CHAPTER III

10

13

0

13

GENERALIZED VARIATIONAL INEQUALITIES AND MIXED EQUILIBRIUM PROBLEMS

3.1 A generalized system of nonlinear variational inequalities in Banach space

In this section, we assume that E is a real Banach space with dual space E^* , K is a nonempty closed convex subset of E. Let $T_1, \ldots, T_N : \underbrace{K \times \ldots \times K}_{N-\text{times}} \to E^*$ be nonlinear mappings and $f: K \to E$ be a mapping. The generalized system of nonlinear variational inequality problem (GSNVIP) is to find $x_1^*, \ldots, x_N^* \in K$ such that for all $x \in K$,

$$\begin{cases} \langle f(x) - f(x_1^*), T_1(x_2^*, x_3^*, \dots, x_N^*, x_1^*) \rangle \ge 0 \\ \langle f(x) - f(x_2^*), T_2(x_3^*, x_4^*, \dots, x_N^*, x_1^*, x_2^*) \rangle \ge 0 \\ \vdots \\ \langle f(x) - f(x_N^*), T_N(x_1^*, x_2^*, \dots, x_{N-1}^*, x_N^*) \rangle \ge 0. \end{cases}$$

$$(3.1.1)$$

If N=3, f=I and $T_1,T_2,T_3:K\times K\times K\to E^*$ are nonlinear mappings, then the generalized system of nonlinear variational inequality problem (GSNVIP) reduces to the following problem: (see [13]) is to find $x_1^*, x_2^*, x_3^* \in K$ such that for all $x\in K$,

$$\begin{cases} \langle x - x_1^*, T_1(x_2^*, x_3^*, x_1^*) \rangle \ge 0 \\ \langle x - x_2^*, T_2(x_3^*, x_1^*, x_2^*) \rangle \ge 0 \\ \langle x - x_3^*, T_3(x_1^*, x_2^*, x_3^*) \rangle \ge 0. \end{cases}$$
(3.1.2)

If $N=2,\,T_1,T_2:K\times K\to E^*$ are nonlinear mappings and $f:K\to E$ is a mapping, then the generalized system of nonlinear variational inequality problem

(GSNVIP) reduces to the following problem: to find $x_1^*, x_2^* \in K$ such that for all $x \in K$,

$$\begin{cases} \langle f(x) - f(x_1^*), T_1(x_2^*, x_1^*) \rangle \ge 0 \\ \langle f(x) - f(x_2^*), T_2(x_1^*, x_2^*) \rangle \ge 0. \end{cases}$$
(3.1.3)

If $T,S:K\times K\to E^*$ are nonlinear mappings and $g,f:K\to E$ are mappings. Define $T_1, T_2 : K \times K \to E^*$ by $T_1(x_1^*, x_2^*) = \rho_1 T(x_1^*, x_2^*) + g(x_2^*)$ $g(x_1^*)$ and $T_2(x_1^*, x_2^*) = \rho_2 S(x_1^*, x_2^*) + g(x_2^*) - g(x_1^*)$. Then the generalized system of nonlinear variational inequality problem (GSNVIP) reduces to the following problem: to find $x_1^*, x_2^* \in K$ such that for all $x \in K$,

em: to find
$$x_1^*, x_2^* \in K$$
 such that for all $x \in K$,
$$\begin{cases} \langle f(x) - f(x_1^*), \rho_1 T(x_2^*, x_1^*) + g(x_2^*) - g(x_1^*) \rangle \geq 0 \\ \langle f(x) - f(x_2^*), \rho_2 S(x_1^*, x_2^*) + g(x_2^*) - g(x_1^*) \rangle \geq 0, \end{cases}$$

$$e \rho_1 \text{ and } \rho_2 \text{ are two positive constants.}$$
(3.1.4)

where ρ_1 and ρ_2 are two positive constant

y

0

N.

")

Lemma 3.1.1. Let E be a smooth, strictly convex and reflexive Banach space, K be a nonempty closed convex subset of E. Let $T_1, \ldots, T_N : \underbrace{K \times \ldots \times K}_{N-times} \to E^*$ be mappings, $f: K \to K$ be a bijective mapping and ρ_1, \ldots, ρ_N be any positive real numbers. Then $(x_1^*, \dots, x_N^*) \in \underbrace{K \times \dots \times K}_{N-\text{times}}$ is a solution to problem (3.1.1) if and only if $(x_1^*, \dots, x_N^*) \in \underbrace{K \times \dots \times K}_{N-\text{times}}$ is a solution to the following system of operator equations:

$$\begin{cases} x_{1}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{1}^{*}) - \rho_{1} T_{1}(x_{2}^{*}, x_{3}^{*}, \dots, x_{N}^{*}, x_{1}^{*}) \Big), \\ x_{2}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{2}^{*}) - \rho_{2} T_{2}(x_{3}^{*}, x_{4}^{*}, \dots, x_{N}^{*}, x_{1}^{*}, x_{2}^{*}) \Big), \\ \vdots \\ x_{N-1}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{N-1}^{*}) - \rho_{N-1} T_{N-1}(x_{N}^{*}, x_{1}^{*}, x_{2}^{*}, \dots, x_{N-2}^{*}, x_{N-1}^{*}) \Big), \\ x_{N}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{N}^{*}) - \rho_{N} T_{N}(x_{1}^{*}, x_{2}^{*}, \dots, x_{N}^{*}) \Big). \end{cases}$$

$$(3.1.5)$$

Proof. By Lemma 2.4.19, we have $(x_1^*, \ldots, x_N^*) \in \underbrace{K \times \ldots \times K}_{N-\text{times}}$ is a solution of problem (3.1.1),

$$\begin{cases} \langle f(x) - f(x_1^*), \rho_1 T_1(x_2^*, x_3^*, \dots, x_N^*, x_1^*) \rangle \ge 0 \\ \langle f(x) - f(x_2^*), \rho_2 T_2(x_3^*, x_4^*, \dots, x_N^*, x_1^*, x_2^*) \rangle \ge 0 \\ \vdots \\ \langle f(x) - f(x_{N-1}^*), \rho_{N-1} T_{N-1}(x_N^*, x_1^*, x_2^*, \dots, x_{N-2}^*, x_{N-1}^*) \rangle \ge 0 \\ \langle f(x) - f(x_N^*), \rho_N T_N(x_1^*, x_2^*, \dots, x_N^*) \rangle \ge 0, \end{cases}$$

0

13

K

$$\begin{cases} \langle f(x) - f(x_{1}^{*}), Jf(x_{1}^{*}) - Jf(x_{1}^{*}) + \rho_{1}T_{1}(x_{2}^{*}, x_{3}^{*}, \dots, x_{N}^{*}, x_{1}^{*}) \rangle \geq 0 \\ \langle f(x) - f(x_{2}^{*}), Jf(x_{2}^{*}) - Jf(x_{2}^{*}) + \rho_{2}T_{2}(x_{3}^{*}, x_{4}^{*}, \dots, x_{N}^{*}, x_{1}^{*}, x_{2}^{*}) \rangle \geq 0 \\ \vdots \\ \langle f(x) - f(x_{N-1}^{*}), Jf(x_{N-1}^{*}) - Jf(x_{N-1}^{*}) \\ + \rho_{N-1}T_{N-1}(x_{N}^{*}, x_{1}^{*}, x_{2}^{*}, \dots, x_{N-2}^{*}, x_{N-1}^{*}) \rangle \geq 0 \\ \langle f(x) - f(x_{N}^{*}), Jf(x_{N}^{*}) - Jf(x_{N}^{*}) + \rho_{N}T_{N}(x_{1}^{*}, x_{2}^{*}, \dots, x_{N}^{*}) \rangle \geq 0, \end{cases}$$

$$\begin{cases} \left\langle f(x) - f(x_1^*), Jf(x_1^*) - J\left(J^{-1}\left(Jf(x_1^*) - \rho_1 T_1(x_2^*, x_3^*, \dots, x_N^*, x_1^*)\right)\right)\right\rangle \geq 0 \\ \left\langle f(x) - f(x_2^*), Jf(x_2^*) - J\left(J^{-1}\left(Jf(x_2^*)\right) - \rho_2 T_2(x_3^*, x_4^*, \dots, x_N^*, x_1^*, x_2^*)\right)\right)\right\rangle \geq 0 \\ \Leftrightarrow \begin{cases} \left\langle f(x) - f(x_{N-1}^*), Jf(x_{N-1}^*) - J\left(J^{-1}\left(Jf(x_{N-1}^*)\right) - \rho_{N-1} T_{N-1}(x_N^*, x_1^*, x_2^*, \dots, x_{N-2}^*, x_{N-1}^*)\right)\right)\right\rangle \geq 0 \\ \left\langle f(x) - f(x_N^*), Jf(x_N^*) - J\left(J^{-1}\left(Jf(x_N^*) - \rho_N T_N(x_1^*, x_2^*, \dots, x_N^*)\right)\right)\right\rangle \geq 0, \end{cases} \end{cases}$$

for all $x \in K$,

$$\begin{cases} f(x_1^*) = \prod_K J^{-1} \Big(Jf(x_1^*) - \rho_1 T_1(x_2^*, x_3^*, \dots, x_N^*, x_1^*) \Big), \\ f(x_2^*) = \prod_K J^{-1} \Big(Jf(x_2^*) - \rho_2 T_2(x_3^*, x_4^*, \dots, x_N^*, x_1^*, x_2^*) \Big), \\ \vdots \\ f(x_{N-1}^*) = \prod_K J^{-1} \Big(Jf(x_{N-1}^*) - \rho_{N-1} T_{N-1}(x_N^*, x_1^*, x_2^*, \dots, x_{N-2}^*, x_{N-1}^*) \Big), \\ f(x_N^*) = \prod_K J^{-1} \Big(Jf(x_N^*) - \rho_N T_N(x_1^*, x_2^*, \dots, x_N^*) \Big), \end{cases}$$
 for any $\rho_1 > 0, \dots, \rho_N > 0,$

(1

0

(-)

for any
$$\rho_{1} > 0, \dots, \rho_{N} > 0$$
,
$$\begin{cases}
x_{1}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{1}^{*}) - \rho_{1} T_{1}(x_{2}^{*}, x_{3}^{*}, \dots, x_{N}^{*}, x_{1}^{*}) \Big), \\
x_{2}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{2}^{*}) - \rho_{2} T_{2}(x_{3}^{*}, x_{4}^{*}, \dots, x_{N}^{*}, x_{1}^{*}, x_{2}^{*}) \Big), \\
\vdots \\
x_{N-1}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{N-1}^{*}) - \rho_{N-1} T_{N-1}(x_{N}^{*}, x_{1}^{*}, x_{2}^{*}, \dots, x_{N-2}^{*}, x_{N-1}^{*}) \Big), \\
x_{N}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{N}^{*}) - \rho_{N} T_{N}(x_{1}^{*}, x_{2}^{*}, \dots, x_{N}^{*}) \Big).
\end{cases}$$

Algorithm 3.1.2. For any given initial points $x_0^{(1)}, x_0^{(2)}, \dots, x_0^{(N)} \in K$, compute the sequences $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \dots, \{x_n^{(N)}\}$ by the iterative processes

$$\begin{cases} x_{n+1}^{(N)} = f^{-1} \left[J^{-1} \left((1 - \alpha_n^{(N)}) J f(x_n^{(N)}) + \alpha_n^{(N)} J \left(\prod_K J^{-1} \left(J f(x_n^{(N)}) \right) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)}) \right) \right) \right], \\ x_{n+1}^{(N-1)} = f^{-1} \left[J^{-1} \left((1 - \alpha_n^{(N-1)}) J f(x_n^{(N-1)}) + \alpha_n^{(N-1)} J \left(\prod_K J^{-1} \left(J f(x_n^{(N-1)}) - \rho_{N-1} T_{N-1}(x_{n+1}^{(N)}, x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N-2)}, x_n^{(N-1)}) \right) \right) \right], \\ \vdots \\ x_{n+1}^{(2)} = f^{-1} \left[J^{-1} \left((1 - \alpha_n^{(2)}) J f(x_n^{(2)}) + \alpha_n^{(2)} J \left(\prod_K J^{-1} \left(J f(x_n^{(2)}) - \rho_2 T_2(x_{n+1}^{(3)}, x_{n+1}^{(4)}, \dots, x_{n+1}^{(N)}, x_n^{(1)}, x_n^{(2)}) \right) \right) \right], \\ x_{n+1}^{(1)} = f^{-1} \left[J^{-1} \left((1 - \alpha_n^{(1)}) J f(x_n^{(1)}) + \alpha_n^{(1)} J \left(\prod_K J^{-1} \left(J f(x_n^{(1)}) - \rho_1 T_1(x_{n+1}^{(2)}, x_{n+1}^{(3)}, \dots, x_{n+1}^{(N)}, x_n^{(1)}) \right) \right) \right], \end{cases}$$

$$(3.1.6)$$

where \prod_K is the generalized projection and $\{\alpha_n^{(1)}\}, \{\alpha_n^{(2)}\}, \dots, \{\alpha_n^{(N)}\}$ are sequences in [0, 1].

Theorem 3.1.3. Let E be a real uniformly smooth and strictly convex Banach space with Kadec-Klee property, K be a nonempty closed and convex subset of E with $\theta \in K$. Let $f: K \to K$ be an isometry mapping. Let $T_1, \ldots, T_N : \underbrace{K \times \ldots \times K}_{N-\text{times}} \to E^*$ be continuous mappings and $\{\alpha_n^{(1)}\}, \{\alpha_n^{(2)}\}, \ldots, \{\alpha_n^{(N)}\}$ be the sequences in (a, b) with 0 < a < b < 1 satisfying the following conditions:

(i) there exist a compact subset $C \subset E^*$ and constants $\rho_1 > 0$, $\rho_2 > 0$, $\dots, \rho_N > 0$ such that $(J(K) - \rho_N T_N(\underbrace{K \times \dots \times K}_{N-times})) \cup (J(K) - \rho_{N-1} T_{N-1}(\underbrace{K \times \dots \times K}_{N-times})) \cup \dots \cup (J(K) - \rho_{N-1} T_{N-1}(\underbrace{K \times \dots \times K}_{N-times}))) \cup \dots \cup (J(K) - \rho_{N-1} T_{N-1}(\underbrace{K \times \dots \times K}_{N-times})))$

3

()

P

13

$$\rho_1 T_1(\underbrace{K \times \ldots \times K}_{N-times})) \subset C, \text{ where } J(x_1, x_2, \ldots, x_N) = Jx_N, \forall (x_1, x_2, \ldots, x_N) \in \underbrace{K \times \ldots \times K}_{N-times} \text{ and}$$

$$\begin{cases}
 \langle T_{1}(x_{1}, x_{2}, \dots, x_{N}), J^{-1}(Jx_{N} - \rho_{1}T_{1}(x_{1}, x_{2}, \dots, x_{N})) \rangle \geq 0, \\
 \langle T_{2}(x_{1}, x_{2}, \dots, x_{N}), J^{-1}(Jx_{N} - \rho_{2}T_{2}(x_{1}, x_{2}, \dots, x_{N})) \rangle \geq 0, \\
 \vdots \\
 \langle T_{N}(x_{1}, x_{2}, \dots, x_{N}), J^{-1}(Jx_{N} - \rho_{N}T_{N}(x_{1}, x_{2}, \dots, x_{N})) \rangle \geq 0,
\end{cases}$$

$$\begin{cases}
 \langle T_{N}(x_{1}, x_{2}, \dots, x_{N}), J^{-1}(Jx_{N} - \rho_{N}T_{N}(x_{1}, x_{2}, \dots, x_{N})) \rangle \geq 0,
\end{cases}$$

$$\begin{cases}
 \langle T_{N}(x_{1}, x_{2}, \dots, x_{N}), J^{-1}(Jx_{N} - \rho_{N}T_{N}(x_{1}, x_{2}, \dots, x_{N})) \rangle \geq 0,
\end{cases}$$

for all $x_1, x_2, \ldots, x_N \in K$.

13

0

1

(ii)
$$\lim_{n\to\infty} \alpha_n^{(1)} = d_1 \in (a,b), \lim_{n\to\infty} \alpha_n^{(2)} = d_2 \in (a,b), \ldots, \lim_{n\to\infty} \alpha_n^{(N)} = d_N \in (a,b).$$
 Let $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \ldots, \{x_n^{(N)}\}$ be the sequences defined by (3.1.6).

Then the problem (3.1.1) has a solution $(x_1^*, x_2^*, \dots, x_N^*) \in \underbrace{K \times \dots \times K}_{N-times}$ and the sequences $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \dots, \{x_n^{(N)}\}$ converge strongly to $x_1^*, x_2^*, \dots, x_N^*$, respectively.

Proof. Step 1. We first show that the sequences $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \dots, \{x_n^{(N)}\}$ are bounded in K. It follows from Lemma 2.4.26, J is bijective and a condition (3.4.29) that

$$||Jf(x_{n}^{(N)}) - \rho_{N}T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)})||^{2}$$

$$\leq ||Jf(x_{n}^{(N)})||^{2}$$

$$-2\rho_{N}\langle T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)}), J^{-1}(Jf(x_{n}^{(N)}) - \rho_{N}T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)}))\rangle$$

$$\leq ||Jf(x_{n}^{(N)})||^{2} = ||f(x_{n}^{(N)})||^{2}.$$
(3.1.8)

Similarly, we note that

$$||Jf(x_n^{(N-1)}) - \rho_{N-1}T_{N-1}(x_{n+1}^{(N)}, x_n^{(1)}, \dots, x_n^{(N-2)}, x_n^{(N-1)})||^2 \leq ||f(x_n^{(N-1)})||^2,$$

$$||Jf(x_n^{(N-2)}) - \rho_{N-2}T_{N-2}(x_{n+1}^{(N-1)}, x_{n+1}^{(N)}, x_n^{(1)}, \dots, x_n^{(N-3)}, x_n^{(N-2)})||^2 \leq ||f(x_n^{(N-2)})||^2,$$

$$||Jf(x_n^{(2)}) - \rho_2 T_2(x_{n+1}^{(3)}, x_{n+1}^{(4)}, \dots, x_{n+1}^{(N)}, x_n^{(1)}, x_n^{(2)})||^2 \leq ||f(x_n^{(2)})||^2,$$

$$||Jf(x_n^{(1)}) - \rho_1 T_1(x_{n+1}^{(2)}, x_{n+1}^{(3)}, \dots, x_{n+1}^{(N)}, x_n^{(1)})||^2 \leq ||f(x_n^{(1)})||^2.$$

$$(3.1.9)$$

By Lemma 2.4.21, we obtain that

17

10

W

$$||f(x_{n+1}^{(N)})|| = ||ff^{-1}[J^{-1}(1-\alpha_n^{(N)})Jf(x_n^{(N)}) + \alpha_n^{(N)}J(\prod_K J^{-1}(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)})))]||$$

$$= ||J^{-1}(1-\alpha_n^{(N)})Jf(x_n^{(N)}) + \alpha_n^{(N)}J(\prod_K J^{-1}(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)}))))||$$

$$= ||(1-\alpha_n^{(N)})Jf(x_n^{(N)}) + \alpha_n^{(N)}J(\prod_K J^{-1}(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)})))||$$

$$\leq (1-\alpha_n^{(N)})||Jf(x_n^{(N)})||$$

$$+\alpha_n^{(N)}||J(\prod_K J^{-1}(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)})))||$$

$$\leq (1-\alpha_n^{(N)})||Jf(x_n^{(N)})||$$

$$+\alpha_n^{(N)}||JJ^{-1}(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)}))||$$

$$= (1-\alpha_n^{(N)})||f(x_n^{(N)})|| + \alpha_n^{(N)}||Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)})||$$

$$\leq (1-\alpha_n^{(N)})||f(x_n^{(N)})|| + \alpha_n^{(N)}||Jf(x_n^{(N)})||$$

$$= ||f(x_n^{(N)})||.$$
(3.1.10)

Since f is isometry, we have $\|x_{n+1}^{(N)}\| \leq \|x_n^{(N)}\|$. By the same argument method as given above, we have $\|x_{n+1}^{(N-1)}\| \leq \|x_n^{(N-1)}\|, \ldots, \|x_{n+1}^{(1)}\| \leq \|x_n^{(1)}\|$. Therefore, we note that $\lim_{n\to\infty} \|x_n^{(1)}\|, \ldots, \lim_{n\to\infty} \|x_n^{(N)}\|$ exist, and hence the sequences $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \ldots, \{x_n^{(N)}\}$ are bounded in K.

Step 2. Next, we will show that

$$||Jf(x_{n+1}^{(N)}) - Jf(x_n^{(N)})||$$

$$= \alpha_n^{(N)} \left\| Jf(x_n^{(N)}) - J \prod_K J^{-1} \left(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)}) \right) \right\| \to 0,$$

$$\| Jf(x_{n+1}^{(N-1)}) - Jf(x_n^{(N-1)}) \|$$

$$= \alpha_n^{(N-1)} \left\| Jf(x_n^{(N-1)}) - J \prod_K J^{-1} \left(Jf(x_n^{(N-1)}) - J \prod_K J^{$$

$$||Jf(x_{n+1}^{(2)}) - Jf(x_n^{(2)})||$$

$$= \alpha_n^{(2)} ||Jf(x_n^{(2)}) - J \prod_K J^{-1} \Big(Jf(x_n^{(2)}) \Big) - \rho_2 T_2 \Big(x_{n+1}^{(3)}, x_{n+1}^{(4)}, \dots, x_{n+1}^{(N)}, x_n^{(1)}, x_n^{(2)} \Big) \Big) || \to 0,$$

$$||Jf(x_{n+1}^{(1)}) - Jf(x_n^{(1)})||$$

$$= \alpha_n^{(1)} ||Jf(x_n^{(1)}) - J \prod_K J^{-1} \Big(Jf(x_n^{(1)}) \Big) - \rho_1 T_1 \Big(x_{n+1}^{(2)}, x_{n+1}^{(3)}, \dots, x_{n+1}^{(N)}, x_n^{(1)} \Big) \Big) || \to 0,$$

as $n \to \infty$.

By Lemma 2.4.25, Lemma 2.4.21, f is isometry and (3.1.8), it follows that there exists a continuous strictly increasing and convex function $g:[0,2r)\to[0,\infty)$ with g(0)=0 such that

$$||f(x_{n+1}^{(N)})||^{2} \leq (1 - \alpha_{n}^{(N)})||Jf(x_{n}^{(N)})||^{2} + \alpha_{n}^{(N)}||J\prod_{K} J^{-1}(Jf(x_{n}^{(N)}) - \rho_{N}T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)}))||^{2} - (1 - \alpha_{n}^{(N)})\alpha_{n}^{(N)}g(||Jf(x_{n}^{(N)}) + J\prod_{K} J^{-1}(Jf(x_{n}^{(N)}) - \rho_{N}T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)}))||) \leq (1 - \alpha_{n}^{(N)})||f(x_{n}^{(N)})||^{2} + \alpha_{n}^{(N)}||Jf(x_{n}^{(N)}) - \rho_{N}T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)})||^{2} - (1 - \alpha_{n}^{(N)})\alpha_{n}^{(N)}g(||Jf(x_{n}^{(N)}) + J\prod_{K} J^{-1}(Jf(x_{n}^{(N)}) - \rho_{N}T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)}))||)$$

T

15

D

$$\leq (1 - \alpha_{n}^{(N)}) \|f(x_{n}^{(N)})\|^{2} + \alpha_{n}^{(N)} \|f(x_{n}^{(N)})\|^{2}
- (1 - \alpha_{n}^{(N)}) \alpha_{n}^{(N)} g(\|Jf(x_{n}^{(N)}) + J\prod_{K} J^{-1}(Jf(x_{n}^{(N)})
- \rho_{N} T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)}))\|)
= \|f(x_{n}^{(N)})\|^{2} - (1 - \alpha_{n}^{(N)}) \alpha_{n}^{(N)} g(\|Jf(x_{n}^{(N)})
+ J\prod_{K} J^{-1}(Jf(x_{n}^{(N)}) - \rho_{N} T_{N}(x_{n}^{(1)}, x_{n}^{(2)}, \dots, x_{n}^{(N)}))\|).$$
(3.1.11)

This implies that

$$(1 - \alpha_n^{(N)})\alpha_n^{(N)}g\Big(\Big\|Jf(x_n^{(1)}) + J\prod_K J^{-1}\Big(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)})\Big)\Big\|\Big)$$

$$\leq \|f(x_n^{(N)})\|^2 - \|f(x_{n+1}^{(N)})\|^2. \tag{3.1.12}$$

Since $\{\|x_n^{(k)}\|\}$ converges for all $k=1,2,\ldots,N$, it follows by letting $n\to\infty$ in (3.1.12), condition (ii) and the property of g that

$$\left\| Jf(x_n^{(N)}) - J \prod_K J^{-1} \left(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)}) \right) \right\| \to 0,$$
(3.1.13)

as $n \to \infty$. By (3.1.6) and (3.1.13), we have

$$||Jf(x_{n+1}^{(N)}) - Jf(x_n^{(N)})||$$

$$= \alpha_n^{(N)} ||Jf(x_n^{(N)}) - J\prod_K J^{-1} \Big(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)}) \Big) || \to 0,$$
(3.1.14)

as $n \to \infty$. Similarly, we can prove that

$$||Jf(x_{n+1}^{(N-1)}) - Jf(x_n^{(N-1)})||$$

$$= \alpha_n^{(N-1)} ||Jf(x_n^{(N-1)}) - J\prod_K J^{-1} \Big(Jf(x_n^{(N-1)}) - \rho_{N-1} T_{N-1} (x_{n+1}^{(N)}, x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N-2)}, x_n^{(N-1)}) \Big)|| \to 0,$$

(3)

1

D)

(4

:

$$||Jf(x_{n+1}^{(2)}) - Jf(x_n^{(2)})||$$

$$= \alpha_n^{(2)} ||Jf(x_n^{(2)}) - J\prod_K J^{-1} \Big(Jf(x_n^{(2)}) \Big) - \rho_2 T_2(x_{n+1}^{(3)}, x_{n+1}^{(4)}, \dots, x_{n+1}^{(N)}, x_n^{(1)}, x_n^{(2)}) \Big) || \to 0,$$

$$||Jf(x_{n+1}^{(1)}) - Jf(x_n^{(1)})||$$

$$= \alpha_n^{(1)} ||Jf(x_n^{(1)}) - J\prod_K J^{-1} \Big(Jf(x_n^{(1)}) \Big) - \rho_1 T_1(x_{n+1}^{(2)}, x_{n+1}^{(3)}, \dots, x_{n+1}^{(N)}, x_n^{(1)}) \Big) || \to 0,$$

$$(3.1.15)$$

as $n \to \infty$.

130

4

0

Step 3. We next show that $\{x_n^{(N)}\}$ converges to some $x_N^* \in E$. Let $\{x_{n_j}^{(N)}\}$ be any subsequence of $\{x_n^{(N)}\}$. Since $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \dots, \{x_n^{(N)}\}$ are bounded, by (i) and from the compactness of C, there exists a subsequence $\{x_{n_i(N)}^{(N)}\}$ of $\{x_{n_j}^{(N)}\}$ such that

$$Jf(x_{n_{i(N)}}^{(N)}) - \rho_N T_N(x_{n_{i(N)}}^{(1)}, x_{n_{i(N)}}^{(2)}, \dots, x_{n_{i(N)}}^{(N)}) \to h_1 \in E^*.$$

Since E is uniformly smooth and strictly convex, it follows by Lemma 2.4.19 (ii) and Remark 2.4.11, that \prod_K and J^{-1} are continuous. Thus

$$\prod_{K} J^{-1} \left(Jf(x_{n_{i(N)}}^{(N)}) - \rho_{N} T_{N}(x_{n_{i(N)}}^{(1)}, x_{n_{i(N)}}^{(2)}, \dots, x_{n_{i(N)}}^{(N)}) \right) \to \prod_{K} J^{-1}(h_{1}) := f(x_{N}^{*})$$

and

$$J\prod_{K}J^{-1}\Big(Jf(x_{n_{i(N)}}^{(N)})-\rho_{N}T_{N}(x_{n_{i(N)}}^{(1)},x_{n_{i(N)}}^{(2)},\dots,x_{n_{i(N)}}^{(N)})\Big) \to Jf(x_{N}^{*}). \quad (3.1.16)$$

From (3.1.13) and (3.1.16), we get

$$Jf(x_{n_{i(N)}}^{(N)}) \to Jf(x_N^*)$$
 (as $n_{i(N)} \to \infty$). (3.1.17)

By (3.1.14) and (3.1.17), we have

$$Jf(x_{n_{i(N)}+1}^{(N)}) \to Jf(x_N^*)$$
 (as $n_{i(N)} \to \infty$). (3.1.18)

Since E is strictly convex and reflexive, it follows by Remark 2.4.11 (iv) that J^{-1} is norm-weak-continuous. Therefore, from (3.1.17) and (3.1.18), we note that

$$f(x_{n_i(N)}^{(N)}) \rightharpoonup f(x_N^*), \quad f(x_{n_i(N)+1}^{(N)}) \rightharpoonup f(x_N^*),$$

and

V

D,

17

$$\|f(x_{n_{i(N)}}^{(N)})\| \to \|f(x_N^*)\|, \quad \|f(x_{n_{i(N)}+1}^{(N)})\| \to \|f(x_N^*)\| \qquad \text{(as } n_{i^{(N)}} \to \infty \text{)}.$$

By the Kadec-Klee property, we have

$$f(x_{n_{i(N)}}^{(N)}) \to f(x_N^*)$$
 and $f(x_{n_{i(N)}+1}^{(N)}) \to f(x_N^*)$ (as $n_{i(N)} \to \infty$). (3.1.19)

Since f^{-1} is a continuous mapping, we get

$$x_{n_{i(N)}}^{(N)} \to x_N^* \quad \text{and} \quad x_{n_{i(N)}+1}^{(N)} \to x_N^* \qquad (\text{as } n_{i^{(N)}} \to \infty).$$
 (3.1.20)

This shows that $\{x_{n_i(N)}^{(N)}\}$ is a subsequence of $\{x_{n_j}^{(N)}\}$ such that $x_{n_i(N)}^{(N)} \to x_N^* \in E$. Therefore $x_n^{(N)} \to x_N^*$ as $n \to \infty$.

So, it follows from (3.1.6), (3.1.17), (3.1.19), and condition (ii) that

$$Jf(x_N^*) = \lim_{n \to \infty} Jf(x_{n+1}^{(N)})$$

$$= \lim_{n \to \infty} \left\{ (1 - \alpha_n^{(N)}) Jf(x_n^{(N)}) + \alpha_n^{(N)} J \prod_K J^{-1} \left(Jf(x_n^{(N)}) - \rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)}) \right) \right\}$$

$$= (1 - d_N) Jf(x_N^*) + d_N J \prod_K J^{-1} \left(Jf(x_N^*) - \rho_N T_N(x_1^*, x_2^*, \dots, x_N^*) \right).$$

Since f is a bijective mapping, we obtain that

$$x_N^* = f^{-1} \prod_K J^{-1} \Big(Jf(x_N^*) - \rho_N T_N(x_1^*, x_2^*, \dots, x_N^*) \Big).$$
 (3.1.21)

Similarly, we can prove that, for every subsequence $\{x_{n_j}^{(k)}\}$ of $\{x_n^{(k)}\}$ there exist a subsequence $\{x_{n_i(k)}^{(k)}\}$ of $\{x_{n_j}^{(k)}\}$ and $x_k^* \in E$ such that

$$f(x_{n_{i(k)}}^{(k)}) \to f(x_k^*)$$
 (as $n_{i(k)} \to \infty$), for all $k = 1, 2, \dots, N - 1$. (3.1.22)

Since f^{-1} is a continuous mapping, we note that

13

18

13

$$x_{n_{i(k)}}^{(k)} \to x_k^*$$
 (as $n_{i(k)} \to \infty$). (3.1.23)

Hence $x_n^{(k)} \to x_k^* \in E$, for all k = 1, 2, ..., N - 1. Therefore, we have

$$x_{N-1}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{N-1}^{*}) - \rho_{N-1} T_{N-1}(x_{N}^{*}, x_{1}^{*}, x_{2}^{*}, \dots, x_{N-2}^{*}, x_{N-1}^{*}) \Big)$$

$$x_{N-2}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{N-2}^{*}) - \rho_{N-2} T_{N-2}(x_{N-1}^{*}, x_{N}^{*}, x_{1}^{*}, \dots, x_{N-3}^{*}, x_{N-2}^{*}) \Big)$$

$$x_{2}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{2}^{*}) - \rho_{2} T_{2}(x_{3}^{*}, x_{4}^{*}, \dots, x_{N}^{*}, x_{1}^{*}, x_{2}^{*}) \Big),$$

$$x_{1}^{*} = f^{-1} \prod_{K} J^{-1} \Big(Jf(x_{1}^{*}) - \rho_{1} T_{1}(x_{2}^{*}, x_{3}^{*}, \dots, x_{N}^{*}, x_{1}^{*}) \Big).$$
(3.1.24)

By Lemma 3.1.1, we can conclude that $(x_1^*, x_2^*, \dots, x_N^*)$ is a solution of (3.1.1) and $x_n^{(1)} \to x_1^*, x_n^{(2)} \to x_2^*, \dots, x_n^{(N)} \to x_N^*$.

Setting $N=3,\,f=I$ in Theorem 3.1.3, we immediately obtain the following result.

Corollary 3.1.4. [13] Let E be a real uniformly smooth and strictly convex Banach space with Kadec-Klee property, K be a nonempty closed and convex subset of E with $\theta \in K$. Let $T_1, T_2, T_3 : K \times K \times K \to E^*$ be continuous mappings and $\{\alpha_n^{(1)}\}, \{\alpha_n^{(2)}\}, \{\alpha_n^{(3)}\}$ be the sequences in (a, b) with 0 < a < b < 1 satisfying the following conditions:

(i) there exist a compact subset $C \subset E^*$ and constants $\rho_1 > 0$, $\rho_2 > 0$, $\rho_3 > 0$ such that $(J(K) - \rho_3 T_3(K \times K \times K)) \cup (J(K) - \rho_2 T_2(K \times K \times K)) \cup (J(K) - \rho_1 T_1(K \times K \times K)) \subset C$, where $J(x_1, x_2, x_3) = Jx_3$, $\forall (x_1, x_2, x_3) \in K \times K \times K$ and

$$\begin{cases} \langle T_1(x_1, x_2, x_3), J^{-1}(Jx_3 - \rho_1 T_1(x_1, x_2, x_3)) \rangle \geq 0, \\ \langle T_2(x_1, x_2, x_3), J^{-1}(Jx_3 - \rho_2 T_2(x_1, x_2, x_3)) \rangle \geq 0, \\ \langle T_3(x_1, x_2, x_3), J^{-1}(Jx_3 - \rho_3 T_3(x_1, x_2, x_3)) \rangle \geq 0, \end{cases}$$

for all $x_1, x_2, x_3 \in K$.

1

3

(3)

(ii) $\lim_{n\to\infty} \alpha_n^{(1)} = d_1 \in (a,b)$, $\lim_{n\to\infty} \alpha_n^{(2)} = d_2 \in (a,b)$, $\lim_{n\to\infty} \alpha_n^{(3)} = d_3 \in (a,b)$. Let $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \{x_n^{(3)}\}$ be the sequences defined by

$$\begin{cases} x_{n+1}^{(3)} = J^{-1} \left((1 - \alpha_n^{(3)}) J f(x_n^{(3)}) + \alpha_n^{(3)} J \left(\prod_K J^{-1} \left(J f(x_n^{(3)}) - \rho_3 T_3(x_n^{(1)}, x_n^{(2)}, x_n^{(3)}) \right) \right) \right), \\ x_{n+1}^{(2)} = J^{-1} \left((1 - \alpha_n^{(2)}) J f(x_n^{(2)}) + \alpha_n^{(2)} J \left(\prod_K J^{-1} \left(J f(x_n^{(2)}) - \rho_2 T_2(x_{n+1}^{(3)}, x_n^{(1)}, x_n^{(2)}) \right) \right) \right), \\ x_{n+1}^{(1)} = J^{-1} \left((1 - \alpha_n^{(1)}) J f(x_n^{(1)}) + \alpha_n^{(1)} J \left(\prod_K J^{-1} \left(J f(x_n^{(1)}) - \rho_1 T_1(x_{n+1}^{(2)}, x_{n+1}^{(3)}, x_n^{(1)}) \right) \right) \right), \quad n \ge 0. \end{cases}$$

Then the problem (3.1.2) has a solution $(x_1^*, x_2^*, x_3^*) \in K \times K \times K$ and the sequences $\{x_n^{(1)}\}, \{x_n^{(2)}\}$ and $\{x_n^{(3)}\}$ converge strongly to x_1^*, x_2^* and x_3^* , respectively.

Setting E is a real Hilbert space in Theorem 3.1.3, we have following result. Corollary 3.1.5. Let H be a real Hilbert space, K be a nonempty closed and convex subset of H. Let $f: K \to K$ be an isometry mapping. Let $T_1, \ldots, T_N: \underbrace{K \times \ldots \times K}_{N-times} \to H$ be continuous mappings and $\{\alpha_n^{(1)}\}, \{\alpha_n^{(2)}\}, \ldots, \{\alpha_n^{(N)}\}$ be sequences in (a,b) with 0 < a < b < 1 satisfying the following conditions:

(i) there exist a compact subset $C \subset H$ and constants $\rho_1 > 0, \rho_2 > 0$, $\ldots, \rho_N > 0$ such that

$$(I(K) - \rho_N T_N(\underbrace{K \times \ldots \times K})) \cup (I(K) - \rho_{N-1} T_{N-1}(\underbrace{K \times \ldots \times K})) \cup \ldots$$

$$\cup (I(K) - \rho_1 T_1(\underbrace{K \times \ldots \times K})) \subset C, where (x_1, x_2, \ldots, x_N) = x_N, \forall (x_1, x_2, \ldots, x_N) \in \underbrace{K \times \ldots \times K}_{N-times} \text{ and }$$

$$\begin{cases} \langle T_{1}(x_{1}, x_{2}, \dots, x_{N}), x_{N} - \rho_{1}T_{1}(x_{1}, x_{2}, \dots, x_{N}) \rangle \geq 0, \\ \langle T_{2}(x_{1}, x_{2}, \dots, x_{N}), x_{N} - \rho_{2}T_{2}(x_{1}, x_{2}, \dots, x_{N}) \rangle \geq 0, \\ \vdots \\ \langle T_{N}(x_{1}, x_{2}, \dots, x_{N}), x_{N} - \rho_{N}T_{N}(x_{1}, x_{2}, \dots, x_{N}) \rangle \geq 0, \\ l \ x_{1}, x_{2}, \dots, x_{N} \in K. \end{cases}$$

for all $x_1, x_2, \ldots, x_N \in K$.

-)

P

(1)

()

for all
$$x_1, x_2, \dots, x_N \in K$$
.

$$(ii) \lim_{n \to \infty} \alpha_n^{(1)} = d_1 \in (a, b), \lim_{n \to \infty} \alpha_n^{(2)} = d_2 \in (a, b), \dots, \lim_{n \to \infty} \alpha_n^{(N)} = d_N \in (a, b).$$

$$(a, b).$$

$$Let \{x_n^{(1)}\}, \{x_n^{(2)}\}, \dots, \{x_n^{(N)}\} \text{ be the sequences defined by}$$

$$\begin{cases} x_{n+1}^{(N)} = f^{-1}\Big((1-\alpha_n^{(N)})f(x_n^{(N)}) + \alpha_n^{(N)}P_K\big(f(x_n^{(N)}) \\ -\rho_N T_N(x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N)})\big)\Big), \\ x_{n+1}^{(N-1)} = f^{-1}\Big((1-\alpha_n^{(N-1)})f(x_n^{(N-1)}) + \alpha_n^{(N-1)}P_K\big(f(x_n^{(N-1)}) \\ -\rho_{N-1} T_{N-1}(x_{n+1}^{(N)}, x_n^{(1)}, x_n^{(2)}, \dots, x_n^{(N-2)}, x_n^{(N-1)})\big)\Big), \\ \vdots \\ x_{n+1}^{(2)} = f^{-1}\Big((1-\alpha_n^{(2)})f(x_n^{(2)}) + \alpha_n^{(2)}P_K\big(f(x_n^{(2)}) \\ -\rho_2 T_2(x_{n+1}^{(3)}, x_{n+1}^{(4)}, \dots, x_{n+1}^{(N)}, x_n^{(1)}, x_n^{(2)})\big)\Big), \\ x_{n+1}^{(1)} = f^{-1}\Big((1-\alpha_n^{(1)})f(x_n^{(1)}) + \alpha_n^{(1)}P_K\big(f(x_n^{(1)}) \\ -\rho_1 T_1(x_{n+1}^{(2)}, x_{n+1}^{(3)}, \dots, x_{n+1}^{(N)}, x_n^{(1)})\big)\Big), \quad n \ge 0, \end{cases}$$

where P_K is a metric projection on H to K.

(3)

3

:0

Then the problem (3.1.1) has a solution $(x_1^*, x_2^*, \dots, x_N^*) \in \underbrace{K \times \dots \times K}_{N-times}$ and the sequences $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \dots, \{x_n^{(N)}\}$ converge strongly to $x_1^*, x_2^*, \dots, x_N^*$, respectively.

3.2 Existence of solutions for generalized variational inequality problems in Banach spaces

In this section, we assume that E is a reflexive and smooth Banach space, K is a closed convex subset in E. Let $T: K \to 2^{E^*}$ be a multi-valued mapping. The generalized variational inequality problem, denoted by GVI(K,T), is to find a vector $x^* \in K$ such that there exists a vector $u^* \in T(x^*)$ satisfying

$$\langle u^*, y - x^* \rangle \ge 0$$
 for all $y \in K$.

Now, we first prove the existence of solutions of generalized variational inequality for upper semicontinuous multi-valued mappings with compact contractible values over compact convex subsets in a reflexive Banach space with a Fréchet differentiable norm.

Theorem 3.2.1. Let E be a reflexive Banach space with a Fréchet differentiable norm. Assume that

- (i) K is a nonempty compact convex in E;
- (ii) $T: K \to 2^{E^*}$ is upper semicontinuous;
- (iii) T(x) is nonempty closed in E^* and contractible subset in E for each $x \in K$;
- (iv) $T(K) = \bigcup_{x \in K} T(x)$ is compact in E^* . Then the GVI(K,T) has solution in K.

Proof. Let $C^* := \overline{co}(T(K))$. Hence, by Mazur's theorem, C^* is compact in E^* . Since T(K) is compact in E^* , $\overline{T(K)}$ is also compact in E^* . By our assumption

(iv), we have $K \times C^*$ is compact in $E \times E^*$. Define $F : K \times C^* \to 2^{K \times C^*}$ by $F(x,y) = \{(u,v) : u \in \pi_K(j(x)-y), v \in T(x)\}$ for all $(x,y) \in K \times C^*$. Moreover, we note by Lemma 2.4.23 that $\pi_K(j(x)-y)$ is nonempty and hence F(x,y) is nonempty for all $(x,y) \in K \times C^*$.

Step 1. Show that F(x,y) is contractible for all $(x,y) \in K \times C^*$. We note that $(u,v) \in F(x,y)$ if and only if $u \in \pi_K(j(x)-y)$ and $v \in T(x)$. By Lemma 2.4.23, we have $\pi_K(j(x)-y)$ is convex. Hence $\pi_K(j(x)-y)$ and T(x) are contractible. Thus there exist $u_0 \in \pi_K(j(x)-y)$, $v_0 \in T(x)$ and continuous mappings $g_1 : \pi_K(j(x)-y) \times [0,1] \to \pi_K(j(x)-y)$ and $g_2 : T(x) \times [0,1] \to T(x)$ such that $g_1(u,0) = u$ and $g_1(u,1) = u_0$ for all $u \in \pi_K(j(x)-y)$, and $g_2(v,0) = v$ and $g_2(v,1) = v_0$ for all $v \in T(x)$. Define $h : (\pi_K(j(x)-y) \times T(x)) \times [0,1] \to \pi_K(j(x)-y) \times T(x)$ by $h((u,v),t) = (g_1(u,t),g_2(v,t)) \ \forall ((u,v),t) \in (\pi_K(j(x)-y) \times T(x)) \times [0,1]$. Thus h is a continuous mapping such that $h((u,v),0) = (g_1(u,0),g_2(v,0)) = (u,v)$ and $h((u,v),1) = (g_1(u,1),g_2(v,1)) = (u_0,v_0)$ for all $(u,v) \in \pi_K(j(x)-y) \times T(x)$. This implies that F(x,y) is contractible.

Step 2. Show that F(x,y) is compact subset of $K \times C^*$.

3

O

0

Since $K \times C^*$ is compact, we need only show that F(x,y) is closed. Let $(u_n, v_n) \in F(x,y)$, $(u_n, v_n) \to (u,v)$ as $n \to \infty$. We shall show that $(u,v) \in F(x,y)$. From $(u_n, v_n) \in F(x,y)$, we have $u_n \in \pi_K(j(x)-y)$ and $v_n \in T(x)$ for all $n \in \mathbb{N}$. Since $(u_n, v_n) \to (u, v)$, we get $u_n \to u$ and $v_n \to v$. By Lemma 2.4.23, we note that $\pi_K(j(x)-y)$ is closed. Thus, we have $u \in \pi_K(j(x)-y)$ and $v \in T(x)$ by the closedness of T(x). That is $(u,v) \in F(x,y)$ and hence F(x,y) is closed.

Step 3. Show that F is upper semicontinuous.

Since $K \times C^*$ is compact set and $F(x,y) \subset K \times C^*$, by Lemma 2.5.4 (i), we need only show that F is a closed mapping. Let $\{(x_{\alpha},y_{\alpha}): \alpha \in I\} \in K \times C^*$ be given such that $(x_{\alpha},y_{\alpha}) \to (x_0,y_0) \in K \times C^*$ and let $(u_{\alpha},v_{\alpha}) \in F(x_{\alpha},y_{\alpha})$ be given such that $(u_{\alpha},v_{\alpha}) \to (u_0,v_0)$. We shall show that $(u_0,v_0) \in F(x_0,y_0)$. Since $v_{\alpha} \in T(x_{\alpha})$,

 $x_{\alpha} \to x_0$, $v_{\alpha} \to v_0$ and T is upper semicontinuous, it follows by Lemma 2.5.4 (ii) that $v_0 \in T(x_0)$. Since $u_{\alpha} \in \pi_K(j(x_{\alpha}) - y_{\alpha})$ and E is smooth, we have

3

9

134

$$\langle j(x_{\alpha}) - y_{\alpha} - j(u_{\alpha}), u_{\alpha} - y \rangle \ge 0, \ \forall y \in K.$$
 (3.2.1)

From the Fréchet differentiable norm of E, we note that the duality $J: E \to E^*$ is norm to norm continuous. Thus, we have $j(x_{\alpha}) \to j(x_0)$ and $j(u_{\alpha}) \to j(u_0)$. Hence, by (3.2.1), we obtain

$$\langle j(x_0) - y_0 - j(u_0), u_0 - y \rangle \ge 0, \ \forall y \in K.$$

This implies that $u_0 \in \pi_K(j(x_0) - y_0)$ and hence $(u_0, v_0) \in F(x_0, y_0)$. Therefore F is upper semicontinuous.

Step 4. Show that the solution set of GVI(K,T) is nonempty.

By Eilenberg-Montgomery Theorem, F has a fixed point. That is, there exists a point $(x^*, y^*) \in K \times C^*$ such that $(x^*, y^*) \in F(x^*, y^*)$. Hence there exists a point $x^* \in K$ and $y^* \in T(x^*)$ such that $x^* \in \pi_K(j(x^*) - y^*)$. Hence, by Lemma 2.4.24 (ii), we have

$$\langle y^*, y - x^* \rangle = \langle j(x^*) - y^* - j(x^*), x^* - y \rangle \ge 0, \ \forall y \in K.$$

Setting $E = \mathbb{R}^n$ in Theorem 3.2.1, we have following result.

Corollary 3.2.2. [47] (Hartman-Stampacchia, Saigal). Assume that

- (i) K is a nonempty compact convex in \mathbb{R}^n ;
- (ii) $T: K \to 2^{\mathbb{R}^n}$ is upper semicontinuous;
- (iii) T(x) is nonempty, compact, and contractible subset in \mathbb{R}^n for each $x \in K$.

Then there is a solution (x^*, y^*) to the generalized variational inequality problem GVI(K,T).

Proof. Since K is compact, T(x) is nonempty compact subset in \mathbb{R}^n for each $x \in K$. From $T: K \to 2^{\mathbb{R}^n}$ is upper semicontinuous, we note by [6] that $T(K) = \bigcup_{x \in K} T(x)$ is also compact. Hence, by Mazur's theorem, $\overline{co}(T(K))$ is a compact subset of \mathbb{R}^n . Therefore, by Theorem 3.2.1, the solution set of GVI(K,T) is nonempty.

Corollary 3.2.3. Let E be a reflexive Banach space with a Fréchet differentiable norm. Assume that

- (i) K is a nonempty compact convex in E;
- (ii) $T: K \to 2^{E^*}$ is upper semicontinuous;
- (iii) T(x) is nonempty closed in E^* and convex subset in E for each $x \in K$;
- (iv) T(K) is compact in E^* .

Then the GVI(K,T) has solution in K.

1

14.

6.

Next, we prove the existence of solutions for generalized variational inequality problems for upper semicontinuous multi-valued mappings over unbounded closed convex subsets in a reflexive Banach space with a Fréchet differentiable norm.

Theorem 3.2.4. Let E be a reflexive Banach space with a Fréchet differentiable norm and K be a closed convex set in E such that every weakly convergent sequence in K is norm convergent. Let $T: K \to 2^{E^*}$ be an upper semicontinuous multivalued mapping such that T(x) is nonempty compact and contractible in E^* for any $x \in K$. Suppose that T(B) is compact in E^* , for all compact subset B of K, and

(C1) Given $\widehat{x} \in E$ and for any $\{x_n\} \subset K$ with $||x_n|| \to +\infty$ as $n \to +\infty$, and for any $\{u_n\}$ with $u_n \in T(x_n)$, there exist a positive integer n_0 and $y \in K$ such that $||y - \widehat{x}|| \le ||x_{n_0} - \widehat{x}||$ and $\langle u_{n_0}, y - x_{n_0} \rangle < 0$.

Then the solution set of GVI(K,T) is nonempty and compact.

Proof. Step 1. Show that the solution set of GVI(K,T) is nonempty.

3

O.

Let $\widehat{x} \in E$. For any n = 1, 2, ..., let $K_n = \{x \in K : ||x - \widehat{x}|| \le n\}$. Thus, we note that K_n is nonempty closed convex bounded subset of E. Since E is reflexive, we have K_n is a weakly compact subset of E. We shall show that K_n is compact. Let $\{x_n^k\}_{k=1}^{\infty}$ be any sequence in K_n . Thus there exists a subsequence $\{x_n^{k_j}\}_{j=1}^{\infty}$ of $\{x_n^k\}_{k=1}^{\infty}$ such that $x_n^{k_j} \to u_n \in K_n$ as $j \to \infty$. Since $\{x_n^{k_j}\} \subset K$, it follows by our assumption that the sequence $\{x_n^{k_j}\}$ converges strongly to u_n . Hence K_n is compact and therefore $T(K_n)$ is compact in E^* . By Theorem 3.2.1, the solution set of $GVI(K_n, T)$ is nonempty, that is, there exists $x_n \in K_n$ and $v_n \in T(x_n)$ such that

$$\langle v_n, y - x_n \rangle \ge 0 \quad \forall y \in K_n.$$

If the sequence $\{x_n\}$ is unbounded, by without loss of generality, we assume that $\|x_n\| \to \infty$ as $n \to +\infty$. Then, by condition (C1), there exist a positive integer n_0 and $y \in K$ such that $\|y - \widehat{x}\| \le \|x_{n_0} - \widehat{x}\|$ and $\langle v_{n_0}, y - x_{n_0} \rangle < 0$. This implies that $y \in K$ and $\langle v_{n_0}, y - x_{n_0} \rangle < 0$, which is a contradiction. Hence $\{x_n\}$ is bounded. i.e., there exists a positive integer N such that $\{x_n\}_{n=1}^{\infty} \subset K_N \subset K$. From the compactness of K_N , there exists a subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ of $\{x_n\}$ such that $x_{n_i} \to x^* \in K_N$. We note that $v_{n_i} \in T(x_{n_i})$ for all $i = 1, 2, 3, \ldots$ Since T is upper semicontinuous, it follows by Lemma 2.5.5, that a subsequence $\{v_{n_j}\}$ of $\{v_{n_i}\}$ such that $v_{n_j} \to v^* \in T(x^*)$ as $j \to \infty$. Let $y \in K$. Since $K_1 \subset K_2 \subset \ldots$, there exists a positive integer n_1 such that $y \in K_n$ for all $n \geq n_1$. From $\langle v_{n_j}, y - x_{n_j} \rangle \geq 0$ for all $y \in K$ and for all $n_j \geq n_1$, we get $\langle v^*, y - x^* \rangle \geq 0$ for all $y \in K$. Therefore the solution set of GVI(K,T) is nonempty.

Step 2. Show that the solution set of GVI(K,T) is compact.

Let $M = \{x \in K : \exists u \in T(x) \text{ such that } \langle u, y - x \rangle \ge 0 \ \forall y \in K\}.$

We first show that M is closed. Let $\{x_n\}$ be any sequence in M and $x_n \to x$. Since $x_n \in M$ there exists a $u_n \in T(x) \subset K$ such that $\langle u_n, y - x_n \rangle \geq 0$ for any $y \in K$. Since T(x) is compact and T is upper semicontinuous at x, it follows by Lemma

2.5.5, that $\{u_n\}$ has a cluster point $u \in T(x)$. Then, without loss of generality, we assume that $u_n \to u \in T(x)$. It follows from $\langle u_n, y - x_n \rangle \geq 0 \quad \forall y \in K$ that $\langle u, y - x \rangle \geq 0 \quad \forall y \in K$ as $n \to \infty$. Hence $x \in M$ and therefore M is closed.

Next, we show that M is bounded. Suppose that M is unbounded. Thus there exists a sequence $\{x_n\} \subset M$ such that $\|x_n\| \to +\infty$. This implies that there is a sequence $\{u_n\} \subset K$ such that $u_n \in T(x_n)$ and $\langle u_n, y - x_n \rangle \geq 0 \quad \forall y \in K$. By condition (C1), there exists a positive integer n_0 and $y \in K$ such that $\|y - \widehat{x}\| \leq \|x_{n_0} - \widehat{x}\|$ and $\langle u_{n_0}, y - x_{n_0} \rangle < 0$. This is a contradiction. Therefore M is a bounded subset of K.

()

1

()

Finally, we show that M is compact. Let $\{v_n\} \subset M \subset K$. Since E is reflexive and M is bounded, there exists a subsequence $\{v_{n_j}\}$ of $\{v_n\}$ such that $v_{n_j} \rightharpoonup v \in E$. By our assumption, we have $v_n \to v$ and so $v \in M$. Hence M is a compact subset of K.

Corollary 3.2.5. Let E be a reflexive Banach space with a Fréchet differentiable norm, K be a closed convex set in E such that every weakly convergent sequence in E is norm convergent. Let E is an upper semicontinuous multi-valued mapping such that E is nonempty compact and convex in E for any E is suppose that E is compact in E, for all compact subset E of E, and

(C1) Given $\widehat{x} \in E$ and for any $\{x_n\} \subset K$ with $||x_n|| \to +\infty$ as $n \to +\infty$, and for any $\{u_n\}$ with $u_n \in T(x_n)$, there exist a positive integer n_0 and $y \in K$ such that $||y - \widehat{x}|| \le ||x_{n_0} - \widehat{x}||$ and $\langle u_{n_0}, y - x_{n_0} \rangle < 0$.

Then the solution set of GVI(K,T) is nonempty and compact.

Theorem 3.2.6. Let E be a reflexive Banach space with a Fréchet differentiable norm, K be a closed convex set in E such that every weakly convergent sequence in E is norm convergent. Let E is an upper semicontinuous multi-valued mapping such that E is nonempty compact and contractible for any E is nonempty compact and contractible for any E is nonempty compact.

Suppose that T(B) is compact in E^* , for all compact subset B of K, and one of the following conditions hold:

7

(j)

- (C2) Given $\widehat{x} \in E$ and for any $\{x_n\} \subset K$ with $||x_n|| \to +\infty$ as $n \to +\infty$, and for any sequence $\{u_n\}$ with $u_n \in T(x_n)$, there exist a positive integer n_0 and $y \in K$ such that $||y \widehat{x}|| < ||x_{n_0} \widehat{x}||$ and $\langle u_{n_0}, y x_{n_0} \rangle \leq 0$.
- (C3) Given $\widehat{x} \in E$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $\|x \widehat{x}\| > \rho$, there exist $y \in K$ and $u \in T(x)$ satisfying $\|y \widehat{x}\| \le \|x \widehat{x}\|$ and $\langle u, y x \rangle < 0$.
- (C4) Given $\widehat{x} \in E$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $\|x \widehat{x}\| > \rho$, there exists $y \in K$ and $u \in T(x)$ satisfying $\|y \widehat{x}\| < \|x \widehat{x}\|$ and $\langle u, y x \rangle \leq 0$.

Then there exists a solution to GVI(K,T) and the solution set is compact.

Proof. We note by Yu and Yang [8] that (C2) implies (C1) and (C3) implies (C1). We will show that (C4) implies (C2). In fact, for any $\{x_n\} \subset K$ with $\|x_n\| \to +\infty$ as $n \to +\infty$, and for any sequence $\{u_n\}$ with $u_n \in T(x_n)$. For given $\widehat{x} \in E$, we note that $\|x_n - \widehat{x}\| \to +\infty$ as $n \to +\infty$. Since ρ is a constant, there exists a positive integer n_0 such that $\|x_{n_0} - \widehat{x}\| > \rho$. By (C4), there exists $y \in K$ and $u_{n_0} \in T(x_{n_0})$ satisfying $\|y - \widehat{x}\| < \|x_{n_0} - \widehat{x}\|$ and $\langle u_{n_0}, y - x_{n_0} \rangle \leq 0$. Hence the condition (C2) holds.

Setting $E=\mathbb{R}^n$ in Theorem 3.2.4 and Theorem 3.2.6, we have following result.

Corollary 3.2.7. [8] Let $K \subset \mathbb{R}^n$ be a nonempty a closed convex subset, $T: K \to 2^{\mathbb{R}^n}$ be an upper semicontinuous multi-valued mapping, where T(x) is nonempty

compact contractible in \mathbb{R}^n for any $x \in K$. Suppose that one of the following conditions hold:

(7

00

11

31

- (C1)' Given $\widehat{x} \in \mathbb{R}^n$ and for any $\{x_n\} \subset K$ with $||x_n|| \to +\infty$ as $n \to +\infty$, and for any $\{u_n\}$ with $u_n \in T(x_n)$, there exist a positive integer n_0 and $y \in K$ such that $||y \widehat{x}|| \le ||x_{n_0} \widehat{x}||$ and $\langle u_{n_0}, y x_{n_0} \rangle < 0$.
- (C2)' Given $\widehat{x} \in \mathbb{R}^n$ and for any $\{x_n\} \subset K$ with $||x_n|| \to +\infty$ as $n \to +\infty$, and for any sequence $\{u_n\}$ with $u_n \in T(x_n)$, there exist a positive integer n_0 and $y \in K$ such that $||y \widehat{x}|| < ||x_{n_0} \widehat{x}||$ and $\langle u_{n_0}, y x_{n_0} \rangle \leq 0$.
- (C3)' Given $\widehat{x} \in \mathbb{R}^n$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $||x \widehat{x}|| > \rho$, there exist $y \in K$ and $u \in T(x)$ satisfying $||y \widehat{x}|| \le ||x \widehat{x}||$ and $\langle u, y x \rangle < 0$.
- (C4)' Given $\widehat{x} \in \mathbb{R}^n$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $\|x \widehat{x}\| > \rho$, there exists $y \in K$ and $u \in T(x)$ satisfying $\|y \widehat{x}\| < \|x \widehat{x}\|$ and $\langle u, y x \rangle \leq 0$.

Then the solution set of GVI(K,T) is nonempty and compact.

Proof. It is easy to see that every weakly convergent sequences in \mathbb{R}^n is norm convergent. Moreover, we note as in the proof of Corollary 3.2.2 that T(B) is compact in E^* , for all compact subset B of K.

As special cases, we obtain the following two existence theorems of solutions for variational inequality problems.

Theorem 3.2.8. Let E be a reflexive Banach space with a Fréchet differentiable norm, K be a closed convex set in E such that every weakly convergent sequence in K is norm convergent. Let $f: K \to E^*$ be a continuous mapping. Suppose that one of the following conditions hold:

(C5) Given $\widehat{x} \in E$, for any $\{x_n\} \in K$ where $\|x_n\| \to +\infty$ there exists a positive integer n_0 and $y \in K$ with $\|y - \widehat{x}\| < \|x_{n_0} - \widehat{x}\|$ such that $\langle f(x_{n_0}), y - x \rangle \leq 0$.

17

3

W

(6)

- (C6) Given $\widehat{x} \in E$, for any $\{x_n\} \in K$ where $||x_n|| \to +\infty$ there exists a positive integer n_0 and $y \in K$ with $||y \widehat{x}|| \le ||x_{n_0} \widehat{x}||$ such that $\langle f(x_{n_0}), y x \rangle < 0$.
- (C7) Given $\widehat{x} \in E$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $||x-\widehat{x}|| > \rho$, there exists $y \in K$ satisfying $||y-\widehat{x}|| \le ||x-\widehat{x}||$ and $\langle f(x), y-x \rangle < 0$.
- (C8) Given $\widehat{x} \in E$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $||x-\widehat{x}|| > \rho$, there exists $y \in K$ satisfying $||y-\widehat{x}|| < ||x-\widehat{x}||$ and $\langle f(x), y-x \rangle \leq 0$.

Then the solution set of variational inequality VI(K, f) is nonempty, closed and bounded.

3.3 System of nonlinear set-valued variational inclusions involving a finite family of $H(\cdot, \cdot)$ -accretive operators in Banach spaces

In this section, we assume that E is q-uniformly smooth real Banach space and C(E) is a nonempty closed convex set. Let $S_i, H_i : E \times E \to E, A_i, B_i : E \to E$ be single-valued operators, for all i = 1, 2, ..., N. For any fix $i \in \{1, 2, ..., N\}$, we let $M_i : E \to 2^E$, $H_i(A_i, B_i)$ -accretive set-valued operator and $U_i : E \to 2^E$ be a set-valued mapping which nonempty values. The system of nonlinear set-valued variational inclusions is to find $a_1, ..., a_N \in E, u_1 \in U_1(a_N), ..., u_N \in U_N(a_1)$ such that

$$0 \in S_i(a_i, u_i) + M_i(a_i), \text{ for all } i = 1, 2, ..., N.$$
 (3.3.1)

If N=2, then system of nonlinear set-valued variational inclusions (3.3.1) becomes to the following system of variational inclusions: finding $a_1, a_2 \in E$, $u_1 \in U_1(a_2)$ and $u_2 \in U_2(a_1)$ such that

$$\begin{cases}
0 \in S_1(a_1, u_1) + M_1(a_1) \\
0 \in S_2(a_2, u_2) + M_2(a_2).
\end{cases}$$
(3.3.2)

If N=1, then system of nonlinear set-valued variational inclusions (3.3.1) becomes to the following the class of nonlinear set-valued variational inclusions [48]: finding $a \in E$, $u \in U(a)$ such that

$$0 \in S(a, u) + M(a). \tag{3.3.3}$$

For solving the system of nonlinear set-valued variational inclusions involving a finite family of $H(\cdot, \cdot)$ -accretive operators in Banach spaces, let us give the following assumptions.

For any i = 1, 2, ..., N, we suppose that

()

13

- (A1) $H(A_i, B_i)$ is α_i -strongly accretive with respect to A_i , β_i -relaxed accretive with respect to B_i and $\alpha_i > \beta_i$
- (A2) $M_i: E \to 2^E$ is an $H_i(\cdot, \cdot)$ -accretive single-valued mapping,
- (A3) $U_i: E \to C(E)$ is a contraction set-valued mapping with $0 \le L_i < 1$ and nonempty values,
- (A4) $H_i(A_i, B_i)$ is r_i -Lipschitz continuous with respect to A_i and t_i -Lipschitz continuous with respect to B_i ,
- (A5) $S_i: E \times E \to E$ is l_i -Lipschitz continuous with respect to its first argument and m_i -Lipschitz continuous with respect to its second argument,
- (A6) $S_i(\cdot, u)$ is s_i -strongly accretive with respect to $H_i(A_i, B_i)$.

Lemma 3.3.1. For given $a_1, \ldots, a_N \in E$, $u_1 \in U_1(a_N), \ldots, u_N \in U_N(a_1)$, it is a solution of problem (3.3.1) if and only if

$$a_i = R_{M_i,\lambda_i}^{H_i(\cdot,\cdot)}[H_i(A_i(a_i), B_i(a_i)) - \lambda_i S_i(a_i, u_i)]$$
(3.3.4)

where $\lambda_i > 0$ are constants.

(.)

0

(3)

Proof. We note from the Definition 2.5.13 that $a_1, \ldots, a_N \in E, u_1 \in U_1(a_N), \ldots, u_N \in U_N(a_1)$ is a solution of (3.3.1) if and only if, for each $i = 1, 2, \ldots, N$, we have

$$a_{i} = R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[H_{i}(A_{i}(a_{i}), B_{i}(a_{i})) - \lambda_{i}S_{i}(a_{i}, u_{i})]$$

$$\Leftrightarrow a_{i} = [H_{i}(A_{i}, B_{i}) + \lambda_{i}M_{i}]^{-1}[H_{i}(A_{i}(a_{i}), B_{i}(a_{i})) - \lambda_{i}S_{i}(a_{i}, u_{i})]$$

$$\Leftrightarrow [H_{i}(A_{i}(a_{i}), B_{i}(a_{i})) - \lambda_{i}S_{i}(a_{i}, u_{i})] \in [H_{i}(A_{i}, B_{i}) + \lambda_{i}M_{i}](a_{i})$$

$$\Leftrightarrow -\lambda_{i}S_{i}(a_{i}, u_{i}) \in \lambda_{i}M_{i}(a_{i})$$

$$\Leftrightarrow 0 \in S_{i}(a_{i}, u_{i}) + M_{i}(a_{i}).$$

Algorithm 3.3.2. For given $a_0^1, \ldots, a_0^N \in E, u_0^1 \in U_1(a_0^N), \ldots, u_0^N \in U_N(a_0^1)$, we let

$$a_1^i = \sigma_0 a_0^i + (1 - \sigma_0) R_{M_i, \lambda_i}^{H_i(\cdot, \cdot)} [H_i(A_i(a_0^i), B_i(a_0^i)) - \lambda_i S_i(a_0^i, u_0^i)]$$

for all $i=1,2,\ldots,N$, where $0<\sigma_0\leq 1$ is a constant. By Nadler theorem [49], there exists $u_1^1\in U_1(a_1^N),\ldots,u_1^N\in U_N(a_1^1)$ such that

$$||u_1^i - u_0^i|| \le (1+1)D(U_i(a_1^{N-(i-1)}), U_i(a_0^{N-(i-1)})), \text{ for all } i = 1, 2, \dots, N,$$

where $D(\cdot, \cdot)$ is the Hausdorff pseudo metric on 2^E . Continuing the above process inductively, we can obtain the sequences $\{a_n^i\}$ and $\{u_n^i\}$ such that

$$a_{n+1}^{i} = \sigma_n a_n^{i} + (1 - \sigma_n) R_{M_i, \lambda_i}^{H_i(\cdot, \cdot)} [H_i(A_i(a_n^i), B_i(a_n^i)) - \lambda_i S_i(a_n^i, u_n^i)]$$
(3.3.5)

for all $n=1,2,3,\ldots,$ $i=1,2,\ldots,N$ where $0<\sigma_n\leq 1$ are constant with $\limsup_{n\to\infty}\sigma_n<1$. Therefore, by Nadler theorem [49], there exists $u_{n+1}^1\in U_1(a_{n+1}^N),\ldots,u_{n+1}^N\in U_N(a_{n+1}^1)$ such that

$$||u_{n+1}^{i} - u_{n}^{i}|| \le (1 + (1+n)^{-1})D(U_{i}(a_{n+1}^{N-(i-1)}), U_{i}(a_{n}^{N-(i-1)})), \quad (3.3.6)$$

for all n = 1, 2, 3, ..., i = 1, 2, ..., N.

3

O

(6)

(3)

The idea of the proof of the next theorem is contained in the paper of Verma [48] and Zou and Huang [12].

Theorem 3.3.3. Let E be q-uniformly smooth real Banach space. Let $A_i, B_i : E \to E$ be single-valued operators, $H_i : E \times E \to E$ be a single-valued operator satisfying (A1) and M_i , U_i , $H_i(A_i, B_i)$, S_i , $S_i(\cdot, u)$ satisfy conditions (A2)-(A6), respectively. If there exists a constant $c_{q,i}$ such that

$$\frac{\sqrt[q]{(r_i + t_i)^q - q\lambda_i s_i + c_{q,i}\lambda_i^q l_i^q}}{\alpha_i - \beta_i} + \frac{\lambda_i m_i}{\alpha_i - \beta_i} < 1$$
(3.3.7)

for all i = 1, 2, ..., N, then problem (3.3.1) has a solution $a_1, ..., a_N$, $u_1 \in U_1(a_N)$, $..., u_N \in U_N(a_1)$.

Proof. For any $i \in \{1, 2, ..., N\}$ and $\lambda_i > 0$, we define $F_i : E \times E \to E$ by

$$F_i(u,v) = R_{M_i,\lambda_i}^{H_i(v,v)}[H_i(A_i(u), B_i(u)) - \lambda_i S_i(u,v)], \tag{3.3.8}$$

for all $u, v \in E$. Let $J_i(x, y) = H_i(A_i(x), B_i(y))$. For any $(u_1, v_1), (u_2, v_2) \in E \times E$, we note by (3.3.8) and Lemma 2.5.14, that

$$||F_{i}(u_{1}, v_{1}) - F_{i}(u_{2}, v_{2})|| = ||R_{M_{i}, \lambda_{i}}^{H_{i}(\cdot, \cdot)}[H_{i}(A_{i}(u_{1}), B_{i}(u_{1})) - \lambda_{i}S_{i}(u_{1}, v_{1})] - R_{M_{i}, \lambda_{i}}^{H_{i}(\cdot, \cdot)}[H_{i}(A_{i}(u_{2}), B_{i}(u_{2})) - \lambda_{i}S_{i}(u_{2}, v_{2})]||$$

$$= \|R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[J_{i}(u_{1},u_{1}) - \lambda_{i}S_{i}(u_{1},v_{1})] - R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[J_{i}(u_{2},u_{2}) - \lambda_{i}S_{i}(u_{2},v_{2})]\|$$

$$\leq \frac{1}{\alpha_{i} - \beta_{i}} \|[J_{i}(u_{1},u_{1}) - \lambda_{i}S_{i}(u_{1},v_{1})] - [J_{i}(u_{2},u_{2}) - \lambda_{i}S_{i}(u_{2},v_{2})]\|$$

$$= \frac{1}{\alpha_{i} - \beta_{i}} \|[J_{i}(u_{1},u_{1}) - J_{i}(u_{2},u_{2})] - \lambda_{i}[S_{i}(u_{1},v_{1}) - S_{i}(u_{2},v_{2})]\|$$

$$\leq \frac{1}{\alpha_{i} - \beta_{i}} \|[J_{i}(u_{1},u_{1}) - J_{i}(u_{2},u_{2})] - \lambda_{i}[S_{i}(u_{1},v_{1}) - S_{i}(u_{2},v_{1})]\|$$

$$+ \frac{\lambda_{i}}{\alpha_{i} - \beta_{i}} \|[S_{i}(u_{2},v_{1}) - S_{i}(u_{2},v_{2})]\|. \tag{3.3.9}$$

By Lemma 2.4.17, we have

10

12

0

$$||J_{i}(u_{1}, u_{1}) - J_{i}(u_{2}, u_{2}) - \lambda_{i}[S_{i}(u_{1}, v_{1}) - S_{i}(u_{2}, v_{1})]||^{q}$$

$$\leq ||J_{i}(u_{1}, u_{1}) - J_{i}(u_{2}, u_{2})||^{q}$$

$$- q\lambda_{i}\langle S_{i}(u_{1}, v_{1}) - S_{i}(u_{2}, v_{1}), J_{q}(J_{i}(u_{1}, u_{1}) - J_{i}(u_{2}, u_{2}))\rangle$$

$$+ c_{q,i}\lambda_{i}^{q}||S_{i}(u_{1}, v_{1}) - S_{i}(u_{2}, v_{1})||^{q}.$$
(3.3.10)

Moreover, by (A4), we obtain

$$||J_{i}(u_{1}, u_{1}) - J_{i}(u_{2}, u_{2})|| \leq ||J_{i}(u_{1}, u_{1}) - J_{i}(u_{2}, u_{1})|| + ||J_{i}(u_{2}, u_{1}) - J_{i}(u_{2}, u_{2})||$$

$$\leq r_{i}||u_{1} - u_{2}|| + t_{i}||u_{1} - u_{2}||$$

$$\leq (r_{i} + t_{i})||u_{1} - u_{2}||.$$
(3.3.11)

From (A6), we have

$$-q\lambda_{i}\langle S_{i}(u_{1}, v_{1}) - S_{i}(u_{2}, v_{1}), J_{q}(J_{i}(u_{1}, u_{1}) - J_{i}(u_{2}, u_{2}))\rangle$$

$$\leq -q\lambda_{i}s_{i}\|u_{1} - u_{2}\|^{q}.$$
(3.3.12)

Moreover, from (A5), we obtain

$$||S_i(u_1, v_1) - S_i(u_2, v_1)|| \le |l_i||u_1 - u_2||$$
 (3.3.13)

and

$$||S_i(u_2, v_1) - S_i(u_2, v_2)|| \le m_i ||v_1 - v_2||.$$
 (3.3.14)

From (3.3.10)-(3.3.13), we have

$$||J_{i}(u_{1}, u_{1}) - J_{i}(u_{2}, u_{2}) - \lambda_{i}[S_{i}(u_{1}, v_{1}) - S_{i}(u_{2}, v_{1})]||^{q}$$

$$\leq \sqrt[q]{(r_{i} + t_{i})^{q} - q\lambda_{i}s_{i} + c_{q,i}\lambda_{i}^{q}l_{i}^{q}}||u_{1} - u_{2}||. \quad (3.3.15)$$

It follows from (3.3.9), (3.3.14) and (3.3.15) that

$$||F_{i}(u_{1}, v_{1}) - F_{i}(u_{2}, v_{2})|| \leq \frac{\sqrt[q]{(r_{i} + t_{i})^{q} - q\lambda_{i}s_{i} + c_{q,i}\lambda_{i}^{q}l_{i}^{q}}}{\alpha_{i} - \beta_{i}}||u_{1} - u_{2}|| + \frac{\lambda_{i}m_{i}}{\alpha_{i} - \beta_{i}}||v_{1} - v_{2}||.$$

$$(3.3.16)$$

Put

1

1

$$\theta_1^i = \frac{\sqrt[q]{(r_i + t_i)^q - q\lambda_i s_i + c_{q,i}\lambda_i^q l_i^q}}{\alpha_i - \beta_i}, \text{ and } \theta_2^i = \frac{\lambda_i m_i}{\alpha_i - \beta_i}.$$

Define $\|\cdot\|$ on $\underbrace{E \times \ldots \times E}_{N-\text{times}}$ by $\|(x_1, \ldots, x_N)\| = \|x_1\| + \ldots + \|x_N\|$ for all (x_1, \ldots, x_N) $\in \underbrace{E \times \ldots \times E}_{N-\text{times}}$. It is easy to see that $\underbrace{(E \times \ldots \times E}_{N-\text{times}}, \|\cdot\|)$ is a Banach space. For any given $x_1, \ldots, x_N \in E$, we choose a finite sequence $w_1 \in U_1(x_N), \ldots, w_N \in U_N(x_1)$. Define $Q: \underbrace{E \times \ldots \times E}_{N-\text{times}} \to \underbrace{E \times \ldots \times E}_{N-\text{times}}$ by $Q(x_1, \ldots, x_N) = (F_1(x_1, w_1), \ldots, F_N(x_N, w_N))$. Set $k = \max\{(\theta_1^1 + \theta_2^N L_N), \ldots, (\theta_2^1 L_1 + \theta_1^N)\}$ where L_1, \ldots, L_N are contraction constants of U_1, \ldots, U_N , respectively. We note that $\theta_1^i + \theta_2^i L_i < \theta_1^i + \theta_2^i < 1$, for all $i = 1, 2, \ldots, N$ and so k < 1. Let $x_1, \ldots, x_N \in E$, $w_1 \in U_1(x_N), \ldots, w_N \in U_N(x_1)$ and $y_1, \ldots, y_N \in E$, $z_1 \in U_1(y_N), \ldots, z_N \in U_N(y_1)$.

By (A3), we get

()

T.

13

(2)

$$||Q(x_{1},...,x_{N}) - Q(y_{1},...,y_{N})||$$

$$= ||(F_{1}(x_{1},w_{1}),...,F_{N}(x_{N},w_{N})) - (F_{1}(y_{1},z_{1}),...,F_{N}(y_{N},z_{N}))||$$

$$= ||F_{1}(x_{1},w_{1}) - F_{1}(y_{1},z_{1})|| + ... + ||F_{N}(x_{N},w_{N}) - F_{N}(y_{N},z_{N})||$$

$$\leq (\theta_{1}^{1}||x_{1} - y_{1}|| + \theta_{2}^{1}||w_{1} - z_{1}||) + ... + (\theta_{1}^{N}||x_{N} - y_{N}|| + \theta_{2}^{N}||w_{N} - z_{N}||)$$

$$\leq (\theta_{1}^{1}||x_{1} - y_{1}|| + \theta_{2}^{1}L_{1}||x_{N} - y_{N}||) + ... + (\theta_{1}^{N}||x_{N} - y_{N}|| + \theta_{2}^{N}L_{N}||x_{1} - y_{1}||)$$

$$= (\theta_{1}^{1} + \theta_{2}^{N}L_{N})||x_{1} - y_{1}|| + ... + (\theta_{1}^{N} + \theta_{2}^{1}L_{1})||x_{N} - y_{N}||$$

$$\leq k||x_{1} - y_{1}|| + ... + k||x_{N} - y_{N}||$$

$$= k(||x_{1} - y_{1}|| + ... + ||x_{N} - y_{N}||)$$

$$= k||(x_{1}, ..., x_{N}) - (y_{1}, ..., y_{N})||, \qquad (3.3.17)$$

and so Q is a contraction on $\underbrace{E \times \ldots \times E}_{N-\text{times}}$. Hence there exists $a_1, \ldots, a_N \in E$, $u_1 \in U_1(a_N), \ldots, u_N \in U_N(a_1)$ such that $a_1 = F_1(a_1, u_1), \ldots, a_N = F_N(a_N, u_N)$. From Lemma 3.3.1, $a_1, \ldots, a_N \in E$, $u_1 \in U_1(a_N), \ldots, u_N \in U_N(a_1)$ is the solution of the problem (3.3.1).

Theorem 3.3.4. Let E be q-uniformly smooth real Banach space. For $i=1,2,\ldots,N$. Let $A_i, B_i : E \to E$ be two single-valued operators, $H_i : E \times E \to E$ be a single-valued operator satisfying (A1) and suppose that $M_i, U_i, H_i(A_i, B_i), S_i, S_i(\cdot, u)$ satisfy conditions (A2)-(A6), respectively. Then, for any $i \in \{1, 2, \ldots, N\}$, the sequence $\{a_n^1\}_{n=1}^{\infty}$ and $\{u_n^i\}_{n=1}^{\infty}$, generated by Algorithm 3.3.2, converge strongly to $a_i, u_i \in U_i(a_{N-(i-1)})$, respectively.

Proof. By Theorem 3.3.3, the problem (3.3.1) has a solution $a_1, \ldots, a_N \in E$, $u_1 \in U_1(a_N), \ldots, u_N \in U_N(a_1)$. From Lemma 3.3.1, we note that

$$a_i = \sigma_n a_i + (1 - \sigma_n) R_{M_i, \lambda_i}^{H_i(\cdot, \cdot)} [H_i(A_i(a_i), B_i(a_i) - \lambda_i S_i(a_i, u_i))],$$
 (3.3.18)

for all i = 1, 2, ..., N. Hence by (3.3.5) and (3.3.18), we have

$$\begin{split} \|a_{n+1}^{i} - a_{n}^{i}\| &= \|\sigma_{n}a_{n}^{i} + (1 - \sigma_{n})R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[H_{i}(A_{i}(a_{n}^{i}), B_{i}(a_{n}^{i})) - \lambda_{i}S_{i}(a_{n}^{i}, u_{n}^{i})] \\ &- [\sigma_{n}a_{n-1}^{i} + (1 - \sigma_{n})R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[H_{i}(A_{i}(a_{n-1}^{i}), B_{i}(a_{n-1}^{i})) \\ &- \lambda_{i}S_{i}(a_{n-1}^{i}, u_{n-1}^{i})]]\| \\ &\leq \sigma_{n}\|a_{n}^{i} - a_{n-1}^{i}\| \\ &+ (1 - \sigma_{n})\|R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[H_{i}(A_{i}(a_{n}^{i}), B_{i}(a_{n}^{i})) - \lambda_{i}S_{i}(a_{n}^{i}, u_{n}^{i})] \\ &- R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[H_{i}(A_{i}(a_{n-1}^{i}), B_{i}(a_{n-1}^{i})) - \lambda_{i}S_{i}(a_{n-1}^{i}, u_{n-1}^{i})]\| \\ &= \sigma_{n}\|a_{n}^{i} - a_{n-1}^{i}\| + (1 - \sigma_{n})\|R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[J_{i}(a_{n}^{i}, a_{n}^{i}) - \lambda_{i}S_{i}(a_{n}^{i}, u_{n}^{i})] \\ &- R_{M_{i},\lambda_{i}}^{H_{i}(\cdot,\cdot)}[J_{i}(a_{n-1}^{i}, a_{n-1}^{i}) - \lambda_{i}S_{i}(a_{n-1}^{i}, u_{n-1}^{i})]\| \\ &\leq \sigma_{n}\|a_{n}^{i} - a_{n-1}^{i}\| + (1 - \sigma_{n})\frac{1}{\alpha_{i} - \beta_{i}}\|[J_{i}(a_{n}^{i}, a_{n}^{i}) - \lambda_{i}S_{i}(a_{n}^{i}, u_{n}^{i})] \\ &- [J_{i}(a_{n}^{i}, a_{n-1}^{i}) - \lambda_{i}S_{i}(a_{n-1}^{i}, u_{n-1}^{i})]\| \\ &= \sigma_{n}\|a_{n}^{i} - a_{n-1}^{i}\| + (1 - \sigma_{n})\frac{1}{\alpha_{i} - \beta_{i}}\|[J_{i}(a_{n}^{i}, a_{n}^{i}) - J_{i}(a_{n-1}^{i}, a_{n-1}^{i})] \\ &- \lambda_{i}[S_{i}(a_{n}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n-1}^{i})]\| \\ &\leq \sigma_{n}\|a_{n}^{i} - a_{n-1}^{i}\| + (1 - \sigma_{n})\frac{1}{\alpha_{i} - \beta_{i}}\|[J_{i}(a_{n}^{i}, a_{n}^{i}) - J_{i}(a_{n-1}^{i}, a_{n-1}^{i})] \\ &- \lambda_{i}[S_{i}(a_{n}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n}^{i})]\| \\ &+ (1 - \sigma_{n})\frac{1}{\alpha_{i} - \beta_{i}}\|S_{i}(a_{n-1}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n-1}^{i})\|. \end{split}$$

By Lemma 2.4.17, we obtain

0

1

$$||J_{i}(a_{n}^{i}, a_{n}^{i}) - J_{i}(a_{n-1}^{i}, a_{n-1}^{i}) - \lambda_{i}[S_{i}(a_{n}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n}^{i})]||^{q}$$

$$\leq ||J_{i}(a_{n}^{i}, a_{n}^{i}) - J_{i}(a_{n-1}^{i}, a_{n-1}^{i})||^{q}$$

$$- q\lambda_{i}\langle S_{i}(a_{n}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n}^{i}), J_{q,i}(J_{i}(a_{n}^{i}, a_{n}^{i}) - J_{i}(a_{n-1}^{i}, a_{n-1}^{i})\rangle$$

$$+ c_{q,i}\lambda_{i}^{q}||S_{i}(a_{n}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n}^{i})||^{q}.$$

$$(3.3.20)$$

From (A4), we note that

$$||J_i(a_n^i, a_n^i) - J_i(a_{n-1}^i, a_{n-1}^i)||$$

$$= \|H_{i}(A_{i}(a_{n}^{i}), B_{i}(a_{n}^{i})) - H_{i}(A_{i}(a_{n-1}^{i}), B_{i}(a_{n-1}^{i}))\|$$

$$\leq \|H_{i}(A_{i}(a_{n}^{i}), B_{i}(a_{n}^{i})) - H_{i}(A_{i}(a_{n-1}^{i}), B_{i}(a_{n}^{i}))\|$$

$$+ \|H_{i}(A_{i}(a_{n-1}^{i}), B_{i}(a_{n}^{i})) - H_{i}(A_{i}(a_{n-1}^{i}), B_{i}(a_{n-1}^{i}))\|$$

$$\leq (r_{i} + t_{i})\|a_{n}^{i} - a_{n-1}^{i}\|.$$

$$(3.3.21)$$

From (3.3.20) and (A6), it follows that

$$-q\lambda_{i}\langle S_{i}(a_{n}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n}^{i}), J_{q,i}(J_{i}(a_{n}^{i}, a_{n}^{i}) - J_{i}(a_{n-1}^{i}, a_{n-1}^{i}))\rangle$$

$$\leq -q\lambda_{i}s_{i}\|a_{n}^{i} - a_{n-1}^{i}\|^{q}.$$
(3.3.22)

By (3.3.19), (3.3.20) and (A5), we have

$$||S_{i}(a_{n-1}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n-1}^{i})|| \leq m_{i}||u_{n}^{i} - u_{n-1}^{i}||$$

$$\leq m_{i}d_{i}(1 + n^{-1})||a_{n}^{i} - a_{n-1}^{i}|| \qquad (3.3.23)$$

and

1

1

$$||S_i(a_n^i, u_n^i) - S_i(a_{n-1}^i, u_n^i)|| \le |l_i||a_n^i - a_{n-1}^i||.$$
 (3.3.24)

From (3.3.19)-(3.3.24), we obtain

$$||J_{i}(a_{n}^{i}, a_{n}^{i}) - J_{i}(a_{n-1}^{i}, a_{n-1}^{i})) - \lambda_{i}[S_{i}(a_{n}^{i}, u_{n}^{i}) - S_{i}(a_{n-1}^{i}, u_{n}^{i})]||^{q}$$

$$\leq \frac{\sqrt[q]{(r_{i} + t_{i})^{q} - q\lambda_{i}s_{i} + c_{q,i}\lambda_{i}^{q}l_{i}^{q}}}{\alpha_{i} - \beta_{i}}||a_{n}^{i} - a_{n-1}^{i}||$$

$$+ \frac{\lambda_{i}m_{i}}{\alpha_{i} - \beta_{i}}d_{i}(1 + n^{-1})||a_{n}^{i} - a_{n-1}^{i}||.$$
(3.3.25)

Hence by (3.3.19), (3.3.24) and (3.3.25), we have

$$||a_{n+1}^{i} - a_{n}^{i}|| \leq \sigma_{n} ||a_{n}^{i} - a_{n-1}^{i}|| + (1 - \sigma_{n}) \frac{\sqrt[q]{(r_{i} + t_{i})^{q} - q\lambda_{i}s_{i} + c_{q,i}\lambda_{i}^{q}l_{i}^{q}}}{\alpha_{i} - \beta_{i}} ||a_{n}^{i} - a_{n-1}^{i}|| + (1 - \sigma_{n}) \frac{\lambda_{i}m_{i}}{\alpha_{i} - \beta_{i}} d_{i}(1 + n^{-1}) ||a_{n}^{i} - a_{n-1}^{i}||.$$

$$(3.3.26)$$

Put $k = \max\{\pi_1 \dots, \pi_N\}$,

where

13

(3)

al.

$$\pi_i = \frac{\sqrt[q]{(r_i+t_i)^q - q\lambda_i s_i + c_{q,i}\lambda_i^q l_i^q}}{\alpha_i - \beta_i} + \frac{\lambda_i m_i d_i (1+n^{-1})}{\alpha_i - \beta_i}.$$

It follows from (3.3.26)that

$$||a_{n+1}^{1} - a_{n}^{1}|| + \dots + ||a_{n+1}^{N} - a_{n}^{N}|| \leq \sigma_{n} ||a_{n}^{1} - a_{n-1}^{1}|| + (1 - \sigma_{n})k||a_{n}^{1} - a_{n-1}^{1}|| + \dots + \sigma_{n} ||a_{n}^{N} - a_{n-1}^{N}|| + (1 - \sigma_{n})k||a_{n}^{N} - a_{n-1}^{N}||.$$

$$(3.3.27)$$

Set $c_n = ||a_n^1 - a_{n-1}^1|| + \ldots + ||a_n^N - a_{n-1}^N||$ and $k_n = k + (1 - k)\sigma_n$. From (3.3.27), we obtain

$$c_{n+1} \leq k_n c_n, \quad \forall \ n = 0, 1, 2, \dots.$$

Since $\limsup_{n\to\infty} \sigma_n < 1$, we have $\limsup_{n\to\infty} k_n < 1$. Thus, it follows from Lemma 2.3.13 that $c_{n+1}\to 0$ and hence $\lim_{n\to\infty} \|a_{n+1}^i-a_n^i\|=0$. Therefore $\{a_n^i\}$ is a Cauchy sequence and hence there exists $a_i\in E$ such that $a_n^i\to a_i$ as $n\to\infty$ for all $i=1,2,\ldots,N$. Next, we will show that $u_n^1\to u_1\in U_1(a_N)$ as $n\to\infty$. Hence, it follows from (3.3.6) that $\{u_n^1\}$ is also a Cauchy sequence. Thus there exists $u_1\in E$ such that $u_n^1\to u_1$ as $n\to\infty$. Consider,

$$d(u_1, U_1(a_N)) = \inf\{\|u_1 - q\| : q \in U_1(a_N)\}$$

$$\leq \|u_1 - u_n^1\| + d(u_n^1, U_1(a_N))$$

$$\leq \|u_1 - u_n^1\| + D(U_1(a_n^N), U_1(a_N))$$

$$\leq \|u_1 - u_n^1\| + d_1\|a_n^N - a_N\| \to 0.$$

as $n \to \infty$. Since $U_1(a_N)$ is closed and $d(u_1, U_1(a_N)) = 0$, we have $u_1 \in U_1(a_N)$. By continuing the above process, there exist $u_2 \in U_2(a_{N-1}), \ldots, u_N \in U_N(a_1)$ such that $u_n^2 \to u_2, \ldots, u_n^N \to u_N$ as $n \to \infty$. Hence, by (3.3.5), we obtain

$$a_i = R_{M_i,\lambda_i}^{H_i(\cdot,\cdot)}[H_i(A_i(a_i), B_i(a_i)) - \lambda_i S_i(a_i, u_i)].$$

Therefore, it follows from Lemma 3.3.1 that a_1, \ldots, a_N is a solution of problem (3.3.1).

Setting N=2 in Theorem 3.3.3, we have the following result.

1

(1)

3

E.

Corollary 3.3.5. Let E be q-uniformly smooth real Banach spaces. Let A_i, B_i : $E \to E$ be two singled valued operators, $H_i: E \times E \to E$ a single-valued operator such that $H(A_i, B_i)$ is α_i -strongly accretive with respect to A_i , β_i -relaxed accretive with respect to B_i and $\alpha_i > \beta_i$ and suppose that $M_i: E \to 2^E$ is an $H_i(\cdot, \cdot)$ -accretive set-valued mapping and $U_i: E \to C(E)$ is a contraction set-valued mapping with $0 \le L_i < 1$ and nonempty values for all i = 1, 2. Assume that $H_i(A_i, B_i)$ is r_i -Lipschitz continuous with respect to A_i and A_i -Lipschitz continuous with respect to A_i and A_i -Lipschitz continuous with respect to A_i and A_i -Lipschitz continuous with respect to its first argument and A_i -Lipschitz continuous with respect to its second argument, A_i -Lipschitz continuous with respect to A_i -Lipschitz continuous with respect to its second argument, A_i -Lipschitz continuous with respect to A_i -Lipschitz continuous with respect to its second argument, A_i -Lipschitz continuous with respect to A_i -Lipschitz continuous with respect to its second argument, A_i -Lipschitz continuous with respect to A_i -Lipschitz continuous with respect to its second argument, A_i -Lipschitz continuous with respect to A_i -Lipschitz continuous

$$\frac{\sqrt[q]{(r_i+t_i)^q - q\lambda_i s_i + c_{q,i}\lambda_i^q l_i^q}}{\alpha_i - \beta_i} + \frac{\lambda_i m_i}{\alpha_i - \beta_i} < 1,$$

for all $i \in \{1, 2\}$, then problem (3.3.2) has a solution $a_1, a_2 \in E$, $u_1 \in U_1(a_2)$, $u_2 \in U_2(a_1)$.

Setting N=1 in Theorem 3.3.3, we have the following result.

Corollary 3.3.6. Let E be q-uniformly smooth real Banach spaces. Let $A, B: E \to E$ be four singled valued operators, $H: E \times E \to E$ be a single-valued operator such that H(A,B) is α -strongly accretive with respect to A, β -relaxed accretive with respect to B, and $\alpha > \beta$ and suppose that $M: E \to 2^E$ is an $H(\cdot, \cdot)$ -accretive set-valued mapping, $U: E \to C(E)$ is a contraction set-valued mapping with $0 \le L < 1$ and nonempty values. Assume that H(A,B) is r-Lipschitz continuous with respect to A and A-Lipschitz continuous with respect to A and A-Lipschitz continuous with respect to A-Lipschitz continuous with respect to A-Lipschitz continuous with respect to A-Lipschitz continuous

with respect to its second argument, $S(\cdot,y)$ is s-strongly accretive with respect to H(A,B). If

$$\frac{\sqrt[q]{(r+t)^q - q\lambda s + c_q\lambda^q l^q}}{\alpha - \beta} + \frac{\lambda m}{\alpha - \beta} < 1$$

then problem (3.3.3) has a solution $a \in E$, $u \in U(a)$.

()

1)

6

3.4 Existence and algorithm for generalized mixed equilibrium problem with a relaxed monotone mapping

In this section, let X be a Hausdorff topological vector space, K be a nonempty closed convex subset of X. Let $g,h:K\times K\to \mathbb{R},\ A:K\to X^*$ be a monotone mapping, and $T:K\to X^*$ a relaxed η - α monotone mapping. We consider the following generalized mixed equilibrium problem with a relaxed monotone mapping: finding $x\in K$ such that

$$g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle \ge 0$$
 for all $y \in K$. (3.4.1)

The set of solution of (3.4.1) is denoted by GMEPRM(g, h, T, A).

If $h \equiv 0$, then generalized mixed equilibrium problem with a relaxed monotone mapping (3.4.1) becomes to the following the generalized equilibrium problem with a relaxed monotone mapping [50]: find $x \in K$ such that

$$g(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle \ge 0 \text{ for all } y \in K,$$
 (3.4.2)

where K is a nonempty closed convex subset of a real Hilbert space $H, A : K \to H$ is a λ -inverse-strongly mapping, and $g : K \times K \to \mathbb{R}$ is a bifunction mapping.

For proving our main result, let us give the following assumptions:

- $(\widehat{A}1)$ g(x,x)=0 for all $x \in K$;
- $(\widehat{A}2)$ g is monotone, i.e. $g(x,y)+g(y,x)\leq 0$ for all $x,y\in K$;

- $(\widehat{A}3)$ for each $x \in K$, $y \mapsto g(x,y)$ is convex and lower semicontinuous;
- $(\widehat{A}4)$ for each $x, y, z \in K$, $\limsup_{t\to 0} g(tz + (1-t)x, y) \le g(x, y)$;
- $(\widehat{B}1)$ h(x,x) = 0 for all $x \in K$;

3

19

0

(1)

- $(\widehat{B}2)$ for each $x \in K$, $y \mapsto h(x,y)$ is lower semicontinuous;
- $(\widehat{B}3)$ for each $x \in K$, $y \mapsto h(x, y)$ is convex;
- ($\widehat{B}4$) for each $x, y, z \in K$, $\limsup_{t\to 0} h(tz + (1-t)x, y) \le h(x, y)$;
- ($\widehat{C}1$) $\eta(x,y) + \eta(y,x) = 0$ for all $x,y \in K$;
- (\widehat{C} 2) for each $u, v \in K$, $z \mapsto \langle Tv, \eta(z, u) \rangle$ is convex and lower semicontinuous and $z \mapsto \langle Tu, \eta(v, z) \rangle$ is lower semicontinuous;
- (\widehat{C} 3) for each $x, y \in K$, $\alpha(x y) + \alpha(y x) \ge 0$;
- $(\widehat{C}4) \text{ for each } u, v, x, z \in K, \ \limsup_{t \to 0} \langle Tu, \eta(v, tx + (1-t)z) \rangle \leq \langle Tu, \eta(v, z) \rangle;$
- ($\widehat{D}1$) for each $u, v \in K$, $z \mapsto \langle Av, z u \rangle$ is convex and lower semicontinuous and $z \mapsto \langle Au, v z \rangle$ is lower semicontinuous;
- (\widehat{D} 2) for each $u, v, x, z \in K$, $\limsup_{t\to 0} \langle Au, v (tx + (1-t)z) \rangle \leq \langle Au, v z \rangle$;
- $(\widehat{D}3) \ \langle Tx, \eta(y,x) \rangle + \langle Ty, \eta(x,y) \rangle + \langle Ax, y x \rangle + \langle Ay, x y \rangle \leq 0 \text{ for all } x, y \in K.$

The idea of the proof of the next theorem is contained in the paper of Peng and Yao [51], Wang, et al. [50], and Combettes and Hirstoaga [52].

Lemma 3.4.1. Let X be a Hausdorff topological vector space, K be a nonempty closed convex subset of X. Let $g: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{A}1)$ and $(\widehat{A}3)$, and $h: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{B}1)$ and $(\widehat{B}3)$. Let $T: K \to X^*$ be an η -hemicontinuous and relaxed η - α monotone mapping satisfying $(\widehat{C}2)$. Let $A: K \to X^*$ be a monotone and hemicontinuous mapping satisfying $(\widehat{D}1)$ and assume that $\eta(x,x) = 0$ for all $x \in K$. Then for all $x \in K$ the following problems are equivalent;

(i) find $x \in K$ such that

)

()

(1)

(3)

$$g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge 0 \quad for \ all \quad y \in K;$$

(ii) find $x \in K$ such that

$$g(x,y) + h(x,y) + \langle Ty, \eta(y,x) \rangle + \langle Ay, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \geq \alpha(y-x) \quad for \ all \quad y \in K.$$

Proof. Let $x \in K$ be a solution of the problem (i). Since T is relaxed η - α monotone and A is monotone, we get

$$\begin{split} g(x,y) + h(x,y) + \langle Ty, \eta(y,x) \rangle + \langle Ay, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \\ & \geq g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \alpha(y-x) + \langle Ax, y - x \rangle \\ & + \frac{1}{r} \langle y - x, x - z \rangle \\ & \geq \alpha(y-x), \quad \text{for all} \quad y \in K. \end{split}$$

Hence x is a solution of the problem (ii).

Conversely, let $x \in K$ be a solution of the problem (ii). Setting $y_t = (1 - t)x + ty$ for all $t \in (0,1)$, then $y_t \in K$. Thus, it follows that

$$g(x, y_t) + h(x, y_t) + \langle Ty_t, \eta(y_t, x) \rangle + \langle Ay_t, y_t - x \rangle + \frac{1}{r} \langle y_t - x, x - z \rangle$$

$$\geq \alpha(y_t - x)$$

$$= t^p \alpha(y - x). \quad (3.4.3)$$

From the conditions $(\widehat{A}1)$, $(\widehat{A}3)$, $(\widehat{B}1)$, $(\widehat{B}3)$, $(\widehat{C}2)$ and $(\widehat{D}1)$, we obtain

$$g(x, y_t) \le (1 - t)g(x, x) + tg(x, y) = tg(x, y),$$
 (3.4.4)

$$h(x, y_t) \le (1 - t)h(x, x) + th(x, y) = th(x, y),$$
 (3.4.5)

$$\langle Ty_t, \eta(y_t, x) \rangle \leq (1 - t) \langle Ty_t, \eta(x, x) \rangle + t \langle Ty_t, \eta(y, x) \rangle$$

$$= t\langle T(x+t(y-x)), \eta(y,x)\rangle, \qquad (3.4.6)$$

and

$$\langle Ay_t, y_t - x \rangle = \langle Ay_t, x + t(y - x) - x \rangle = t \langle A(x + t(y - x)), y - x \rangle. \quad (3.4.7)$$

Since

17

(1)

$$\langle y_t - x, x - z \rangle = \langle x + t(y - x) - x, x - z \rangle = t \langle y - x, x - z \rangle, \tag{3.4.8}$$

it follows from (3.4.3)-(3.4.8) that

$$g(x,y) + h(x,y) + \langle T(x+t(y-x)), \eta(y,x) \rangle + \langle A(x+t(y-x)), y-x \rangle + \frac{1}{r} \langle y-x, x-z \rangle \geq t^{p-1} \alpha(y-x), \quad (3.4.9)$$

for all $y \in K$. Letting $t \to 0$ in (3.4.9), we get

$$g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge 0$$
, (3.4.10)

for all $y \in K$. Hence x is a solution of the problem (i). This completes the proof.

Theorem 3.4.2. Let X be a Hausdorff topological vector space, K be a nonempty compact convex subset of X. Let $g: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{A}1)$ and $(\widehat{A}3)$ and let $h: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{B}1)$ and $(\widehat{B}3)$. Let $T: K \to X^*$ be an η -hemicontinuous and relaxed η - α monotone mapping satisfying $(\widehat{C}1)$ - $(\widehat{C}3)$. Let $A: K \to X^*$ be a monotone and hemicontinuous mapping satisfying $(\widehat{D}1)$ - $(\widehat{C}3)$. Then, for all r > 0 and $z \in K$ there exists $x \in K$ such that

$$g(x,y)+h(x,y)+\langle Tx,\eta(y,x)\rangle+\langle Ax,y-x\rangle+\frac{1}{r}\langle y-x,x-z\rangle\geq 0, \ \ for \ all \ \ y\in K.$$

Proof. Let z be any given point in K and let r > 0. We will show that $T_r(z) \neq \emptyset$. Define $M_z, N_z : K \to 2^K$ by

$$M_z(y) = \left\{ x \in K : g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge 0 \right\}, \text{ for all } y \in K$$

and

X

X

13

(/1

$$N_z(y) = \left\{ x \in K : g(x,y) + h(x,y) + \langle Ty, \eta(y,x) \rangle + \langle Ay, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge \alpha(y - x) \right\}, \text{ for all } y \in K.$$

Note that, for each $y \in K$, $M_z(y)$ is nonempty because $y \in M_z(y)$. We claim that M_z is a KKM mapping. Assume that M_z is not a KKM mapping. Then there exists $\{y_1, y_2, ..., y_n\} \subset K$ and $t_i > 0$, i = 1, 2, ..., n with $\sum_{i=1}^n t_i = 1$ such that $\widehat{z} = \sum_{i=1}^n t_i y_i \notin \bigcup_{i=1}^n M_z(y_i)$ for each i = 1, 2, ..., n. This implies that

$$g(\widehat{z}, y_i) + h(\widehat{z}, y_i) + \langle T\widehat{z}, \eta(y_i, \widehat{z}) \rangle + \langle A\widehat{z}, y_i - \widehat{z} \rangle + \frac{1}{r} \langle y_i - \widehat{z}, \widehat{z} - z \rangle < 0,$$

for each i=1,2,...,n. By $(\widehat{A}1)$, $(\widehat{A}3)$, $(\widehat{B}1)$, $(\widehat{B}3)$, $(\widehat{C}2)$ and $(\widehat{D}1)$, we have

$$0 = g(\widehat{z}, \widehat{z}) + h(\widehat{z}, \widehat{z})$$

$$= g\left(\widehat{z}, \sum_{i=1}^{n} t_{i} y_{i}\right) + h\left(\widehat{z}, \sum_{i=1}^{n} t_{i} y_{i}\right) + \left\langle T\widehat{z}, \eta\left(\sum_{i=1}^{n} t_{i} y_{i}, \widehat{z}\right)\right\rangle$$

$$+ \left\langle A\widehat{z}, \sum_{i=1}^{n} t_{i} y_{i} - \widehat{z}\right\rangle$$

$$\leq \sum_{i=1}^{n} t_{i} g(\widehat{z}, y_{i}) + \sum_{i=1}^{n} t_{i} h(\widehat{z}, y_{i}) + \sum_{i=1}^{n} t_{i} \left\langle T\widehat{z}, \eta(y_{i}, \widehat{z})\right\rangle + \sum_{i=1}^{n} t_{i} \left\langle A\widehat{z}, y_{i} - \widehat{z}\right\rangle$$

$$< \sum_{i=1}^{n} t_{i} \frac{1}{r} \left\langle \widehat{z} - y_{i}, \widehat{z} - z\right\rangle$$

$$= 0,$$

which is a contradiction. Hence M_z is a KKM mapping. We now show that

 $M_z(y) \subset N_z(y)$ for all $y \in K$. For any $y \in K$, we let $x \in M_z(y)$. Thus, we have

$$g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge 0.$$

Since T is relaxed η - α monotone and A is monotone, we get

(1)

1

3

11

$$g(x,y) + h(x,y) + \langle Ty, \eta(y,x) \rangle + \langle Ay, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle$$

$$\geq g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \alpha(y-x) + \langle Ax, y - x \rangle$$

$$+ \frac{1}{r} \langle y - x, x - z \rangle$$

$$\geq \alpha(y-x).$$

This implies that $x \in N_z(y)$ and hence $M_z(y) \subset N_z(y)$ for all $y \in K$. Since $z \mapsto \langle Ty, \eta(y, z) \rangle$ and $z \mapsto \langle Ay, y - z \rangle$ are the lower semicontinuous function, we have $z \mapsto \langle Ty, \eta(y, z) \rangle$ and $z \mapsto \langle Ay, y - z \rangle$ are weakly lower semicontinuous. Thus $M_z(y)$ is weakly closed for all $y \in K$ implies that $M_z(y)$ is closed for all $y \in K$. Since K is compact, we have $M_z(y)$ is compact in K for all $y \in K$. By Lemma 3.4.1 and Lemma 2.5.7, we get

$$\bigcap_{y \in K} M_z(y) = \bigcap_{y \in K} N_z(y) \neq \emptyset.$$

Therefore, there exists $x \in K$ such that

$$g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge 0.$$

Theorem 3.4.3. Let H be a real Hilbert space, K be a nonempty bounded closed convex subset of H. Let $g: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{A}1)$ - $(\widehat{A}3)$ and let $h: K \times K \to \mathbb{R}$ be a monotone mapping satisfying $(\widehat{B}1)$ - $(\widehat{B}3)$. Let $T: K \to H$ be an η -hemicontinuous and relaxed η - α monotone mapping satisfying $(\widehat{C}1)$ - $(\widehat{C}3)$. Let $A: K \to H$ be a λ -inverse-strongly monotone and hemicontinuous mapping satisfying $(\widehat{D}1)$. For r > 0 and $z \in K$, define $T_r: K \to 2^K$ by

$$T_r(z) = \left\{ x \in K : g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge 0, \text{ for all } y \in K \right\}.$$

Then, the following results hold:

- (i) $dom T_r = H$;
- (ii) T_r is single-valued;
- (iii) T_r is firmly nonexpansive i.e., for any $x, y \in K$,

$$||T_r(x) - T_r(y)||^2 \le \langle T_r(x) - T_r(y), x - y \rangle;$$

- (iv) $F(T_r) = GMEPRM(g, h, T, A)$;
- (v) GMEPRM(g, h, T, A) is closed and convex.

Proof. Step 1. We first show that $\text{dom}T_r = H$. Since K is bounded closed and convex, we note that K is weakly compact. Hence, for every r > 0 and $z \in K$ there exists $x \in K$ such that

$$g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge 0$$
, for all $y \in K$.

Step 2. We will show that T_r is single-valued. For each $z \in K$ and r > 0, let $x_1, x_2 \in T_r(z)$. Thus, we have

$$g(x_1, x_2) + h(x_1, x_2) + \langle Tx_1, \eta(x_2, x_1) \rangle + \langle Ax_1, x_2 - x_1 \rangle + \frac{1}{r} \langle x_2 - x_1, x_1 - z \rangle \ge 0$$
and
$$g(x_2, x_1) + h(x_2, x_1) + \langle Tx_2, \eta(x_1, x_2) \rangle + \langle Ax_2, x_1 - x_2 \rangle + \frac{1}{r} \langle x_1 - x_2, x_2 - z \rangle \ge 0.$$
Adding the two inequalities, we obtain

$$g(x_1, x_2) + h(x_1, x_2) + g(x_2, x_1) + h(x_2, x_1) + \langle Tx_1 - Tx_2, \eta(x_2, x_1) \rangle + \langle Ax_1 - Ax_2, x_2 - x_1 \rangle + \frac{1}{r} \langle x_2 - x_1, x_1 - x_2 \rangle \ge 0.$$

0

3

D

From the monotonicity of H and $(\widehat{A}2)$, we have

$$\langle Tx_1 - Tx_2, \eta(x_2, x_1) \rangle + \langle Ax_1 - Ax_2, x_2 - x_1 \rangle + \frac{1}{r} \langle x_2 - x_1, x_1 - x_2 \rangle \ge 0.$$

This implies that

)

1

3

$$\frac{1}{r}\langle x_2 - x_1, x_1 - x_2 \rangle \ge \langle Tx_2 - Tx_1, \eta(x_2, x_1) \rangle + \langle x_2 - x_1, Ax_2 - Ax_1 \rangle. (3.4.11)$$

Since T is relaxed η - α monotone, A is λ -inverse-strongly monotone and r > 0, it follows that

$$\langle x_2 - x_1, x_1 - x_2 \rangle \ge r \left[\alpha(x_2 - x_1) + \lambda ||Ax_2 - Ax_1||^2 \right] \ge r\alpha(x_2 - x_1).$$
 (3.4.12)

By exchanging the position of x_1 and x_2 in (3.4.11), we get

$$\frac{1}{r}\langle x_1 - x_2, x_2 - x_1 \rangle \ge \langle Tx_1 - Tx_2, \eta(x_1, x_2) \rangle + \langle x_1 - x_2, Ax_1 - Ax_2 \rangle \ge \alpha(x_1 - x_2).$$

Hence $\langle x_1 - x_2, x_2 - x_1 \rangle \ge r\alpha(x_1 - x_2)$ and therefore

$$\langle x_2 - x_1, x_1 - x_2 \rangle = \langle x_1 - x_2, x_2 - x_1 \rangle \ge r\alpha(x_1 - x_2).$$
 (3.4.13)

Adding the inequalities (3.4.12) and (3.4.13) and using (\widehat{C}_3) , we have

$$-2||x_1 - x_2||^2 = 2\langle x_2 - x_1, x_1 - x_2 \rangle \ge 0.$$

Hence $x_1 = x_2$ and therefore T_r is a single-valued mapping.

Step 3. We will show that T_r is a firmly nonexpansive mapping. For $x,y\in H,$ we note that

$$g(T_r(x), T_r(y)) + h(T_r(x), T_r(y)) + \langle TT_r(x), \eta(T_r(y), T_r(x)) \rangle$$
$$+ \langle AT_r(x), T_r(y) - T_r(x) \rangle + \frac{1}{r} \langle T_r(y) - T_r(x), T_r(x) - x \rangle \ge 0$$

and

7

0

$$g(T_r(y), T_r(x)) + h(T_r(y), T_r(x)) + \langle TT_r(y), \eta(T_r(x), T_r(y)) \rangle$$

+ $\langle AT_r(y), T_r(x) - T_r(y) \rangle + \frac{1}{r} \langle T_r(x) - T_r(y), T_r(y) - y \rangle \ge 0.$

By $(\widehat{A}2)$, $(\widehat{C}1)$, r > 0, and h is monotone we obtain

$$\langle TT_r(x) - TT_r(y), \eta(T_r(y), T_r(x)) \rangle + \langle AT_r(x) - AT_r(y), T_r(y) - T_r(x) \rangle$$

$$+ \frac{1}{r} \langle T_r(y) - T_r(x), T_r(x) - x - T_r(y) + y \rangle \ge 0.$$

Thus, we have

$$\frac{1}{r}\langle T_r(y) - T_r(x), T_r(x) - T_r(y) + y - x \rangle$$

$$\geq \langle TT_r(y) - TT_r(x), \eta(T_r(y), T_r(x)) \rangle$$

$$+ \langle T_r(y) - T_r(x), AT_r(y) - AT_r(x) \rangle$$

$$\geq \alpha(T_r(y) - T_r(x)) + \lambda ||AT_r(y) - AT_r(x)||^2$$

$$\geq \alpha(T_r(y) - T_r(x)). \tag{3.4.14}$$

By exchanging the position of x and y in (3.4.14), we note that

$$\frac{1}{r}\langle T_r(x) - T_r(y), T_r(y) - T_r(x) + x - y \rangle \ge \alpha (T_r(x) - T_r(y)). \quad (3.4.15)$$

From (3.4.14) and (3.4.15), we get

$$2\langle T_r(x) - T_r(y), T_r(y) - T_r(x) + x - y \rangle \ge r \Big[\alpha (T_r(y) - T_r(x)) + \alpha (T_r(x) - T_r(y)) \Big].$$

By $(\widehat{C}3)$, we obtain

$$\langle T_r(x) - T_r(y), T_r(y) - T_r(x) + x - y \rangle = \langle T_r(x) - T_r(y), T_r(y) - T_r(x) \rangle$$
$$+ \langle T_r(x) - T_r(y), x - y \rangle$$
$$\geq 0.$$

Thus, we have $||T_r(x) - T_r(y)||^2 \le \langle T_r(x) - T_r(y), x - y \rangle$. Hence T_r is a firmly nonexpansive mapping.

Step 4. We will show that $F(T_r) = GMEPRM(g, h, T, A)$. Indeed, we have the following

$$u \in F(T_r) \Leftrightarrow u = T_r(u)$$

$$\Leftrightarrow g(u, y) + h(u, y) + \langle Tu, \eta(y, u) \rangle + \langle Au, y - u \rangle \ge 0,$$
for all $y \in K$

$$\Leftrightarrow u \in GMEPRM(g, h, T, A).$$

Step 5. We will show that GMEPRM(g, h, T, A) is closed and convex. Since T_r is firmly nonexpansive, it follows by Lemma 2.2.23 that GMEPRM(g, h, T, A) is closed and convex. This completes the proof.

Corollary 3.4.4. [50] Let H be a real Hilbert space, K be a nonempty bounded closed convex subset of H. Let $T: K \to H$ be an η -hemicontinuous and relaxed η - α monotone satisfying $(\widehat{C}1)$ - $(\widehat{C}3)$ and let $g: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{A}1)$ - $(\widehat{A}3)$. For r > 0 and $z \in K$, define $\widetilde{T}_r: K \to 2^K$ by

$$\widetilde{T}_r(z) = \left\{ x \in K : g(x,y) + \langle Tx, \eta(y,x) \rangle + \frac{1}{r} \langle y - x, x - z \rangle \ge 0, \text{ for all } y \in K \right\}.$$

Then, the following results hold:

T)

).

0

1

- (i) \widetilde{T}_r is single-valued;
- (ii) \widetilde{T}_r is firmly nonexpansive i.e., for any $x, y \in K$,

$$\|\widetilde{T}_r(x) - \widetilde{T}_r(y)\|^2 \le \langle \widetilde{T}_r(x) - \widetilde{T}_r(y), x - y \rangle;$$

- (iii) $F(\widetilde{T}_r) = GEP(g,T);$
- (iv) GEP(g,T) is closed and convex.

Proof. It is easy to see by setting $h \equiv 0$ and $A \equiv 0$ in Theorem 3.4.3.

3.4.1 Weak convergence theorems

In the section, we introduce an iterative sequence and prove weak convergence theorem for solving a generalized mixed equilibrium problem with a relaxed monotone mapping.

We note that $dom T_r = H$ under certain condition in Theorem 3.4.3.

Lemma 3.4.5. Let H be a real Hilbert space, K be a nonempty bounded closed convex subset of H. Let $g: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{A}1)$ - $(\widehat{A}4)$, and $h: K \times K \to \mathbb{R}$ be a monotone mapping satisfying $(\widehat{B}1)$ - $(\widehat{B}4)$. Let $T: K \to H$ be an η -hemicontinuous and relaxed η - α monotone mapping satisfying $(\widehat{C}2)$ and $(\widehat{C}4)$. Let $A: K \to H$ be a monotone mapping satisfying $(\widehat{D}1)$ and $(\widehat{D}2)$ and assume that $\eta(x,x)=0$ for all $x \in K$. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in H for all $n \geq 1$ and $\{T_r\}$ a sequence of mapping defined in (2.3.4) which $\operatorname{dom} T_r = H$. Define

$$z_n = T_r x_n \quad and \quad u_n = x_n - z_n, \quad \forall n \in \mathbb{N},$$
 (3.4.16)

and suppose that

S

1

43

$$z_n \rightharpoonup x \quad and \quad u_n \to u.$$
 (3.4.17)

If r > 0, then

$$g(x,y)+h(x,y)+\langle Tx,\eta(y,x)\rangle+\langle Ax,y-x\rangle+\frac{1}{r}\langle u,x-y\rangle\geq 0, \ \ \text{for all} \ \ y\in K.$$

Proof. Since dom $T_r = H$, we note that the sequence $\{z_n\}_{n \in \mathbb{N}}$ is well defined in K. By g, h, A are monotone and T is relaxed η - α monotone, we get

$$g(x,y) + g(y,x) + h(x,y) + h(y,x) + \langle Tx, \eta(y,x) \rangle + \langle Ty, \eta(x,y) \rangle$$
$$+ \langle Ax, y - x \rangle + \langle Ay, x - y \rangle \le 0, \quad \forall \ x, y \in K.$$

This implies that

18

()

13.3

1

$$g(y,x) + h(y,x) + \langle Ty, \eta(x,y) \rangle + \langle Ay, x - y \rangle$$

$$\leq -g(x,y) - h(x,y) - \langle Tx, \eta(y,x) \rangle - \langle Ax, y - x \rangle, \quad \forall \ x, y \in K. \quad (3.4.18)$$

It follows from $(\widehat{A}3)$, $(\widehat{B}2)$, $(\widehat{C}2)$, and $(\widehat{D}1)$ that $y \mapsto g(x,y)$, $y \mapsto h(x,y)$, $z \mapsto \langle Tv, \eta(z,u) \rangle$, and $z \mapsto \langle Av, z-u \rangle$ are weak lower semicontinuous for every $y \in K$. Therefore, we derive from (2.3.4), (3.4.16), (3.4.17) and (3.4.18) that

$$g(y,x) + h(y,x) + \langle Ty, \eta(x,y) \rangle + \langle Ay, x - y \rangle$$

$$\leq \liminf_{n \to \infty} g(y, z_n) + \liminf_{n \to \infty} h(y, z_n) + \liminf_{n \to \infty} \langle Ty, \eta(z_n, y) \rangle$$

$$+ \liminf_{n \to \infty} \langle Ay, z_n - y \rangle$$

$$\leq \liminf_{n \to \infty} \left[g(y, z_n) + h(y, z_n) + \langle Ty, \eta(z_n, y) \rangle + \langle Ay, z_n - y \rangle \right]$$

$$\leq \liminf_{n \to \infty} \left[-g(z_n, y) - h(z_n, y) - \langle Tz_n, \eta(y, z_n) \rangle - \langle Az_n, y - z_n \rangle \right]$$

$$\leq \frac{1}{r} \liminf_{n \to \infty} \langle u_n, z_n - y \rangle$$

$$= \frac{1}{r} \langle u, x - y \rangle. \tag{3.4.19}$$

Fix $y \in K$ and define $x_t = (1-t)x + ty$ for all $t \in (0,1)$, then $x_t \in K$. Thus, by $(\widehat{A}1)$, $(\widehat{B}1)$, $(\widehat{A}3)$, $(\widehat{B}3)$, $(\widehat{C}2)$, $(\widehat{D}1)$ and (3.4.19), we have that

$$0 = g(x_{t}, x_{t}) + h(x_{t}, x_{t}) + \langle Tx_{t}, \eta(x_{t}, x_{t}) \rangle + \langle Ax_{t}, x_{t} - x_{t} \rangle$$

$$\leq (1 - t)g(x_{t}, x) + tg(x_{t}, y) + (1 - t)h(x_{t}, x) + th(x_{t}, y) + (1 - t)\langle Tx_{t}, \eta(x, x_{t}) \rangle$$

$$+ t\langle Tx_{t}, \eta(y, x_{t}) \rangle + (1 - t)\langle Ax_{t}, x - x_{t} \rangle + t\langle Ax_{t}, y - x_{t} \rangle$$

$$= (1 - t) \left[g(x_{t}, x) + h(x_{t}, x) + \langle Tx_{t}, \eta(x, x_{t}) \rangle + \langle Ax_{t}, x - x_{t} \rangle \right]$$

$$+ t \left[g(x_{t}, y) + h(x_{t}, y) + \langle Tx_{t}, \eta(y, x_{t}) \rangle + \langle Ax_{t}, y - x_{t} \rangle \right]$$

$$\leq (1 - t) \frac{1}{r} \langle u, x - x_{t} \rangle + t \left[g(x_{t}, y) + h(x_{t}, y) + \langle Tx_{t}, \eta(y, x_{t}) \rangle + \langle Ax_{t}, y - x_{t} \rangle \right]$$

$$= t(1 - t) \frac{1}{r} \langle u, x - y \rangle + t \left[g(x_{t}, y) + h(x_{t}, y) + \langle Tx_{t}, \eta(y, x_{t}) \rangle + \langle Ax_{t}, y - x_{t} \rangle \right].$$

$$(3.4.20)$$

Hence,

$$g(x_t, y) + h(x_t, y) + \langle Tx_t, \eta(y, x_t) \rangle + \langle Ax_t, y - x_t \rangle \ge (1 - t) \frac{1}{r} \langle u, y - x \rangle.$$

By $(\widehat{A}4)$, $(\widehat{B}4)$, $(\widehat{C}4)$, and $(\widehat{D}2)$, we obtain that

$$\begin{split} g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle \\ & \geq \limsup_{t \to \infty} g(x_t,y) + \limsup_{t \to \infty} h(x_t,y) + \limsup_{t \to \infty} \langle Tx_t, \eta(y,x_t) \rangle \\ & + \limsup_{t \to \infty} \langle Ax_t, y - x_t \rangle \\ & \geq \frac{1}{r} \langle u, y - x \rangle. \end{split}$$

Theorem 3.4.6. Let H be a real Hilbert space, K be a nonempty bounded closed convex subset of H. Assume that $g: K \times K \to \mathbb{R}$ satisfies $(\widehat{A}1)$ - $(\widehat{A}4)$, and $h: K \times K \to \mathbb{R}$ is a monotone mapping satisfying $(\widehat{B}1)$ - $(\widehat{B}4)$. Suppose that $T: K \to H$ satisfies $(\widehat{C}2)$ and $(\widehat{C}4)$, $A: K \to H$ satisfies $(\widehat{D}1)$ - $(\widehat{D}3)$ and that the set GMEPRM(g,h,T,A) of solutions (3.4.1) is nonempty. Let $\{x_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence generated by the form

$$x_0 \in K$$
 and $x_{n+1} = T_{r_n} x_n$, where $r_n \in (0, +\infty)$, for all $n \in \mathbb{N}$, (3.4.21)

where $\sum_{n\in\mathbb{N}} r_n^2 = +\infty$. Then $\{x_n\}_{n\in\mathbb{N}}$ converges weakly to a point in GMEPRM(g, h, T, A).

Proof. Since $GMEPRM(g, h, T, A) \neq \emptyset$, it follows that $dom T_{r_n} = H$ for all $n \geq 1$. For any $n \in \mathbb{N}$, we note from (3.4.21) and (2.3.4) that

$$\begin{cases}
0 \leq g(x_{n+1}, x_{n+2}) + h(x_{n+1}, x_{n+2}) + \langle Tx_{n+1}, \eta(x_{n+2}, x_{n+1}) \rangle \\
+ \langle Ax_{n+1}, x_{n+2} - x_{n+1} \rangle + \frac{1}{r_n} \langle x_{n+1} - x_n, x_{n+2} - x_{n+1} \rangle \\
0 \leq g(x_{n+2}, x_{n+1}) + h(x_{n+2}, x_{n+1}) + \langle Tx_{n+2}, \eta(x_{n+1}, x_{n+2}) \rangle \\
+ \langle Ax_{n+2}, x_{n+1} - x_{n+2} \rangle + \frac{1}{r_{n+1}} \langle x_{n+2} - x_{n+1}, x_{n+1} - x_{n+2} \rangle.
\end{cases} (3.4.22)$$

()

13

9

Setting $z_n = T_{r_n}x_n$ and $u_n = (x_n - z_n)/r_n$. Then (3.4.22) yields

1

10

1

$$\begin{cases} \langle u_{n}, x_{n+2} - x_{n+1} \rangle \leq g(x_{n+1}, x_{n+2}) + h(x_{n+1}, x_{n+2}) + \langle Tx_{n+1}, \eta(x_{n+2}, x_{n+1}) \rangle \\ + \langle Ax_{n+1}, x_{n+2} - x_{n+1} \rangle \\ \langle u_{n+1}, x_{n+1} - x_{n+2} \rangle \leq g(x_{n+2}, x_{n+1}) + h(x_{n+2}, x_{n+1}) + \langle Tx_{n+2}, \eta(x_{n+1}, x_{n+2}) \rangle \\ + \langle Ax_{n+2}, x_{n+1} - x_{n+2} \rangle \end{cases}$$

$$(3.4.23)$$

and by $(\widehat{A}2)$, $(\widehat{D}3)$, and the monotonicity of h that

$$\langle u_{n} - u_{n+1}, x_{n+2} - x_{n+1} \rangle$$

$$\leq g(x_{n+1}, x_{n+2}) + g(x_{n+2}, x_{n+1}) + h(x_{n+1}, x_{n+2}) + h(x_{n+2}, x_{n+1})$$

$$+ \langle Tx_{n+1}, \eta(x_{n+2}, x_{n+1}) \rangle + Tx_{n+2}, \eta(x_{n+1}, x_{n+2}) \rangle$$

$$+ \langle Ax_{n+1}, x_{n+2} - x_{n+1} \rangle + \langle Ax_{n+2}, x_{n+1} - x_{n+2} \rangle \leq 0. \quad (3.4.24)$$
Thus $\langle u_{n+1} - u_n, u_{n+1} \rangle \leq 0$ and, by Cauchy-Schwarz, $||u_{n+1}|| \leq ||u_n||$. Therefore

$${||u_n||}_{n\in\mathbb{N}}$$
 is a convergent sequence. (3.4.25)

Since T_{r_n} is firmly nonexpansive, it follows by Theorem 2.6 in [52] that $\sum_{n\in\mathbb{N}} r_n^2 ||u_n||^2$ $\sum_{n\in\mathbb{N}} r_n^2 \|z_n - x_n\|^2 < +\infty. \text{ Since } \sum_{n\in\mathbb{N}} r_n^2 = +\infty, \text{ we have } \liminf_{n\to\infty} \|u_n\| = 0 \text{ and,}$ consequently, (3.4.25) yields $u_n \to 0$. Since $\{x_n\}$ is bounded, we may assume that there exists a sequence $\{x_{k_n}\}$ of $\{x_n\}$ such that $x_{k_n} \rightharpoonup x$ and

$$u_{k_n} \to 0. \tag{3.4.26}$$

On the other hand, since $z_n - x_n \to 0$, we have

$$z_{k_n} \rightharpoonup x. \tag{3.4.27}$$

Combining (3.4.26), (3.4.27), and Lemma 3.4.5, we conclude that x is a solution of (3.4.1).

1

0

18

In the case of $h \equiv 0$, $T \equiv 0$, and $A \equiv 0$ in (3.4.1), GMEPRM(g, h, T, A) deduced to equilibrium problem (for short, EP(g))

Corollary 3.4.7. [52] Let H be a real Hilbert space, K be a nonempty bounded closed convex subset of H. Assume that $g: K \times K \to \mathbb{R}$ satisfies $(\widehat{A}1)$ - $(\widehat{A}4)$ and that the set EP(g) of solutions to (2.6.1) is nonempty. Let $\{x_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence generated by the form

$$x_0 \in K$$
 and $x_{n+1} = J_{r_n} x_n$, where $r_n \in (0, +\infty)$, for all $n \in \mathbb{N}$, (3.4.28)

where $\sum_{n\in\mathbb{N}}r_n^2=+\infty$. Then $\{x_n\}_{n\in\mathbb{N}}$ converges weakly to a point in EP(g).

Proof. It follows from Theorem 3.4.6 by setting $h \equiv 0$, $T \equiv 0$, and $A \equiv 0$.