CHAPTER III

GENERALIZED VARIATIONAL INEQUALITIES

AND MIXED EQUILIBRIUM PROBLEMS

3.1 A generalized system of nonlinear variational inequalities in

Banach space

In this section, we assume that E is a real Banach space with dual space E*,

K is a nonempty closed convex subset of E. Let T4,...,Tn : K X ... x K — E*
\—‘,_/

N—times
be nonlinear mappings and f : K — FE be a mapping. The generalized system

of nonlinear variational inequality problem (GSNVIP) is to find «3,...,z% € K

such that for all z € K,
{

(f(’l?) B f('L;),Tl('L;,'LE, o :'LTV:'ED) >0

(f(2) = f(23), a5, i, . 2 2, 23)) 2 0
J . (3.1.1)

| (£(2) = flah), Tl @y w3 ymi)) 2 0.

IEN=3,f=Tand T}, T5,T5: K x K x K — E* are nonlinear mappings,
then the generalized system of nonlinear variational inequality problem (GSNV I P)

reduces to the following problem: (see [13]) is to find 23, 23, 23 € K such that for

allz € K,

=
(:B - mi: TI(Q:;: 3:511::{)) > 0

 {z — a5, Ty(x3, 21, 28)) > 0 (3.1.2)

L (Il’ - ill:’;,Tg(Ti,'U;,l;)) 2 0.

IfN=2T,T;: K x K — E* are nonlinear mappings and f : K — Fis a

mapping, then the generalized system of nonlinear variational inequality problem
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(GSNVIP) reduces to the following problem: to find a%,z} € K such that for all
z €K,

(f(2) — f(a7), T1(a3,27)) 2 0

(3.1.3)

IfT,S : K x K — E* are nonlinear mappings and ¢, f : K — E are
mappings. Define 71, T; : K X K — E* by Ty(z},23) = piT(a%,23) + g(a3) —
9(27) and Ty(z3, 23) = paS(a}, 3) + g(x3) — g(a3). Then the generalized system
of nonlinear variational inequality problem (GSNVI P) reduces to the following

problem: to find z}, 23 € K such that for all z € K,

(f(@) = F(a1), T (3, 23) + g(a3) — 9(21)) > 0

(3.1.4)

where p; and p, are two positive constants.

Lemma 3.1.1. Let E be a smooth, strictly convex and reflexive Banach space, K

be a nonempty closed convex subset of E. Let Ty,..., Tn : K X ... x K — E* be
———

N—times
mappings, [ : K — K be a bijective mapping and py, . ..,px be any positive real

numbers. Then (a7,...,2%) € K X ... X K is a solution to problem (3.1.1) if and
T

N—times
only if (23,...,2y) € KX X ... X K 15 a solution to the following system of operator
N— ——

N—times
equations:

4

:L‘I = le HK J~1 (Jf(?;) - p1T1(£E§, 37;: 25 13’?\” 33;)):

:E; = f_l HI( J_l (Jf(T;) - p2T2($§a$2: % B ,w},&:;,ﬂ:;)),

J

$7\T—1 = f_l HK J_l (Jf(mR!——l) - PN—lTN—I(-'EF\r: 3";) 335: . :mfv—z’ 22;;_1)),

| o =7 Tl 77 (6 () — pvTin(at a3 ) ).

(3.1.5)
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Proof. By Lemma 2.4.19, we have (z},...,z%) € K x ... x K is a solution of prob-
\—ﬁ,_/

lem

o

N—times

(3.1.1),

( {(f() = f(=1), mTa (23,25, ..., 2, 27)) 2 0

(f(2) = f(a3), p2Ta(a%, 23, ..., Ty, 21, 23)) > 0

(f(q,) - f(“l'xN ) PN— 1TN ( Tt 115%2: . ,1‘}4,5’33’—1)) 20

\ (f(®) = f(aN), pnTn(2, 25, .. ., 2)) 20,

{f(2) = F(21), Jf(a7) = I f(=]) + pTa(a3, 235, . . ., @y, 2]) 2 0

(f(2) = f(=3), Tf(a5) — Tf(@5) + poTa(w3, 2%, - ., Ty 21, 3)) 2 0

(f("»)““f( Ty-1) Jflzy )_Jf($ir—1)

o o E &
1 PN—ITN—I(Q’RI: 3’11:1';: Q¥ ag’NHQ::l’Nfl» 2 0

\

[ (o)~ @) 27— I (77 (1) = o, 25, h000) ) 2.0
(F@) = fas), 3£ (5) = I (97 (7£(s3)

— paTo(x3, 23, . .. ,m}‘v,a:{,:c;)))> >0

(£@) = flanor), If(ans) = I (77 (Tf o)

— e g L (5 T, « o B T ))> 20

| (7@) = 1), I7(eh) = (7 (103) = onTn(as .. 3)) ) ) =



forall z € K,

[ faf) = [T I (77D - P Ti(@3,23, . 0k ) ),

f(t;) = HI{ J! (Jf($§) - .02T2($§s 23:, i :m’;\h :BI) 31;)),

f(l'?\f—l) = HI( JH (Jf(f’J*NA) — pn-1Tn 1 (1}1!: L1, T35+ oy Th_g, 33*&—1)),

| (i) = Tl J7H(IF@R) = pwTn(at, 33, wk)),

for any p1 > 0,...,pn >0,

{

1; f_lnff‘]gl(‘]f(f{)_PlTl(*@;’x;:"'sﬂ:TWflk)):
% = 17 i T (1 (e5) = paTa(a, 23,0, 53))

=X

it =07 T I (T7(@h1) = oo T (o, 08,23,y B o)),

| ok =7 T I (77 (%) — o T(et, 35, o).

31
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Algorithm 3.1.2. For any given initial points :1:61),3:82), (N) € K, compute

the sequences {z{"}, {z2},.. {2z} by the iterative processes

4

o0 = 117 (1= o)1) + o (T 7 (1)
- pNTN(wn 3o 7-7512); :Bu )))))]

2NTD — -1 [J‘l (( — oV JF @Y 4 o ”J(]’[K L(Jf(-Y)

=y el 1( 5:1)1,1511),1512),---,1‘55\’ 2), £1N 1))))>],

31512_')_1 = fﬁl [J ((1 —a )Jf( ) +O.11)J(HK ( (2))
T PQTZ( :(13-1)-11 ‘Tgil)-l: 481 %Y E:I)la 15}1), 'LEI )))))] }
oy = 2 (- a®)7768) + 08T (77 680)

3 (N 1
A\ plTl( n+1= TSh)Ll? j - ’T’n—i-)lﬂ /LSI ))))):I ’

(3.1.6)

where [ is the generalized projection and {a{"}, {a{?}, .. , {ai} are sequences

in [0, 1].

Theorem 3.1.3. Let E be a real uniformly smooth and strictly convez Banach space
with Kadec-Klee property, K be a nonemply closed and convez subset of £ with 0 €

K. Lt f: K— Kb J ing. Let Bhyons T s KXok K — BF
et f — e an isometry mapping. Let T, N N —
—umes
be continuous mappings and {al}, {a},.. et} be the sequences in (a,b) with

0 <a < b <1 satisfying the following conditions:

(i) there ewist a compact subset C C E* and constants p; > 0,py > 0,

ooy Py > 0 such that
(JE) = pnTn (K X ... x K))U(J(K) — py—1Tv—1(EK x ... x K))U...U(J(K) —

N—times N—times
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nTi(I x...x K)) C C, where J(21,22,...,2x8) = Jan, Y(T1,29...,55) €

N—times

Kx...x K and
——

N—times

;

(Ty(z1, 22, .., TN), I (Jzn — piTi(m1, 72, ..., 2w)) ) > 0,

<T2($1’ By oo ’:EN)’ J (Ja’N - p2T2(m1) 42 PRI :"EN))> >0,
< | (3.1.7)

; (TN($11$2:---’-TN);J_I(JCEN = pnIn(21, %2, ..., 2N))) 2> 0,

Jor all 1, xo M Az K]

(id) lim ol = d; € (a,b), lim P =q € (Dl hm ol =dy €

n—oo

(a,b). Let {z{V}, {1(2)} o {zY e the sequences defined by (3.1.6).

Then the problem (3.1.1) has a solution (z},25,...,2%) € K X ... x K and
i N
N —times
the sequences {z{"},{z{?},.. AzMY converge strongly to «3,%3,...,2%, respec-

tively.

Proof. Step 1. We first show that the sequences {z{"},{z{?},.. {2} are bounded
in K. It follows from Lemma 2.4.26, J is bijective and a condition (3.4.29) that

177(5") = powTn (PP, .., &)
< FEE)IP
—2pN<TN($,(11),a:Ef),...,ng)),J_l(Jf(a;,(lN)) pnIn(zD, (2),...,3:51N)))>

< IFEIP = £ M) (3.1.8)
Similarly, we note that

I7£@8D) = v Tu-a(@fin, 2y a2, 2™ D)2 < I f X)),

- N— N o s g
19f (@) = o2 Tw—a(ziyy Y, 2, a0, a9 a2 12 < |l f (= M-2))2,

IA
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3 4 N
17f(@2) — pTa(2)y, 28, .. a0, 20, a2 < £ (D),
2 N
17f@D) = pTi @@y, a8, a8, a2 < (If D).

(3.1.9)

By Lemma 2.4.21, we obtain that

D = 12 (- s
+al (TS0 = ool ... o) )|
g
= | (a=amirem)
a(N)J(HJ z™) — o T (2D, 2. __.,mgv)))))”

= |1 =a™)15)

o TG 2, )|

< - TG
+o07(TL7 )~ p(af?, @, a9 )|
< (1= aMlIIFEE)

+afV[| 7T f @) = v T, 2@, . a0) |

= (L= @ + oI f (80) — oy (22,22, ..,a®)|

< (1= o) + M@

= [lf @) (3.1.10)
Since f is isometry, we have Mmﬂ)l | < [l28]. By the same argument method
as given above, we have ||a:f{111)|| < =), =28 < [2”]]. There-

fore, we note that lim, o, [|a{”|], ..., lim,_. ||| exist, and hence the sequences
{z1}, {z$9},.. {2z} are bounded in K.

Step 2. Next, we will show that

17£(=0) — T )|
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e a(N)”Jf (N) JHJ (Jf(:c(N)) — pnTn(@ ,(;1):55(2) .’a:'(lN)))“ — 0,

17 f@8TY) — TF D))
= o{¥1||Jf (D) - 11 (7£(-)

— PN- ITN 1(3'n+1: n) $(2) ':xr(xN_msa:SzN_l))) ” ¥ 0:

% \Jf(:uf’) - J[174 (75
K
S N O ) | ()

”Jf( n+1 (‘{B‘Ezl))”

— o

JHJ Hor@®)

(2) 3 {1
_plTl( n+1: 514)—1"""1"(1‘{'1’ (1) )H _)0

as n — oQ.

By Lemma 2.4.25, Lemma 2.4.21, f is isometry and (3.1.8), it follows that
there exists a continuous strictly increasing and convex function g : [0,2r) — [0, c0)

with g(0) = 0 such that

If @)l < (1“aff"))IlJf(fL‘%‘r‘”)ll2

+a'(N 1

pNTN(’LS} §e 51)1 n . 12’;(1N)))”
—(1- ai”))a,‘?"g(”Jf ™)+ I ]I (T4 ()
K

~p T e« ) H)
(1= M) f M)
+(¥;(1N)”Jf($£;N)) - PNTN(QJEE), $1(12): o :a"r(iN))”2

—(1 = a™)a®™g (|| + T T[T (747
K

IA

T, )|
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A

(L= M @EI? + a1 F (0]

~(1=afM)aMg (|| 7£@4) + T[] I7 (75
K

~pIn(a, o, ..., 2fM)|)
= I - (1 - )My ([ 176w
+JH JHIf (@) — pnTw (a0, 282, . .. ,z)) “)

(3.1.11)

This implies that

(1 =af)afg(|17) + TTL7 (116 = pnTitet?y e, af)])

< |fa >||2 S PG ][R (3.1.12)

Since {[|a )H} converges for all £ = 1,2,... N, it follows by letting n — oo in

(3.1.12), condition (i2) and the property of g that

|77@n = ITT 77 (40 — owTi(e®, 2@, 24| = o,
K

(3.1.13)

as n — co0. By (3.1.6) and (3.1.13), we have

177 — I “‘”Nl
N) N) JH J” (Jf('l/n f)NTN( nl)i 7’7(!2)’ e ’:B'E"NJ)) ” s

= o
(3.1.14)

as n — oo. Similarly, we can prove that

17£ ({13 0) — Jf (D))
= || 7£(0) - T (74 )

— pn—1Tn_a (2 51+)1:$(1)’ 512)’ i ’Q:SIN_Z)"T’(‘N_l))) ” —+4
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175 (222) = T )|
= o 75(e?) — I T] 7 (27
T 000, ) | 0,
175(@) = T D))
- ooy e

F plTl('Ln+17 713—1)-1: .oy 33’511—\1,—)1: a(r;l )” — 0, (3115)

as 1 — 0Q.

Step 3. We next show that {2} converges to some zy € B. Let {:cﬁ,’f) }
be any subsequence of {a"'}. Since {8} {22, {2z} are bounded, by (%)
and from the compactness of C, there exists a subsequence {’LS:?&,)} of {m,(lf)} such
that

Jf(fL{N) ) PN TN( (1) ’1,(2) feey ’L(N) ) = hl € E*.

;(N) i) TNy H(N)
Since E is uniformly smooth and strictly convex, it follows by Lemma 2.4.19 (22)

and Remark 2.4.11, that [[;. and J=! are continuous. Thus

H J™ (J 1"(:\2\0) pNTN(T’(Hw)’ 151221\:) o ’(11\21 ) - H I (h) = f(a)
K
and

I (7£E,) - PNT (@80 80,00, )) = Tf(ah). (3.0.16)
From (3.1.13) and (3.1.16), we get
Jf@@ln,) = Jf(@y) (s nam — o0). (3.1.17)

By (3.1.14) and (3.1.17), we have

Jf(g;fj:;f,v +1) = Jf@N) (s mym — o). (3.1.18)



38

Since E is strictly convex and reflexive, it follows by Remark 2.4.11 (iv) that J—1

is norm-weak-continuous. Therefore, from (3.1.17) and (3.1.18), we note that

F@0) = flzh),  flaln, 1) = Flzh),

and

IFESON = 1@l 1 @mppandll = @I (as nion — o).

By the Kadec-Klee property, we have

f( T (1\)) ir f( ) and f( n(:\)+1) = f(’LR’) (as ) — 00) (3'1'19)

Since f~! is a continuous mapping, we get

(N)
()

(N)

i — &y and-x, an+1 TN (as n;my — o0). (3.1.20)

This shows that {mg‘:\'&)} is a subsequence of {15{?} such that "LE{\ gv) — zy € E.

N
Therefore 25’ — Ty as N — 00.

So, it follows from (3.1.6), (3.1.17), (3.1.19), and condition (:7) that

Jf(TR’) = 11111 Jf( n+1)

= lim {(1 — ") J f(M + cr,(fv)JH o (Jf(wnm)
K

- pNTN(:C'Ell)! 3:1(12)’ ow s 1$£1N))) }

= (1 - dN)Jf('BR!) +dNJHJ_1(Jf($7V) _pNTN(:E;:m;}' b ::EFV))

K

Since f is a bijective mapping, we obtain that

ot = [ H - (Jf ay) — pnTn (2}, 23, ... ,x}‘v)) (3.1.21)
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Similarly, we can prove that, for every subsequence {z%'} of {z{} there exist a

subsequence {x&fﬁm} of {:L,(f;)} and zj € E such that

f(;]:(k) ) — f(:z::) (aS k) — oo), for all k= 1,2,...,N—1. (3122)

LAQ]

Since f~! is a continuous mapping, we note that

z,&’:}k) — T (as miw — 00). (3.1.23)
Hence 23 — L € B, forall k=1,2,..., N — 1. Therefore, we have
sy = ]I (Jf(-TRr_1) — PN Tn-1 (B, 21,25, .« Ty, $Rf-1))
K
Ty = [T H J (Jf(-TRr_z) — py—2Tn_a(@y_1, TN, 255 - ,ZER_g,fERr_g))
K

o = S ILI7 (T5(@3) = paaes, w83,
K

2 N Ve AN (J £@}) = ey @l s 2, .1:‘{)). (3.1.24)
K
By Lemma 3.1.1, we can conclude that (2, 23,.. . ,23) is asolution of (3.1.1)
and 153) — :L"{,:cgf) ket .,ng) — T 0

Setting N = 3, f = I in Theorem 3.1.3, we immediately obtain the following

result.

Corollary 3.1.4. [13] Let E be a real uniformly smooth and strictly convex Banach
space with Kadec-Klee property, K be a nonempty closed and convex subset of E
with 0 € K. Let Ty, Ty, T3 : K x K x K — E* be continuous mappings and
{a,(ll)},{as,z)},{a,(,s)} be the sequences in (a,b) with 0 < a < b < 1 satisfying the

following conditions:
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() there exist a compact subset C C E* and constants p; > 0,p2 > 0,
ps > 0 such that (J(K) — psT3(K x K x K))U(J(K) — pTa(K x K x K)) U(J(K) —
piTi(K x K x K)) C C, where J(x1, 22, 23) = Jz, V(z1, @2, 23) € K x K x K and

(
<T1 (1131: T2, 333),

J_l (J$3 - p1T1($1: Tz, 3;3))> Z 0}
J (Ta(@1, @2, w3), T (Jws — poTa(w1, w2, w3)) ) > 0,

{ (Ts(21, 72, 23), J(Jzs — psTs(21, %o, 23)) ) > 0,
for all 21,25, 23 € K.

(¢2) lim o =d, € (a,b), lim of? =dy € (a,b), lim ol = ds € (a,b).

ﬂ n—oco n—oo

Let {q, } {'L } {mns)} be the sequences defined by
% =920 - a7 el
(S)J(HK T YIf @) — psTa (P, a2, 1'513)))))’
Ty = I (( o) J £ (ai?)
29[ (0168 - pitatals,a,22))) )
2 = -1 (( = o)) ()
DI ([T 7 (TED) - TPy f;"’lp'z:%”)))), n20.

Then the problem (3.1.2) has a solution (z%,23,43) € K x K x K and the

sequences {z\}, {22} and {zf Y converge strongly to r1, 5 and ¢}, respectively.

Setting E is a real Hilbert space in Theorem 3.1.3, we have following result.

Corollary 3.1.5. Let H be a real Hilbert space, K be a nonempty closed and
convex subset of H. Let f : K — K be an isometry mapping. Let Tq,...,Tx :
KX...x K — H be continuous mappings and {a(l) }{a$P},.. ,{a(N)} be se-

N—times

quences in (a,b) with 0 < a < b < 1 satisfying the following conditions:
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() there exist a compact subset C C H and constants p1 > 0,p2 > 0,
., PN > 0 such that
(I(K) — pnTn (K % ... x K))U (I(K) = pn-1Tn (K x ... x K))U

N—times N—times
U (K)—piTh(K % ... x K)) C C, where (x4, %, . .. ,Ty) = TN, Y(z1,22,...,2N) €

N—times

K x...x K and

——
N—times

(

(Tl(wl,:llg, e ,:IJN),CCN = ,()1T1(IE1,.’112, iy ,:EN)) 2 0,

<T2($13$2; s ::EN)a:EN N P2T2(-'313372: . '13—:N)> ¥ 0:
<

L (Tn(21,%2,...,25), 28 — pnTn(21, 2, . . . B N 0,
for all xy,xy,..., 258 € K.

(#i) n]il.lgo o) =d € (a,b), nlglgcozn =ds € (a,b), ..., JEEOQE:\’) =dy €
(a,b).
Let {z{"},{z@},.. a8} be the sequences defined by

4

o =@ = ) + o P (£(af)
— pnIn(al,ad); .. "c,(fv)))),

ot = (L= oD@ D) 4 ol DB (oY)

— PN-— lTN 1( nji)la ,ngl), '7—'512]; v 'LT(EN 2)5 a:S?vN_l)))):

oo = £ ((1= o) @) + ol P (o)

4 N 1 2
— 2T (s E'la-l)-limfz-l)-li 935:+)1:3'$l):$7(1))))’

oot = F7((1 = )7 @) + o Pre(f()

3 N 1
_plTl( 1(1*2-1’ 1(14)-1:" }a';(1+)1;37£t)))): n >0,
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where Py is a metric projection on H to K.

Then the problem (3.1.1) has a solution (a3, 3,...,2%) € K x ... X K and
N—times
the sequences {:cS,”},{xE)},. . ,,{:r;s,N)} converge strongly to x3,a3,...,x%, respec-

tively.

3.2 Existence of solutions for generalized variational inequality prob-

lems in Banach spaces

In this section, we assume that E is a reflexive and smooth Banach space,
K is a closed convex subset in E. Let T : K — 27" be a multi-valued mapping.
The generalized variational inequality problem, denoted by GV I (K,T), is to find

a vector «* € K such that there exists a vector u* € T(z*) satisfying

(w y—2*) >0 forall yeK.

Now, we first prove the existence of solutions of generalized variational
inequality for upper semicontinuous multi-valued mappings with compact con-
tractible values over compact convex subsets in a reflexive Banach space with a

Fréchet differentiable norm.

Theorem 3.2.1. Let E be a reflevive Banach space with a Fréchet differentiable
norm. Assume that

(1) K is a nonempty compact convez in E;

(44) T : K — 25" is upper semicontinuous;

(12d) T'(x) is nonempty closed in E* and contractible subset in E for each
TER;

(i) T(K) = U T(x) is compact in E*.

zel
Then the GVI(K,T) has solution in K.

Proof. Let C* := @(T(K)). Hence, by Mazur’s theorem, C* is compact in E*,

Since T(K) is compact in E*, T(K) is also compact in E*. By our assumption
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(tv), we have K x C* is compact in E x E*. Define F : K x C* — 2KxC* py
F(z,y) = {(v,v) : v € 7 (j(z) — y),v € T(2)} for all (z,y) € K x C*. Moreover,
we note by Lemma 2.4.23 that mx(j(z) — y) is nonempty and hence F(z,y) is
nonempty for all (z,y) € K x C*.

Step 1. Show that F(z,y) is contractible for all (z,y) € K x C*.

We note that (u,v) € F(z,y) if and only if u € mx(j(z) — y) and v € T(z). By
Lemma 2.4.23, we have mg(j(z) — ) is convex. Hence mx(j(z) — y) and T(x)
are contractible. Thus there exist uy € nx(j(z) — y), vo € T'(z) and continuous
mappings g : Tk (j(2)—~y) x[0,1] — mx(j(x)—y) and g5 : T(z) x[0,1] — T(z) such
that g1(u,0) = w and g(u,1) = ug for all u € mx(j(2) — ), and ga(v,0) = v and
92(v,1) =g for allv € T(x). Define h : (mx(j(z) —y) x T(z)) x [0,1] — mx(j(z) —
y) x T(z) by hl((w,v),1) = (g1(w,1), 02(v, 1)) V((u,0),%) € (mxc(i(w) —y) x T(x)) x
[0,1]. Thus £ is a continuous mapping such that i((u,v),0) = (g1(x, 0), ga(v, 0)) =
(u,v) and h((u,v),1) = (g1(u,1), go(v, 1)) = (up, v) for all (u,v) € 7x(j(z) — y) X
T(z). This implies that F(z,y) is contractible.

Step 2. Show that F(z,y) is compact subset of K x C*.
Since K x C* is compact, we need only show that F(z,y) is closed. Let (un,v,) €
F(z,y), (un,vn) = (u,v) as n — co. We shall show that (u,v) € F(z,y). From
(un, vn) € F(z,y), we have u, € m(j(z) ~ y) and v, € T(z) for all n € N. Since
(Un,vn) — (w,v), we get u, — u and v, — v. By Lemma 2.4.23, we note that
mx(J(z) — y) is closed. Thus, we have v € mx(j(z) — y) and v € T(z) by the
closedness of T'(z). That is (u,v) € F(z,y) and hence F(z,y) is closed.

Step 3. Show that F is upper semicontinuous.
Since K x C* is compact set and Fi(z,y) C K x C*, by Lemma 2.5.4 (2), we need
only show that I is a closed mapping. Let {(za, %) : @ € I} € K x C* be given
such that (za,Ya) — (2o,%) € K x C* and let (ua, V) € F(24,ya) be given such

that (a, va) — (uo,v0). We shall show that (ug, ve) € F(20,1). Since v, € T(x,),
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Ta = To, Yo — vp and T' is upper semicontinuous, it follows by Lemma 2.5.4 (¢4)

that vy € T(z0). Since uy € e (j(z,) — Yo) and E is smooth, we have

(1(%a) — Yo — §(ta), ua — y) > 0, Vy € K. (3.2.1)

From the Fréchet differentiable norm of E, we note that the duality J : E — E*
is norm to norm continuous. Thus, we have J(@a) = j(mo) and j(u,) — 7 (uo).

Hence, by (3.2.1), we obtain

(7(z0) = Yo — j(uo), uo—y) > 0, Yy € K.

This implies that uy € mx(j(zo) — yo) and hence (ug, v0) € F(20,%). Therefore F

is upper semicontinuous.

Step 4. Show that the solution set of GV I (K, T) is nonempty.
By Eilenberg-Montgomery Theorem, F has a fixed point. That is, there exists a
point (z*,y*) € K x C* such that (z*,*) € F(z*,3*). Hence there exists a point
z* € K and y* € T'(2*) such that 2* € mg(j(2*) — ¥*). Hence, by Lemma 2.4.24

(4), we have

Wy —z*) = (j(z*) — y* —j@),z* -y >0, Vye K.

Setting &£ = R™ in Theorem 3.2.1, we have following result.

Corollary 3.2.2. [47](Hartman-Stampacchia, Saigal). Assume that

() K is a nonempty compact convex in R";

(1) T': K — 2%" is upper semicontinuous;

(¢23) T(x) is nonempty, compact, and contractible subset in R” for each
reEK.
Then there is a solution (z*,y*) to the generalized variational inequality problem

GVI(K,T).
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Proof. Since K is compact, T'(z) is nonempty compact subset in R” for each z € K.

From T': K — 2*" is upper semicontinuous, we note by [6] that T(K)= U T(z)
zeK

is also compact. Hence, by Mazur’s theorem, zo(T'(K)) is a compact subset of R,

Therefore, by Theorem 3.2.1, the solution set of GV I (K,T) is nonempty. O

Corollary 3.2.3. Let E be a reflexive Banach space with o Fréchet differentiable
norm. Assume that
(i) K is a nonempty compact conver in K
(#) T : KK = 27" is upper semicontinuous;
(112) T(2) is nonempty closed in E* and convez subset in E for eachx € K;
(i) T(K) is compact in E*.

Then the GVI(K,T) has solution in K.

Next, we prove the existence of solutions for generalized variational inequal-
ity problems for upper semicontinuous multi-valued mappings over unbounded
closed convex subsets in a reflexive Banach space with a Fréchet differentiable

normni.

Theorem 3.2.4. Let E be a reflexive Banach space with a Fréchet differentiable
norm and K be a closed conver set in E such that every weakly convergent sequence
in I is norm convergent. Let T : K — 2F° be an upper semicontinuous multi-
valued mapping such that T(x) is nonempty compact and contractible in E* for
any x € K. Suppose that T(B) is compact in E*, for all compact subset B of K,

and

(C1) GivenZ € E and for any {z,} C K with ||z,|| — +00 asn — oo, and for
any {un} with u, € T(x,), there evist a positive integer ng and y € K such

that ||ly — 2| < |lzn, — Z|| and (ung, ¥ — Zn,) < 0.

Then the solution set of GVI(K,T) is nonempty and compact.
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Proof. Step 1. Show that the solution set of GV I (K,T) is nonempty.

Let # € E. For any n = 1,2,..., let K,, = {z € K : ||z —Z| <n}. Thus, we
note that J,, is nonempty closed convex bounded subset of E. Since E is reflexive,
we have K, is a weakly compact subset of E. We shall show that K, is compact.
Let {z5}%2, be any sequence in K,. Thus there exists a subsequence {zy’ 32, of
{zk}2 | such that aff — u, € K, as j — oco. Since {z§'} C K, it follows by
our assumption that the sequence {ﬁ";’} converges strongly to u,. Hence K, is
compact and therefore T(K,) is compact in E*. By Theorem 3.2.1, the solution
set of GVI(K,,T) is nonempty, that is, there exists zn € K, and v, € T(x,) such
that

(Un, ¥y —2,) >0 Yy € K,,.

If the sequence {x,} is unbounded, by without loss of generality, we assume
that [|lz,|| — oo as n — +co. Then, by condition (C1), there exist a positive
integer ng and y € K such that |y — Z|| < [|zn, — | and (vpg,y — Tpy) < 0. This
implies that y e K and (v,,,y — 2,) < 0, which is a contradiction. Hence {zn}
is bounded. i.e., there exists a positive integer N such that {z,}32, c Ky C K.
From the compactness of Ky, there exists a subsequence {4, }2, of {z,} such that
Tn, — &° € K. We note that v,, € T'(xy,,) for all i = 1,2,3,.... Since T' is upper
semicontinuous, it follows by Lemma 2.5.5, that a subsequence {vn;} of {vn,} such
that v,, — v* € T'(2*) as § — co. Let y € K. Since K1 C K, C ..., there exists
a positive integer n; such that y € K, for all n > n;. From (v,,j,y — :cnj) > 0 for
all y € K and for all n; > ny, we get (v*,y — z*) > 0 for all y € K. Therefore the
solution set of GVI(XK,T) is nonempty.

Step 2. Show that the solution set of GV I (K,T) is compact.

Let M = {z € K : Ju € T(z) such that (u,y —z) >0 Vy ¢ K}.
We first show that M is closed. Let {z,} be any sequence in M and z, — z. Since
Tn € M there exists a u, € T(z) C K such that (u,,y — Z,) > 0forany y € K.

Since T'(x) is compact and 7" is upper semicontinuous at z, it follows by Lemma
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2.5.5, that {u,} has a cluster point u € T(z). Then, without loss of generality,
we assume that u, — u € T(z). It follows from (u,,y — Zn) 2 0 Yy € K that
(u,y —2) >0 Vy € K as n — co. Hence z € M and therefore M is closed.

Next, we show that M is bounded. Suppose that M is unbounded. Thus there
exists a sequence {x,} C M such that |z,| — 4oco. This implies that there is
a sequence {u,} C K such that u, € T(z,) and (Un,y — ) > 0 Vy € K. By
condition (C1), there exists a positive integer 7o and y € K such that ly —z|| <
|#no —Z|| and (uy,, y— 20y} < 0. This is a contradiction. Therefore M is a bounded
subset of K.

Finally, we show that M is compact. Let {v.} C M C K. Since E is reflexive and
M is bounded, there exists a subsequence {vn;} of {v,} such that Up; = v € E,
By our assumption, we have v, — v and so v € M., Hence M is a compact subset

of K. O

Corollary 3.2.5. Let E be a reflexive Banach space with a Fréchet differentiable
norm, K be a closed convex set in E such that every weakly convergent sequence in
K is norm convergent. Let T : K — 25 be an upper semicontinuous multi-valued
mapping such that T'(z) is nonempty compact and convex in E* for any z € K.

Suppose that T(B) is compact in E*, for all compact subset B of K, and

(Cl) GivenZ € E and for any {a,} C K with lzall = 400 as n — +co, and for
any {up} with u, € T(x,), there exist a positive integer ng and y € K such

that |ly — | < |len, — 21| and (ttng,y — 2a,) < 0.

Then the solution set of GVI(K,T) is nonempty and compact.

Theorem 3.2.6. Let E be a reflevive Banach space with a Fréchet differentiable
norm, K be a closed convez set in E such that every weakly convergent sequence in
K is norm convergent. Let T : K — 2 be an upper semicontinuous multi-valued

mapping such that T(z) is nonempty compact and contractible for any z € K.
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Suppose that T'(B) is compact in E*, for all compact subset B of K, and one of

the following conditions hold:

(C2) Given & € E and for any {x,} C K with ||z,| — 400 as n — +00, and
for any sequence {u,} with u, € T(zy), there exist a positive integer ng and

Yy € K such that |ly — Z|| < [|wn, — 2| and (uny,y — zn,) < 0.

(C3) Given T € E, there exists a constant p > 0 such that, for any z € K with
lz = Z|| > p, there exist y € K andu € T(x) satisfying ly =2 < ||z -2

and (u,y — z) < 0.

(C4) Given T € E, there exists a constant p > 0 such that, for any x € K with
lz — @I > p, there exists y € K and u € T(x) satisfying ly —Z|| < ||z — ]|
and (u,y — z) < 0.

Then there exists a solution to GVI(K,T) and the solution set is compact.

Proof. We note by Yu and Yang [8] that (C'2) implies (C'1) and (C38) implies (C1).
We will show that (C4) implies (C2). In fact, for any {z,} C K with |zn]| = 400
asn — +00, and for any sequence {u, } with u,, € T(z,). For given 7 € E, we note
that [z, — Z]| — +oco as n — +c0. Since p is a constant, there exists a positive
integer ng such that ||z,, — Z|| > p. By (C4), there exists y € K and Uny € T(2p,)
satistying ||y — 2|| < |lzn, — Z]| and (w,y,y — 24,) < 0. Hence the condition (C2)
holds. O

Setting £ = R™ in Theorem 3.2.4 and Theorem 3.2.6, we have following

result.

Corollary 3.2.7. [8] Let K C R" be a nonempty a closed convex subset, T : K —

28" be an upper semicontinuous multi-valued mapping, where T(z) is nonempty
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compact contractible in R" for any x € K. Suppose that one of the following

conditions hold:

(C1) GivenT € R* and for any {z.} C K with ||z,|| — 400 as n — +oo, and for
any {un} with u, € T(x,), there exist a positive integer ng and y € K such

that [ly — Z|| < |lwne — 2| and (uny,y — Bt < 0

(C2) Given T € R" and for any {z,} C K with ||z,|| — +oco as n — +00, and
for any sequence {u,} with u, € T(x,), there ezist a positive mnteger ng and

Yy € K such that ||y — 2|| < ||zn, — Z|| and (tng, ¥ — Zny) < 0.

(C3)" Given & € R”, there exists a constant p > 0 such that, for any v € K with
lz — 2| > p, there eaist y € K and u € T(z) satisfying ||y — z|| < |z -z

and (u,y — z) < 0.

(C4)" Given T € R™, there eaists a constant p > 0 such that, for any v € K with
lx — || > p, there ewists y € K and v € T(x) satisfying |ly — 3| < lz —Z||

and (u,y — z) < 0.
Then the solution set of GVI(K, T’) is nonempty and compact.

Proof. Tt is easy to see that every weakly convergent sequences in R" is norm
convergent. Moreover, we note as in the proof of Corollary 3.2.2 that T(B) is

compact in E*, for all compact subset B of K. O

As special cases, we obtain the following two existence theorems of solutions

for variational inequality problems.

Theorem 3.2.8. Let E be a reflevive Banach space with a Fréchet differentiable
norm, I be a closed convex set in E such that every weakly convergent sequence
in K is norm convergent. Let f : K — E* be a continuous mapping. Suppose that

one of the following conditions hold:
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(C5) Given T € E, for any {z,} € K where ||z,|| — +oo there egists a positive

integer no and y € K with ||y — || < ||z, — || such that (f(xn,),y —z) < 0.

(C6) Given T € E, for any {z,} € K where ||z,|| — +oco there ewists a positive
integer ng andy € K with ||y — 2| < ||zn, — F|| such that (f(2n,),y —z) < 0.

(C7) Given % € E, there ewists a constant p > 0 such that, for any © € K with
lz—2|| > p, there ezists y € K satisfying ||ly—7|| < lz—2|| and (f(z),y—=) <
0.

(C8) Given T € E, there exists a constant p > 0 such that, for any z € K with
lz=2Z|| > p, there exists y € K satisfying |ly—2|| < lz—2Z|| and (f(z),y—z) <
0.

Then the solution set of variational inequality VI (K, f) is nonempty, closed and

bounded.

3.3 System of nonlinear set-valued variational inclusions involving a

finite family of H(,-)-accretive operators in Banach spaces

In this section, we assume that E is g-uniformly smooth real Banach space
and C(E) is a nonempty closed convex set. Let SiH; : EXE —E, A;,B;:E— E
be single-valued operators, for all i = 1,2,..., N. For any fix ¢ € {1,2,...,N},
we let M; : E — 2F H(A,, B;)-accretive set-valued operator and U; : E — 2 be
a set-valued mapping which nonempty values. The system of nonlinear set-valued
variational inclusions is to find ay,...,ay € E, u; € Ui(an),...,uy € Uy(ay) such

that

0 € Si(ai, w;) + Mi(a;), forall =1,2,..., N. (3.3.1)
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If N = 2, then system of nonlinear set-valued variational inclusions (3.3.1
becomes to the following system of variational inclusions: finding ay,a, € E, u; €
Ui(az) and uy € Uy(ay) such that

0 € S1(a1,w1) + My(ay) (3.3.2)

0e Sg(ﬂg,’&z) + ﬂ’fz(ag).

If N =1, then system of nonlinear set-valued variational inclusions (3.3.1)
becomes to the following the class of nonlinear set-valued variational inclusions

[48]: finding @ € E, u € U(a) such that

0 € S(a,u) + M(a). (3.3.3)

For solving the system of nonlinear set-valued variational inclusions involy-
ing a finite family of H(:,-)-accretive operators in Banach spaces, let us give the
following assumptions.

For any 4 =1,2,..., N, we suppose that
(A1) H(A;, B;) is a;-strongly accretive with respect to A;, Bi-relaxed accretive with
respect to B; and a; > §;
(A2) M;: E — 27 is an H;(-,-)-aceretive single-valued mapping,

(A3) Ui : E — C(E) is a contraction set-valued mapping with 0 < L; <1 and

nonempty values,

(A4) H(A;, B;) is m-Lipschitz continuous with respect to A; and ¢;-Lipschitz con-

tinuous with respect to B;,

(A5) S;: E x E — E is l-Lipschitz continuous with respect to its first argument

and m;-Lipschitz continuous with respect to its second argument,

(A6) Si(:,u) is s;-strongly accretive with respect to Hi(Ai, B;).
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Lemma 3.3.1. For given ai,...,ay € E, u; € Ui(an),...,un € Uyn(ay), it is a

solution of problem (3.3.1) if and only if
a; = Ry Hi(Ailas), Bi(as)) — MiSi(as, )] (3.3.4)

where \; > 0 are constants.

Proof. We note from the Definition 2.5.13 that ai,...,ay € B,u; € Us(ay),...,uy €

Un(a1) is a solution of (3.3.1) if and only if, for each i = 1,2,..., N, we have

@ = RGO H; (A(as), Bia:)) = AiSi(as, )]

¥ = [Hi(Ai: Bt) + /\,-ﬂaﬂ-]"l[Hi(Ai(a‘i), B-i(ai)) — /\iSi(a’ia ui)]

=4 [Hi(Ai((Li), Bi(ai)) — /\iS,-(ai,u;)] (S [Hi(Ai, Bt) = )\iﬂaﬂ-](ai)

= —/\iSi(a,-,ui) € /\iﬂf{i(ﬂi)

& 0e S;'((Ii, ’tli) + ]\/Ii(a.i).

O

Algorithm 3.3.2. For given af,...,a) € E, u} € Uy(ad),...,u) € Un(a}), we
let

ay = goag + (1 — 00) Ry;) [Hi(Ai(ah), Bi(al)) — AiSi(ah, up))

for all : = 1,2,..., N, where 0 < dp < 1is a constant. By Nadler theorem [49],

there exists uj € Uy(al),...,ud € Uy(al) such that
Iy = wpll < (1 + 1) DWi(ay "), Ui(ad ")), forall i=1,2,... N,

where D(:,-) is the Hausdorff pseudo metric on 2E. Continuing the above process

inductively, we can obtain the sequences {a},} and {u} such that

Ggr = oy + (1= o) Ry [ Hi(Ai(al), Bi(a)) — MSi(ad, )] (3.3.5)
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for all n = 1,2,3,..., 7 = L,2,...,N where 0 < 0, < 1 are constant with
limsup o, < 1. Therefore, by Nadler theorem [49], there exists

n—oo

Unt1 € Ua(alyy), ... ,ul,, € Un(al,;) such that
s =l < (14 (L4 0)™) D), Ui(al~6D)),  (3.36)
foralln=1,23,...,i=1,2,..., N.
"The idea of the proof of the next theorem is contained in the paper of Verma,

[48] and Zou and Huang [12].

Theorem 8.3.3. Let E be g-uniformly smooth real Banach space. Let A;, B; : E —
E be single-valued operators, H; : Ex E — E be a single-valued operator satisfying
(A1) and M;, U;, Hi(Ai, B;), Si, Si(-yu) satisfy conditions (A2)-(AB), respectively.

If there exists a constant c,; such that

{'/(?'i + ti)q == (_[/“\531' + Cq’i/\glg 1 )\iﬂlg <
o; — 3 @; — [

1 (3.3.7)

Joralli=1,2,..., N, then problem (3.3.1) has a solution ay,. .., ay, u; € Ui(an),

oty € Un(ay).
Proof. For any i € {1,2,..., N} and \; > 0, we define F,:ExFE — E by
Fi(u,v) = B3 Hi( Ai(w), Bi(w)) — AiSi(u, ), (3:3.8)

for all u,v € E. Let Ji(z,y) = Hy(Ai(z), Bi(y)). For any (u1, %), (ug,v2) € Ex E,
we note by (3.3.8) and Lemma 2.5.14, that

1Fs(ur, 1) = Filug, wa)ll = || Ry [Hi(Ai(wn), Biluwr)) — NiSSi(aen, v1)]
— Ryt [Hi(Ai(uz), Bi(us)) — AiSi(uz, va)]|
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= ”Rﬁf’.(,i.)[tl»(ul: uy) — AiSi(uq, vy)]
— Ry i (g, ua) — A\iSi(uz, va)] |

[, ) — S, )]

= a;—
-—[Ji(’u,z, uz) - /\53,;(‘&2, 'U2)]”
- L i, ) = Jifua, wo)]
—Ai[Si(u1, v1) — S;(ug, )]
< i) — i, )
_’\i [S,'(Ul, ’Ul) = S{('Rg, ’Ul)]”
+%E||[Si(qaz,v1) ~Siunw)ll.  (33.9)

By Lemma 2.4.17, we have

1, wa) = Ji(ua, 1) — NilSi(ur, v1) — Si(ug, v1)]|°
< [ iur, ) = Ji(ug, ug)]|?
= aA(Si(un, 1) — Sz, 1), I (fi(wa, 1) — Ji(ug, up)))
+ i (1S (ur, v1) — Si(ug, v1)|°. (3.3.10)

Moreover, by (A4), we obtain

1 ius, ur) = JTi(ug, ua)|| - < || Jiur, 1) — Ty, )| + (| (g, 1) — Ji(ug, up) ||
< rillun = gl + 4wy — us|

< (ri ) |Jun — |- (3.3.11)
From (A6), we have

—qAi(Si(ur, v1) — Si(ug, v1), Jo(Ji(ur, 1) — Ji(ua, ug)))
< — sl . (3.3.12
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Moreover, from (A5), we obtain

[19i(ur, v1) — Si(ug, vi)|| < Lifjug — ua| (3.3.13)

and

[1Si(uz, v1) — Si(ug, vs)||

A

m,-”'ul — Uz”. (3314)

From (3.3.10)-(3.3.13), we have

| Ji(2eny wq) — Ji(ug, ug) — Ai[Si(ur,v1) — Si(ua, v1)]]|¢

< /(i 1)1 — i+ oad et — ). (33.15)

It follows from (3.3.9), (3.3.14) and (8.3.15) that

\q/(?'.i + ti)q N Q'/\iS,; + Cq,,')\gf?

|1 Fi(ut, v1) — Fi(ug, v)]| < AS G, L[y — u|
Aimy;
. [lvr = wa[. (3.3.16)
Put
: v/ (T + 1;)1 — Ai i i A ) i
9; A \/(7 St ) gA;iS; + Cq, /\z 1, ol 95 = Aim .
a; — 5 o' — G;

Define ||| on £ x ... X E by (2, ..., @n)|| = [|z1]|+.. . +|zx]| for all (€1y...,2N)

N—times

EX...xE Tti t that (Fx ... x E,||-||) is a Banacl . For
EBR o0 X is easy to see that ( , || -1) is a Banach space. For any

N—times N—times
given 21, ...,y € F, we choose a finite sequence w; € Ui(zn),...,wy € Un(z).
Define @Q: Ex...xE—>Ex... X E by Q(z1,...,2x5) = (Fi(z1, w1),. ..,
NHEmes N—;irmes

Fy(en,wy)). Set k = max{(0} + 0} Ly),...,(83L, + 6V)} where Ly,..., Ly are
contraction constants of U1, .. ., Uy, respectively. We note that Gi+05L; < 0i+65 <
1 foralli=1,2,...,Nandso k<1 Let zy,...,zy € E, w; € Ui(zy),...,wy €

UN($1) and Y15...,UN € E: 21 € Ul(yN)i"'JzN S UN(yl)
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By (A3), we get

”Q(Il: v ;xN) i Q(yl; . ’yN)“
= [(Fi(zs,wr), ..., Fn(zn, wn)) — (Fi(ys, 21), - Fw(yw, )|

[ F1(z1, w1) = Fy(yn, 20)l + ... + || Fv (2, wa) — Ey (yw, 2v)|

IA

Orller =l + O llwr — zill) + ...+ (OF llew — ywl| + 0F o — 2w )

IA

(O1llzr = ol + O3 Lallzw = ywll) +o. + (0N low — y || + 0N Lv||21 — )

(01 + 05" Lw)ller —anll 4. + (O + 63 L1) len — yw |

IA

k

1=yl + .o+ Elleny — ynl|
= k(llzs —wll + ... + lzv — ynl])

= k(@ ..., an) — (@100, uw)l, (3.3.17)

and so () is a contraction on F X ... x E. Hence there exists a1,...,ay € E,
P A

N—times
w1 € Ui(an),...,un € Uy(ay) such that a; = Fi(a1,u1),...,an = Fn(ay,un).

From Lemma 3.3.1, a4,...,ay € E, u; € Ui(an),...,un € Un(a;) is the solution

of the problem (3.3.1). O

Theorem 3.3.4. Let E be q-uniformly smooth real Banach spaceFori=1,2,...,N.
Let A;, B; : E — E be two single-valued operators, H; : ExX E — E be a single-
valued operator satisfying (Al) and suppose that M;, U, H;(A;, By), Si, Si(+,u)
satisfy conditions (A2)-(A6), respectively. Then, for any i € {1,2,...,N}, the
sequence {anfnly ind {uy, foy, generated by Algorithm 3.3.2, converge strongly to

@i, u; € Ui(an—(i-1)), respectively.

Proof. By Theorem 3.3.3, the problem (3.3.1) has a solution ap,...,ay € B, u; €

Ui(an),...,uy € Uy(a;). From Lemma 3.3.1, we note that

@i = 0nt; + (1 — 00) Rip [ Hi(Ai(as), Bi(a:) — MSi(as,ws))],  (3.3.18)
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foralli=1,2,...,N. Hence by (3.3.5) and (3.3.18), we have

oty = apll = llowal + (1 — 0a) REEG) [Hi(Ai(al), Bi(al)) — AiSi(al., ol )]
~[onayy + (1 = o) Ry [Hi(Ai(diy), Bi(ai_y))
—NiSi(al,_y, wi DI

< oullal — ||
+(1 — au)IRSHi(Ax(al), Bi(ai)) — AiSi(al,, )]
~ Ry 3 HHi(Adal ), Bilah ) = AiSildd_y, i, )]l

5 anna:' ol + (1= o) B i(dh, ) — AsSi(al, )]

s [Jilah,_y,ah_y) = Avs-(azz oA ||

< onr|a;~a:;_1n+(1—on)m (e, ah) — AiSi(al, wh)
S 1) — NSy )]

= oullal, ~ ai_ 1““1—"'1)01 -1i(0n04) = (a1, @h )
~AilSi(al, ul) — si(a;_l,u,ﬂ)m

< ol = aall + (1= o) e ) ~ A,

=AilSi(an, u, ) Si(@_y, )]l
”S( Ip— 15“ ) Si(a::aﬁlaufl—l)”' (3319)

+(1 — an)a

i

By Lemma 2.4.17, we obtain

1: (0% a5) — Ji(ap 1, @hs) — NilSi(ah, ul) — Sila_y, )]
< i(an a) = Jilas,q, a2y
— QAulSi(an, w) = Si(an 1,4, Joa(Jilah, ab) — Ji(ah_y, ab_y)
+ cqiA]|ISi(ah, uh) — Si(al_;,ul)||e. (3.3.20)

From (A4), we note that

[|J,-(afl, a’:'l) - Ji(afx—n a:.;—l)”
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= |Hi(Ai(ar), Bi(a},)) — Hi(Ai(al,_y), Biai,_y))|
< ||Hi(Ai(ay), Bi(ay)) — Hi(Ai(d}, ), Bi(al))
+ | Hi(Ai(ay ), Bi(ay,)) — Hi(A(ah,_,), Bi(al_,))]|
< (ri+t)|al, — al_4|). (3.3.21)

From (3.3.20) and (A6), it follows that

—qAi(S, ( L;) - Si(“iz—h”fx)ﬁ Jg,i(J; (ania } Ji(a;—haiq)»
< —ghisil|a;, —al |9 (3.3.22)

By (3.3.19), (3.3.20) and (A5), we have

“S( Ap_1, Uy ) Si(aft—lﬁufir-l)” = ’nli“ufz _TLil—lll

< mydi(1+n7)||d, — ol || (3.3.23)

and
”S( niu ) Sf(ai—liuiz)” S li'”a’;:l ] a’i;—l”' (33'24)
From (3.3.19)-(3.3.24), we obtain

Ii(an, a7) = Ji(ah=1y @5, _)) — N[Silad,, f,) = Si(af,_y, u)]||¢
- \/( i+t5) —q/\iSi-f—qu/\?lf” %
a o; — B

A —1y|| 4 i
t g0 +nNa —d ]l (3325)

o 0«2—1“

Hence by (3.3.19), (3.3.24) and (3.3.25), we have

AiSi ATl ,
oty )
Q; — |7

di(1+n7")||al, — ai_,||. (3.3.26)

i i 3 Tz+t
iy —aill < onllah - a ]|+ (1 — o) L

)\,-m,-
+(1 - a")af, )
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Put k = max{m...,mx},

where

{/(7',; + tg)q — Q/\gSi -} Cq.,'/\glg /\,-m,-di(l + n_l)
+ .
a; — [3; a; — f;

i =

It follows from (3.3.26)that

”asz-i-l o arI;” +...+ ”agﬂ = af:r” < Unllafll - a’l—l” + (L~ Jﬂ)k”a'rlz = a:;—l”
t...tonllal —al |

+(1 —on)kllay —a |- (3.3.27)

Set ¢ = [lag = ap_[| + ...+ [lal — o} ,|| and Ky =k + (1 = k)o,,. From (3.3.27),

we obtain
Cntl - S kncna V= 0,1, 2a .

Since limsupa,, < 1, we have limsup k, < 1. Thus, it follows from Lemma 2.3.13
n—oo n—co

that ¢,11 — 0 and hence Jim lla}, 1 —a || = 0. Therefore {ai} is a Cauchy sequence

and hence there exists a; € F such that at — a; as n — oo for all 1 = 1, & iy W

Next, we will show that ! — u; € Uy(ay) as n — oo. Hence, it follows from

3.3.6) that {u;} is also a Cauchy sequence. Thus there exists u; € I such that
n

ul, — u; as n — co. Consider,

d(w1,Ur(an)) = inf{|lu;—gq||:qe€ Ui(an)}

[A

lur = || + d(uy, Ur(an))

A

llur = unll + D(U: (), Ur(a))

< Nl = wll + dilaff — an|| — 0.

as n — oo. Since Uj(ay) is closed and d(uy,Ur(ay)) = 0, we have u; € Ui(an).
By continuing the above process, there exist u; € Uz(an-1), ..., un € Uy(a;) such

that uz — ua,..., u — uy as n — co. Hence, by (3.3.5), we obtain

@i = Ryt 3 (Hi(Ai(i), Bilas)) — NiSilas ui)].
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Therefore, it follows from Lemma 3.3.1 that ay,...,ay is a solution of problem

(3.3.1). 0

Setting N = 2 in Theorem 3.3.3, we have the following result.

Corollary 3.3.5. Let E be g-uniformly smooth real Banach spaces. Let A;, B; :
B — E be two singled valued operators, H; : ExX E — E a single-valued operator
such that H(A;, B;) is a;-strongly accretive with respect to A;, B;-relaxed accretive
with respect to B; and a; > B; and suppose that M; : E — 2F is an H;(-, -)-accretive
set-valued mapping and U; : E — C(E) is a contraction set-valued mapping with
0 < L; < 1 and nonempty values for all i = 1,2. Asswme that Hi(A;, B;) is 14-
Lipschitz continuous with respect to A; and t;-Lipschitz continuous with respect to
B;, S;: EXE — E is l;-Lipschitz continuous with respect to its first argument and
m-Lipschitz continuous with respect to its second argument, S1(-,vy) is sy-strongly
accretive with respect to H, (A1, By) and Sy(z, ) is sy-strongly aceretive with respect

to Hy(As, By), foralli=1,2. If

Y+ 1) —qhis; + R 4 iy £
o — f; o — [3; ’

Jor all i € {1,2}, then problem (3.3.2) has a solution ay,ay € E, u; € Ui(ag),

Ug & Ug(al).

Setting N = 1 in Theorem 3.3.3, we have the following result.

Corollary 3.3.6. Let £ be g-uniformly smooth real Banach spaces. Let A,B : E —
E be four singled valued operators, H: Ex E — E be a single-valued operator such
that H(A, B) is a-strongly accretive with respect to A, (-relazed accretive with
respect to B, and o > 3 and suppose that M : E — 2F is an H (+,-)-accretive
set-valued mapping, U : E — C(E) is a contraction set-valued mapping with 0 <
L <1 and nonempty values. Assume that H (A, B) is r-Lipschitz continuous with
respect to A and t-Lipschitz continuous with respect to B, S : ExX E — E is |-

Lipschitz continuous with respect to its first argument and m-Lipschitz continuous
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with respect to its second argument, S(-,y) is s-strongly accretive with respect to

H(A,B). If

Y (r + )T — s + ¢ Ml 3 m

a_p a—ﬁ<1

then problem (3.3.3) has a solution a € E, u € U(a).

3.4 Existence and algorithm for generalized mixed equilibrium prob-

lem with a relaxed monotone mapping

In this section, let X be a Hausdorff topological vector space, K be a
nonempty closed convex subset of X. Let g,h : K X K — R, A: K - X*
be a monotone mapping, and 7 : K — X* a relaxed n-ac monotone mapping.
We consider the following generalized mixed equilibrium problem with a relaxed

monotone mapping: finding x € K such that
9(@,y) + hz,y) + (Tz,9(y,x)) + (Az,y —2) > 0 forall y€ K. (3.4.1)
The set of solution of (3.4.1) is denoted by GMEPRM (g9,h,T, A).

If h = 0, then generalized mixed equilibrium problem with a relaxed monotone
mapping (3.4.1) becomes to the following the generalized equilibrium problem with

a relaxed monotone mapping [50): find z € K such that
9(&,y) + Tz, iy, 2)) + (Az,y —x) > 0 forall y € K, (3.4.2)

where K is a nonempty closed convex subset of a real Hilbert space H,A: K — H

Is a Ad-inverse-strongly mapping, and g : K x X — R is a bifunction mapping.

For proving our main result, let us give the following assumptions:

(A1) g(z,z) =0 for all & € K;

(A2) g is monotone, i.e. g(z,y) + g(y,z) <0 for all z,y € K;
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(.ES) for each z € K, y — g(w,y) is convex and lower semicontinuous;
(24) for each 2,4,z € K, 11111 S{ll.lp g(tz+ (1 —t)z,y) < g(z,y);

(B1) h(z,z) =0 for all z € K;

(§2) for each z € K, y — h(z,y) is lower semicontinuous;

(ES) for each z € K, y — h(z,v) is convex;

(§4) for each z,y,z € K, limsup h(tz + (1 = t)z,9) < h(z,y);
t—0

(6’1) n(z,y) +n(y,z) =0 for all 2,y € K

(62) for each u,v € K, z — (Tv,n(z,u)) is convex and lower semicontinuous and

z+ (Tu,n(v, 2)) is lower semicontinuous;
(C3) for each 7,y € K, a(z —y)+aly—z) > 0;

(C4) for each u,v,z,z € K, limsup(Tw,n(v, tz + (1 — t)2)) < (Tu, (v, 2));

t—0
(D1) for each u,v € K, z — (Av,z — u) is convex and lower semicontinuous and
z+— (Au,v — 2) is lower semicontinuous;

(D2) for each u,v,%,2 € I, limsup(Au, v - (tv + (1 — ¢)z)) < (Au,v — 2);

t—0

(D3) (Ta,n(y,2)) + (Ty,n(z, y)) + (Av,y = 2) + (Ay, = — ) < 0 for all &,y € K.

The idea of the proof of the next theorem is contained in the paper of Peng

and Yao [51], Wang, et al. [50], and Combettes and Hirstoaga [52).

Lemma 3.4.1. Let X be a Hausdorff topological vector space, K be a nonempty
closed convex subset of X. Let g : K x K — R be a mapping satisfying (21) and
(23), andh: K x K — R be a mapping satisfying (El) and (§3) LetT : K — X*
be an n-hemicontinuous and relazed n-o monotone mapping satisfying (52) Let
A: K — X* be a monotone and hemicontinuous mapping satisfying (51) and
assume that n(z,x) =0 for allx € K. Then for allt > 0 and z € K the following

problems are equivalent;
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(i) find x € K such that
1
9(@ Y)+h(2,9) KT, 0y, 2))+(Av,y—2)+~(y—z,2~2) 2 0 for all y € K;
(i) find v € K such that

9(z,y)+h(z, y)+(Ty, n(y, «))+(Ay, y—w)+;1:(y—w, x—2) = a(y—=x) fordl ye K.

Proof. Let x € K be a solution of the problem (3). Since T is relaxed 7-cc monotone

‘' and A is monotone, we get

1
9(x, y) + h(z,y) + (Ty,1(y,2)) + (Ay,y = =) + ~(y—z,2—2)
2 9(z,y) + h(z,y) + (T2,0(y,2)) + aly — z) + (Az,y — 2)
1
i ;(y — &, = 7)

> aly—=), forall yeK,

Hence z is a solution of the problem (i3).
Conversely, let & € K be a solution of the problem (i%). Setting y, = (1 =8)z+ty
for all ¢ € (0,1), then 3, € K. Thus, it follows that

o

9(®,u) + h(@, 4e) + (Tye (Yo @) + (Ays, ye — ) + =(y; — 2, ¢ — 2)

-

> oy — )

= ta(y—z). (3.4.3)
From the conditions (A1), (43), (B1), (B3), (C2) and (D1), we obtain

9(@,y) < (1 -t)g(z,z) + tg(z,y) = tg(z,y), (3.4.4)

h(z,y:) < (1 —t)h(z, ) + th(z,y) = th(z,y), (3.4.5)

(Tye,n(ye,2)) < (1 —8)(Ty,n(z, ) + t{Tye, n(y, )
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= t(T(iL + t(y - :12)), T?(y: T)): (346)

and
(Yo v — @) = (Ay,z +t(y — 2) — 2) = {A(z + t{y — 2)),y —2). (3.4.7)
Since
(—ze-D=(@+i{y-2) - s,o—2)=ty—z,2—2), (348)

it follows from (3.4.3)-(3.4.8) that

9(,y) + 2, y) + (T(z + ty — @), 0y, 2)) + (A(z + t(y = 2)), y — z)

+ }(y —z,2—2) 2 P laly—2), (3.4.9)

for all y € K. Letting f — 0 in (3.4.9), we get
9(z,y) + h(z,y) + (Tz,n(y, 2)) + (Az,y — z) + %(y —z,2 —z) > 0, (3.4.10)
for all y € K. Hence w is a solution of the problem (2).  This completes the

proof. 0

Theorem 3.4.2. Let X be a Hausdor(f topological vector space, K be a nonempty
compact conver subset of X. Let g: K x K — R be a mapping satisfying (ﬁl)
and (A\B) and let h : K x K — R be a mapping satisfying (El) and (§3) Let
T: K — X* be an n-hemicontinuous and relazed n-o monotone mapping satisfying
(51)(63) Let A: K — X* be a monotone and hemicontinuous mapping satisfying
(_51) Then, for allr > 0 and z € K there ezists x € K such that

1
9(x, y)+h(z,y)+(T=, n(y, ﬂ:))+(Aw,y—w)+;(y—m,a:—Z) >0, foral yeK.
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Proof. Let z be any given point in K and let 7 > 0. We will show that Tz} 218
Define M,, N, : K — 2X by

Mi(y) = {w € K : g(w,y) + bz, ) + (T, n(y, @) + (Az, y — 2)

+%(y_m,$_z) 20}, forall yeK
and

N(y) = {% € K2 g9(2,y) + M@, y) +{Ty, 1(y, ®)) + (Ay,y — )

1
+ ;(y —z,x—2) > aly — :1:)}, for all y € K.
Note that, for each y € K, M,(y) is nonempty because y € M,(y). We claim
that M, is a KKM mapping. Assume that M, is not a KKM mapping. Then

n
there exists {y1,%2,...,%.} C K and t; > 0,3 = 1,2, ..., n with Y. t; = 1 such that

i=1
n

e .thiy" ¢ -U1 M, (y;) for each i = 1,2,...,n. This implies that

L. \ . " . 1
g(zayi) + h’(zsyi) g (Tz'nn(yi: Z)) -+ (Az)yi r 3 A) + ;(yt —Z,Z2—= Z) < 0’

for each i =1,2,...,n. By (Al), (43), (B1), (B3), (C2) and (D1), we have
0 = g(2)2) + h(z,2)
=g (E,Zn:tm) +h (Ziti%) + <T3,n (i tiyi,?)>
i=1 i=1 i=1

+ <AE:'“, Zn:t,:y,- — §>

i=1
S tigBia) + 360 + ST D)+ S (A5 - 2
i=1 i=1 i=1

i=1

IA

n
T ~
= § :ti;(z_yiaz_z)
i=1

= 0,

which is a contradiction. Hence M, is a KKM mapping. We now show that
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M,(y) C N,(y) for all y € K. For any y € K, we let = € M, (y). Thus, we have

9(z,y) + h(z,y) + (Tz,n(y, z)) + (Az,y — =) + %(y —&,z—2) 20

Since T is relaxed 7-o monotone and A is monotone, we get

I
9(z,y) + h(z,y) + (Ty,n(y, z)) + (Ay,y — ) + ;(y — &,z — 2)
> g(z,y) + h(z,y) + (Tz,n(y,z)) + a(y — ) + (Az, y — )
1
g ;(y — T, & — 2)

> oy —x).

This implies that # € N,(y) and hence M,(y) C N,(y) for all y € K. Since
z — (Ty,n(y,2)) and z — (Ay,y — z) are the lower semicontinuous function, we
have 2 = (T'y,n(y, z)) and z — (Ay,y— z) are weakly lower semicontinuous. Thus
M (y) is weakly closed for all y € K implies that M. (y) is closed for all y € K.
Since K is compact, we have M,(y) is compact in K for all y € K. By Lemma
3.4.1 and Lemma 2.5.7, we get

() M.(y) = () Na(y) # 0.

yek yeK

Therefore, there exists & € K such that

1
9(z,y) + h(z,y) +(Tz,7(y, 2)) + (Az,y —z) + y—2e-2)>0

O

Theorem 3.4.3. Let H be a real Hilbert space, K be a nonempty bounded closed
convex subset of H. Let g : K x K — R be a mapping satisfying (ﬁl)(ﬁS) and
leth: K x K — R be a monotone mapping satisfying (§1)(§3) LetT: K - H
be an n-hemicontinuous and relazed n-oc monotone mapping satisfying (6’1)(63)
Let A: K — H be a Minverse-strongly monotone and hemicontinuous mapping

satisfying (D1). Forr >0 and z € K, define T, : K — 2K by
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73(2) = {& € K+ g(0,0) + e ) + (T n(y, ) + (A, =)
+ %(y—x,:c —2)20, forall ye K}.
Then, the following results hold:
(2) domT, = H;

(i) T, is single-valued;

(4ii) T, is firmly nonexpansive i.e., for any z,y € K,

IT-(z) = TW)I* < (T(z) — T(v), @ — y);
(i) F(T,) = GMEPRM(g, h, T, A);

(v) GMEPRM((g,h, T, A) is closed and convez.

Proof. Step 1. We first show that dom7, = H. Since K is bounded closed and
convex, we note that K is weakly compact. Hence, for every r > 0 and z € K

there exists © € K such that
1
9(, y) + h(z,y) + (Tz,n(y, =) + {Az,y — z) + ~{y—2,8-2) 20, forall yeK.

Step 2. We will show that T, is single-valued. For each z € K and r > 0,

let z1, 25 € T,(2). Thus, we have
1
9(%1, T2) + h(z1, T3) + (T, (w2, 1)) + (A, 20 — x) + ;(3:2 —z1,21—2) >0
1
and  g(@3, T1) +h(22, ©1) + (Tz2, (21, T2)) + (As, 7, —x) + ;(331 —Ty,23—2) > 0.

Adding the two inequalities, we obtain

g(wls $2) + h'(wl: 3:2) + 9(3;2) £U1) + h(g"?) 331) + (T*’vl - T:BZs 77(3:2’ $1))

1
+ (A$1 — AIEQ,ICQ - (B1> + ;(1122 —T1,T1 — 11,'2) > 0.
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From the monotonicity of H and (E2), we have
1
(Tz1 — Twe, (@, 1)) + (Awy — Aweg, Ty — 31) + (X2 — 1,31 — 32) 2 0.

This implies that

1
;(332 — &1, — 9)2) > (Tﬁ,g = T:Dl,?](:l.'g,ﬂ?l)) + (CCQ - $1,A£B2 = A371> (3411)

Since T is relaxed 7-o monotone, A is A-inverse-strongly monotone and 7 > 0, it

follows that

(T —z, @1 —29) > 1 [a(r:;g — 1) + A||Azy — Aa:lllg] > rafzy — 21). (3.4.12)
By exchanging the position of z; and Ty in (3.4.11), we get
i
;(:Bl — T2, &2 — %1) = (Twy — Twg, (21, 72)) + (21 — 29, Azy — Azy) > oz — x3).
Hence (z; — 23, 25 — 2;) > ra(z; — xo) and therefore

(T — 1,81 — @2) = (T — 9, Tp — r1) > rofz — zy). (3.4.13)
Adding the inequalities (3.4.12) and (3.4.13) and using (C3), we have
—2f|lzy — x||? = 2(zg — 1,21 — 33) > 0.

Hence z; = 2, and therefore T, is a single-valued mapping.
Step 3. We will show that 7 is a firmly nonexpansive mapping. For

z,y € H, we note that

9(T:(2), T(v)) + (T (2), T(y)) + (TT, (), n(T(), To(z))
HAT@), T) - T@) + - (T) - To(a), Tu(e) —2) > 0
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and

9(T:(¥), Tr(2)) + ML, (v), T (2)) + (TTo(y), (T3 (2), Ty ()
HAT (), 1(0) - Tw) + (T (0) - Tw), Tiy) — ) 2 .

By (22), (C1), r > 0, and h is monotone we obtain

(TTy(2) = TT:(y), n(T3 (), To(@))) +4 AT, (2) — AT, (y), Ty (y) — Th(x))

¥ L)~ T B) - o~ T(y) +9) 2 0.

Thus, we have

AT (Y) — T (2), To(e) — To(y) + y — @)
2 (TT\(y) = TT.(z), n(T:(y), T(z)))
T.(y) — Ti(z), AT, (y) — AT, (=)
(T (y (2)) + A AT, (y) — AT, (2)|?

(y) - T,
a(T(y) — Tr(z)). (3.4.14)

[V

By exchanging the position of 2 and % in (3.4.14), we note that

L@ =~ TELL0) “T@ +a—3) > alfie)-T@). (3415)
From (3.4.14) and (3.4.15), we get
AT (@) = ), T(0) = Toa) + 2 —3) 2 r[2(T) ~ T @) + (T (o) ~ T)].

By (C3), we obtain

(@) =~ T.(), Ty) - T(2) + 2 —y) = (T(x) - T(y), T(y) - T.(=))
+(Tr($) - Tr(y): T = y)
0.

v
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Thus, we have [|T,(2) - T.(y)|I* < (T.(z) — T,(¥), = — y). Hence T. is a firmly

nonexpansive mapping.

Step 4. We will show that F(T,) = GMEPRM (g9,h,T,A). Indeed, we

have the following

u€ F(T,) & u=T.(u)
& g9(u,y) + h(u,y) + (Tu, n(y,u)) + (Au,y — u) > 0,
forall ye K

& uw€GMEPRM(g,h, T, A).

Step 5. We will show that GMEPRM (g, h, T, A) is closed and convex.
Since T, is firmly nonexpansive, it follows by Lemma 2.2.23 that GMEPRM (9,h,T, A)

is closed and convex. This completes the proof. O

Corollary 3.4.4. [50] Let H be a real Hilbert space, K be a nonempty bounded
closed convex subset of H. Let T : K — H be an n-hemicontinuous and relaxed
n-& monotone satisfying (51)—(63) andlet g : K x K — R be a mapping satisfying
(A1)-(A3). Forr > 0 and z € K, define T, : K — 25 by

~

1
T(2) = {q, € K :g(z,y)+ (T, n(y, x)) + ;(y .z —2) AW foral ye K}.

Then, the following results hold:
() T, is single-valued;

(22) T, is Jirmly nonexpansive i.e., for any z,y € K,
IT:(2) - TP < (Tiz) — Toly), = — y);
(i#i) F(I}) = GEP(g,T);

(iv) GEP(g,T) is closed and convez.

Proof. Tt is easy to see by setting h = 0 and A = 0 in Theorem 3.4.3. O
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3.4.1 Weak convergence theorems

In the section, we introduce an iterative sequence and prove weak conver-
gence theorem for solving a generalized mixed equilibrium problem with a relaxed

monotone mapping.
We note that domT, = H under certain condition in Theorem 3.4.3.

Lemma 3.4.5. Let H be a real Hilbert space, K be a nonempty bounded closed
convex subset of H. Let g : KK x I — R be a mapping satisfying (;1\1)(;1\4), and
h: K X K — R be a monotone mapping satisfying (El)—(@i) LetT: K — H be
an 1)-hemicontinuous and relazed n-oc monotone mapping satisfying (62) and (64)
Let A: K — H be a monotone mapping satisfying (ﬁl) and (132) and assume that
n(,z) =0 for all x € K. Let {xn}nen be a sequence in H for alln > 1 and T}
a sequence of mapping defined in (2.3.4) which domT, = H. Define

Zn="Tz, and u, =z, — 2,, Vn €N, (3.4.16)
and suppose that
Zn =2 and U, — u. (3.4.17)

If r > 0, then

1
9(z,y) + h(z,y) + (Tz,n(y, ) + (Az,y — z) + ;(u, z—y) >0, foral yeK.

Proof. Since domT, = H, we note that the sequence {2n}nen is well defined in K.

By g, h, A are monotone and 7 is relaxed -z monotone, we get

9(z,y) + 9(y, ) + h(z,y) + h(y, =) + (Tz,n(y, 2)) + (Ty,n(z,v))

+(Az,y —z) + (Ay, 2 —y) <0, Vz,y€ K.
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This implies that

9(y, ) + h(y, z) + (Ty,n(z, y)) + (Ay, z — y)

< —9(z,y) - Mz,y) — (Tz,9(y,2)) — (Az,y —z), Va,y€cK. (3.4.18)

It follows from (21\3), (§2), (62), and (51) that y — g(z,y), y — h(z,y), z —
(Tv,n(z,u)), and z — (A, » — u) are weak lower semicontinuous for every y € K.

Therefore, we derive from (2.3.4), (3.4.16), (3.4.17) and (3.4.18) that

9, @) + My, =) + (Ty, n(z,y)) +{Ay, z — )
< liminf g(y, 2,) + liminf h(y, ,) + lim inf(Ty, (2., v))
+ lim inf (Ay, z, — y)

= H}}lg}f [g(y, Zn) + (Y, z) + (Ty, 020, 9)) + (Ay, z, — y)]

VAN

lim inf [ﬁ 9(#n, Y) — P20, Y) — (T2, N(Y, 20)) — (Azn, y — zn)]

n—og

1

— liminf(u,, 2, — y)

" n—oo

1

P ;<u’$ a s, (3.4.19)

IA

Fix y € K and define z; = (1 — t)a +ty for all ¢t € (0,1), then z; € K. Thus, by
(A1), (B1), (A3), (B3), (€2), (D1) and (3.4.19), we have that

0 = gz, @) + h(ze, ) + (T nl@e, 22)) + (Awy, @0 — )
< (1= )g(w,2) + tg(ze,y) + (1 — (o, 7) + thwe,y) + (L — £)(Tae, 1(z, 1))
(T, 1(y, 2)) + (1 — t)(Awe, © — 24) + t{Azy, y — ;)
= (1-1) [g(:at, 2) + b, ) + (T 1(z, ) + (Asi, @ — )]
+t [g(rcn Y) + M@, y) + (T, 1(y, 2)) + (Azy,y — rvt)]
S (U= t)p o = 20) + £[o(009) + M 8) + (T n(u, ) + (A y — )]
= U=t =)+ o) + haw) + Ty, 20) + (Asy - )],

(3.4.20)
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Hence,

9(@e,y) + h(ze, y) + (T, (Y, 21)) + (Azy,y — z) > (1— t)?l_(u: ¥ — ).

By (A4), (B4), (C4), and (D2), we obtain that

9@, y) +h(z,y) + (Tz, 0y, 2)) + (Az,y — 2)

> limsup gz, y) + limsup (2, y) + lim sup(Ta;, n(y, =)
t—oo

t—o0 t—oo

+ lim sup(Aa;, y — @)

t—o0

1
= ;(u,y —~ ).

O

Theorem 3.4.6. Let H be a real Hilbert space, K be a nonempty bounded closed
convex subset of H. Assume that g : K x K — R satisfies (17—1\1)-(;1\4), and h :
K x K — R is a monotone mapping satisfying (El)—(gfl) Suppose that T :
K — H satisfies (C2) and (C4), A: K — H satisfies (131)~(133) and that the
set GMEPRM (g,h, T, A) of solutions (3.4.1) is nonempty. Let {Z, }nen be an

arbitrary sequence generated by the form
To € K and Tny1 =T, x,, where 1, € (0,+00), foral neN, (3.4.21)

where )" 72 = 4o00. Then {Zn}nen converges weakly to @ point in
neN

GMEPRM(g,h, T, A).

Proof. Since GMEPRM (g, h, T, A) # 0, it follows that dom7, = H for alln > 1.
For any n € N, we note from (3.4.21) and (2.3.4) that

j

0 < 9(Tni1, Tnga) + A(Tni1, Tnya) + (TTni1, N(Znt2, Tng1))

+ (Aa;n-l-h Tnyo — $n+1) + ;:l:($n+1 — Tp, Tnyo — a:n+1)
< (3.4.22)
0 < 9(Tni2y Tng1) + M(Tntz, Tng) + (TTni2, N(Znt1, Tna))

1
Fa41

E i (A-'L'n+2, Tnt1 — $n+2) G ($n+2 — Tn41, Tpt1 — $n+2)-




74

Setting z, = T}, z, and u, = (z, — 2p)/Ta. Then (3.4.22) yields

(

(tn, Ttz — Tnt1) < 9(Tnt1, Tnya) + h(@ns, Tn+2) F (TZpp1, N(Tnt2, Tny1))

+ (A-'L'n-H: Tni2 — xn+1)

('U*n+1; Tnt1 — 33n+2) = g($n+2, $n+1) #F h($n+2, $n+1) + (T$n+2: W($n+1: $n+2))

+ <A$n+2; Tny1 — :Cn+2)

(3.4.23)

and by (22), (133), and the monotonicity of h that

(un —1Un41, Tpyo — :L'n+1>
S 9(Bni1y Tnrz) + 9(@ng2r Tut1) + h(@nr1s Tnt2) + M(Zni2, Tni1)
.= (Tfﬂn—f—la 7]($71+2: fcn+1)> + T$n+2: 77($n+la $n+2))

+ (Awn-}-l) Tnia — $n+1) - (A$11+2: Tnt1 — $n+2> S 0. (3424)
Thus (tn41 — Un, Usg1) < 0 and, by Cauchy-Schwarz, [Ju, 1] < Iz, ||. Therefore
{llta]l}nen is a convergent sequence. (3.4.25)

Since T, is firmly nonexpansive, it follows by Theorem 2.6 in [52] that Y 72||u,||?
neN

> Tallzn — za|? < +oo. Since 72 = too, we have lim inf |[n]] = 0 and,

neN neN e

consequently, (3.4.25) yields u, — 0. Since {z,} is bounded, we may assume that

there exists a sequence {3, } of {z,} such that &, — 2 and
ug, — 0. (3.4.26)
On the other hand, since z, — z,, — 0, we have

2, — . (3.4.27)

n



75

Combining (3.4.26), (3.4.27), and Lemma, 3.4.5, we conclude that z is a solution of
(3.4.1). O

Inthecase of h=0,T =0, and A =0 in (3.4.1), GMEPRM (g, h, T, A)
deduced to equilibrium problem (for short, EP(g))

Corollary 3.4.7. [52] Let H be a real Hilbert space, K be a nonempty bounded
closed convex subset of H. Assume that g+ K x K — R satisfies (121\1)-(}1\4) and
that the set EP(g) of solutions to (2.6.1) is nonempty. Let {zn}nen e an arbitrary

sequence generated by the form
xo € K and 2,4y = J, x,, where 7, € (0, +00), forall neN, (3.4.28)
where 3 12 = 400. Then {Zn}nen converges weakly to a point in EP(g).
nelN

Proof. 1t follows from Theorem 3.4.6 by setting h =0, T =0, and A = 0. -



