CHAPTER II

PRELIMINARIES

In this chapter, we give some notations, definitions, and some useful results that will be used in the later chapter.

2.1 Topological vector spaces

0

(D)

19

CF

Definition 2.1.1. [16] Let X be a nonempty set and τ be a collection of subsets of X. Then τ is said to be a topology on X if the following conditions are satisfied:

- (i) $\emptyset \in \tau$ and $X \in \tau$;
- (ii) the union of every class of sets in τ is a set in τ ;
- (iii) the intersection of every finite class of sets in τ is a set in τ .

The ordered pair (X, τ) is called a topological space and the sets in class τ are called the *open sets* of the topological (X, τ) . It is customary to denote the topological space (X, τ) by the symbol X which is used for its underlying set of points.

Definition 2.1.2. [17] Let X be a topological space, let U be a subset of X and let some $x \in X$ be a given element. The set U is called a neighborhood of x, if there is an open set V with $x \in V \subset U$ and x is called an interior element of U, if there is a neighborhood V of x contained in U. The set of all interior elements of U is called the interior of U and it is denoted by intU.

Definition 2.1.3. [17] A set F in a topological space X whose complement $F^C = X - F$ is open is called a *closed set*.

Definition 2.1.4. [17] Let F be a subset of a topological space X. Then the closure of F is the smallest closed set containing F. The closure of F is denoted by \overline{F} .

Theorem 2.1.5. [17] Let F be a subset of a topological space X. Then F is closed if and only if $F = \overline{F}$.

Definition 2.1.6. [17] A linear space or vector space X over the field K (The real field \mathbb{R} or the complex field \mathbb{C}) is a set X together with an internal binary operation "+" called an addition and a scalar multiplication carrying (α, x) in $\mathbb{K} \times X$ to αx in X satisfying the following for all $x, y, z \in X$ and $\alpha, \beta \in \mathbb{K}$:

$$(i) x + y = y + x,$$

19

(1)

(3)

(ii)
$$(x+y) + z = x + (y+z)$$
,

(iii) there exists an element $0 \in X$ called the zero vector of X such that x + 0 = x for all $x \in X$,

(iv) for every element $x \in X$, there exists an element $-x \in X$ called the additive inverse or the negative of x such x + (-x) = 0,

$$(v) \ \alpha(x+y) = \alpha x + \alpha y,$$

$$(vi) (\alpha + \beta)x = \alpha x + \beta x,$$
$$(vii) (\alpha \beta)x = \alpha(\beta x),$$

(vii)
$$(\alpha\beta)x = \alpha(\beta x)$$

(viii)
$$1 \cdot x = x$$

The elements of a vector space X are called *vector* and the elements of \mathbb{K} are called scalars. In the sequel, unless otherwise stated, X denotes a linear space over field $\mathbb{R}.$

Definition 2.1.7. [17] Let X be a linear space over a field K and let τ be a topology on X. Then (X, τ) is called a topological vector space if addition and multiplication with scalar are continuous, i.e. the maps

$$(x,y) \mapsto x + y \text{ with } x,y \in X$$

and
$$(\alpha, x) \mapsto \alpha x$$
 with $\alpha \in \mathbb{K}$ and $x \in X$

are continuous on $X \times X$ and $\mathbb{K} \times X$, respectively. In many situations we use, for simplicity, the notation X instead of (X, τ) for a topological vector space.

Definition 2.1.8. [18] Let X be a topological vector space over the filed \mathbb{R} .

(i) A sequence
$$\{x_n\} \subset X$$
 is bounded if $\lambda_n x_n \to \theta$ whenever $\lambda_n \to 0$

in \mathbb{R} .

73

15

(3)

6.1

(ii) A set $A \subset X$ is bounded if every sequence in A is bounded.

Definition 2.1.9. [17] Let (X, τ) and (Y, τ') be two topological spaces. A map $f: X \to Y$ is called *continuous at some* $x \in X$, if for every neighborhood V of f(x) there is a neighborhood U of x with $f(U) \subset V$ and $f: X \to Y$ is called *continuous on* X, if f is continuous at every $x \in X$.

Definition 2.1.10. [17] Let X be a topological space. Then X is said to be *Hausdorff topological space* if x and y are two distinct points in X, there exist two open sets G and H such that $x \in G$, $y \in H$, and $G \cap H = \emptyset$.

Definition 2.1.11. [16] A topological space X is said to be *compact* if every open cover has a finite subcover, i.e., if whenever $X = \bigcup_{i \in I} G_i$, where G_i is an open set, then $X = \bigcup_{i \in J} G_i$ for some finite subset J of I.

Definition 2.1.12. [16] A subset C of a topological space X is said to be *compact* if every open cover has a finite open subcover, i.e., if whenever $C \subseteq \bigcup_{i \in I} G_i$, where G_i is an open set, then $C \subseteq \bigcup_{i \in J} G_i$ for some finite subset J of I.

Remark 2.1.13. [16]

- (i) Every finite set of a topological space is compact.
- (ii) Every closed subset of a compact space is compact.
- (iii) In a compact Hausdorff space, a set is compact if and only if it is closed.

Definition 2.1.14. [17] A subset C of a linear space X is said to be a convex set in X if $\lambda x + (1 - \lambda)y \in C$ for each $x, y \in C$ and for each scalar $\lambda \in [0, 1]$.

Definition 2.1.15. [16] Let C be an arbitrary subset (not necessarily convex) of a linear space X. Then the *convex hull* of C in X is the intersection of all convex subsets of X containing C. It is denoted by co(C). Hence

 $co(C) = \bigcap \{D \subseteq X : C \subseteq D, D \text{ is convex}\}\$

Thus, co(C) is the unique smallest convex set containing C. Clearly,

0

٦

BA

0

$$co(C) = \left\{ \alpha_1 x_1 + \alpha_1 x_1 + \ldots + \alpha_1 x_1 : x_i \in C, \ \alpha_i \ge 0 \ \text{and} \ \sum_{i=1}^n \alpha_i = 1 \right\}.$$

Definition 2.1.16. Let X be a Hausdorff topological vector space with dual space X^* , K a nonempty compact convex subset of X. A mapping $T: K \to X^*$ is said to be relaxed η - α monotone if there exist a mapping $\eta: K \times K \to K$ and a function $\alpha: X \to \mathbb{R}$ positively homogeneous of degree p, i.e., $\alpha(tz) = t^p \alpha(z)$ for all t > 0 and $z \in X$ such that

$$\langle Tx - Ty, \eta(x, y) \rangle \ge \alpha(x - y), \quad \forall x, y \in K,$$

where p > 1 is a constant; see [19]. In the case of $\eta(x, y) = x - y$ for all $x, y \in K$, T is said to be *relaxed* α -monotone. Moreover, every monotone mapping is relaxed η - α monotone with $\eta(x, y) = x - y$ for all $x, y \in K$ and $\alpha \equiv 0$.

Definition 2.1.17. [20, 21] Let X be a topological space. A subset D of X is call contractible, if there exist a point $v \in D$ and a continuous mapping $g: D \times [0,1] \to D$ such that g(u,0) = u for all $u \in D$ and g(u,1) = v, for all $u \in D$.

We note that if D is convex, it is contractible since for any $v \in D$, the mapping g(u,t) = tu + (1-t)v would satisfy the above property. In addition a set star shaped at v also contractible to v.

2.2 Normed spaces and Banach spaces

Definition 2.2.1. [22] Let X be a linear space over the field \mathbb{K} (\mathbb{R} or \mathbb{C}). A function $\|\cdot\|: X \to \mathbb{K}$ is said to be a norm on X if it satisfies the following conditions:

$$(i) ||x|| \ge 0, \forall x \in X;$$

$$(ii) ||x|| = 0 \Leftrightarrow x = 0;$$

$$(iii) \ \|x+y\| \leq \|x\| + \|y\|, \forall x,y \in X;$$

(iv)
$$\|\alpha x\| = |\alpha| \|x\|, \forall x \in X \text{ and } \forall \alpha \in \mathbb{K}.$$

Definition 2.2.2. [22] Let $(X, \|\cdot\|)$ be a normed space.

3)

Q.

0

()

(i) A sequence $\{x_n\} \subset X$ is said to converge strongly in X if there exists $x \in X$ such that $\lim_{n \to \infty} ||x_n - x|| = 0$. That is, if for any $\varepsilon > 0$ there exists a positive integer N such that $||x_n - x|| < \varepsilon, \forall n \ge N$. We often write $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ to mean that x is the limit of the sequence $\{x_n\}$.

(ii) A sequence $\{x_n\} \subset X$ is said to be a Cauchy sequence if for any $\varepsilon > 0$ there exists a positive integer N such that $||x_m - x_n|| < \varepsilon, \forall m, n \ge N$. That is, $\{x_n\}$ is a Cauchy sequence in X if and only if $||x_m - x_n|| \to 0$ as $m, n \to \infty$.

(iii) A sequence $\{x_n\} \subset X$ is said to be a bounded sequence if there exists M > 0 such that $||x_n|| \leq M, \forall n \in \mathbb{N}$.

Definition 2.2.3. [22] A normed space X is called to be *complete* if every Cauchy sequence in X converges to an element in X.

Definition 2.2.4. [22] A complete normed linear space over field $\mathbb K$ is called a Banach space over $\mathbb K$

Definition 2.2.5. [22] Let X and Y be linear spaces over the field \mathbb{K} .

(i) A mapping $T: X \to Y$ is called a linear operator if T(x+y) = Tx + Ty and $T(\alpha x) = \alpha Tx$, $\forall x, y \in X$, and $\forall \alpha \in \mathbb{K}$.

(ii) A mapping $T:X\to \mathbb{K}$ is called a linear functional on X if T is a linear operator.

Definition 2.2.6. [22] Let X and Y be normed spaces over the field \mathbb{K} and T: $X \to Y$ a linear operator. T is said to be bounded on X, if there exists a real number M > 0 such that $||T(x)|| \le M||x||, \forall x \in X$.

Definition 2.2.7. [22] Let X and Y be normed spaces over the field \mathbb{K} , $T: X \to Y$ an operator and $x_0 \in X$. We say that T is continuous at x_0 if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||T(x) - T(x_0)|| < \varepsilon$ whenever $||x - x_0|| < \delta$ and $x \in X$. If T is continuous at each $x \in X$, then T is said to be continuous on X.

Definition 2.2.8. [22] Let X be normed spaces. A mapping $T: X \to X$ is said to be *Lipschitzian* if there exists a constant $k \geq 0$ such that for all $x, y \in X$

$$||Tx - Ty|| \le k||x - y||. \tag{2.2.1}$$

The smallest number k for which (2.2.1) holds is called the *Lipschitz constant* of T and T is called a *contraction mapping* if $k \in (0,1)$.

Definition 2.2.9. [22] Let X be normed spaces. A mapping T of X into itself is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for each $x, y \in X$.

Definition 2.2.10. [22] An element $x \in X$ is said to be

17

0

13

()

- (i) a fixed point of a mapping $T: X \to X$ provided Tx = x.
- (ii) a common fixed point of two mappings $S, T : X \to X$ provided Sx = x = Tx. The set of all fixed points of T is denoted by F(T).

Definition 2.2.11. [22] Let X be a normed space. Then the set of all bounded linear functionals on X is called a dual space of X and is denoted by X^* .

Definition 2.2.12. [22] A normed space X is said to be *reflexive* if the *canonical mapping* $G: X \to X^{**}$ (i.e. $G(x) = g_x$ for all $x \in X$ where $g_x(f) = f(x)$ for all $f \in X^*$) is surjective.

Definition 2.2.13. [16] A sequence $\{x_n\}$ in a normed space X is said to be *converge* weakly to $x \in X$ if $f(x_n) \to f(x)$ for all $f \in X^*$. In this case, we write $x_n \to x$ or weak- $\lim_{n\to\infty} x_n = x$.

Definition 2.2.14. [23] Let X be a normed space, $\{x_n\} \subset X$ and $f: X \to (-\infty, \infty]$. Then f is said to be

- (i) lower semicontinuous on X if for any $x_0 \in X$,
- $f(x_0) \leqslant \liminf_{n \to \infty} f(x_n)$ whenever $x_n \to x_0$.
 - (ii) upper semicontinuous on X if for any $x_0 \in X$,
- $\limsup_{n\to\infty} f(x_n) \leqslant f(x_0) \text{ whenever } x_n \to x_0.$

Remark 2.2.15. [23] Let X be a normed space and $f: X \to (-\infty, \infty]$. Then f is continuous if and only if f is lower semicontinuous and upper semicontinuous.

Definition 2.2.16. [23] Let X be a normed space and let C be a convex subset of X. A function $f: C \to (-\infty, \infty]$ is *convex* on X if for any $x_1, x_2 \in X$ and $t \in [0, 1]$,

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

and f is concave if -f is convex.

Definition 2.2.17. [16] Let X be a nonempty set and $d: X \times X \to [0, \infty)$ be a function. Then d is called a *metric* on X if the following properties hold:

(i)
$$d(x, y) = 0$$
 if and only if $x = y$,

(ii)
$$d(x,y) = d(y,x)$$
 for all $x, y \in X$,

(iii)
$$d(x,z) \le d(x,y) + d(y,z)$$
 for all $x,y,z \in X$.

The value of metric d at (x, y) is called distance between x and y, and the ordered pair (X, d) is called a metric space.

Remark 2.2.18. [17] Every metric space is a Hausdorff space.

Remark 2.2.19. [22] Every normed space is a metric space with respect to the metric $d(x,y) = ||x-y||, x,y \in X$.

Definition 2.2.20. [24] Let (X, d) be a metric space. Let 2^X be the collection of all nonempty subset of X and CB(X) be the collection of all nonempty closed bounded subset of X. Define *Hausdorff metric* on CB(X) by

$$H(A,B) = \max \left\{ \sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A) \right\}, \text{ for all } A,B \in CB(X),$$

where $d(x, A) = \inf_{y \in A} d(x, y)$.

For any a Banach space E, define a Hausdorff pseudo-metric $D: 2^E \times 2^E \to [0, +\infty]$ by

$$D(U, V) = \max \left\{ \sup_{u \in U} \inf_{v \in V} ||u - v||, \sup_{u \in V} \inf_{v \in U} ||u - v|| \right\}$$

(1

0

(L)

3

for any given $U, V \in 2^E$. Note that if the domain of D is restricted to closed bounded subsets, then D is the Hausdorff metric.

3

O

13

h.

Definition 2.2.21. [19] Let E be a Banach space with the dual space E^* and K be a nonempty subset of E. Let $T: K \to E^*$ and $\eta: K \times K \to E$ be two mappings. The mapping $T: K \to E^*$ is said to be η -hemicontinuous if, for any fixed $x, y \in K$, the function $f: [0,1] \to (-\infty,\infty)$ defined by $f(t) = \langle T((1-t)x + ty), \eta(x,y) \rangle$ is continuous at 0^+ .

Definition 2.2.22. [23] Let E be a Banach space with the dual space E^* and K be a nonempty subset of E. The mapping $A: K \to E^*$ is said to be hemicontinuous if for any $x, y \in K$, the mapping $f: [0,1] \to E^*$ defined by $f(t) = \langle A((1-t)x+ty), z \rangle$ is continuous, for all $z \in E$.

Lemma 2.2.23. [25] Let K be a nonempty closed convex subset of a strictly convex Banach space E and $S: K \to K$ a nonexpansive mapping with $F(S) \neq \emptyset$, where F(S) is the set of all fixed points of S. Then F(S) is closed convex.

Theorem 2.2.24. (Mazur's Theorem, [16]). The closed convex hull $\overline{co}(C)$ of a compact set C of a Banach space is compact.

2.3 Inner product spaces and Hilbert spaces

Definition 2.3.1. [22] The real-valued function of two variables $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ is called *inner product* on a real vector space X if it satisfies the following conditions:

(i) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for all $x, y, z \in X$ and all real number α and β ;

(ii)
$$\langle x, y \rangle = \langle y, x \rangle$$
 for all $x, y \in X$; and

(iii)
$$\langle x, x \rangle \ge 0$$
 for each $x \in X$ and $\langle x, x \rangle = 0$ if and only if $x = 0$.

A real inner product space is a real vector space equipped with an inner product.

Remark 2.3.2. [22] Every inner product space is a normed space with respect to the norm $||x|| = |\langle x, x \rangle|^{\frac{1}{2}}, x, y \in X$.

Definition 2.3.3. [22] A *Hilbert space* is an inner product space which is complete under the norm induced by its inner product.

Definition 2.3.4. [22] A sequence $\{x_n\}$ in a Hilbert space H is said to *converge* weakly to a point x in H if $\lim_{n\to\infty} \langle x_n, y \rangle = \langle x, y \rangle$ for all $y \in H$. The notation $x_n \to x$ is sometimes used to denote this kind of convergence.

Definition 2.3.5. [22] The metric (nearest point) projection P_K from a Hilbert space H to a closed convex subset K of H is defined as follows: given $x \in H$, $P_K x$ is the only point in K with the property

$$||x - P_K x|| = \inf\{||x - y|| : y \in K\}.$$

Lemma 2.3.6. [23] Let H be a real Hilbert space, K a closed convex subset of H. Given $x \in H$ and $y \in K$. Then $y = P_K x$ if and only if there holds the inequality

$$\langle x - y, y - z \rangle \ge 0, \forall z \in K.$$

Remark 2.3.7. It is well known that P_K is a nonexpansive mapping of H onto K and satisfies

$$\langle x - y, P_K x - P_K y \rangle \ge ||P_K x - P_K y||^2$$
 (2.3.1)

for every $x, y \in H$. Moreover, $P_K x$ is characterized by the following properties: $P_K x \in K$ and

$$\langle x - P_K x, y - P_K x \rangle \le 0, \tag{2.3.2}$$

$$||x - y||^2 \ge ||x - P_K x||^2 + ||y - P_K x||^2$$
(2.3.3)

for all $x \in H, y \in K$.

3

U

0

Definition 2.3.8. [14] A mapping T of a Hilbert space H into itself is said to be firmly nonexpansive if for each $x, y \in H$,

$$||Tx - Ty||^2 \le \langle Tx - Ty, x - y \rangle.$$

Remark 2.3.9. Every firmly nonexpansive mapping is a nonexpansive mapping. Definition 2.3.10. [26] Let K be a subset of a Hilbert space H and A is a mapping of K into H.

(i) A is called monotone if

$$\langle Au - Av, u - v \rangle \ge 0.$$

(ii) A is called α -inverse-strongly monotone if there exists a positive number α such that

$$\langle Au - Av, u - v \rangle \ge \alpha ||Au - Av||^2$$

for all $u, v \in K$.

13

13

(4)

Remark 2.3.11.

$$\boxed{\text{monotone}} \Leftarrow \boxed{\alpha\text{-inverse-strongly monotone}} \Rightarrow \boxed{\text{Lipschitz continuo} \mathbf{us}}$$

Figure 1: Relation between monotone and
Lipschitz continuous mappings

Definition 2.3.12. Let H be a real Hilbert space, K be a nonempty bounded closed convex subset of H. Let $g, h : K \times K \to \mathbb{R}$, $A : K \to H$ be a monotone mapping, and let $T : K \to H$ be a relaxed η - α monotone mapping. For any r > 0, the resolvent operator $T_r : H \to 2^K$ defined by

$$T_r(z) = \left\{ x \in K : g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle x - z, y - x \rangle \ge 0, \text{ for all } y \in K \right\}.$$
 (2.3.4)

Lemma 2.3.13. [27] Let $\{c_n\}$ and $\{k_n\}$ be two real sequences of nonnegative numbers that satisfy the following conditions:

(i)
$$0 < k_n < 1$$
 for $n = 0, 1, 2, ...,$ and $\limsup k_n < 1$;

(ii)
$$c_{n+1} \leq k_n c_n \text{ for } n = 0, 1, 2, \dots$$

Then, c_n converges to 0 as $n \to \infty$.

2.4 Convexity, smoothness and duality mappings

Definition 2.4.1. [23] A Banach space E is said to be *strictly convex* if $\|\frac{x+y}{2}\| < 1$ for all $x, y \in E$ with $\|x\| = \|y\| = 1$ and $x \neq y$

Definition 2.4.2. [28] A Banach space E is said to be *uniformly convex* if for each $0 < \varepsilon \le 2$, there is $\delta > 0$ such that $\forall x, y \in E$, the condition ||x|| = ||y|| = 1, and $||x - y|| \ge \varepsilon$ imply $||\frac{x+y}{2}|| \le 1 - \delta$.

Definition 2.4.3. [28] Let E be a Banach space. Then the modulus of convexity of E is $\delta:[0,2] \to [0,1]$ defined as follows:

$$\delta(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : \|x\| \leqslant 1, \|y\| \leqslant 1, \|x-y\| \geqslant \varepsilon \right\}.$$

Theorem 2.4.4. [28] Let E be a Banach space. Then E is uniformly convex if and only if $\delta(\varepsilon) > 0$ for all $\varepsilon > 0$.

Definition 2.4.5. [29] Let E be a Banach space and $S = \{x \in E : ||x|| = 1\}$. Then E is said to be *locally uniformly convex* if for each $\varepsilon > 0$ and $x \in S$, there exists $\delta(\varepsilon, x) > 0$ for $y \in S$,

$$\|x-y\| \ge \varepsilon \quad \text{implies} \quad \|\frac{x+y}{2}\| < 1 - \delta(\varepsilon,x), \tag{2.4.1}$$
 where $\delta(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x,y \in E, \|x\| = \|y\| = 1, \|x-y\| \ge \varepsilon \right\}.$

Remark 2.4.6.

()

13

Pa

(3

$$\boxed{\text{uniformly convex}} \Rightarrow \boxed{\text{locally uniformly convex}} \Rightarrow \boxed{\text{strictly convex}}$$

Figure 2: Relation on convex spaces

Definition 2.4.7. [23] Let E be a Banach space and $S = \{x \in E : ||x|| = 1\}$. Then E is said to be *smooth* if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.4.2}$$

exists for all $x, y \in S$. The norm of E is said to be Fréchet differentiable if for each $x \in S(E)$, the limit (2.4.2) is attained uniformly for $y \in S(E)$. The norm of E is said to be uniformly Fréchet differentiable (E is said to be uniformly smooth) if the limit (2.4.2) is attained uniformly for $x, y \in S(E)$.

6)

0

(1

Theorem 2.4.8. [23] Let E be a Banach space with a Fréchet differentiable norm. Then, the duality mapping $J: E \to E^*$ is norm to norm continuous.

Definition 2.4.9. [23] A Banach space E is said to have *Kadec-Klee property* if a sequence $\{x_n\}$ of E satisfying that $x_n \rightharpoonup x \in E$ and $||x_n|| \rightarrow ||x||$, then $x_n \rightarrow x$.

Remark 2.4.10. It is known that if E is uniformly convex, then E has the Kadec-Klee property.

Remark 2.4.11. The following properties are well-known (see [29] for details):

- (i) If E is a uniformly smooth Banach space, then the normalized duality mapping J is uniformly continuous on each bounded subset of E.
- (ii) If E is a smooth, strictly convex and reflexive Banach space, then the normalized duality mapping $J: E \to 2^{E^*}$ is a single valued bijective mapping.
- (iii) If E is a smooth, strictly convex and reflexive Banach space and $J^*: E^* \to E$ is the duality mapping in E^* , then $J^{-1} = J^*, JJ^* = I_{E^*}$ and $J^*J = I_E$.
- (iv) If E is a strictly convex and reflexive Banach space, then J^{-1} is hemi-continuous, i.e., J^{-1} is norm-weak-continuous.
 - (v) E is uniformly smooth if and only if E^* is uniformly convex.
- (vi) If E is a uniformly smooth and strictly convex Banach space with the Kadec-Klee property, then both the normalized duality mappings $J:E\to E^*$ and $J^*=J^{-1}:E^*\to E$ are continuous.
- (vii) Each uniformly convex Banach space E has the Kadec-Klee property.
 - (viii) If E is a uniformly smooth, then E is reflexive and smooth.

Lemma 2.4.12. [23] Let E be a strictly convex, smooth, and reflexive Banach space, and let J be the duality mapping from E into E^* . Then J^{-1} is also single-valued, one-to-one, and surjective, and it is the duality mapping from E^* into E.

()

()

0

(3)

Lemma 2.4.13. [30] Let E be a reflexive Banach space and E^* be strictly convex. Then the following statements are hold.

- (i) The duality mapping $J: E \to E^*$ is single-valued, surjective and bounded.
- (ii) If E and E* are locally uniformly convex, then J is a homeomorphism, that is, J and J^{-1} are continuous single-valued mappings.

Definition 2.4.14. [23] Let E^* be dual space of a Banach space E. The *normalized* duality mapping $J: E \to 2^{E^*}$ is defined by

$$J(x) = \{ f^* \in E^* : \langle x, f^* \rangle = ||x||^2 = ||f^*||^2 \}, \text{ for all } x \in E.$$

Definition 2.4.15. [23] For each q > 1, the generalized duality mapping $J_q : E \to 2^{E^*}$ is defined by

$$J_q(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^q, \|x^*\| = \|x\|^{q-1}\}, \text{ for all } x \in E.$$
 (2.4.3)

It is known that, in general, $J_q(x) = ||x||^{q-1}J_2(x)$ for all $x \neq 0$ and J_q is single-valued if E^* is strictly convex. In the sequel, we always assume that E is a real Banach space such that J_q is single-valued.

Definition 2.4.16. Let E be a norm linear space with $\dim E \geq 2$. The *modulus* of smoothness of E is the function $\rho_E : [0, \infty) \to [0, \infty)$ defined by

$$\rho_E(t) = \sup \left\{ \frac{\|x+y\| + \|x-y\|}{2} - 1 : \|x\| = 1, \|y\| = t \right\}.$$

The space E is said to be *smooth* if $\rho_E(t) > 0$, $\forall t > 0$. E is called *uniformly smooth* if and only if $\lim_{t\to 0^+} \frac{\rho_E(t)}{t} = 0$. Let q > 1. E is said to be q-uniformly smooth (or to have a modulus of smoothness of power type q) if there exists a constant c > 0 such that $\rho_E(t) \le ct^q$, t > 0. Note that J_q is single-valued if E is uniformly

smooth. In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu [31] proved the following result.

Lemma 2.4.17. Let E be a real uniformly smooth Banach space. Then E is quinformly smooth if and only if there exists a constant $c_q > 0$ such that for all $x, y \in E$,

$$||x+y||^q \le ||x||^q + q\langle y, J_q(x)\rangle + c_q||y||^q.$$

Let E be a Banach space. Define a function $\phi: E \times E \to \mathbb{R}$ by

$$\phi(x,y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2$$
(2.4.4)

for all $x, y \in E$. We see that

1)

13

(3

(.)

- (i) $(\|y\| \|x\|)^2 \le \phi(y, x) \le (\|y\| + \|x\|)^2$, for all $x, y \in E$.
- (ii) $\phi(x,y) = \phi(x,z) + \phi(z,y) + 2\langle x-z, Jz-Jy \rangle$, for all $x,y,z \in E$.
- $(iii) \ \phi(x,y) = \langle x,Jx-Jy\rangle + \langle y-x,Jy\rangle \leqslant \|x\| \|Jx-Jy\| + \|y-x\| \|y\|, \ \text{for all} \ x,y \in E.$
- (iv) In a Hilbert space H (the next section), we have $\phi(x,y) = ||x-y||^2$ for all $x,y \in H$.

Definition 2.4.18. [32, 33] Let K be a nonempty closed convex subset of a Banach space E. For any $x \in E$, the mapping $\Pi_K : E \to K$ defined by $\Pi_K x = x_0$, where $x_0 \in K$ such that $\phi(x_0, x) = \min_{y \in K} \phi(y, x)$, is called the *generalized projection*.

Lemma 2.4.19. [33] Let E be a smooth, strictly convex and reflexive Banach space and K be a nonempty closed convex subset of E. Then the following conclusions hold:

(i) If $x \in E$ and $z \in K$, then

$$z = \prod_{K} x \Leftrightarrow \langle y - z, Jz - Jx \rangle \ge 0, \quad \text{for all } y \in K;$$
 (2.4.5)

(ii) \prod_K is a continuous mapping from E onto K.

Remark 2.4.20. If E is a real Hilbert space, then J = I (identity mapping) and \prod_K is the metric projection P_K from E onto K.

()

(2)

(A

0

Lemma 2.4.21. [13] Let E be a real Banach space, K be a nonempty closed convex subset of E with $0 \in K$ and $\prod_K : E \to K$ be the generalized projection. Then for each $x \in E$, we have $\|\prod_K x\| \le \|x\|$.

For any a real Banach space E with dual space E^* , consider the functional $V: E^* \times E \to \mathbb{R}$ defined by

$$V(\varphi, x) = \|\varphi\|^2 - 2\langle \varphi, x \rangle + \|x\|^2$$
, for all $\varphi \in E^*$, and $x \in E$.

It is clear that $V(\varphi, x)$ is continuous and the map $x \mapsto V(\varphi, x)$ and $\varphi \mapsto V(\varphi, x)$ are convex and $(\|\varphi\| - \|x\|)^2 \le V(\varphi, x) \le (\|\varphi\| + \|x\|)^2$. We remark that the main Lyapunov functional V was first introduced by Alber [33] and its properties were studied there. By using this functional, Alber defined a generalized projection operator on uniformly convex and uniformly smooth Banach spaces which is further extended by Li [34] on reflexive Banach spaces.

Definition 2.4.22. [34] Let E be reflexive Banach space with its dual E^* and K be a nonempty, closed and convex subset of E. The operator $\pi_K : E^* \to K$ defined by

$$\pi_K(\varphi) = \{ x \in K : V(\varphi, x) = \inf_{y \in K} V(\varphi, y) \}, \text{ for all } \varphi \in E^*,$$
 (2.4.6)

is said to be a generalized projection operator. For each $\varphi \in E^*$, the set $\pi_K(\varphi)$ is called the generalized projection of φ on K.

Lemma 2.4.23. [34] If E is a reflexive Banach space with dual space E^* and K is a nonempty closed convex subset of E, then $\pi_K(\varphi)$ is a nonempty, closed, convex and bounded subset of K, for any point $\varphi \in E^*$.

Lemma 2.4.24. [34] Let E be a reflexive Banach space with its dual E^* and K be a nonempty closed convex subset of E, then the following properties hold:

3

3

1

()

- (i) The operator $\pi_K : E^* \to 2^K$ is single-valued if and only if E is strictly convex.
 - (ii) If E is smooth, then for any given $\varphi \in E^*$, $x \in \pi_K \varphi$ if and only if

$$\langle \varphi - J(x), x - y \rangle \ge 0, \quad \forall y \in K.$$

(iii) If E is strictly convex, then the generalized projection operator $\pi_K: E^* \to K$ is continuous.

Lemma 2.4.25. [31, 35] Let E be a uniformly convex Banach space, r > 0 be a positive number and $B_r(0) := \{x \in E : ||x|| \le r\}$ be a closed ball of E. Then for any given finite subset $\{x_1, x_2, \ldots, x_N\} \subset B_r(0)$ and for any given positive numbers $\lambda_1, \lambda_2, \ldots, \lambda_N$ with $\sum_{n=1}^N \lambda_n = 1$, there exists a continuous, strictly increasing and convex function $g : [0, 2r) \to [0, \infty)$ with g(0) = 0 such that for any $i, j \in \{1, 2, \ldots, N\}$ with i < j, the following holds:

$$\left\| \sum_{n=1}^{N} \lambda_n x_n \right\|^2 \le \sum_{n=1}^{N} \lambda_n \|x_n\|^2 - \lambda_i \lambda_j g(\|x_i - x_j\|). \tag{2.4.7}$$

Lemma 2.4.26. [36] Let E be a real reflexive, smooth and strictly convex Banach space. Then the following inequality holds:

$$||f+g||^2 \le ||f||^2 + 2\langle g, J^{-1}(f+g)\rangle, \quad \text{for all} \quad f, g \in E^*.$$
 (2.4.8)

Definition 2.4.27. Let E be a Banach space. Let $H, \eta : E \times E \to E$ be two single-valued mappings and $A, B : E \to E$ be two single-valued mappings.

(i) A is said to be accretive if

$$\langle Ax - Ay, J_q(x - y) \rangle \ge 0$$
, for all $x, y \in E$;

(ii) A is said to be strictly accretive if A is accretive and

$$\langle Ax - Ay, J_q(x - y) \rangle = 0$$
, for all $x, y \in E$;

if and only if x = y;

19

3

13

?

(iii) $H(A, \cdot)$ is said to be α -strongly accretive with respect to A if there exists a constant $\alpha > 0$ such that

$$\langle H(Ax, u) - H(Ay, u), J_q(x - y) \rangle \ge \alpha ||x - y||^q$$
, for all $x, y, u \in E$;

(iv) $H(\cdot, B)$ is said to be β -relaxed accretive with respect to B if there exists a constant $\beta > 0$ such that

$$\langle H(u, Bx) - H(u, By), J_q(x-y) \rangle \ge -\beta ||x-y||^q$$
, for all $x, y, u \in E$;

(v) $H(\cdot, \cdot)$ is said to be γ -Lipschitz continuous with respect to A if there exists a constant $\gamma > 0$ such that

$$||H(Ax,u)-H(Ay,u)|| \le \gamma ||x-y||, \text{ for all } x,y,u \in E;$$

(vi) $\eta(\cdot,\cdot)$ is said to be strongly accretive with respect to H(A,B) if there exists a constant $\rho>0$ such that

$$\langle \eta(x,u) - \eta(y,u), J_q(H(Ax,Bx) - H(Ay,By)) \rangle \ge \rho ||x-y||^q$$
, for all $x, y, u \in E$.

2.5 Multi-valued mappings

In this section, we let X and Y be topological vector spaces.

Definition 2.5.1. [37] Let $T: X \to 2^Y$. The graph of T, denoted by $\mathcal{G}(T)$, is

$$\mathcal{G}(T) = \{(x, y) \in X \times Y \mid x \in X, y \in T(x)\}.$$

Definition 2.5.2. [37] A multi-valued mapping $T: X \to 2^Y$ is called:

113

1

19

A

- (i) closed if the graph of T is a closed subset of $X \times Y$.
- (ii) upper semicontinuous at $x \in X$ if for every open set V containing T(x), there is an open set U containing x such that $T(u) \subseteq V$ for all $u \in U$. T is upper semicontinuous if T is upper semicontinuous at x for all $x \in X$.
- (iii) lower semicontinuous at $x \in X$ if for every open set V with $T(x) \cap V \neq \emptyset$, there is an open set U containing x such that $T(u) \cap V \neq \emptyset$ for all $u \in U$. T is lower semicontinuous if T is lower semicontinuous at x for all $x \in X$.
- (iv) continuous if it is both upper semicontinuous and lower semicontinuous.

Definition 2.5.3. [16] A multi-valued mapping $T: X \to 2^Y$ is called *convex* [concave] if for all $x_1, x_2 \in X$ and $\lambda \in [0, 1]$, $T(\lambda x_1 + (1 - \lambda)x_2) \subseteq \lambda T(x_1) + (1 - \lambda)T(x_2)$ [resp. $\lambda T(x_1) + (1 - \lambda)T(x_2) \subseteq T(\lambda x_1 + (1 - \lambda)x_2)$].

Lemma 2.5.4. [38] Let X and Y be two Hausdorff topological vector spaces and $T: X \to 2^Y$ be a multi-valued mapping. Then the following properties hold:

- (i) If T is closed and $\overline{T(X)}$ is compact, then T is upper semicontinuous, where $T(X) = \bigcup_{x \in X} T(x)$ and \overline{E} denotes the closure of the set E.
- (ii) If T is upper semicontinuous and for any $x \in X, T(x)$ is closed, then T is closed.
- (iii) T is lower semicontinuous at $x \in X$ if and only if for any $y \in T(x)$ and any net $\{x_{\alpha}\}, x_{\alpha} \to x$, there exists a subnet $\{y_{\alpha}\}$ such that $y_{\alpha} \in T(x_{\alpha})$ and $y_{\alpha} \to y$.

Lemma 2.5.5. [8] Let M and N be two metric space and $T: M \to 2^N$ be a multi-valued mapping. Given any $x \in M$, if T(x) is compact and T is upper semicontinuous at x, then $\forall x_n \to x$, $\forall u_n \in T(x_n)$, $\{u_n\}$ must have a cluster point $u^* \in T(x)$.

Definition 2.5.6. (KKM mapping, [39]). Let K be a nonempty subset of a topological vector space X. A multi-valued mapping $G: K \to 2^X$ is said to be a KKM

mapping if for any finite subset $\{y_1, y_2, ..., y_n\}$ of K, we have

13

133

12

1

$$co\{y_1, y_2, ..., y_n\} \subset \bigcup_{i=1}^n G(y_i)$$

where $co\{y_1, y_2, ..., y_n\}$ denotes the convex hull of $\{y_1, y_2, ..., y_n\}$.

Lemma 2.5.7. (Fan-KKM Theorem, [39]). Let K be a nonempty convex subset of a Hausdorff topological vector space X and let $G: K \to 2^X$ be a KKM mapping with closed values. If there exists a point $y_0 \in K$ such that $G(y_0)$ is a compact subset of K, then $\bigcap_{y \in K} G(y) \neq \emptyset$.

Lemma 2.5.8. [40] (Eilenberg-Montgomery) Let K be a compact contractible subset of a complete metric space M and let $T: K \to 2^K$ be a upper semicontinuous such that for every $x \in K$ the set T(x) is nonempty, compact and contractible subset of M, then T has a fixed point.

Definition 2.5.9. Let E be a Banach space. Let $\eta: E \times E \to E$ be a single-valued mapping. Let $M: E \to 2^E$ be a set-valued mapping.

(i) η is said to be τ -Lipschitz continuous if there exists a constant $\tau>0$ such that

$$\|\eta(x,y)\| \le \tau \|x-y\|$$
, for all $x,y \in E$;

(ii) M is said to be accretive if

$$\langle u-v, J_q(x-y)\rangle \geq 0$$
, for all $x, y \in E$, $u \in M(x)$, $v \in M(y)$;

(iii) M is said to be η -accretive if

$$\langle u-v, J_q(\eta(x,y))\rangle \ge 0$$
, for all $x, y \in E, u \in M(x), v \in M(y)$;

- (iv) M is said to be strictly η -accretive if M is η -accretive and equality holds if and only if x = y;
- (v) M is said to be γ -strongly η -accretive if there exists a positive constant $\gamma > 0$ such that

$$\langle u-v, J_q(\eta(x,y))\rangle \ge \gamma ||x-y||^q$$
, for all $x, y \in E$, $u \in M(x)$, $v \in M(y)$;

(vi) M is said to be α -relaxed η -accretive if there exists a positive constant $\alpha > 0$ such that

$$\langle u-v, J_q(\eta(x,y)) \rangle \ge -\alpha ||x-y||^q$$
, for all $x, y \in E$, $u \in M(x)$, $v \in M(y)$;

Remark 2.5.10.

()

3

()

1)

$$\begin{array}{c} \text{accretive} \Rightarrow \boxed{\eta\text{-accretive}} \Leftarrow \boxed{\text{strictly }\eta\text{-accretive}} \\ \\ \uparrow \\ \hline \gamma\text{-strongly }\eta\text{-accretive} \Rightarrow \boxed{\alpha\text{-relaxed }\eta\text{-accretive}} \\ \end{array}$$

Figure 3: Relation of accretive mappings

Definition 2.5.11. [41] Let E be a Banach space. Let $A, B : E \to E, H : E \times E \to E$ be three single-valued mappings. Let $M : E \to 2^E$ be a set-valued mapping. M is said to be $H(\cdot, \cdot)$ -accretive with respect to A and B (or simply $H(\cdot, \cdot)$ -accretive in the sequel), if M is accretive and $(H(A, B) + \lambda M)(E) = E$ for every $\lambda > 0$.

Lemma 2.5.12. [41] Let H(A, B) be α -strongly accretive with respect to A, β -relaxed accretive with respect to B, and $\alpha > \beta$. Let M be an $H(\cdot, \cdot)$ -accretive operator with respect to A and B. Then, the operator $H((A, B) + \lambda M)^{-1}$ is single-valued.

Definition 2.5.13. [41] Let E be a Banach space. Let H, A, B, M be defined as in Definition 2.5.11. Let H(A, B) be α -strongly accretive with respect to A, β -relaxed accretive with respect to B, and $\alpha > \beta$. Let M be an $H(\cdot, \cdot)$ -accretive operator with respect to A and B. The resolvent operator $R_{M,\lambda}^{H(\cdot, \cdot)}: E \to E$ is defined by

$$R_{M,\lambda}^{H(\cdot,\cdot)}(z) = (H(A,B) + \lambda M)^{-1}(z), \text{ for all } z \in E,$$
 (2.5.1)

where $\lambda > 0$ is a constant.

Lemma 2.5.14. [41] Let E be a Banach space. Let H, A, B, M be defined as in Definition 2.5.11. Let H(A, B) be α -strongly accretive with respect to A, β -relaxed accretive with respect to B, and $\alpha > \beta$. Suppose that $M: E \to 2^E$ is an $H(\cdot, \cdot)$ -accretive operator. Then resolvent operator $R_{M,\lambda}^{H(\cdot, \cdot)}$ defined by (2.5.1) is $\frac{1}{\alpha - \beta}$ Lipschitz continuous. That is,

$$\|R_{M,\lambda}^{H(\cdot,\cdot)}(x) - R_{M,\lambda}^{H(\cdot,\cdot)}(y)\| \le \frac{1}{\alpha - \beta} \|x - y\|, \text{ for all } x, y \in E.$$

2.6 Equilibrium problems and variational inequality problems

Definition 2.6.1. [42] Let X be a Hausdorff topological vector space, K a non-empty compact convex subset of X. Let g be a bifunction of $K \times K$ into \mathbb{R} . The equilibrium problem is to find $x \in K$ such that

$$g(x, y) \ge 0 \text{ for all } y \in K.$$
 (2.6.1)

The set of solutions of (2.6.1) is denoted by EP(g).

()

17

(3)

1

Theorem 2.6.2. [42] Let K be a compact convex subset of a topological vector space X and let g be a real valued function on $K \times K$ satisfying the following conditions:

- (i) for each $y \in K$, the function $x \mapsto g(x, y)$ is upper semicontinuous;
- (ii) for each $x \in K$, the function $y \mapsto g(x, y)$ is convex;
- (iii) $g(x,x) \ge 0$, for all $x \in K$.

Then, there exists an element $x_0 \in K$ such that

$$g(x_0, y) \ge 0$$
, for all $y \in K$.

Definition 2.6.3. [14] Let X be a Hausdorff topological vector space with dual space X^* , K a nonempty compact convex subset of X. Let g, h be bifunctions of $K \times K$ into \mathbb{R} . The *equilibrium problem* is to find $x \in K$ such that

$$g(x,y) + h(x,y) \ge 0 \text{ for all } y \in K.$$
 (2.6.2)

The set of solutions of (2.6.2) is denoted by EP(g, h).

1.0

1

(1)

Y

Theorem 2.6.4. [14] Let the following assumptions (i)-(iv) hold:

(i) X is a real topological vector space:

K is a nonempty closed convex subset of X;

- 4 W.S. 2557

(ii) $g: K \times K \to \mathbb{R}$ has the following properties:

1 6673685

g(x,x) = 0 for all $x \in K$;

 $g(x,y) + g(y,x) \le 0$ for all $x,y \in K$ (monotonicity);

for all $x, y \in K$ the function $t \in [0,1] \mapsto g(ty + (1-t)x, y)$ is

upper semicontinuous at t = 0 (hemicontinuity);

g is convex and lower semicontinuous in the second argument;

(iii) $h: K \times K \to \mathbb{R}$ has the following properties:

h(x,x) = 0 for all $x \in K$;

h is upper semicontinuous in the first argument;

h is convex in the second argument;

(iv) There exists $C \subset K$ nonempty compact convex such that for every $x \in C \setminus \operatorname{core}_K C$ there exists $a \in \operatorname{core}_K C$ such that

$$g(x, a) + h(x, a) \le 0$$
 (coercivity)

Then there exists $\overline{x} \in C$ such that

$$0 \le g(\overline{x}, y) + h(\overline{x}, y), \text{ for all } y \in K.$$

Definition 2.6.5. [43] Let K be a subset of a real Banach space E with dual space E^* . Let $A: K \to E^*$ be a mapping. The classical variational inequality, denoted by VI(A, K), is to find $x^* \in K$ such that

$$\langle Ax^*, v - x^* \rangle \ge 0 \text{ for all } v \in K.$$
 (2.6.3)

Definition 2.6.6. [35] Let E be a real Banach space, E^* be the dual space of E, K be a nonempty closed convex subset of E, and $\langle \cdot, \cdot \rangle$ be the pairing between E and E^* . Let $F: K \times K \to \mathbb{R}$ be a bifunction, $\psi: K \to \mathbb{R}$ be a real-valued function, and $A: K \to E^*$ be a nonlinear mapping. The generalized mixed equilibrium problem

is to find $u \in K$ such that

$$F(u,y) + \langle Au, y - u \rangle + \psi(y) - \psi(u) \ge 0, \ \forall y \in K.$$
 (2.6.4)

The set of solutions of (2.6.4) is denoted by $GMEP(F, A, \psi)$.

Special examples

y

03

(1)

(i) If A = 0, then the problem (2.6.4) is equivalent to find $u \in K$ such that

$$F(u,y) + \psi(y) - \psi(u) \ge 0, \ \forall y \in K,$$
 (2.6.5)

which is called the *mixed equilibrium problem* [44]. The set of solutions to (2.6.5) is denoted by $MEP(F, \psi)$.

(ii) If F = 0, then the problem (2.6.4) is equivalent to find $u \in K$ such that

$$\langle Au, y - u \rangle + \psi(y) - \psi(u) \ge 0, \ \forall y \in K,$$
 (2.6.6)

which is called the mixed variational inequality of Browder type [45]. The set of solutions to (2.6.6) is denoted by $VI(K, A, \psi)$.

(iii) If $\psi = 0$, then the problem (2.6.4) is equivalent to find $u \in K$ such that

$$F(u,y) + \langle Au, y - u \rangle \ge 0, \ \forall y \in K,$$
 (2.6.7)

which is called the *generalized equilibrium problem* [46]. The set of solutions to (2.6.7) is denoted by GEP(F, A).

- (iv) If A = 0 and $\psi = 0$, then the problem (2.6.4) is equivalent to the equilibrium problem (2.6.1).
- (v) If F = 0 and $\psi = 0$, then the problem (2.6.4) is equivalent to the classical variational inequality (2.6.3).

Lemma 2.6.7. [35] Let K be a nonempty closed convex subset of a uniformly smooth, strictly convex and reflexive Banach space E and E^* be a dual space of E. Let F be a bifunction of $K \times K$ into \mathbb{R} satisfying conditions (A1)-(A4), $A: K \to E^*$ be a continuous monotone mapping and $\psi: K \to \mathbb{R}$ be a lower semicontinuous and convex function. For r > 0 and $x \in E$, define a mapping $T_r: E \to K$ as follows:

$$T_r(x) = \left\{ z \in K : F(z,y) + \langle Az, y-z \rangle + \psi(y) - \psi(z) + \frac{1}{r} \langle y-z, Jz-Jx \rangle \ge 0, \forall y \in K \right\}.$$

Then, the following hold:

6

3

(1)

3

- (i) $T_r(x) \neq \emptyset$, $\forall x \in E$;
- (ii) T_r is single- valued;
- (iii) T_r is firmly nonexpansive-type mapping, i.e., for any $x, y \in E$,

$$\langle T_r x - T_r y, J T_r x - J T_r y \rangle \le \langle T_r x - T_r y, J x - J y \rangle$$

- (iv) $F(T_r) = GMEP(F, A, \psi);$
- (v) $GMEP(F, A, \psi)$ is closed and convex.