CHAPTER IV

CONCLUSION

The following results are all main theorems of this dissertation:

- 1. Let E be a real uniformly smooth and strictly convex Banach space with Kadec-Klee property, K be a nonempty closed and convex subset of E with $\theta \in K$. Let $f: K \to K$ be an isometry mapping. Let $T_1, \ldots, T_N : \underbrace{K \times \ldots \times K}_{N-\text{times}} \to E^*$ be continuous mappings and $\{\alpha_n^{(1)}\}, \{\alpha_n^{(2)}\}, \ldots, \{\alpha_n^{(N)}\}$ be the sequences in (a, b) with 0 < a < b < 1 satisfying the following conditions:
- (i) there exist a compact subset $C \subset E^*$ and constants $\rho_1 > 0, \rho_2 > 0,$ $\dots, \rho_N > 0$ such that

$$(J(K) - \rho_N T_N(\underbrace{K \times \ldots \times K})) \cup (J(K) - \rho_{N-1} T_{N-1}(\underbrace{K \times \ldots \times K})) \cup \ldots \cup (J(K) - \rho_1 T_1(\underbrace{K \times \ldots \times K})) \cup \ldots \cup (J(K) - \rho_1 T_1(\underbrace{K \times \ldots \times K})) \subset C, \text{ where } J(x_1, x_2, \ldots, x_N) = Jx_N, \forall (x_1, x_2, \ldots, x_N) \in \underbrace{K \times \ldots \times K}_{N-\text{times}} \text{ and}$$

$$\begin{cases}
\langle T_{1}(x_{1}, x_{2}, \dots, x_{N}), J^{-1}(Jx_{N} - \rho_{1}T_{1}(x_{1}, x_{2}, \dots, x_{N})) \rangle \geq 0, \\
\langle T_{2}(x_{1}, x_{2}, \dots, x_{N}), J^{-1}(Jx_{N} - \rho_{2}T_{2}(x_{1}, x_{2}, \dots, x_{N})) \rangle \geq 0, \\
\vdots \\
\langle T_{N}(x_{1}, x_{2}, \dots, x_{N}), J^{-1}(Jx_{N} - \rho_{N}T_{N}(x_{1}, x_{2}, \dots, x_{N})) \rangle \geq 0,
\end{cases} (3.4.29)$$

for all $x_1, x_2, \ldots, x_N \in K$.

0

()

1

E .

(ii) $\lim_{n\to\infty} \alpha_n^{(1)} = d_1 \in (a,b), \lim_{n\to\infty} \alpha_n^{(2)} = d_2 \in (a,b), \dots, \lim_{n\to\infty} \alpha_n^{(N)} = d_N \in (a,b).$ Let $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \dots, \{x_n^{(N)}\}$ be the sequences defined by (3.1.6).

Then the problem (3.1.1) has a solution $(x_1^*, x_2^*, \dots, x_N^*) \in \underbrace{K \times \dots \times K}_{N-\text{times}}$ and the sequences $\{x_n^{(1)}\}, \{x_n^{(2)}\}, \dots, \{x_n^{(N)}\}$ converge strongly to $x_1^*, x_2^*, \dots, x_N^*$, respectively.

- 2. Let E be a reflexive Banach space with a Fréchet differentiable norm. Assume that
 - (i) K is a nonempty compact convex in E;

0

(A

12

- (ii) $T: K \to 2^{E^*}$ is upper semicontinuous;
- (iii) T(x) is nonempty closed in E^* and contractible subset in E for each $x \in K$;
 - (iv) $T(K) = \bigcup_{x \in K} T(x)$ is compact in E^* .

Then the GVI(K,T) has solution in K.

- 3. Let E be a reflexive Banach space with a Fréchet differentiable norm and K be a closed convex set in E such that every weakly convergent sequence in K is norm convergent. Let $T: K \to 2^{E^*}$ be an upper semicontinuous multivalued mapping such that T(x) is nonempty compact and contractible in E^* for any $x \in K$. Suppose that T(B) is compact in E^* , for all compact subset B of K, and
- (C1) Given $\widehat{x} \in E$ and for any $\{x_n\} \subset K$ with $||x_n|| \to +\infty$ as $n \to +\infty$, and for any $\{u_n\}$ with $u_n \in T(x_n)$, there exist a positive integer n_0 and $y \in K$ such that $||y \widehat{x}|| \le ||x_{n_0} \widehat{x}||$ and $\langle u_{n_0}, y x_{n_0} \rangle < 0$.

Then the solution set of GVI(K,T) is nonempty and compact.

4. Let E be a reflexive Banach space with a Fréchet differentiable norm, K be a closed convex set in E such that every weakly convergent sequence in K is norm convergent. Let $T:K\to 2^{E^*}$ be an upper semicontinuous multi-valued mapping such that T(x) is nonempty compact and contractible for any $x\in K$. Suppose that T(B) is compact in E^* , for all compact subset B of K, and one of the following conditions hold:

(C2) Given $\widehat{x} \in E$ and for any $\{x_n\} \subset K$ with $||x_n|| \to +\infty$ as $n \to +\infty$, and for any sequence $\{u_n\}$ with $u_n \in T(x_n)$, there exist a positive integer n_0 and $y \in K$ such that $||y - \widehat{x}|| < ||x_{n_0} - \widehat{x}||$ and $\langle u_{n_0}, y - x_{n_0} \rangle \leq 0$.

1

O

(63)

- (C3) Given $\widehat{x} \in E$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $||x \widehat{x}|| > \rho$, there exist $y \in K$ and $u \in T(x)$ satisfying $||y \widehat{x}|| \le ||x \widehat{x}||$ and $\langle u, y x \rangle < 0$.
- (C4) Given $\widehat{x} \in E$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $||x \widehat{x}|| > \rho$, there exists $y \in K$ and $u \in T(x)$ satisfying $||y \widehat{x}|| < ||x \widehat{x}||$ and $\langle u, y x \rangle \leq 0$.

Then there exists a solution to GVI(K,T) and the solution set is compact.

- 5. Let E be a reflexive Banach space with a Fréchet differentiable norm, K be a closed convex set in E such that every weakly convergent sequence in K is norm convergent. Let $f: K \to E^*$ be a continuous mapping. Suppose that one of the following conditions hold:
- (C5) Given $\widehat{x} \in E$, for any $\{x_n\} \in K$ where $||x_n|| \to +\infty$ there exists a positive integer n_0 and $y \in K$ with $||y-\widehat{x}|| < ||x_{n_0}-\widehat{x}||$ such that $\langle f(x_{n_0}), y-x \rangle \leq 0$.
- (C6) Given $\widehat{x} \in E$, for any $\{x_n\} \in K$ where $||x_n|| \to +\infty$ there exists a positive integer n_0 and $y \in K$ with $||y \widehat{x}|| \le ||x_{n_0} \widehat{x}||$ such that $\langle f(x_{n_0}), y x \rangle < 0$.
- (C7) Given $\widehat{x} \in E$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $||x \widehat{x}|| > \rho$, there exists $y \in K$ satisfying $||y \widehat{x}|| \le ||x \widehat{x}||$ and $\langle f(x), y x \rangle < 0$.
- (C8) Given $\widehat{x} \in E$, there exists a constant $\rho > 0$ such that, for any $x \in K$ with $||x \widehat{x}|| > \rho$, there exists $y \in K$ satisfying $||y \widehat{x}|| < ||x \widehat{x}||$ and $\langle f(x), y x \rangle \leq 0$.

Then the solution set of variational inequality VI(K, f) is nonempty, closed and bounded.

6. Let E be q-uniformly smooth real Banach space. Let $A_i, B_i : E \to E$ be single-valued operators, $H_i : E \times E \to E$ be a single-valued operator satisfying (A1) and $M_i, U_i, H_i(A_i, B_i), S_i, S_i(\cdot, u)$ satisfy conditions (A2)-(A6), respectively. If there exists a constant $c_{q,i}$ such that

$$\frac{\sqrt[q]{(r_i+t_i)^q - q\lambda_i s_i + c_{q,i}\lambda_i^q l_i^q}}{\alpha_i - \beta_i} + \frac{\lambda_i m_i}{\alpha_i - \beta_i} < 1$$
(3.4.30)

for all i = 1, 2, ..., N, then problem (3.3.1) has a solution $a_1, ..., a_N, u_1 \in U_1(a_N), ..., u_N \in U_N(a_1)$.

2

14

1

- 7. Let E be q-uniformly smooth real Banach space. For $i=1,2,\ldots,N$. Let $A_i,B_i:E\to E$ be two single-valued operators, $H_i:E\times E\to E$ be a single-valued operator satisfying (A1) and suppose that $M_i,U_i,H_i(A_i,B_i),S_i,S_i(\cdot,u)$ satisfy conditions (A2)-(A6), respectively. Then, for any $i\in\{1,2,\ldots,N\}$, the sequence $\{a_n^1\}_{n=1}^{\infty}$ and $\{u_n^i\}_{n=1}^{\infty}$, generated by Algorithm 3.3.2, converge strongly to $a_i,u_i\in U_i(a_{N-(i-1)})$, respectively.
- 8. Let X be a Hausdorff topological vector space, K be a nonempty compact convex subset of X. Let $g: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{A}1)$ and $(\widehat{A}3)$ and let $h: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{B}1)$ and $(\widehat{B}3)$. Let $T: K \to X^*$ be an η -hemicontinuous and relaxed η - α monotone mapping satisfying $(\widehat{C}1)$ - $(\widehat{C}3)$. Let $A: K \to X^*$ be a monotone and hemicontinuous mapping satisfying $(\widehat{D}1)$ - $(\widehat{C}3)$. Then, for all r > 0 and $z \in K$ there exists $x \in K$ such that

$$g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle + \frac{1}{r} \langle y - x, x - z \rangle \geq 0, \quad \text{for all} \quad y \in K.$$

9. Let H be a real Hilbert space, K be a nonempty bounded closed convex subset of H. Let $g: K \times K \to \mathbb{R}$ be a mapping satisfying $(\widehat{A}1)$ - $(\widehat{A}3)$ and let $h: K \times K \to \mathbb{R}$ be a monotone mapping satisfying $(\widehat{B}1)$ - $(\widehat{B}3)$. Let $T: K \to H$

be an η -hemicontinuous and relaxed η - α monotone mapping satisfying $(\widehat{C}1)$ - $(\widehat{C}3)$. Let $A:K\to H$ be a λ -inverse-strongly monotone and hemicontinuous mapping satisfying $(\widehat{D}1)$. For r>0 and $z\in K$, define $T_r:K\to 2^K$ by

$$T_r(z) = \left\{ x \in K : g(x,y) + h(x,y) + \langle Tx, \eta(y,x) \rangle + \langle Ax, y - x \rangle \right.$$
$$\left. + \frac{1}{r} \langle y - x, x - z \rangle \ge 0, \text{ for all } y \in K \right\}.$$

Then, the following results holds:

(i) $dom T_r = H$;

(1)

0

(0)

()

- (ii) T_r is single-valued;
- (iii) T_r is firmly nonexpansive i.e., for any $x, y \in K$,

$$||T_r(x) - T_r(y)||^2 \le \langle T_r(x) - T_r(y), x - y \rangle;$$

- (iv) $F(T_r) = GMEPRM(g, h, T, A);$
- (v) GMEPRM(g, h, T, A) is closed and convex.
- 10. Let H be a real Hilbert space, K be a nonempty bounded closed convex subset of H. Assume that $g: K \times K \to \mathbb{R}$ satisfies $(\widehat{A}1)$ - $(\widehat{A}4)$, and $h: K \times K \to \mathbb{R}$ is a monotone mapping satisfying $(\widehat{B}1)$ - $(\widehat{B}4)$. Suppose that $T: K \to H$ satisfies $(\widehat{C}2)$ and $(\widehat{C}4)$, $A: K \to H$ satisfies $(\widehat{D}1)$ - $(\widehat{D}3)$ and that the set GMEPRM(g, h, T, A) of solutions (3.4.1) is nonempty. Let $\{x_n\}_{n\in\mathbb{N}}$ be an arbitrary sequence generated by the form

$$x_0 \in K$$
 and $x_{n+1} = T_{r_n} x_n$, where $r_n \in (0, +\infty)$, for all $n \in \mathbb{N}$, (3.4.31)

where $\sum_{n\in\mathbb{N}}r_n^2=+\infty$. Then $\{x_n\}_{n\in\mathbb{N}}$ converges weakly to a point in GMEPRM(g,h,T,A).