is said to be B-relazed accretive with respect to B if there exists

a constant 8 > 0 such that
(H(u, Bx) — H(u, By), J(z —y)) = —Bllz — y||?, for all z,y,u € E;

(v) H(:,-) is said to be y-Lipschitz continuous with respect to A if there

exists a constant v > 0 such that
1B (Az,u) — H(Ay, w)]| <ylle —yll, for all z,y,u € B

(vz) n(-,-) is said to be strongly accretive with respect to H(A, B) if there

exists a constant p > 0 such that

(n(z,u) —n(y,u), J,(H(Az, Bz) — H(Ay, By))) > pllz —y||?, for all z,y,u € E.

2.5 Multi-valued mappings

In this section, we let X and Y be topological vector spaces.

Definition 2.5.1. [37] Let T': X — 2¥. The graph of T, denoted by G(T), is

GT)={(z,9) e X xY |z € X, yeT(z)}.
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Definition 2.5.2. [37] A multi-valued mapping T : X — 2V is called:

(¢) closed if the graph of T is a closed subset of X x Y.

(4i) upper semicontinuous at € X if for every open set V con-
taining T'(x), there is an open set U containing = such that T'(u) C V for allu € U.
T is upper semicontinuous if 7" is upper semicontinuous at z for all z € X.

(i43) lower semicontinuous at x € X if for every open set V with
T(z) NV # 0, there is an open set U containing = such that T'(u) NV # @ for all
w € U. T is lower semicontinuous if 7" is lower semicontinuous at = for all z € X.

(v) continuous if it is both upper semicontinuous and lower semi-

continuous.

Definition 2.5.3. [16] A multi-valued mapping 7" : X — 2V is called convez [concave]
if for all z1,29 € X and A € [0,1}, T(Az1 + (1 — Nz2) € AT(z1) + (1 — A)T(x2)
[resp. AT'(z1) + (1 — A)T'(z2) C T(Azy + (1 — N)xp)).

Lemma 2.5.4. [38] Let X and Y be two Hausdorff topological vector spaces and
T: X — 2Y be a multi-valued mapping. Then the following properties hold:

(i) If T is closed and T(X) is compact, then T is upper semicon-
tinuous, where T(X) = |J T(z) and E denotes the closure of the set E.

(i7) If ?:S upper semicontinuous and for any x € X,T(z) is
closed, then T 1s closed.

(i2) T is lower semicontinuous at * € X if and only if for any

y € T(z) and any net {z,}, ©o — =, there exists a subnet {y,} such that y, €

T(zq) and yo — y.

Lemma 2.5.5. [8] Let M and N be two metric space and T : M — 2V be a
multi-valued mapping. Given any x € M, if T(z) is compact and T is upper
semicontinuous at z, then Vr, — x, Yu, € T(x,), {u.} must have a cluster point

u* € T(x).

Definition 2.5.6. (KKM mapping, [39]). Let K be a nonempty subset of a topo-

logical vector space X. A multi-valued mapping G : K — 2% is said to be a KKM
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mapping if for any finite subset {y1, vz, ..., ¥n} of K, we have

n
co{y1, yz, 9} € |J Gw:)

i=1
where co{yi, ¥a, ..., yn} denotes the convex hull of {y1, ¥z, ..., yn }-
Lemma 2.5.7. (Fan-KKM Theorem, [39]). Let K be a nonempty convex subset
of a Hausdorff topological vector space X and let G : K — 2X be a KKM mapping
with closed values. If there exists a point yo € K such that G(yo) is a compact

subset of K, then () G(y) # 0.

yel

Lemma 2.5.8. [40] (Eilenberg-Montgomery) Let K be a compact contractible sub-
set of a complete metric space M and let T : K — 25 be o upper semicontinuous
such that for every x € K the set T(x) is nonempty, compact and contractible

subset of M, then T has a fived point.

Definition 2.5.9. Let E be a Banach space. Let n: EXE — E be a single-valued
mapping. Let M : E — 2F be a set-valued mapping.
(¢) m is said to be 7-Lipschitz continuous if there exists a constant 7 > 0

such that
(2, || < 7lle —ylf, forall v,y € E;
(1) M is said to be accretive if
(u—v,J(x=y)) >0, foralla,yeE, uec M(z),ve M),
(¢12) M is said to be 5-accretive if
(w—wv,Jy(n(z,y))) 20, forallz,y € E,ue M(z),ve M(y);

(7v) M is said to be strictly n-accretive if M is 5-accretive and equality
holds if and only if z = y;
(v) M is said to be y-strongly n-accretive if there exists a positive constant

v > 0 such that

(u—v,Jy(n(z,9))) 2 vllz —y||% forallz,yc E,uec Mz),veMy);
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(vi) M is said to be a-relazed n-accretive if there exists a positive constant

a > 0 such that
(u—wv,Jy(n(z,y))) > —aflz—y||?, for al z,y € E, u € M(z), v e M(y);

Remark 2.5.10.

accretive | = |i—accretive| 4= [strictly n—accretive|
T

L’y-strongly n-accretive | = la—relaxed n—accretivgl

Figure 3: Relation of accretive mappings

Definition 2.5.11. [41] Let E be a Banach space. Let A, B : E — E,H:ExE —
E be three single-valued mappings. Let M : E — 27 be a set-valued mapping. M
is said to be H(:,-)-accretive with respect to A and B (or simply H (+,+)-accretive

in the sequel), if M is accretive and (H(A, B) + AM)(E) = E for every A > 0.

Lemma 2.5.12. [41] Let H(A, B) be a-strongly accretive with respect to A, B-
relaved accretive with respect to B, and a > 3. Let M be an H (+,)-accretive
operator with respect to A and B. Then, the operator H((A, B) + AM)~! is single-

valued.

Definition 2.5.13. [41] Let E be a Banach space. Let H , A, B, M be defined as in
Definition 2.5.11. Let H(A, B) be a-strongly accretive with respect to A, B-relaxed
accretive with respect to B, and o > 3. Let M be an H (+,-)-accretive operator

with respect to A and B. The resolvent operator Rﬁ()\) : ' — FE is defined by
REG)(2) = (H(A, B) + AM)™\(z), for all z € E, (2.5.1)

where A > 0 is a constant.
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Lemma 2.5.14. [41] Let E be a Banach space. Let H,A,B,M be defined as
in Definition 2.5.11. Let H(A, B) be a-strongly accretive with respect to A, (-
relazed accretive with respect to B, and o > 3. Suppose that M : E — 2F is an
H(:,)-accretive operator. Then resolvent operator Rf[()\) defined by (2.5.1) is a—iﬁ-

Lipschitz continuous. That is,

||RME,\ )(’L) - RMSA )('y)” 5

O-'-—.

! A=l for aia,y € B.

2.6 Equilibrium problems and variational inequality problems

Definition 2.6.1. [42] Let X be a Hausdorff topological vector space, K a non-
empty compact convex subset of X. Let g be a bifunction of K x K into R. The

equilibrium problem is to find = € K such that
g(z,y) >0 for all y € K. (2.6.1)
The set of solutions of (2.6.1) is denoted by EP(g).

Theorem 2.6.2. [42] Let K be a compact convex subset of a topological vector space
X and let g be a real valued function on K x K satisfying the following conditions:
(¢) for each y € K, the function x v g(z,y) is upper semicontinuous;
(¢2) for each & € K, the function y v g(z,y) is convex;
(itt) g(z,2) >0, forallz € K.

Then, there exists an element xo € K such that
9(zo,y) 20, forall ye K.

Definition 2.6.3. [14] Let X be a Hausdorft topological vector space with dual
space X*, K a nonempty compact convex subset of X. Let g, h be bifunctions of

K x K into R. The equilibrium problem is to find z € K such that
g(z,y) + h(z,y) > 0 for all y € K. (2.6.2)

The set of solutions of (2.6.2) is denoted by EP(g, h).
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Theorem 2.6.4. [14] Let the following assumptions (i)-(iv) hold:
(i) X is a real topological vector space:
K 1s a nonempty closed convex subset of X ;

(%) g: K x K — R has the following properties:

g(z,2) =0 for adlz € K;

g(z,y) + 9(y,x) <0 for all z,y € K (monotonicity);

for all z,y € K the function t € [0,1] — g(ty + (1 — t)z,y) is

upper semicontinuous at t =0 (hemicontinuity);

g is conver and lower semicontinuous m the second argument;
(it3) h: K x K — R has the following properties:

h(z,z) =0 for all z € K

h is upper semicontinuous in the first arqgument,;

h is convex in the second argument;
(iv) There ezists C' C K nonempty compact convex such that for every

x € C' \ coreC there exists a € corexC such that

g(z,a) + h(z,a) <0  (coercivity).
Then there exists T € C' such that

0 < ¢(Z,y) + ME,y), foral ye K.

Definition 2.6.5. [43] Let K be a subset of a real Banach space E with dual space

E*. Let A: K — E* be a mapping. The classical variational inequality, denoted
by VI(A, K), is to find z* € K such that

(Az*,v—z*) >0 for allv € K. (2.6.3)

Definition 2.6.6. [35] Let E be a real Banach space, E* be the dual space of E, K
be a nonempty closed convex subset of E, and (-, -) be the pairing between £ and
E*. Let F': K x K — R be a bifunction, 9 : K — R be a real-valued function, and

A: K — E* be a nonlinear mapping. The generalized mized equilibrium problem
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is to find v € K such that

F(u,y) + (Av,y —u) +9(y) —9(u) 2 0, Yy € K. (2.6.4)

The set of solutions of (2.6.4) is denoted by GM EP(F, A, ).

Special examples

(¢) If A=0, then the problem (2.6.4) is equivalent to find u € K such that

(i)

(iv)

(v)

F(u,y)+9¥(y) —v(u) >0, Yy € K, (2.6.5)

which is called the mized equilibrium problem [44]. The set of solutions to

(2.6.5) is denoted by M EP(F,1).
If I = 0, then the problem (2.6.4) is equivalent to find € K such that

which is called the mived variational inequality of Browder type [45]. The set

of solutions to (2.6.6) is denoted by VI(K, A,).
If 1 =0, then the problem (2.6.4) is equivalent to find u € K such that
F(u,y) + (Au,y —u) > 0, Yy € K, (2.6.7)

which is called the generalized equilibrium problem [46]. The set of solutions

to (2.6.7) is denoted by GEP(F, A).

If A =0 and 9 = 0, then the problem (2.6.4) is equivalent to the equilibrium
problem (2.6.1).

It =0 and % = 0, then the problem (2.6.4) is equivalent to the classical

variational inequality (2.6.3).
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Lemma 2.6.7. [35] Let K be a nonempty closed conver subset of a wuniformly
smooth, strictly convex and reflexive Banach space E and E* be a dual space of E.
Let F be a bifunction of K x K into R satisfying conditions (A1)-(A4), A: K — E*
be a continuous monotone mapping and 1 : K — R be a lower semicontinuous and

convez function. Forr >0 and x € E, define a mapping T, : E — K as follows:
i

T.(z) = {z €eK: F(z,y)-l—{Az,y—z)-H[)(y)—i,b(z)Jr1(y—z, Jz—Jz) > 0,Vy € K}.

Then, the following hold:
(3) T.(#) 0,/N2 € E;
(i) T, is single- valued;

(¢31) T, is firmly nonexpansive-type mapping, i.e., for eny z,y € E,
Tz = Ty, ITox — JTy) < (Ta — Ty, Jz — Jy);

(iv) F(T,) = GMEP(F, A, 9);
(v) GMEP(F, A,v) is closed and convex.



