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ABSTRACT

In this thesis, we introduce and analyze the new generalized mixed

equilibrium problems (NGMEP) and the bilevel new generalized mixed equilibrium
problems (BNGMEP) in Banach spaces. First, by using a minimax inequality,
some new existence theorems of the solution and the behavior of solution set for
the NGMEP and the BNGMEP arc obtained in Banach spaces. Next, by using
auxiliary principle technique, some new iterative algorithms for solving the NGMEP
and the BNGMEP are suggested and analyzed. The strong convergence of the

iterative sequences generated by the algorithms are also proved in Banach spaces.

These results are new and generalize some recent results in this field.



Furthermore, we consider an auxiliary problem for the gencralized mixed
vector equilibrium problem with a relaxed monotone mapping and prove the
existence and uniqueness of the solution for the auxiliary problem. We then
introduce a new iterative scheme for approximating a common element of the set
of solutions of a generalized mixed vector equilibrium problem with a relaxed
monotone mapping and the set of common fixed points of a countable family of
nonexpansive mappings. Morcover, we introduce and study a new class of
generalized nonlincar vector mixed quasi-variational-like inequality governed by a
multi-valued map in Hausdorft topological vector spaces which includes generalized
veetor mixed general quasi-variational-like inequalities, generalized nonlinear mixed
variational-like inequalities, and so on. By using the fixed point theorem, we prove

some existence theorems for the purposed inequality.

On the other hand, we introduce the notion of well-poscdness to the
hemivariational inequality governed by a multi-valued map perturbed with a
nonlincar term (HVIMN) in Banach spaces. Under very suitable conditions, we
establish some metric characterizations for cheking the well-posed (HVIMN). In
the setting of finite-dimensional spaces, the strongly generalized well-posedness
by perturbations for (HIVIMN) are established. Our results are new and improve

recent existing ones in the literature.
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CHAPTER I

INTRODUCTION

One of the most important problems in nonlinear analysis is the so called
equilibrium problem (abbreviated (EP)), which can be formulated as follows. Let
C' be a nonempty set and [ : €' x C' — R a given function. The problem consists

on finding an element & € C such that
f(Z,y) >0, forall y € C. (EP)

The element & satisfying (EP) is called equilibrium point of f on €. It is well-
known that (EP) has been extensively studied in recent years (e.g. [1, 2, 3, 4, 5]
and the references therein). Apart from its theoretical interest, important problems
arising from economics, mechanics, electricity and other practical sciences motivate
the study of (EP). Equilibrium problems include, as particular cases, optimization
problems, saddle point (minimax) problems, variational inequalities, Nash equi-
libria problems, complementarity problems, fixed point problems, etc. As far as
we know the term “equilibrium problem”was attributed in Blum and Oettli [4],
but the problem itself has been investigated more than twenty years before in a
paper of Ky Fan [6] in connection with the so called “intersection theorems” (i.e.,
results stating the nonemptiness of a certain family of sets). Ky Fan considered
(EP) when C is a compact convex subset of a Hausdorft topological vector space
and termed it “minimax inequality”. Since that time, the existence theorems for
solution of general versions of the equilibrium problem have been wildly studied by
many authors, for example, mixed equilibrium problem (MEP) [7, 8], generalized
equilibrium problem (GEP) [9], generalized mixed equilibrium problem (GMEP)
[10], bilevel equilibrium problem (BEP) [11], vector equilibrium problem (VEP)

[12] and so on.



In 2002, Moudafi [13] introduced an iterative scheme of finding the solution
of nonexpansive mappings and proved a strong convergence theorem. Recently,
Huang et al. [14] introduced the approximate method for solving the equilibrium

problem and proved the strong convergence theorem.

Tt is well known that the vector equilibrium problem provides a unified model
of several problems, for example, vector optimization, vector variational inequality,
vector complementarity problem, and vector saddle point problem ([12, 15, 16]). In
recent years, the vector equilibrium problem has been intensively studied by many

authors (see, for example, [12, 15, 16, 17, 18, 19, 20] and the references therein).

Very recently, Shan and Huang [21] introduced an iterative scheme for find-
ing a common element of the set of fixed points of a nonexpansive mapping, the
set of solutions of the generalized mixed vector equilibrium problem and the solu-
tion set of a variational inequality problem with a monotone Lipschitz continuous

mapping.

On the other hand, it is well-known that various bilevel problems, equi-
librium constraint optimization problems, bilevel decision problems, mathemat-
ical program problems with equilibrium constraints represent important classes
of optimization problems which have been wildly investigated, for example see
(22, 23, 24, 25, 26, 27, 28, 29, 30, 31]

Recently, Moudafi [32] studied a class of bilevelmonotone equilibrium prob-
lems in Hilbert spaces and suggested an iterative algorithm to compute approx-
imate solutions of the problem and proved the weak convergence of the iterative
sequence generated by the algorithm. He pointed out that this class is very inter-
esting because it covers mathematical programs and optimization problems over
equilibrium constraints, hierarchical minimization problems, variational inequality
problems, complementarity problems and so on. Ding [33] introduced a class of

bilevel mixed equilibrium problems in Banach spaces. By using auxiliary principle



technique, an iterative algorithm to compute the approximate solutions is sug-
gested and analyzed. Strong convergence of the iterative sequences generated by

this algorithms is also proved under quite mild assumptions.

In 1964, variational inequality problems were introduced by Stampacchia
[34]. Since then these problems have witnessed explosive growth in theoretical ad-
vances, algorithmic development, and applications across all disciplines of pure and
applied sciences (see [34, 35] and the references therein). In recent years, varia-
tional inequality theory has been extended and gencralized in several directions,
using new and powerful methods, to study a wide class of unrelated problems in a

unified and general framework.

A vector variational inequality in a finite-dimensional Euclidean space was
first introduced by Giannessi [36]. This is a generalization of scalar variational
inequality to the vector case by virtue of multi-criterion consideration. In 1966,
Browder [37] first introduced and proved the basic existence theorems of solutions
to a class of nonlinear variational inequalities. The Browder’s results was extended
to more generalized nonlinear variational inequalities by Liu, et al. [38], Ahmad

and Irfan [39], Husain and Gupta [40] and Xiao, et al. [41], Zhao, et al. [42].

On the other hand, the notion of hemivariational inequality was introduced
by Panagiotopoulos (43, 44] at the beginning of the 1980s as a variational formu-
lation for several classes of mechanical problems with nonsmooth and nonconvex
energy super-potentials. In the case of convex super-potentials, hemivariational
inequalities reduce to variational inequalities which were studied earlier by many
authors (see e.g. Fichera [45] or Hartman and Stampacchia [46]). Wangkeeree and
Preechasilp [47] also introduced and studied some existence results for the hemi-
variational inequality governed by a multi-valued map perturbed with a nonlinear

term in reflexive Banach spaces.



Another important topic is the well-posedness which significant for both
optimization theory and numerical methods of optimization problems, which guar-
antees that, for approximating solution sequences, there is a subsequence which
converges to a solution. The study of well-posedness originates from Tikhonov
[48], which means the existence and uniqueness of the solution and convergence of
each minimizing sequence to the solution. Levitin-Polyak [49] introduced a new
notion of well-posedness that strengthened Tykhonov’s concept as it required the
convergence to the optimal solution of each sequence belonging to a larger set of

minimizing sequences.

The important notion of well-posedness for a minimization problem is the
well-posedness by perturbations or extended well-posedness due to Zolezzi [50, 51].
The notion of well-posedness by perturbations establishes a form of continuous
dependence of the solutions upon a parameter. There are many other notions of
well-posedness in optimization problems. For more details, see, e.g., [50, 51, 52,

53, 54, 55, 56, 57, 58, 59, 60).

Recently Ceng, et al. [61] considered an extension of the notion of well-
posedness by perturbations, introduced by Zolezzi for a minimization problem,
to a class of variational-hemivariational inequalities with perturbations in Banach
spaces. Under very mild conditions, they established some metric characterizations
for the well-posed variational-hemivariational inequality, and proved that the well-
posedness by perturbations of a variational hemivariational inequality is closely
related to the well-posedness by perturbations of the corresponding inclusion prob-
lem. Furthermore, in the setting of finite-dimensional spaces they also derived
some conditions under which the variational-hemivariational inequality is strongly

generalized well-posed-like by perturbations.
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Motivated and inspired by the above works, the purposes of this thesis are
to extend, to generalize, to improve existence theorems of generalized equilibrium
problems and generalized variational inequality problem and the iteration schemes
of some nonlinear operators for finding a common element of the solutions of gen-
eralized vector equilibrium problems and fixed point problems and to discuss the

well-posedness for generalized hemivariational inequality problem.

This thesis is divided into 6 chapters. Chapter 1 is an introduction to the
research problem. Chapter 2 is dealing with some preliminaries and give some use-
ful results that will be deplicated in later Chapter.

Chapter 3 and 4 are the main results of this research. Precisely, in section
3.1, we introduce and analyze the the new generalized mixed equilibrium problems
(NGMEP) and the bilevel new generalized mixed equilibrium problems (BNGMEP)
in Banach spaces. First, by using a minimax inequality, some new existence the-
orems of the solution and the behavior of solution set for the NGMEP and the
BNGMEP are obtained in Banach spaces. Next, by using auxiliary principle tech-
nique, some new iterative algorithms for solving the NGMEP and the BNGMEP
are suggested and analyzed. The strong convergence of the iterative sequences gen-
erated by the algorithms are also proved in Banach spaces. These results are new
and generalize some recent results in this field. In section 3.2, first consider an aux-
iliary problem for the generalized mixed vector equilibrium problem with a relaxed
monotone mapping and prove the existence and uniqueness of the solution for the
auxiliary problem. We then introduce a new iterative scheme for approximating a
common element of the set of solutions of a generalized mixed vector equilibrium
problem with a relaxed monotone mapping and the set of common fixed points of
a countable family of nonexpansive mappings. The results presented in this paper
can be considered as a generalization of some known results due to Wang, Marino
and Wang [62]. In section 3.3, we introduce and study a new class of generalized

nonlinear vector mixed quasi-variational-like inequality governed by a multi-valued



map in Hausdorff topological vector spaces which includes generalized vector mixed
general quasi-variational-like inequalities, generalized nonlinear mixed variational-
like inequalitics, and so on. By using the fixed point theorem, we prove some

existence theorems for the purposed inequality.

Section 4.1, we introduce the notion of well-posedness to the hemivari-
ational inequality governed by a multi-valued map perturbed with a nonlinear
term (HVIMN) in Banach spaces. Under very suitable conditions, we establish
some metric characterizations for the well-posed (HVIMN). In the setting of finite-
dimensional spaces, the strongly generalized well-posedness by perturbations for
(HVIMN) are established. Our results are new and improve recent existing ones in

the literature.

The conclusion of research is in Chapter 5.



CHAPTER II

PRELIMINARIES

This chapter includes some notations, definitions, and some useful results.

2.1 Metric spaces and Banach spaces

In this section, we recall the basic definitions and elementary properties of

metric spaces and Banach spaces.

Definition 2.1.1. [63] A metric space is a pair (X, d), where X is a sct and d is a
metric on X (or distance function on X), that is, a real valued function defined on

X x X such that for all 2,y,z € X we have:

(M,) d(z,y) = 0;
(My) d(z,y) =0 if and only if & = y;
(Ms) d(z,y) = d(y,z) (symmetry);

(My) d(z,y) < d(z,2) + d(z,y) (triangle inequality).

The element of X are called the point of the metric (X, d).

Definition 2.1.2. [63] A sequence {2, } in a metric space X = (X, d) is said to be

convergent if there is an z € X such that

lim d(2,,z) =0.

n—oo

x is called the limit of {z,} and we write

lim z, = z or, simple, z,, = . (2.1.1)
n—oo

In this case, we say that {z,} converges to x. If {a,} is not convergent, it is said

to be divergent.



Definition 2.1.3. [63] A sequence {z,} in a metric space X = (X,d) is said to
be Cauchy if for every € > 0 there is an N € N such that d(2,,,2,) < € for every

m,n > N.

Definition 2.1.4. [63] If every Cauchy sequence in a metric space (X, d) converges

then the metric space (X, d) is said to be complete.

The concepts of open, closed and bounded subsets of normed spaces are

given as follows.

Definition 2.1.5. [63] Let (X,d) be a metric space and A be a subset of E.

(i) Given a point 29 € X , the ball centered at xo and with radius v > 0 is the

set B(zo,7) == {z € E : d(zp,x) < 1}.
(ii) A is open if for each xy € A there exists a § > 0 such that B(xo,d) C A.

(iii) A is closed if the complement A° is open.

Theorem 2.1.6. [63] For a subset A of a metric space (X, d). Then

A is closed if and only if the situation z, € A, @, — @ implies that ¥ € A.

Definition 2.1.7. [63] Let A be a nonempty subset of a metric space (X, d). Then

A is said to be bounded if diam(C') := sup,, ;¢4 d(z,y) < +o0.

Definition 2.1.8. [63] A metric space (X, d) is said to be compact if every sequence
in X has a convergent subsequence. A subset M of X is said to be compact if M
is compact considered as a subspace of X, that is, every sequence in M has a

convergent subsequence whose limit is an element in M.

Definition 2.1.9. [63] A norm on a (real or complex) vector space £ is a real-
valued function on E whose valued at an @ € E is denoted by |[«| and which has

the properties

(V1) ]l > 0;



(V) fla =0 & 2 =0;

(N3) [lez]| = [ell2];

(Ng) [l +yll = [zl + llyll,

where x and y are arbitrary vectors in E and « is any scalar. A normed space E

is a vector space with a norm defined on it which is denoted by (£, || - |) or simply

by Ir.

Convergence of sequences and related concepts in normed spaces follow from

the corresponding definition 2.1.2 and 2.1.3 for metric spaces and the fact that now

d(z,y) = [l — yll.
Definition 2.1.10. [63] A Banach space is a complete normed space.

Definition 2.1.11. [64] Let A be a subset of normed space /. Then A is said to

be conver if (1 — \)z + Ay € A for all 2,y € A and all scalar A € [0,1].

Next, we discuss some properties of linear operators.

Definition 2.1.12. [63] Let X and Y be linear spaces over the field K.

(i) A mapping 7' : X — Y is called a linear operator if for all z,y € X and

a €K,
T(z+y) =Te+Ty and T(az) = aTz,
(i) A mapping 7 : X — K is called a linear functional on X if T is a linear
operator.

Definition 2.1.13. [63] Let X and Y be normed spaces over the field K and
T : X — Y a linear operator. 1" is said to be bounded on X, if there exists a real

number M > 0 such that |T(z)|| £ M|z, V> € X.
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Definition 2.1.14. [63] Let £ and Y be normed spaces over thefield K, T: E =Y
an operator and xy € E. We say that T' is continuous at 2o if for every £ > 0 there
exists & > 0 such that || T'(z) — T(z0)|| < & whenever ||z — 20| < dandz € B If T

is continuous at each 2 € E, then 7 is said to be continuous on E.

Definition 2.1.15. [63] Let E be a normed space. Then the set of all bounded

linear functionals on  is called a dual space of E and is denoted by F*.

Weak convergence is defined in terms of bounded linear functionals on E as

follows.

Definition 2.1.16. [63] A sequence {x,} is a normed space /% is said to be weakly

convergent if there exists an @ € I such that for every f € B*,

nlg’go fza) = f(2).

This is written 2, — z. The element z is called the weak limit of {z,}, and we say

that {«,} converges weakly to .

A subset ' of E is weakly closed if it is closed in the weak topology, that is,
if it contains the weak limit of all of its weakly convergent sequences. The weakly
open sets are now taken as those sets whose complements are weakly closed. The
resulting topology on E is called the weak topology on E. Sets which are compact

in this topology are said to be weakly compact.

2.2 Topological vector spaces.

Definition 2.2.1. [? ] Let X be a nonempty set and d : X x X — [0,00) be a
function. Then d is called a metric on X if the following properties hold:

1) d(x,y) = 0 if and only if x =y,

2) d(z,y) = d(y, z) for all z,y € X,

3) d(z,2) < d(z,y) +d(y,z) forallz,y,z € X.



11

The value of metric d at (2,y) is called distance between x and y, and the

ordered pair (X, d) is called a metric space.

Definition 2.2.2. [? | Let X be a nonempty set and 7 be a collection of subsets
of X. Then 7 is said to be a topology on X if the following conditions are satisfied:
1)Perand X €7;
2) the union of every class of sets in 7 is a set in 7;
3) the intersection of every finite class of sets in 7 is a set in 7.
The ordered pair (X, 7) is called a topological space and the sets in class 7
are called the open sets of the topological (X, 7). It is customary to denote the
topological space (X,7) by the symbol X which is used for its underlying set of

points.

Definition 2.2.3. [63] Let X be a topological space, let U be a subset of X and
let some 2 € X be a given element. The set U is called a neighborhood of z, if
there is an open set V with 2 € V C U and 2 is called an interior element of U, if
there is a neighborhood V of & contained in U. The set of all interior elements of

U is called the interior of U and it is denoted by intlU.

Definition 2.2.4. [63] A set F in a topological space X whose complement FC =

X — F is open is called a closed set.

Definition 2.2.5. [63] Let F be a subset of a topological space X. Then the

closure of F is the smallest closed set containing F. The closure of I is denoted

by F'.

Theorem 2.2.6. [63] Let I be a subset of a topological space X . Then I is closed
if and only if F = F.

Definition 2.2.7. [63] Let X be a topological space. Then X is said to be Haus-
dorff topological space if & and y are two distinct points in X, there exist two open

sets G and H such that x € G,y € H,and GNH = 0.

Remark 2.2.8. [63] Every metric space is a Hausdorll space.
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Definition 2.2.9. A topological vector space is locally convex if it has a base of

its topology consisting of convex open subsets.

Definition 2.2.10. [65] Let X be a linear topological space over the filed R.
1) A sequence {z,} C X is bounded if \,x, — 6 whenever
Ap — 0in R.

2) A set A C X is bounded if every sequence in A is bounded.

Definition 2.2.11. [? ] A topological space X is said to be compact if every open
cover has a finite subcover, i.e., if whenever X = Ul.E ; G, where G is an open set,

then X = |J;, Gi for some finite subset J of I.

Definition 2.2.12. [? | A subset C of a topological space X is said to be compact
if every open cover has a finite open subcover, i.c., if whenever C' C |J;¢; Gi, where

G, is an open set, then C' C | J,; G; for some finite subset Jof 1.

Remark 2.2.13. [7 |
1) Every finite set of a topological space is compact.
2) Every closed subset of a compact space is compact.
3) In a compact Hausdorft space, a set is compact if and only if

it is closed.

Definition 2.2.14. [63] A lincar space or vector space X over the field K (The real
field R or the complex field C) is a set X together with an internal binary operation
«y» called an addition and a scalar multiplication carrying (a,2) in K x X to ax
in X satisfying the following for all 2,3,z € X and o, 8 € Kt

Daet+y=y+2,

2) (z+y)+z=2+(y+2),

3) there exists an element 0 € X called the zero vector of X such
that x + 0 =2 for all z € X,

4) for every element z € X, there exists an element —z € X

called the additive inverse or the negative of x such o + (—z) =0,
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5) a(z +y) = ax +ay,

6) (a+ Bz = ax + Bz,

7) (af)z = a(fz),

8) 1 -2 =u.
The elements of a vector space X are called vector and the elements of K are called
scalars. In the sequel, unless otherwise stated, X denotes a linear space over field

R.

Definition 2.2.15. [63] A subset C' of a linear space X is said to be a convexr set

in X if A\x + (1 — M)y € C for each @,y € C and for each scalar A € [0, 1].

Definition 2.2.16. [63] Let X be a lincar space over a field K and let 7 be a
| topology on X. Then (X,7) is called a topological linear space or a topological
vector space if addition and multiplication with scalar are continuous, i.e. the
maps
(,y) > z+y withz,ye X
and (o,z)— oz witha € Kand z € X
are continuous on X ¥ X and K x X, respectively. In many situations we use, for

simplicity, the notation X instead of (X, 7) for a topological linear space.

Definition 2.2.17. [66] Let C' be a nonempty subset of a real linear space X.
1) The set C'is called a cone, if z € C,A >0 then Az € C.
2) A cone C'is called pointed, if C'N (—C) = {0}.
3) A cone C'is conves, if C'+C' C C.

4) A cone C' is proper if and only if 0 ¢ C.

Definition 2.2.18. [67] Let A and B be two topological vector spaces and T :

A — 28 be a multivalued mapping, then

1. T is said to be upper semicontinuous, if for any zy € A and for each open
set U/ in B containing T'(zo), there is a neighborhood V' of zp in A such that

T(z)CUforallz eV
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9. T is said to have open lower sections if the set T7(y) = {z € A:y € T(2)}

is open in X for each y € B.

3. T is said to be closed, if any net {z,} in A such that z, — = and any {Ya}

in B such that y, — v and y, € T(z4) for any «, we have y € 7'(z).

4 T is said to be lower semicontinuous, if for any a9 € A and for each open
set U in B containing T'(x), there is a neighborhood V' of @ in A such that

T()NU # 0 forall z € V.
5. T is said to be continuous if it is both lower and upper semicontinuous.

Definition 2.2.19. Let F is a topological vector space. The bifunction ¢ : EX I —

R is said to be skew-symmetric if
ol ) — ol v) — p(v,u) +p,0) 20,  VuveF.

The skew-symmetric bifunctions have the properties which can be consid-
ered an analogs of monotonicity of gradient and nonnegativity of a second derivative
for the convex function. For the properties and applications of the skew-symmetric

bifunction, the reader may consult Antipin.

Lemma 2.2.20. [68, Aubin and Cellina] Let X and Y be topological spaces and
T : X — 2Y be a set-valued mapping,.

(i) If X is compact and T is upper semicontinuous with compact values,
then T'(X) is compact.

(ii) If Y is compact and 7' is closed, then T is upper semicontinuous.

(iii) If T is upper semicontinuous with closed values, then 7" is closed.

The following result are Theorem 7.3.11 and Theorem 7.3.14 of Klein and

Thompson.

Lemma 2.2.21. Let X,Y and Z be topological spaces. Let F' @ X — 2Y and

G :Y — 27 be set-valued mappings.



(i) If F and G are upper semicontinuous, then so is G o J7: X' — i,

(ii) If F and G are lower semicontinuous, then so is Go F': X — 22,

Lemma 2.2.22. Let I be an index set. Let X and Y;,i € I be all topological spaces.
For eachi € I, let F; : X — 2% be set-valued mappings. Let F = [];c; I'; be defined
by F(x) = [1;c; Fi(2). If each I is upper continuous with compact values, then F' is
also upper semicontinuous with compact values with respect to the product topology

7o ¥
onY =]l Ya

Lemma 2.2.23. [66, Lin and yu] Let X and Y be two topological space. Let
F: X xY — R be a bifunction and S : X — 2V be a set-valued mapping with
nonempty values and let m(«) = sup,¢gey (1, ).

(i) If F and S are both lower semicontinuous, then m is also lower semicon-
tinnous.

(ii) If I is upper semicontinuous and .S is upper semicontinuous with com-

pact valucs, then m is also upper semicontinuous.

Lemma 2.2.24. [31] Let C be a nonempty convex subset of a topological vector
space and let [ : C' x C' = [—00, 00| be such that

(i) f(z,2) >0 for each z € C;

(ii) for eachy € C, & — f(x,y) is upper semicontinuous on each nonempty
compact subset of C,

(iii) for each x € C,y — f(x,y) is conves;

(iv) there exist a nonempty compact subset K of C and y € K such that
f(z,y) <0,Yze C\ K.

Then there exist a point & € K such that f(&,y) =0 for ally € C.

Lemma 2.2.25. [67] Let A and B be two topological spaces. Suppose T : A — 2B
and H : A — 2B are multivalued mappings having open lower sections, then
(i) G: A — 2B defined by for each x € A, G(x) = co(T'(x)) has open lower

sections;
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(ii) p: A — 28 defined by for each x € A, p(z) = T(x) N H(x) has open

lower sections.

Lemma 2.2.26. [72] Let A and B be two topological spaces and 7" : A — 28 he
a upper semicontinuous mapping with compact values. Suppose {2} is a net in
A such that o — @g. If yo € T(2,) for each a, then there is a yo € T'(2) and a

subset {ys} of {ya} such that yg — yo.

Let I be an index set, I2; a Hausdorff topological vector space for each i € 1.
Let I; be a family of nonempty compact convex subsets in F;. Let K = T Lici

and E = [],o; B

Lemma 2.2.27. [39] For each i € I, let T} : K — 2/ be a set-valued mapping.
Assume that the following conditions hold.

(i) For each i € 1,7} is a convex set-valued mapping;

(i) K = U{intT; (2;) : 2; € K}
Then there exists Z € K such that & € T(Z) = [[;; Ti(Z:), that is &; € T3(%;) for

each ¢ € I, where 7; is the projection of T onto K.
Definition 2.2.28. [73, 74] Let X and Y be two Hausdorff topological vector
spaces, E a nonempty, convex subset of X and C a closed, convex and pointed
cone of Y with intC' # §. Let 0 be the zero point of Y, U(#) be the neighborhood
set of A, U(x,) be the neighborhood set of 2, and f : I2 = Y be a mapping.

(1) If for any V € U(#) in Y, there exists U € U(xg) such that

f(z) € flxg) +V+C V2 e UNE,

then [ is called upper C'—continuous on . If [ is upper C'—continuous for

all z € E, then [ is called upper C'— continuous on Iv.
(2) If for any V € U(0) in Y, there exists U € U(zo) such that

f(z) e f(xg) +V —-C Ve e UNE,
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then [ is called lower C'—continuous on xo. If [ is lower C'— continuous for
all z € E, then f is called lower C'—continuous on I
(3) fiscalled C'—continuous if f is upper C'—continuous and lower C'—continuous.
(4) If for any x,y € E and t € [0,1], the mapping | satisfies
fl@) € fltx +(L—ty)+C or [fly) € flta+(1-0y)+C,
then f is called proper C'— quasiconvez.
(5) If for any a;,2, € E and t € [0, 1], the mapping f satisfies
tf(zy) + (1 — £)f(22) € f{ta; — (1 —)72) + C,
then f is called C'—convez.
Remark 2.2.29. How to reduce upper C'—continuity to upper semicontinuity.
Proof. Upper C-continuity of f if and only if for any V € U(#) in Y, there exists
U € U(zp) such that
f(z) € f(zo) +V +C, VYzeUNE.
We consider C' = (—o0,0] and for each € > 0, V' is open interval (—e, +¢€).
We can see that
V + C = (—o0, +€).
From the assumption, we can get that

fz)— fxo) < +e Vo e U.

This implies that f is upper semicontinuous. O

Remark 2.2.30. How to reduce lower C'—continuity to lower semicontinuity.
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Proof. Upper C-continuity of f if and only if for any V € U(#) in Y, there exists

U € U(zp) such that
f(2) € f(zo) +V —C, VeeUNE.

We consider C' = [0, +00) and for each € > 0, V is open interval (—¢, +¢).

We can see that

V+C = (—¢,+o0).
From the assumption, we can get that
f(zo) — f(z) > —¢ v U
This implies that f is lower semicontinuous. O

Remark 2.2.31. How to reduce C'—convexity to convexity.

Proof. C'—convexity if and only if for any 1,2, € F and t € [0, 1], the mapping f
satisfies

tf(z1) (1 —t)f(22) € f(tzr — (1 — t)23) + C.

We consider C' = [0, +00), we can get that
tf(zy) + (1 =) f(22) — ftzy — (1 —t)ay) € [0, +00).

That is

tf(z) + (L — ) f(xe) — fltas — (1 —t)xz) = 0.
This implies that

ftey — (1= t)ag) < tf(zr) + (1—1)f(2a).

Hence f is convex. a

Lemma 2.2.32. [18] Let Z and Y be two real Hausdorff topological vector spaces,
X is a nonempty, compact, convex subset of Z, and C is a closed, convex and
pointed cone of Y. Assume that f : X x X = Y and ¥ : X — Y are two vector

valued mappings. Suppose that [ and V¥ satisfy
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1. f(z,2) € C, for allz € X;
2. 1 is upper C' — continuous on X;
3. [(-,y) is lower C' — continuous for all y € X;

4. f(z,") + () is proper C — quasiconver for allx € X.

Then there exists a point v € X satisfying
F(x,y) € C\ {0}, Vy € X,

where

F(z,y) = f(2,) + () — ¥(2), v,y € X.

2.3 Some nonlinear operators

In this section. we first recall some definitions related to the single-valued
and multi-valued operators. Throughout of this section, let I2 be a Banach space
with the norm || - ||, £* be its dual and let (-,-) denote the duality pairing of I*

and F.

Definition 2.3.1. [64] Let f : E — (—00,00] be a function and {zn} C E. Then

f is said to be

(i) lower semicontinuous on L if for any o € E, f(zo) < liminf, oo %)

whenever z, — xg.

(ii) upper semi (or hemi) continuous on E if for any xo € E, imsup,_,o f(Tn) <

f(xo) whenever z, — 2.

(iii) weakly lower semicontinuous on Eiffor any 2o € E, f(20) < liminf, 00 f ()

whenever z, — 2.

(iv) weakly upper semicontinuous on E if for any 2z € E, limsup, ., f(2a) <

2g) whenever z,, — Zp.
f( ) n
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The following definition of continuity for multi-valued mappings can be
founded in [75].
Definition 2.3.2. [64] Let 7" : £ — I be a mapping.
(i) T is said to be Lipschitzian if there exists a constant L > 0 such that for all
%3¢ B,
17 — Tyll < Dllz — .
(ii) T is said to be contraction if there exists a constant 0 < o < 1 such that for

all z,y € E,

1Tz — Tyl < aflz =yl

(iii) 7 is said to be nonezpansive if for all z,y € F,
T2 — Tyl < || — yl|-

Definition 2.3.3. [64] An element @ € F is said to be

(i) a fized point of a mapping T : E — I provided Tz = @.

(ii) a common fized point of two mappings S,7" : X — X provided Sz = v = Tz.

The set of all fixed points of 7' is denoted by F(T').

Definition 2.3.4. Let C be a closed convex subset of a Hausdorff topological
vector space X and I : C' x C — R be a real valued bifunction.

(1) £ is said to be monotone if
F(z,y) + F(y,2) <0, Vz,y € C.

(i) When X = E is a Banach space, I is said to be a—strongly monotone

if there exists a a > 0 such that

F(z,y) + F(y,z) < —allz =y, Vz,y € C.
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(iii) When X = E'is a Banach space, I is said to be 0—Lipschitz if there

exists a d > 0 such that
|F(z,y)| < [z —yll, Va,y € C.
Remark 2.3.5. Clearly, strong monotonicity of implies monotonicity of F.

Definition 2.3.6. A mapping G : E — E* is said to be

(i) Monotone if
(G(z) — G(y),x —y) 20, Va,y € I;
(i) A—strongly monotone if there exists a A > 0 such that
(G(a) - G(), = —v) = M= =yl Va,y € B;
(iii) B—Lipschitz continuous if there exists a constant 3 > 0 such that
1G(2) — Gl < Bllz = yll, Va,y € E.
(iv) a—strongly monotone if there exists a a > 0 such that
(@) = Gl)z—y) > allAv— Ayl?, Yy € B

Definition 2.3.7. Let G : E — E* be a bounded linear operator. ¢/ is said to be

A—strongly positive if there exists a A > 0 such that
(G(x), ) > M=%, Vo e E.

Remark 2.3.8. It is clear that if a bounded linear operator G : E — E*is
A—strongly positive, then G is A—strongly monotone and ||GG||—Lipschitz continu-

ous where |G| is the operator norm of G.

Definition 2.3.9. (see[76]) Let A, B be nonempty subsets of L. The Hausdorft

metric H(:,-) between A and B is defined by
H(A, B) = max{e(A, B),e(B, A)},

where e(A, B) := sup,e d(a, B) with d(¢, B) = infyep la — bl
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Let {A,} be a sequence of nonempty subsets of 2. We say that A, converges
to A in the sense of Hausdorft metric if H(A,, A) — 0. It is easy to see that
e(A,, A) — 0 if and only if d(a,, A) — 0 for all section a, € A,. For more details

on this topic, we refer the readers to [76].

Definition 2.3.10. Let C be a nonempty subset of a Banach space £,7T" : C' —
C'B(E*) be a set-valued mapping. 7 is said to be H—Lipschitz continuous if there

exists k > 0 such that
HT@),TW) < ke —yl,  VayeC,

where H is the Hausdorfl metric.

Let H be a Hilbert space and X be a nonempty closed convex subset of
H. A mapping T : X — H is said to be relaxed 7 — @ monotone if there exist a
mapping 7 : X x X — H and a function a : [/ — R positively homogeneous of

degree p, that is, a(lz) = tPa(z) for all t > 0 and z € H such that
(Tz — Ty, n(z,9)) = alz —y), Vz,y € X, (2.3.1)

where p > 1 is a constant; see [77]. In the case of n(z,y) =2z —yforallz,y € X,T
is said to be relaxed ae—monotone. In the case of n(z,y) = a—y forall z,y € X and

a(z) = k||z||?, where p > 1 and k > 0,7 is said to be p—monotone; see [73, 78, 79].

In fact, in this case, if p = 2, then T"is a k—strongly monotone mapping. Moreover,
every monotone mapping is relaxed 7 — a monotone with 7(xz,y) = « — y for all

2,y € X and o = 0.

Let A : X — H be a A—inverse-strongly monotone mapping of H, that is

there exists a A > 0 such that
(A(z) — A(y), = — y) = A A=) — Ay, V€ B
For all z,y € X and k > 0, one has [80]

12 = kA)z — (1 = kA)yl* < ||z = yl* + k(k — 2))[| Az — Ay]>



23

Hence, if k£ € (0,2)), then [ — kA is a nonexpansive mapping of X into H.

For each point z € H, there exists a unique nearest point of X, denoted by
Py z, such that

Iz = Pxzll < |z = yll,

for all y € X. Such a Py is called the metric projection from H onto X. The well-
known Browder’s characterization of Py ensures that Py is a firmly nonexpansive

mapping from H onto X, that is,
| Pxz — Pyy||> < (Pxz — Pxy,z — y), Vz,y € H.

Further, we know that for any z € H and z € X,z = Pyz if and only if
(z—z,2—9) >0, Yy e X.

Let S be a nonexpansive mapping of X into itself such that /(S) # . Then we

have
&€ F(S) & ||S2 — z||* < 2(x — Sz,2 — ), Vo e X, (2.3.2)
which is obtained directly from the following:

Jo— &l > fiSw— Sl = [|Se— £’ = Sz — 2 + (x — D)

= ||Sz —z|]® + ||lz — &||* + 2(Sz — z,z — &).
This inequality is a very useful characterization of F'(S). Observe what is more
that it immediately yields that Fix(S) is a convex closed set.

Let FE be a Banach space with norm denoted by || - || and E* be its dual

space. Let K be a nonempty subset of £. For every r > 0, we define
B, ={x e K:|z|| <r}.

We recall that a function ¢ : E — R is called locally Lipschitz if for every x € F

there exists a neighborhood U of x and a constant L, > 0, so called Lipschitz
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constant, such that

lo(v) — @(w)| < L.||lv—w|, Yv,wel.

Recall that ¢°(z;v) denotes Clarke’s generalized directional derivative of
the locally Lipschitz mapping ¢ : £ — R at the point 2 € E with respect to the
direction v € E, while dg(z) is the Clarke’s generalized gradient of g at 2 € IV (see
[81]); e

7 t A y
g°(z;v) = limsup 9y + 1) = 9()

y— 2,110 t

and
8g(z) = {€ € B* : (£,v) < ¢°(z;v), Vv € E},
where (-,-) denotes the duality pairing between E* and E.
The following useful results can be found in [81].
Proposition 2.3.11. Let X be a Banach space, z,y € X and j°(z,") be a locally
Lipschitz functional defined on X Then
(i) The function y — j°(z,y) is finite, positively homogeneous, subadditive and
then convex on X,

(ii) 7°(z,y) is upper semiconlinuous as a function of (z,v), as a function of y

alone, is Lipschitz continuous on X;
(iii) 3°(z, —y) = (=3)° (@, v);

(iv) 0j(zx) is a nonempty, convez, bounded, weak*-compact subset of X7
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CHAPTER III

ON THE EXISTENCE THEOREMS AND ITERATIVE
ALGORITHMS OF GENERALIZED EQUILIBRIUM
PROBLEMS AND GENERALIZED VARIATIONAL

INEQUALITY PROBLEMS

3.1 Existence and algorithms for the bilevel new general-

ized mixed equilibrium problems in Banach spaces

In this work, we assume that C' be a nonempty closed convex subset of Banach
space B, let K,G : C x C — R be a bifunction, A,7,Q,5 : C — C(B*) be
set-values mappings, N, M : B* x B* — B* and H, F : B* X C' X C' — R. Let
0 : Cx C — R be a skew-symmetric bifunction and wh,* € B* We will
consider the following bilevel new generalized mixed equilibrium problems :

find € S2T% and (#,7) € Q(Z) x S(&) such that
(BNGMEP) %]

K(Z,y) + H(M(#,7) — ,%,y) + ¥(y,7) — ¥(z,7) 2 0,
(3.1.1)

T . : . .
for all y € S ¥, where S AT s the solution set of the following new eneralized
G,F,N G,F,N

mixed equilibrium problem involving set-valued mapping :

find 2 € C and (u,v) € T'(z) x A(z) such that
(NGMEP)

G(z,y) + F(N(u,v) —w*,z,9) + o(y,2) — ¢(z,3) = 0, Vy e C.
(3.1.2)

Special Cases
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Given 1,7: Bx B — B, let

H(M(ua,v) —1°,%,y) = sup (M (m,n) —7*,7(y, Z))
(m,n)eQ(T)xS(T)

and F(N(u,v) — w*,2,¥) = SUP(yyea@xr@) V(@) — @ n(y,)). Then
(BNGMEP) (3.1.1)—(3.1.2) reduces to the following bilevel generalized mixed
equilibrium problem (BGMEP) involving generalized mixed variational-like

inequality problems

find T € Sﬁ;’ such that

K(Z,y)+ sup (M(m,n) — 7,0y, 2)) + ¢y, &) —¥(2,7) 20,
(mn)EQ(F) X S(Z)

for all y € Sﬁg, where S}}i;’ is the solution set of the following generalized
mixed equilibrium problem (GMEP) involving generalized mixed variational-

like inequality problems:

find z € C such that

Gz,y)+  sup  (N(q,7) —w'(y,2)) + oy, 2) — p(2,2) 20,
(@n)EAE)XT (@)

for all y € C. This problem has been considered in Ding [85].

Let K, G = 0 and w*, 7* = 0. Then (BNGMEP) (3.1.1)—(3.1.2) reduces to the
following bilevel generalized mixed equilibrium problem involving set-valued

mappings (BGMEP)

find 7 € S;,ﬁ:.ao and (4,7) € Q(T) x S(T) (3.1.3)

such that H(M (i1, 7),Z,y) + ¥ (y, %) — ¥(Z,%) > 0,Vy € S;,’f‘ﬁ:,w,

AT . A . . i T .
where Sgy , is the solution set of the following generalized mixed equilibrium

problem involving set-valued mapping (GMEP):

find z € C and (u,v) € A(z) x T'(z)

such that (N (u,v),2,y) + ¢, 2) — (z,z) > 0,Vy € C. (3.1.4)
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The BGMEP (3.1.3) — (3.1.4) was introduced and studied by Ding [33] in

Banach spaces.
Given 7 : C x C' — B, let H(M(4,7),z,y) = (M(a,7),n(y,)) and
F(N(,v),,) = (N(u,0), 0(,)

for all 2,y € C,(1,7) € Q(z) x S(2) and (u,v) € A(z) x T'(z). Then the
BGMEP (3.1.3) — (3.1.4) reduces to the following bilevel generalized mixed

variational-like inequality problem (BGMVLIP):

find T € Sy’y, and (@,7) € Q() x S(a) (3.1.5)

such that (M (@, 0),n(y, z)) + ¥y, %) — (2,2) 2 0,Vy € Sjéf;w

AT ) : : ; o
where Sy, , is the solution set of the following generalized mixed variational-

like inequality problem (GMVLIP):

find & € C and (u,v) € A(z) x T(x)

such that (N (u,v),n(y, z)) + ¢y, x) = p(z,7) > 0,Vy € C. (3.1.6)

The BGMVLIP (3.1.5) — (3.1.6) includes the most of the generalized mixed

quasi variational-like inequality problems and generalized mixed quasi variational-

like inequality problems studied by many authors in Hilbert and Banach

spaces respectively as special cases, see [86, 87, 88, 89, 90, 91, 92].

If N(u,v) = and M (u,v) = u for all (u,v) € B* x B*, then the BGMVLIP
(3.1.5)— (3.1.6) reduces to the following bilevel generalized mixed variational-

like inequality problem (BGMVLIP):

find 7 € Sy, and @ € Q(T) (3.1.7)

such that (@,n(y,z)) + ¥y, z) — ¥(Z,7) > 0,Vy € Ly -
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where Sy, is the solution set of the following generalized mixed variational-

like inequality problem (GMVLIP):

find z € C and u € A(x)

such that (u,n(y, z)) + ¢(y,z) — ¢(z,2) > 0,Vy € C. (3.1.8)

If H(u,2z,y) = h(z,y) and F(u,z,y) = f(z,y) for all w € B* and 2,y € C,
then the BGMEP (3.1.3) — (3.1.4) reduces to the following bilevel mixed
equilibrium problem (BMEP):

find T € Sy, such that h(Z,y) + ¥ (y, &) — ¥(2,Z) > 0,Vy € Sy,

where Sy, = {u € C: f(u,y) + @(y,u) — @(u,u) > 0,y € C}, i.e, Sy i

the solution set of the following mixed equilibrium problem (MEP):
find u € C such that f(u,y) + ¢(y, w) — (u,u) = 0,¥y € C.

The BMEP was introduced and studied by Ding [11] in Banach spaces. An
iterative algorithm to compute the approximate solutions of the BMEP has
been suggested and analyzed. Strong convergence of the iterative sequence

generated by this algorithin is also proved under suitable conditions.

If B = H is a Hilbert space and ¢ = ¥ = 0, then the BMEP reduces to the

following bilevel equilibrium problem (BEP):
find T € Sy such that h(z,y) > 0,Vy € S5y, (3.1.9)

where Sy = {u € C : f(u,y) > 0,Vy € C}, i.e,, Sy is the solution set of the

following equilibrium problem (EP):

find v € C such that f(u,y) > 0,Vy € C. (3.1.10)
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The BEP (3.1.9) — (3.1.10) was introduced and studied by Moudafi [32]
in Hilbert spaces. By using the proximal method, he also suggested an iterative
algorithm to compute approximate solutions of the BEP and proved the weak

convergence of the iterative sequence generated by the algorithm.

For suitable choices of G, KT, H, N, M, Q,S AT, A, T,y and g, it is easy
to see that the BNGMEP (3.1.1) — (3.1.2) includes many bilivel generalized mixed
(quasi) equilibrium problem, bilevel generalized mixed quasi-variational-like in-
equality problem studied by many authors in Hilbert and Banach spaces as special

cases.

In this work, we introduce and analyze the NGMEP (3.1.2) and the BNG-
MEP (3.1.1) in Banach spaces. First, by using a minimax inequality, some new
existence theorems of the solution and the behavior of solution set for the NGMEP
(3.1.2) and the BNGMEP (3.1.1) are obtained in Banach spaces. Next, by using
auxiliary principle technique, some new iterative algorithms for solving the NG-
MEP (3.1.2) and the BNGMEP (3.1.1) are suggested and analyzed. The strong
convergence of the iterative sequences generated by the algorithms are also proved

in Banach spaces.

Now, we will give the following new definition of w*-monotone and (w*,o)-

strongly monotone mappings.

Definition 3.1.1. Let C be a closed convex subset of a Banach space B. Let
N : B* x B* — B* be a single-valued mapping and A, T : C — C(B") be set-
valued mappings, and I : B* X C X C' — R be real-valued function. For a given
w* € B*, F is said to be

(i) w*-monotone with respect to N, A and T if

sup F(N(u,v) —w* 2,y) + sup F(N(w,z) —w',y,2) <0,

(,0)€T (@) X A(z) (w,2)ET(y) X A(W)

for all 2,y € C

(i) (w*,o)—strongly monotone with respect to N, A and T if there exists a
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constant o > 0 such that

sup  F(N(wv)—w'z,y)t  sup  F(N@w2)-w, y,z) < —ollz—yll*,
(u,w)€T(x) x Alz) (w,2)€T(Y)xA(y)
for all z,y € C.

Remark 3.1.2. (1) If w* = 0, then (i) and (ii) are reduced to the monotone map-
ping and o—strongly monotone mapping with respect to N, A and T' respectively

in Definition 2.2 of Ding, Liou and Yao [33].

(i) Clearly, (w*,0)—strong monotonicity of I with respect to N, Aand T

implies the w*-monotonicity of I with respect to N,Aand T.

Example 3.1.3. For a given w* € B*, let the mapping F': B* X C'xC — R be

real-valued function defined by
F(g* — w*,z,y) = (g8 —w*,y— ), for all z,y € C and g" € i3'f
Let the mappings N, A and T' be defined in Definition 3.1.1. Hence
F(N(u,v) —w", z,y) = (N(u,v) —w',y— x)

for all 2,y € C and (u,v) € A(2) X T(z). According to the definition of set-valued

monotone mappings, N(-,-) is said to be monotone with respect to A and T if
(N(-u,-u)41\’(-10,:/:),9;—;1;) > 0,Yz,y € C, (u,v) € A(z) xT(z), (w,z) € A(y) xT(y).

In this case, we have that I : B* x ¢ x C — R is w*-monotone with respect to
N, A and T if and only if N(-,-) is monotone with respect to A and T. In fact, by
definition, N(-,-) is monotone with respect to A and T if and only if

(N (u,v),y — z) < (N(w, z),y — ),

for all @,y € C, (u,v) € A(z) x T'(2), (w,z) € A(y) x T(y), which is equivalent to

(N, ),y — o) — (" — 2) < (N(w,2),y = 2) = "y = 2)
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for all 2,y € C, (u,v) € A(z) x T(2), (w, z) € A(y) x T(y) which is equivalent to
sup (N(u,v) —w*,y—2) < inf (N(w,z) —w*,y — z),Vz,y € C,
(u,v)eA(z)xT(z) (w,2)€A(y) xT'(y)
which is again equivalent to
sup (N(u,v) —w*,y —2) + sup (N(w,2) —w*,z—y) <0,
(u,v)eA(x)xT(x) (w,z)eA(y)xT(y)
for all 2,y € C'. The above inequality holds if and only if
sup F(N(u,v) — w*,z,y) + sup F(N(w, z) —w*,y,2) <0,
(u,w)EA(z) x T(x) (wiz)eA(y) xT ()
for all z,y € C,w* € B*. Hence N(-, ) is monotone with respect to A and 7' if and

only if F': B* x C' x C'— R is w*-monotone with respect to N, A and 7T'.

3.1.1 The existence of the solution set and algorithms for the BNG-

MEP (3.1.1) — (3.1.2) in Banach spaces

3.1.1.1 The existence of a solution for the NGMEP

Lemma 3.1.4. Let C' be a nonempty convex subset of a Banach space B Let w* €
B*. Let N : B*x B* = B*T : C — C(B*) and A : C — C(B*) be upper
semicontinuous and F' : B*xCxC — R and for eachy € C, (u,z,y) — F(u,x,y) is
upper semicontinuous. Then for each (z,y) € Cx C, there ezists 1,7 € T'(x) x A(x)

such that

F(N(#,v) —w*,2,y) = max  F(N(u,v) - w",2,y).
(u,v)eT(x)x A(x)

Furthermore, the mapping © — maxX(y)eT(@)xA@) (N (4,v) — w*, 2,y) is upper

semicontinuous.

Proof. Since N : B* x B* — B* is upper semicontinuous, we have the mapping

N — w* : B* x B* —» B* defined by

(N — w*)(u,v) = N(u,v) — w*, V(u,v) € B* x B*
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is also upper semicontinuous. Indeed, Assume that N : B* x B* — B* is upper

semicontinuous. We will show that N — w* which defined by
(N — w*)(u,v) = N(u,v) —w', Y(u,v) € B* x B
is also upper semicontinuous.

Let (u,v) € B* x B* and neighborhood V' of (N — w*)(u,v). That is V
is a neighborhood of N(u,v) —w*. This implies that V — w* is a neighborhood of
N(u,v). Since N : B* x B* — B" is upper semicontinuous, there is a neighborhood

U of (u,v) such that

N(z,y) € V+uw' Y(z,y) € U,
N(z,y)—w C V Y(z,y) €U,
(N-w)(z,y) €V V(z,y) € U.

Hence N — w* is upper semicontinuous.

For each y € C,(u,2,y) — IF'(u,2,y) is upper semicontinuous, it follows from
Lemma 2.2.21 that for each y € C, the mapping ((u,v),z) = F(N(u,v) —w*, 2,Y)
is also upper semicontinuous. Indeed, Note that N — w?* is upper semicontinuous
on B* x B* and for each y € C, F(-,+,y) is upper semicontinuous. For each y € C,

we define g, : (B* x B*) x € — R which defined by
g9y((u,v),3) = (Fzy o (N — w*))(u,v) = F(N(u,v) —w*,2,y), Yu,vE€ B,z e(C
is upper semicontinuous where
F.,@) =F(t,z.9), Vi e B
Since F(+,-,) is upper semicontinuous, we have g, is also upper semicontinuous.

By Lemma 2.2.22, the mapping T'x A : €' = C(B*)xC(B*) defined by (Tx A)(x) =

T(x) x A(z) is upper semicontinuous with compact values. Since for each z €
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C,T(x) x A(z) is compact in B* x B*, it follows that there exists @, 7 € T'(z) X A(z)

such that

F(N(u,7) —w*, z,y) = : F(N(u,v) —w’, x,9).
(N(u,7) —w*,2,y) (11,v)en7‘l(§:§(xfx(m) (N(u,v) —w*, 2,y)

It follows from Lemma 2.2.23 that the mapping & ++ max(y,er()x @) F (N (u,v) —

w*, x,y) is upper semicontinuous. O

Lemma 3.1.5. Let C be closed convex subset of a Banach space B. Let I' : B* X
CxC—=RN:B*xB*—» BT A:C—>C(B*)andyp : BxB — R. Let
G:C x C = R and w* € B* satisfy the following conditions:

(i) F(N(u,v) —w*,2,2) > 0, Vo € C,(u,v) € T(z) x A(z),

(ii) F is w*-monotone with respect to N, A and T; and for each y € C|
((u,v),2) = F(N(u,v) — w*, z,y) is upper semicontinuous;

(i) for each z € C' and (u,v) € T(z) x A(2),y — F(N(u,v) — w*, 2,y) is
convexr and lower semicontinuous;

(iv) G is monotone and G(z,2) = 0 for each v € C;

(v) for each y € C,z v G(z,y) is upper semicontinuous and G is conves
and lower semicontinuous in second argument;

(vi) T and A are both upper semicontinuous;

(vii) @ is continuous, skew symmetric and conves in first argument;

Then there exists x € C such that

G(z,y)+ max  F(N(u,v)—w 2,9)+eyz)—e(z,2) >0, VyeC.
(u,v)€T (x)x A(z)

if and only if

—G(y,2)—  max F(N(w, z)—w*,y,2)+oy,y)—¢(z,y) >0, Yy € C.
(u,2)ET(y) x A(y)

Furthermore, the solution set Sg,’;!‘jf, of the NGMEP (3.1.2) is a closed convex subset

of C.

Proof. For any y € C, define two mappings M, P as follows:

M(y)={zeC: G(m,y)%—( o }F(N(u,'v)ew*,ﬁ:,y)+cp(y,:'a;)—{,o(n;,:z:) > 0}
u,v)el (x) XA(x
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P(y) = {(E eC: —G(y,ﬂi)u max F(N(w,z)~w*,y,:E)+t,o(y,y)ﬁap(:1:, y) > O}
(w,2)eT(y)x A(y)

In order to show that the conclusion of Lemma 3.1.5 holds,-we only need to show

Nyec M) = Nyee P(y), indeed, Assume that Nyec M (y) = NyecP(y) where

M@y)={zeC:G(,y)+ max F(N(u,v)—w" z,y)+e(y,z)—p(z,z) > 0}
(u,)eT () x A(xz)

P(y) ={z € C:-Gy,2)— max  F(N(w,z)-w" y,z)+e(y,y)—p(,y) = 0}
(w,2)€T(y)xAly)

We will show that there exists © € C' such that

Gz, y)+ max F(N(u,v) —w*, 2,y) + ¢y, z) —p(z,r) > 0, Yy e C.
(u,w)eT(z)x A(x)

if and only if

_Ga)—  max  F(N@w2)—w'5,2) ey -o@y) 20, WeC
(w,z)€T (y) x A(y)

(=) Let € C' be such that

G@,y)+ max  F(N(uv)-w'Z,y)+eH,2)—¢,72) 20, Vy e C.
(u,0)eT(z) x A(z)

That is Z € M(y) for all y € C. This implies that & € NyeeM(y) = NyecP(Y).

Hence

—G(y,7)— max  F(N(w,z)-w,y,Z)+o(y,y)—@y) 2 0, Vy € C.
(w,2)€T(y) x A(y)

In the same way, we can show another side of this conclusion.

Since I is w*-monotone with respect to N, A and 7, and G is monotone, we have

G(z,y) + F(N(u,v) —w*, z,;
(:L y) (u,v)é'}’l(i;ic))(x,él(m) ( ( ) ok y)

< Gy, x)— max F(N(w,z) —w*y, 1),
a (v.2) (w,z)eA(Y)=T(y) (N(w,2) Y:2)

for all z,y € C'. Since ¢ is skew symmetric, we have
i

oy, x) — p(a,2) < @(y,y) — e(2,9), Vz,y € C.
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Hence, if # € M(y), then & € P(y). It follows that (,cc M @) € Nyec P)-

Conversely, if there exists @ € (,e¢ P(y), but @ & Nyec M(y), then we have

-Gy, xz) — max F(N(w,z) —w*y,2
W 2) (w,2)€T(y) X A(y) L ) v o)
+o(y,y) — w(2,y) 2 0,y € C, (3.1.11)

and there exists § € C such that
G(z,9)+ max F(N(u,0) = w*,2,7) + (F,2) — ¢(z,2) <0.

(u,v)ET () x Afx)

It follows that
G(z,7) + F(N(u,v) —w*,z,9) + p(F,2) = o(z,z) <0, (3.1.12)

for all (u,v) € T(z) x A(x). Let &y =t + (1 —t)z =a + t(y — x),t € [0,1]. Then

a; € C. Tt follows from (3.1.11) that

—G(ag,x) — max F(N(u,ve) —w*, 24, @
( ’ ) (Uf,vt)ET(:Bf)XA(It) ( ( | t) : )
(e ) — o(2,) 2 0, vi € (0,1). (3.1.13)

Since for each y € C, ((u,v),2) — F(N(u,v) — w*,z,y) is upper semicontinuous
and each T(x;) X A(z;) is compact, it follows that for each ¢ € (0, 1], there exists

(@, U;) € T'(2¢) x A(z) such that

F(N (i1, 1) —w*, 2, T) = max F(N (g, v) =W, 2y, T, vt € (0,1].
( ( ! t) : ) (ug,v)ET (@) x A(2t) ( ( s t) : ) ( ]

By (3.1.13), we have

—G(’Lt,’r) — F(JV('I_LU ﬁt) = w*,.’z:t,:c)

+o(zg, 21) — (2, 2¢) 2 0, vt € (0,1]. (3.1.14)

Let Q = {24 }ef0)- Then £ is compact. Since A and T are both upper semicontinu-

ous with compact values, it follows from Lemma 2.2.20, that T(2) x A(€2) is compact
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in B* x B*. Noting (&, U¢)tefo,1) C T(Q) x A(Q2) and z, — @, without loss of general-
ity, we can assume that there exists (u,v) € B*x B* such that (@, 9,) — (u,v) and
(u,v) € T(x) x A(z). Note that for cach y € C, ((u,v),z) = F(N(u,v) =", % ¥)
is upper semicontinuous and so ((u,v), z) = —F(N(u,v) — w*, z,y) is lower semi-
continuous and for any y € C, the mapping z —G(2,y) is lower semicontinuous.

As ¢ is continuous, by (3.1.12), we have that

lili}l)iélf[—(}'(a:,,ij) — F(N (5, ) — w* @, 7) + (@0, %) — (T, T1))

> —G(x,7) — F(N(u,v) —w*,2,7) + ¢, z) — o(7,x) > 0. (3.1.15)
Hence, there exists ¢* € (0,1] such that
—G(x,9) — F(N (@, o) — w*, 2, Y) + o(@, B) — w(g,z) > 0, vt € (0,17].
It follows that
G(z, ) + F(N (@, 0) — w*, 2, §) + (T, %) < (2, T, (3.1.16)
for all ¢ € (0,%*]. By (3.1.14), we have
G(wy,x) + F(N (@, ) — w*, @, ) + @z, 7)) < (T, ), (3.1.17)

for all ¢ € (0,#*]. Since for each z € C' and (u,v) € T(z) x A(z),y = F(N(u,v) —
w*, z,) is convex and ¢ is convex in first argument, G is convex in second argument

and 2, = 1§+ (1 — 1)z, it follows from (3.1.16) and (3.1.17) that for each t € (0,77,

G(ﬂ:g, :].:f) + I?(f\r(ﬂh ﬂi) = &)*, Ty, ‘Ti) -+ (‘D(fﬂt. f?.:f)
S T[G(q’fJ y) G F(lv(ﬂts T_Jf) - l'JJ*, T, g) + EID(ga Q'f)]
+(1 = 8)[G (2, @) + F(N(a,7) — w2, ) + p(z, 2,))
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Hence for ¢ € (0,t*], we obtain G(x,2) + F(N (i, ) — w* 2,2¢) < 0 which
contradicts the assumption that F(N (u,v) —w*, z,2) > 0, Yz € C, (v, v) € T(z) X
A(z) and G(z,2) > 0 for each @ € C. Therefore we have Nyec M @) = Nyec P(y).
It is easy to see that Sg’ﬁﬁ, = Nyec M (y). Indeed, (C) Let x € Sé’?:;f, There exists

(u,v) € T(x) x A(z) such that
G(z,y) + F(N(u,v) —w’,2,y) + o(y, =) — p(z,z) >0, vy € C.

This implies that

G(z,y)+ max F(N(u,v) —w*, z,y) + oy, z) —o(z,2) 2 0, Yy € C.
(wmmmmm(() y) + oy, z) — o2, z) y

Hence z € M(y) for all y € C. Therefore & € NyecM (y).

(D) Let @ € NyecM(y). That is

G(z,y)+ max F(N(u,v) —w*, z,9) + o(y,2) — ¢(z,2) 2 0, Yy e C.
@), s POV =, m,0) o007) ~ 0(0:2) y

By assumption, there exists (u*,v*) € T'(2) x A(z) such that

F(N(u*,v*) —w' 2,y) = max F(N(u,v) —w*,2,y).
( ( ) y) (u,0)ET(z) x A(z) ( ( ) y)
Hence

G(z,y) + F(N(u*,v*) — ', 2,9) + oy, 2) — @(2, 2 Yy € C.

. iz 1A, T
Therefore @ € S¢'py-

This implies that

sate =My =) P®

yeC yel

is the solution set of NGMEP (3.1.2). By definition of P, for each y € C, we have

that
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Ply) = {zeC:-G(y,z)— max  F(N(w,z)—w"y,2
W) = Ao W:2) = o xaw (NGw,2) b

+o(y,y) — p(2,y) 2 0}
_ {peC:—Gyz) - F(N(w,2) —w"y,2) +¢y) — ey) 20 }
= N {weC:Glya)+ F(N(wz) —w'\y,0) +e@y) < e(y.9)}
(w,2)ET(Y) X A)
Since for each z € C and (u,v) € T(2) x A(2),y = F(N(u,v) — w*, z,y) is convex
and lower semicontinuous, G is convex and lower semicontinuous in second argu-
ment; and ¢ is lower semicontinuous and convex in first argument, it follows that
for each y € C, the set {x € C': Gy, z)+ F(N(w,2)—w", 3, ) +o(z,y) < ey}

is closed and convex. We will show the convexity, Let a,b € A and t € (0,1). That

is

Gy, a) + F(N(w, z) —w*,y,0) + ¢(a,y) < 9y, 9)
and

Gy, b) + F(N(w,2) = w’,y,0) +¢(b,y) < ¢y,)-
Consider

Gy, tat (1 = )b) + F(N(w, 2) =",y lat (1 = Ob) +o(ta+ (L= b)

IA

tG(y,a) + (1 — 1)G(y,b) + {F(N(w,2) —w",y,0)

+(1 - t)F(N(w,z) —w’,y,b) + to(a,y) + (1 —1)e(d,y)

IA

to(y,y) + (1 — ey, )

= p(v,y)

and hence P(y) and (,cc P (y) are both closed convex subsets of C. Therefore the

solution set .S'é'gjfr of NGMEP (3.1.2) is closed and convex in C. O
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Next, we give the following example for illustrating the previous theorem.
Example 3.1.6. B=R,C = [0,00)
(N (u,v))(z) = 2z, and wz) =2
F(N(u,v) —w",2,y) = (N(u,v) —w",y—2) = Ay —a2)—(y—x)=y—2
G(z,y) =z —y and p(u,v) = u+2v.

We have to check all conditions of Lemma 3.1.4 satisfied.

1. F(N(u,v) —w*,z,2) =2 —x =0 for each z € C.

2. By the first page of this document, we con get that I! is w*-monotone with
respect to N, A and T'; and it easy to sce that for each y € C, ((uyv),2) =

F(N(u,v) — w*, 2,y) is upper semicontinuous;
3. for each z € C,
flyy=y—=2

is conves and lower semicontinuous, then for each z € C and (u,v) € T(z) X

A(2),y > F(N(u,v) = w*, 2,y) is convez and lower semicontinuous;

4. Since G(z,y) = » — Y, we have G is monotone and G(z,z) > 0 for each

z e,

for each y € C,z — G(x,y) is upper semicontinuous and G is conver and

o

lower semicontinuous in second argument;

6. Since p(u,v) = u-+ 2v, we have @ 1s continuous, skew symmetric and conver

in first argument.
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Consider

G+  max  F(N(u,0) - w',2,y) +9(,2) — olz,2)
(u,v)eT(z)x A(z)

= (@—y)+H—2)+{H+20) -3

= y —_ _’I}
and

-Gy, z) — max F(N(w,z) — 'y, 2) + oy, y) — ¢z,
W2) = max F(N(w,2) — " 3,2) + 09) - #(2.9)
=4 Ay} —4E—y) +3y— 2z +y)

— y—"l:

We must find x € [0,00) such that
y—x >0, Yy € [0, c0).

Hence x = 0. It is easy to see that 0 is the unique solution of NGMEP.

Now, we will consider an auxiliary new generalized mixed equilibrium prob-
lem (ANGMEP) for solving the NGMEP (3.1.2). Let B be a real Banach space with
dual space B*. Let C' be a nonempty closed convex subset of B, let G : C'x C' — R
be a bifunction, A,T : C — C(B*) be set-values mappings, N : B* x B* = B*
and F': B*x Cx C — R. Let ¢ : C'x C' — R be a skew-symmetric bifunction
and w* € B*. Furthermore, let g : B — B* be a mapping. For a given z € C' and

p > 0, we consider the following problem :

Find z € C such that
(ANGNIEP) ,O(G(Z, y) + MaX(y,)eT(z)x A(z) F(l‘V(‘IL, ‘U) - "-‘-J*1 z, y) + So(yw Z)

—p(z,2)) + (g(y — 2),z — ) > 0, Yy € C,
(3.1.19)
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Now, we prove the existence and uniqueness of solutions of the ANGMEP

(3.1.19).

Theorem 3.1.7. Let C' be a nonempty closed convex subset of a Banach space
B and D be a compact subset of B with CND # 0. Let G : C xC — R be a
bifunction, T, A : C — C(B*) be set-values mappings, N : B* x B* — B* and
F:B*xCxC— R,g: B— B* be single-valued mappings and p : B x B = R
be a bifunction and let w* € B*. Suppose the following conditions are satisfied:

(i) F(N(u,v) —w*,z,2) > 0, Yz € C,(u,v) € T(z) x A(z);

(ii) F' is w*-monotone with respect to N, A and T; and for each y € C,
((u,v), 2) = F(N(u,v) —w*, z,y) is upper semicontinuous,

(iii) for each z € C' and (u,v) € T(z) x A(z),y — F(N(u,v) —w*, 2,y) is
convex;

(iv) G(z,x) > 0 for each z € C;

(v) for each y € C,z — G(x,y) is upper semicontinuous and for each
x € C,y— G(x,y) is convex;

(vi) g is a A\—strongly positive bounded linear operator, T and A are both
upper semicontinuous;

(vii) @ is continuous, skew symmetric and convex in first argument;

(viii) for each x € B, there exists y € C'N D such that

G(z,y) + max F(N(u,v) —w, z,y) + ¢y, 2) —(z, 2
pGlzy) + e R y) + ¢y, 2) — (2, 2))

+Hgly — 2),z —z) <0, VzeC\(CnD).

Then for given x € B, the ANGMEP (3.1.19) has a solution z* € C'ND. If furthere

assume that G is monotone, then the solution of ANGMEP (3.1.19) is unique.

Proof. For givenz € B,u € T(z),v € A(z), and define the bifunction f: C'x C' —

R by
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f(z,y) = p(G(z,y)+ max F(N(u,v) — w*, z,9) + ©(y, 2) — ¢(z, 2))
(u,v)eT(z)x A(z)

+{g(yf—2), 8 —2) Vz,y € C.

(a) By the definition of f and condition (i) and (iv), we have f(z,z) >

0, Vz € C. So condition (i) of Lemma 2.2.24 is satisfied.

(b) Since for each y € C, ((u,v), z) —> F(N(u,v)—w*, z,y) is upper semicon-
tinuous, and T'x A : C' = C(B*)xC'(B*) is upper semicontinuous with compact val-
ues, it follows from Lemma 3.1.4 that for each y € C', z — max(, ver(z)xac) L'(N (u, v)—
w*, z,y) is upper semicontinuous. Noting that ¢ is continuous, ¢ is linear and
for each y € C,z — G(z,y) is upper semicontinuous, we have that for each
y € C,z— f(z,y) is upper semicontinuous and so condition (ii) of Lemma 2.2.24

is satisfied.

(c) Since for each z € C and (u,v) € T(z) X A(2),y —= F(N(u,v) —w*, z,y)

is convex, for any y;,y» € C' and ¢ € [0, 1], we have

F(N(u,v) — *,Z,t‘ 1— 1)
()T Al2) (N(u,v) = w2ty + (1~ t)ye)

< IL,FN1 . *, ,, 171171.\[1 . *1 ,A
< (u,v}El’?g;cXA(Z)[ (N(w,v) —w*,z,41) + V(N (u,v) —w', 2, 42)]

< ¢ max F(N(u,v) — w", z,1
- (u,v)ET(2)x A(z) ( ( ) Jl)

i 1— max H(N(u,v) — w*, z,91). s 4 5
( )(u,vJeT(z)xA(z) (6, B) ) ( )

Hence for each z € C,y — max(,v)er(z)xa(z) £'(V (¢, v) — w*, z,y) is convex. Note
that for each z € C,y — ¢(y, 2) is convex and g is linear. We have that for each

z € Ciy— f(z,y) is convex. Condition (iii) of Lemma 2.2.24 is satisfied.

(d) Condition (viii) implies that for each & € B, there exists y € C'N D such
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that
f(z,y)<0, VZEO\(COD),

and hence condition (iv) of Lemma 2.2.24 is satisfied.

From (a), (b), (c) and (d), by Lemma 2.2.24, there exists a point 2 € C'N D

such that

(2, 24uinlly Yy e C,

which gives that

G(Z2,y) + max F(N(u,v) —w* 2, y) +o(y,2) — ¢(2,2
P(G(2,y) NS i (N (u,v) )+ oy, 2) — ¢(2,2)

+{oly —2),2— =) >0, vy e C.

Therefore 2 € C' is a solution of the ANGMEP (3.1.19). Now assume that each GG
is monotone and we show that for each given @ € B, the solution of the ANGMEP
(3.1.19) is unique. Let z;, 2, € C' be any two solutions of the ANGMEP (3.1.19).
Then we have

G(z1,y) - F(N (u,v) — w*, 21,
p(G(21,y) %,u)é%}&}x,um) (N (u,v) — w*, 21,9)

+o(21,y) — (21, 21)) + (g(y — 21), 21 — ) =20, Vye C'  (3.1.21)
and

G(za,y) + max FP(N(u,v) — w?, 29,
P( ( 2 y) (u,0)eT(x)x A(x) ( ( ) % y)

"{‘(,0(22, y) - (,0(22, 22)) + (g(y - Zz),ZQ — ZE) 2 0, Vy e (3122)
Taking y = 25 in (3.1.21) and y = 2 in (3.1.22), we obtain

G ¢ F(N(u,v) — w2,
p( (thg)+(it,v)€:'1%.'l(g§‘xA(x) ( (H U) o Zz)

+o(z1,22) — (21, 21)) + {9(z2 — 1), 20 — ) 2 0, (3:1.23)
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and

G(z9,21) + max F(N(u,v) — w*, 29, 2
PGz ) (u,0) €T (z) X A(x) (N{n,0) % %)

+ip(z2, 21) — (22, 2)) + (9(21 — 22), 25 — 2) > 0. (3.1.24)
Adding above two inequalities, we have

p((G(z1, 22) + G2, 21)) + (21, 22) — 021, 21) + (22, 21) — (22, 2)
+ max F(N(u,v) —w*, z1, 23) + max F(N(u,v) — w*, 2o, 2
T N () b AN R () % 41))
> {9(z1 = 2), 21 — 2) (3.1.25)

Assume that z, # z. Noting that G is monotone, F' is w*-monotone with respect,
to N, A and T’ ¢ is skew-symmetric and g is A—strongly positive, it follows from
(3.1.25) that

0> (g(z2 — 21), 2 — 21) > M2z — z||* > 0,
which is a contradiction. Therefore, we must have z, = z. This completes the
proof. O
Remark 3.1.8. We observe that if for some # € C, the 2 = & is a solution of the

ANGMEP (3.1.19), then & is also a solution of the NGMEP (3.1.2).

Based on this observation, we can construct the following iterative algorithm

for computing approximate solution of the NGMEP o1.2).
3.1.1.2 Convergence theorem for NGMEP (3.1.2)

By using Theorem 3.1.7 we can construct the following iterative algorithm

to compute the approximate solutions of the NGMEP (3.1.2).

Algorithm 3.1.9 (Constructive Approximation). For given xg € B by Theo-
rem 3.1.7, the ANGMEP (3.1.19) has a unique solution x; € C'N D, such that

Gz, y) + max F(N(uy,v) — w*, 21,
PG Y) (w1,v1) €T (@) % A1) (i) sy



+o(y, 21) — p(21,21)) + (9(y — 21), 21 — 20) > 0, vy e C.

By induction, we can define the iterative sequences {z,} C C'N D such that

P(G(ﬂ;n+lzy) + max F(Af(un+la'vn+1) - w*a:vn+11y)

(Un+1,vn+1)ET (@nt1) X A(Tnp1)

+‘P(ys-’1"n+l) = (P(wn—l—l:a:rwl)) 2e (9('9 = By 1)y Tkl = 3":1) >0, (3-1'26)

for ally € C.

Next, we discuss the convergence of the iterative sequences generated by the

Algorithm 3.1.9.

Theorem 3.1.10. Let C' be a nonempty closed conver subset of a Banach space
B and D be a compact subset of B with CND # (. Let G : Cx C = R be a
bifunction, T, A : C' — C(B*) be set-values mappings, N : B* x B* — B* and
F:B*xCxC—R,g: B— B* be single-valued mappings and ¢ : Bx B — R
be a bifunction and let w* € B*. Suppose the following conditions are satisfied:

(i) F(N(u,v) —w*,2,2) > 0, Vo € C, (u,v) € T(z) x A(x);

(ii) F is (w*, o)—strongly monotone with respect to N, A and T'; and for each
y € C,((u,v),2) = F(N(u,v), z,y) is upper semicontinuous;

(iii) for each z € C' and (u,v) € T(z) X A(z),y — F(N(u,v) —w*,z,y) is
convez and lower semicontinuous;

(iv) G is a—strongly monotone such that G(x,z) > 0 for each x € C;

(v) for each y € C,z — G(z,y) is upper semicontinuous and for each
x € C,y v G(z,y) is convex;

(vi) g is a A—strongly positive bounded linear operator, T and A are both
upper semicontinuous;

(vii) ¢ is continuous and skew symmetric such that for each y € B,z —

w(z,y) is convex;
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(viii) for each @ € B, there exists y € C'N D such that

p(G(z,y) + max  F(N(u,v) —w, z,y) + ¢, 2) — ¢(z,2))
(u,v)eT(z) x A(z)

+{gly — 2),z— ) <0, Vze C\(CnD).

Furthere suppose that A”fﬂﬁ < 1. Then the sequence {x,} generated by Algorithm
3.1.9 converges strongly to a solution & € C'N D of the NGMEP (3.1.2) and the

solution set Sg;ﬁ;ﬁ, of the NGMEP (3.1.2) is nonempty compact conves set of CND.

Proof. By algorithm 3.1.9

G:‘Em + IR F(N Up, Un _wz‘,:l:ns'l
p( ( y) (tn,vn)ET(@n) X Alzn) ( ( ) y)

+‘P(yvﬂ;n) S (P(n;m-'rn)) A (g(y 25 :L'ﬂ)1:1:11 - :’En,]) 2 0: Vy € C. (3127)
and

p(G(Tns1,y) + max F(N(2n41, V1) = W'y Tni1, Y)

(unt1,0n41) ET(@nt1) %X A(Tn1)

J‘_[P(ymmn—’rl) “ (,o(mn—l—l:$n+l)) + (g(y - En-{—l): Tnyl — "Un) Z 0: (3128)

for all y € C. Taking y = 2,4 in (3.1.27) and y = z, in (3.1.28), respectively, we
get

P(G’((ITH,.’E”+1) + max F(N('U,,,'Un - w',:r;,,,:lt,,ﬂ)
(un,vn)ET (zn) X Alzn)

+(P(:En+11 Tn) — [P(R:mﬂ:n)) + (.‘](-’b'n+1 - :Un)a Tn — ﬂ;n—]) > O: (3129)
for all y € C and

* v .
p(G(mn+1>$n) + max F(N('Hn+lavn+l) — W, Tty ﬁfn)
(nt1,0n41)ET(Tn41) X AlTn 1)

+o(Tn, Tnt1) — P(Tns1, Tny1)) +{9(@n — Tnt1) Tasr — zn) 2 0, (3.1.30)
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for all y € C' Adding (3.1.29) and (3.1.30), we get

p(G(ﬂ:m $n+l) b G'(R:rH»la mn) + (,0(22"_’_] ) -'L‘n) - Gp(ﬂ:ns wn) E (P(ﬂ:n ) .’L',H_l)

_(p(ﬂ:n+1a $n+1) + max F(AI(’UH, Un) — W, Ty, mn-{—l)
(un,vn)ET (zn) X A(zn)

5 .
max F(N(upi1,Vn11) — W' Zpy1, Tn))
(Un+1:Un-|-}.)€T($n+l)XA(-T:\Jrl)

+<g($n+1 - mn): Tn — ﬂ'—"n—l) + (9(3711 - $rt+1): Tpg1 — :Bn) = 0. (3131)

Note that

,O(G(.'Fn, :EJH-I) o G(:En—i—la ‘Tn) Tk (P(-Tn+ls .'II,,) i’ 59(3;111 117") R ﬂp(mm anrl)

4 . * v "
_90($::+1, -'Ln-t—]) + max F(J\T('l[m 'Un) — Gl "Ln+1)
(un,vn)ET(zn)xA(xn)

max F(N(unt1,Vns1) — W' Tnt1, Tn))
(un41,0n41)ET (2n41) X A(@n11)

+<g(mn+l i :En)-nwn TN mn-—l) -H (g(xn = mn—b—l)) Tpt+1 — $n> Z 0.

Since (¢ is a—strongly monotone, F' is (w*, o)—strongly monotone and ¢ is skew-

symmetric and g is A—strongly positive and ||g||—Lipschitz continuous, we have

0 S p(G(a'n: $n+l) 2R G(mn—b—la R:n) =+ (P(:En—&—l: :En) 3 QO(.'E,“ xn) -3 50(27”, Q:n—i-l)

~P@nr1, Tnsa) + (st )T () A (N (un, vn) 7" T Ent)

* iy -
max F(A'r('u'n+l1'vn+l) —Ww 1:LJ]+}):L?I))
(un41,0n41)E€T(Tn1) X AlTn41)

+<g(mn+1 * mn)a Tn — "13,1,1) y (g(mn - -T11+1): Tni1 — mn)

IA

P(“Q‘Hfﬂn - $n+1” - 0'”33,1 - IL',,,+1”2) - )\“:En-{-l - 'Enllz

Hlglllznsr = zallllzn — 2n-all-
Dividing by ||#p+1 — 2|, we have that

0 < —pa— pa”:tn — Tpytl “ - “\“ﬂ:nJrI - Ty “ + ”g” “"L'n - xn-—l“

< —pJ”.’L‘,, - :En+1” - ’\“'TrH-I - 'Tn” + “9“”111 - wrl—lll'



This implies that

g
||3:n+1 - mn” < pol_l _||_| /\”:En - mu—l“-
From A”fﬂg < 1, we have that {z,} is Cauchy sequence in C'N D. Indeed From
g
”:l:nJrl - :En” % %“.’Bn - :L‘nfl”a

and q := ,,JL%L; < 1, we consider for all n,m with n > m,

20 — Zm|l < N2n = @ncillF s =Tnall + oo F [ Zmis — 2mll
< ¢ Moy = moll + " 2|z — @l + ... + g™ |21 — 20|
= (" " +q" 2+ ")z — 2l
= " (" T D — )

o0
< (Y d)llz1 — wo
i=1
= (e —zall
1§
Since ¢ < 1, we have {z,} is a Cauchy sequence.

Let 2, = 2 € CN D as n — co. By Algorithm 3.1.9, we have that for all n > 0,

P(G(mn-i-] ) y) + max F(Ar('u'n+1= 'Un+l) y W*: Tnia, y)

(un41 Wn41)ET (Tr41) X A(~'17n+1)

+§9(y1 ﬂ;n+1) G (10("1:1!+17$n+1)) + (g(y Ny $n+l)1$n+1 F -’L‘n) Z O, (3132)

for all y € C. Since for each y € C,((u,v),z) — F(N(u,v) — w* 2,y) is upper
semicontinuous, for each y € C,z — G(x,y) is upper semicontinuous, and 7" x A :
C — C(B*) x C(B*) is upper semicontinuous with compact values, it follows from
Lemma 3.1.4 that for each y € C\,z — maxq verxae) FV(w,v) — w*, z,y) 1s
upper semicontinuous. Since ¢ is continuous, letting n — oo in (3. 1.32), we obtain

G(Z,y) + max  F(N(u,v) —w*, Z,y) + o(Z,y) —o(#,2) >0 Vyed
(u,w)eT () x A(Z)
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Therefore & € C N D is a solution of NGMEP (3.1.2). and by Theorem 3.1.5 the
solution set Sé”fjf, of the NGMEP (3.1.2) is nonempty compact convex set of C'ND.

This completes the proof. O

Now, we suppose the solution set Sé,’;’:'\”, of the NGMEP (3.1.2) is nonempty
compact convex set of CN D. Let g: B = B*,z € Sg?:@ and p > 0. Related
to BNGMEP (3.1.1) — (3.1.2), we consider the following auxiliary new generalized

mixed equilibrium problem :

g
find z € 9‘3?:’{’, such that

(ABNGMEP) ¢ p(K (2, y) + max(,neqyxse) M (w,v) — 7, 2,9) + (Y, 2)

|~ 0@+ -2),2-2) 20,  VyeSgEk
(3.1.33)

Lemma 3.1.11. Let Sg:i::j{’, be the solution set of the NGMEP (3.1.2) in Theorem
3.1.10. Let K : C x C — R be a bifunction, Q,S : C — C(B*) be set-values
mappings, M : B* x B* — B* and H : B* x C'x C = R,g9 : B — B* be single-
valued mappings and ¥ : B x B — R be a bifunction and let 7 € B*. Suppose the
following conditions are satisfied:

(i) H(M(u,v) — 7%,2,2) > 0, Yz € C, (u,v) € Q(z) x S(x);

(ii) H is B*-monotone with respect to M,S and Q; and for each y € C,
((u,v), z) = H(M(u,v) — 7*,2,y) is upper semicontinuous;

(iii) for each z € C and (u,v) € Q(z) x S(z),y = H(M(u,v) — 7°,2,¥) is
convez;

(iv) K is ¢—strongly monotone such that K (z,2) > 0 for each v € C;

(v) for each y € C,x — K(z,y) is upper semicontinuous and for each
x e Cy— K(x,y) is convex,

(vi) g is a A—strongly positive bounded linear operator, T and A are both
upper semicontinuous;

(vii) @ is continuous, skew symmelric and convex in first argument;
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viii) for each x € B, there exists y € C'N SATe cuch that
L/ G,F,N

p(K(z,y) + max  H(M(u,v) —w’, z,y) + ¥y, z) — (2, 2))
(u,w)eQ(2)xS(2)

+g(y — 2),z — ) <0, Vze C'\(CN Sgwlgﬁr)
Then for each x € I3, there exists a unique point z € Sg:g"}f, such that

K(2,y) + max H(M(u,v) — 1, 2,y) +¥(y, 2
PG+  H(M(u,) = 7, 2,9) +(0,2)

—(,2)) + (g(y — 2), 2 — 2), Vy € Sgis (3.1.34)
that is z € & 3};;3 is a unique solution of the ANGMEP (3.1.33).
Proof. For each fixed & € B, define f : SE;TK, X Sg!’g"% — R by

fiz @) =p (K(z, y) + max H(M(u,v) — 7%, 2,9) +¥(y, 2) — ¥(z, z))
(u,0)eQ(2)xS(2)

+{g(y — 2),z —x) > 0,Vz,y € 33,’?,’?3-

By using same argument as in proof of Theorem 3.1.7 , we can show that for each
2 € B, there exists a point % € Sé:g:}fr such that f(2,y) >0, for all y € Sg}"ﬂ'ﬁ,. By
definition of f, we obtain that for each 2 € B, there exists 2 € Sgl’;ﬁ such that

o | K(Z,y) + max H(M(u,v)—752,9)+¢¥(y, 2) — (2,2, )
p (K e | HOMG0) = 7, 20) 4 90,2) = 9(5.2)

+ {9y —2),2-2) > 0,vy € Sgik.
that is 2 € Sgi:;f, is a unique solution of the ANGMEP (3.1.33). O

By using Lemma 3.1.11, we can construct the following iterative algorithm

for computing approximate solutions of the BNGMEP (3.1.1) — (3.1.2)
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Algorithm 3.1.12. For given g € B by Lemma 3.1.11, there exists x1 € ‘Sré,‘;.’ﬁ’

such that

K(xy,y) + max H(M(uy,v) — w2y,
p(K(21,y) N s (M (u1, v1) 1Y)

+¥(y,21) — P21, 21)) + {9y — 1), 71 — o) 20, Yy € Sgr%
By induction, we can define the iterative sequences {x,} C Sé_‘}r,:,‘}f, such that

P(I(($n+1, y) = max H(l‘{[(un+l 3 vn«H) - UJ*) Tn+1y y)

(UnJri ,l’n+1)€Q(mn+l)Xs(ffnJr{)

‘Hub(y: -Tn+1) i w(ﬂ:n-i-l; $n+l)) -+ (g('y - $11+1):$11+1 A ) $n> Z 0: (3135)

forally e S'é;,ﬁ;j’:,.

Theorem 3.1.13. Let C be a closed convex subset of a Banach space B, D be
a compact subset of B with C N D # 0 and p > 0 be a positive number. Let
G, K :C xC — R be a bifunction. Let H,F : B* x C x C — RQ,ST,A:C—
C(B*),%,¢: Bx B— R and g: B — B* satisfy the following conditions:

(i) H is (w*,B)—strongly monotone with respect to M,Q and S; and F is
(w*, o) —strongly monotone with respect to N, A and T and for all x € C,(u,v) €
Q(z) x S(z) and (u,v) € A(z) x T(z), H(M(,0),2,2) 2 0 and F(N(v,v),z,2) 2
0;

(i) for each y € C, ((u,v),z) = H(M(u,v),z,y) and
((u,v),2) — F(N(u,v),2,y) is upper semicontinuous and for each x € C, (a,v) €
Q(2)xS(z) and (u,v) € A(z)xT(x),y > H(M(a,7),z,y) andy — F(N(u, v), 2, Y)
are both convex and lower-semicontinuous;

(iii) G is a—strongly monotone, K is —strongly monotone such that K (z,2) =
0 and G(z,2) > 0 for each x € C}

(iv) for eachy € C,x +— G(z,y) and K(z,y) are upper semicontinuous and
for each x € C,y — G(z,y) and K(z,y) are both convez;

(v) Q,S, A and T are upper semicontinuous;
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(vi) % and @ are both skew symmetric, continuous and convex in first ar-
gument;
(vil) g is a A\—strongly positive and bounded linear operator.

(viii) for each x € B, there exists y € C'N D such that

p(G(z,y) + max F(N(u,v) —w*, z,y) + ¢y, 2) — v(z,2))
(u,)eT(z)x A(z)

+gly — 2),z—2) <0, VoGl D.
and for each x € B, there exists y € C'N Sg:;’j’, such that

oK (zy) + max  H(M(u,v) - w',2,9) + 9 2) = 9z 2)
(u,v)eQ(z)x5(2)

Holy —2),z —2) <0, e e EHAON SN

IF max{%, %} < 1, then the iterative sequence {x,} defined by the Algorithm
3.1.9 converges strongly to a solutions # € C'N D of the NGMEP (3.1.2) and the
solution set Sg:g:j‘{’, of the NGMEP (3.1.2) is a nonempty compact convez in C'N D.
Also the iterative sequence {x,} defined by the Algorithm 3.1.12 converges strongly
to a solution ¥ € Sg;};’;ﬁ, of the BNGMEP (3.1.1) — (3.1.2) and the solution set of

the BNGMEP (3.1.1) — (3.1.2) is also nonempty compact convex in C'N Sg:;,’ﬁr.

Proof. 1t is easy to check that G, I, N, T, A and ¢ satisfy all conditions of Theorem
3.1.10. By Theorem 3.1.10, the iterative sequence {z,} defined by the Algorithm
3.1.9 converges strongly to a solutions & € C'N D of the NGMEP (3.1.2) and the
solution set Sé::}r,:,’N of the NGMEP (3.1.2) is a nonempty compact convex in C'ND.
By using similar argument as in the proof of Theorem 3.1.10, it is easy to show that
the iterative sequence {z,} defined by the Algorithm 3.1.12 converges strongly to
a solution 7 € SS:;:,‘N of the BNGMEP (3.1.1) — (3.1.2) and the solution set of the

BNGMEP (3.1.1) — (3.1.2) is also nonempty compact convex in C'N Ségﬁ, O
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3.2 Existence and Iterative Approximation Methods for
Generalized Mixed Vector Equilibrium Problems with

Relaxed Monotone Mappings

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively.
Let X be a nonempty closed convex subset of . Let ¢ : X x X — R = (—o0, +00)

be a bifunction. The equilibrium problem EP(yp) is to find x € X such that

p(z,y) = 0, Vy € X. (3.2.1)

In 2002, Moudafi [13] introduced an iterative scheme of finding the solution
of nonexpansive mappings and proved a strong convergence theorem. Recently,
Huang, et al. [14] introduced the approximate method for solving the equilibrium

problem and proved the strong convergence theorem.

Let ¢ : X x X — R be a bifunction and T, A : X — H nonlinear mappings.
In 2010, Wang, Marino and Wang [62] introduced the following generalized mixed

equilibrium problem with a relaxed monotone mapping:
Find z € C such that o(z, y)+{Tz,n(y, 2))+{Az,y—2z) > 0, Yy e C. (3.2.2)

Problem (3.2.2) is very general setting and it includes as special cases of Nash equi-
librium problems, complementarity problems, fixed point problems, optimization
problems and variational inequalities (see, for example [14, 17] and the references
therein). Moreover, Wang, Marino and Wang [62] studied the existence of solu-
tions for the proposed problem and introduced a new iterative scheme for finding a
common element of the set of solutions of a generalized equilibrium problem with
a relaxed monotone mapping and the set of common fixed points of a countable

family of nonexpansive mappings in a Hilbert space.

Let Y be a Hausdorff topological vector space and C' be a closed, convex

and pointed cone of Y with intC' # 0. Let ¢ : X x X — Y be a vector-valued
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bifunction. The strong vector equilibrium problem (for short, SVEP(i)) is to find

z € X such that
©(z,y) € C, Vye X (3.2.3)

and the weak vector equilibrium problem (for short, WVEP(y)) is to find z € X

such that

w(z,y) ¢ -intC, Yy € X. (3.2.4)

In this work, we consider the following generalized mixed vector equilibrium
problem with a relaxed monotone mapping (for short, GVEPR(g, T)): find z € X

such that
w(z,y) +e(Tz,n(y, 2)) + e{Az,y — 2z) € C, Yy € X, (3.2.5)

where e € intC, p: X x X = Y, and T, A : X — H are the mappings. The set
of all solutions of the generalized mixed vector equilibrium problem with a relaxed

monotone mapping is denoted by SGVEPR(y,T'), that is
SGVEPR(p,T) = {z € X : p(z,y) +e(Tz,n(y,2)) +e(Az,y—2) € C, Vy € X}
If A =0, we denote the set ASGVEPR(¢,T") by

ASGVEPR(p,T) = {z € X : p(z,y) + e(Tz,n(y, 2)) € C, Yy € X}.

Some special cases of the problem (3.2.5) are as follows:

(1) If Y = R,C' = R* and e = 1, then GVEPR(p,T) (3.2.5) reduces to the
generalized mixed equilibrium problem with a relaxed monotone mapping

which introduced by Wang, Marino and Wang [62].

(2) If T =0 and A = 0, then GVEPR(¢, T) (3.2.5) reduces to the classic vector

equilibrium problem (3.2.3).
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We consider the auxiliary problem of GVEPR(p, T') and prove the existence
and uniqueness of the solutions of auxiliary problem of GVEPR(¢, T") under some
proper conditions. By using the result for the auxiliary problem, we introduce a
new iterative scheme for finding a common element of the set of solutions of a
generalized mixed vector equilibrium problem with a relaxed monotone mapping
and the set of common fixed points of a countable family of nonexpansive mappings
and then obtain a strong convergence theorem. The results presented in this paper

improve and generalize some known results of Wang, Marino and Wang [62].

3.2.1 The existence of solutions for the generalized mixed vector equi-

librium problem with a relaxed monotone mapping

For solving the generalized mixed vector equilibrium problem with a relaxed mono-
tone mapping, we give the following assumptions. Let // be a real Hilbert space
with inner product (-,-) and norm || - ||, repspectively. Assume that X C H is
nonempty, compact, convex subset and Y is real Hausdorff topological vector space,
C C Y is a closed, convex and pointed cone. Let : X x X = ¥,T : X — H be

two mappings. For any » € H, define a mapping ®, : X x X = Y as follows:

€
24(z,9) = p(2,9) + (T2 0 2)) + Sy — 2,2~ 2),

where 7 is a positive number in R and e € C'\ {0}. Let ®,,¢ and T satisty the

following conditions:

(Ay) for all z € X, ¢(z,2) =0,

(A2) ¢ is monotone, that is, ¢(z,y) + ¢(y,z) € —C for all z,y € X;
(A3) @(,y) is C—continuous for all y € X;

(Ay4) @(z,-) is C—convex, that is,

to(z, y1)+ 1A —t)e(2,12) € @z, ty1 + (1 =) +C, Vz,y1,1. € X,Vt € [0,1];
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(A45) (T'(:),n(:,-)) is continuous and

y > (T'u,n(y, v)) is convex;

(Ag) ®.(z,-) is proper C'—quasiconvex for all z € X and z € H.

Remark 3.2.1. Let Y = R,C = R* and e = 1. For any y € X, if ¢(-,y) is
upper semicontinuous and z > {T'z,n(y,z)) is continuous, then ®.(-,y) is lower
C'—continuous. In fact, since (-, ) is upper semicontinuous and z — (I'z,1(y, 2))
is continuous, for any € > 0, there exists a 6 > 0 such that, for all z € {z €

X, ||z — zo|| < 6}, we have
(I)a:(za y) < (1)15(201 y) A€

where zj is a point in X. This means ®,(-,y) is lower C'—continuous.

Remark 3.2.2. Let Y = R,C = R* and e = 1. Assume that ¢(z,-) is a convex

mapping for all z € X. Then for any y;,y2 € X and t € [0, 1], we have

P, (2, tyr + (1 = 1)y
= @z ty + (1= ye) + (T 0ty + (1= ya, 2)) + %(ffyl +(L— )y — 2,2 — 7)
< tp(z,m) + (1= D9(z,92) + ULz, 2)) + (1= 1)(T2 (Y2, 2))

—|—?—t‘(y1 —z,z—x)+ ?(yz — 2,2 — T)
= Uz ) + (P2, )+ s — 2% = )

(1= )l ) + (T2, 2)) + 5 = 202 = 2)

= t0.(z, 1) + (1 — )Pu(2,Y2)

IA

max{®.(z,11), Pz(2,92) },

which implies that ®,(z,-) is proper C'—quasiconvex.

Now we are the position to state and prove the existence of solutions for the gen-

eralized mixed vector equilibrium problem with a relaxed monotone mapping.
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Theorem 3.2.3. Let X be a nonempty, compact, convex subset of a real Hilbert
space H. Let C be a closed, convex and pointed cone of a Hausdorff topological
vector space Y. Let T : X — H be a relaved 1 — a—monotone mapping. Let
w: X x X =Y be avector-valued bifunction. Suppose that all the conditions (A1)

- (Ag) are satisfied. Let r > 0 and define a mapping Z, : H — X as follows:
Zu(x) = {z € X : oz, 9) +e{T2,0(y, 2) + ~(y—z 2-2) € C, Wy € X). (3:26)

for all x € H. Assume that

(i) n(z,y) +n(y,2) =0, for all v,y € X;

(ii) for any x,y € X,a(z —y) +aly—z) = 0.
Then, the following holds:

(1) Z.(2) £ 0 forall z € X;
(2) Z,. is single-value;
(8) Z, is a firmly nonexpansive mapping, that is, for all z,y € X

|12z — Z,-yH? <{Zax— Zy, % — Y);

(1) F(Z,) = ASGVEPR(y,T);

(5) ASGVEPR(p,T) is closed and convez.

Proof. (1) In Lemma 2.2.32, let f(z,y) = ®.(z,y) and ¢)(z) = 0 for all z,y € X
and 2 € H. Then it is easy to check that [ and 1 satisfy all the conditions of

Lemma 2.2.32. Indeed,

(i) Show that f(z,z) € C, for all z € X;
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Since 5(z,y) +n(y,x) = 0, for all z,y € X, we have 5(z,z) = 0 for all z € X.
From A, that is for all z € X, ¢(z,2) = 6, we can get that

fz,2)=0€C, Vo e X.

(ii) Show that 1 is upper C' — continuous on X.
Since (z) = 6, we have ¥ is upper C' — conlinuous on X.
(iii) Show that f(:,y) is lower C' — continuous for all y € X.

It is sufficient to show that if ¢ is continuous, then eg is C'—continuous, where

e € C'\{0}.
Let V be a neighborhood of 0 in ¥. We can choose € > 0 such that
eg V.
Since [ is continuous, there is a neighborhood Us of 2 such that
lg(z) — g(x0)| < &, V2 € Us.
For all 2 € Uy,

9(x) — glzo) <e.
This implies that
e — (9(2) — glz0)) > 0.
Therefore
ec — (eg(z) — eg(wo)) € C:
Hence

—(eg(z) — eg(xo)) € —ee + C,

which gives us that

eg(z) —eg(zo) € V - C.
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Hence eg is C'—continuous.
This can show that f(-,y) is lower C'—continuous for all y € X.
(iv) Show that f(z,-) + #(:) is proper C'—quasiconvex for all z € X.

It is sufficient to show that if g is convex, then eg is proper C'—quasiconvex,

where ¢ € C'\ {0}.
Let x,y € X and t € [0, 1]. Since g is convex, we have
gtz + (1 =)y) < tg(z) + (1 - t)g(y) < maxg(z),g(y).
This implies that
gtz + (1 — )y) < g(a) or g(ta + (L — 1)g(y)) < 9(y).
Hence
eg(v) — e(g(te + (1 — t)y)) € C or eg(y) — e(g(tz + (1 - 1)y)) € C.

Therefore eq is proper C'—quasiconvex..

We can complete the proof of conclusion.
Thus, there exists a point z € X such that
f(zy) +9(2) —4(y) € C, Vy€ X,z e H
which gives that, for any z € H,
o(z,y) +e(Tz,n(y, 2) + ?_(y — 2,3 — 8y 0, Yy € X.
Therefor we conclude that Z,.(z) # 0 for all x € H.

(2) For x € H and r > 0, let 21, 20 € Z.(2). Then

e r e
(P(Zl,y) + e(Tzh ”(ya zl)) + _(y — 21,21 — I) € C’r: Vy € X (327)
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and

(20, ) + e(Tz2,n(y, 22)) + ?E(y — 29,29 —x) € C, Yy e X. (3.2.8)
Letting y = z in (3.2.7) and y = z in (3.2.8), adding (3.2.7) and (3.2.8), we have

(22, 21) + ©(21, 22) + e{Tzy — Tz, (22, 1)) + ?(zl — 29,29 — 271) € C.
By the monotonicity of ¢, we have

e{Tz — Tz, n(22,21)) + ?E‘(zl — 29,29 — 71) € C.
Thus
,,E,<21 — 23,2 — 1) — e{T'z = T2, 1)(22, 1)) € C. (3.2.9)
Since T is relaxed 77 — a—monotone, we have

(Tzo — Tz1,0(22, 1)) — (22 — 21) > 0,
this implies that
1{Tzy — Tz, (22, 71)) — ra(ze — z1) 2 0.

Then
er{Tz, — Tz1,1(22,21)) — era(z — z) € C.

Then we have that

8(21 — 29,29 — Z]) = 8?"(1’(22 = Z[) e C. (3210)
In (3.2.9) exchanging the position of z; and 23, we get

e

;(zz — 21,721 — 7o) —eaz — z) € C,
that is,

e{ze — 21,21 — z2) — era(z — z) € C. (3.2.11)
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Now, adding the inequalities (3.2.10) and (3.2.11),

e{z) — 29,20 — 21) — era(zz — z1) + e{z — 21,21 — 22) — era(z — z) € C.
By using (ii), we have

2e{zp — 21,21 — 22) € C. (3.2.12)
If (zp — 21,2 — z) <0, then

—2(zp — 21,21 — 22) > 0.

This implies that

—2e(zp — 21,5 — 2z2) € C. (3.2.13)
From (3.2.12) and (3.2.13), we have z; = z; which is a contradiction. Thus

(20 — 21,21 — 22) 2 0,

50

—|lz1 — z||* = (21 — 22,2 — 21) = 0.
Hence z; = z. Therefore Z, is single-value.
(3) For any 21,22 € H, let 2y = Z.(21) and z; = Z,(22). Then
o2, ) + T n ) + Sy —m —w) €C, WEX  (3214)
and
0(22,) + (T2, n(y, 22)) + §<y — 29,20 — @) € C, VyeX. (3.2.15)
Letting y = 2 in (3.2.14) and y = z; in (3.2.15), adding (3.2.14) and (3.2.15), we

have

©(z1, 22) + @(22, 21) + e{Tz1,1(22, 21)) + (T2, 7(21, 22))

+§(z2 a2 — (21— 2w)) € C. (3.2.16)
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Since ¢ is monotone and C' is closed convex cone, we get
1
(T'zy — Tza,n(22,21)) + ;(2’2 — 2,75 — 2 — X+ 2) =0,

that is,

1 ,
;(ZQ — 21,21 — 23— 21 + fL'g) 2 <T22 - 731,‘1](22, Zl)> 2 CL‘(ZQ = Z]). (3217)
In (3.2.17) exchanging the position of z; and z,, we get

1 .

;(zl — 2y, 22 — 21 — Ta + 1) = oz — ). (3.2.18)
Adding the inequalities (3.2.17) and (3.2.18), we have

2(z1 — 2,7 — 21 — T+ 21) > r(a(z1 — 22) + alz — 2)). (3.2.19)
It follows from (ii) that

(Zl N Ry — & — To T iL']) 2 0.
This implies that
V2,21 — Zy23||2 < (Zo21 — Zitp, %1 = xg).

This shows that Z, is firmly nonexpansive.

(4) We claim that F'(Z,) = ASGVEPR(p, T). Indeed, we have the following:

ze F(Z,) & Pt
& w(z,y) +e(Tz,n(y,x)) + ?(y —x,5—2) € C, Vye X
& p(z,y) +e(Tz,n(y,2)) € C, Yy e X
& € ASGVEPR(p, 7).

(5) Since every firmly nonexpansive mapping is nonexpansive, we sce that
Z, is nonexpansive. Since the set of fixed point of every nonexpansive mapping
is closed and convex, we have that ASGVEPR(p,T) is closed and convex. This

completes the proof.
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3.2.2 Convergence Analysis

In this section, we prove a strong convergence theorem which is one of our main

results.

Theorem 3.2.4. Let X be a nonempty, compact, convex subset of a real Hilbert
space H. Let C' be a closed, convex cone of a real Hausdorff topological vector space
Y ande € C\{0}. Let p: X x X = Y and T : X — H be a relaved 1 —
a—monotone mapping which satisfy (A1) - (As). Let A: X — H be a A\—inverse-
strongly monotone mapping, and let {S,}°2, be a countable family of nonexpansive

mappings from X onto itself such that
F = N2, Fiz (8,) N SGVEPR(p,T) # 0.

Assume that the conditions (i)-(ii) of Theorem 3.2.3 are satisfied. Put ap = 1
and assume that {a,}22, C (0,1) is a strictly decreasing sequence. Assume that
{Ba}2, C (c,d) with some ¢,d € (0,1) and {A\u}52; C [a,b] with some a,b €

(0,2X). Then, for any 2, € X, the sequence {an} generated by

‘P(un: y) b €<Tum ‘??('y-, 'un)) Az B(ACE,“ . e u‘n) 51 i(y — Up, Uy — :En) € Cf: Vy & A,

UYn = O Ty b Z(al’-—i X al’)ﬁnsimn == (]- N an)(l y 2 6n)“m

i=1
Co={z€ X :|ya=2|l £ |lza—2ll}; (3.2.20)
D, = NG5,

Tpp1 = PDn:l:h n Z 1:

converges strongly to «* € Ppay. In particular, if X contains the origin 0 and
taking 21 = 0, then the sequence {x,} generated by (3.2.20) converges strongly to

the minimum norm element in F, that is v* = Pp0.

Proof. We devide the proof into several steps.
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Step 1. I'is closed and convex, the sequence {z,} generated by (3.2.20) is well

defined, and F' C D,, for alln > 1.

First, we prove that F is closed and convex. It suffices to prove that
SGVEPR(i, T) is closed and convex. Indeed, it is easy to prove the conclusion

by the following fact:

Vp € SGVEPR(p,T) & 9(p,y) +e(pn(y,p)) + Ai(y —p,AaAp)eC, Vye X

n

e
& e, y)+e(Tp,ny,p) + y(y —p,p— (p— MAp)) € C,

& p=2Zy,({ — MAp.

This implies that

SGVEPR(p, T) = Fix[Zx, (] — AuA)).

Since Zy,(I — \,A) is a nonexpansive mapping for A, < 2\ and the set of fixed
points of a nonexpansive mapping is closed and convex, we have SGVEPR(p, T) is

closed and convex.

Next, we prove that the sequence {z,,} generated by (3.2.20) is well defined

and F C D, for all n > 1. By Definition of C,, for all z € X, the inequality
”yn 3 “” < ”'Tu i, Z”
is equivalent to
(yn — Ty, yn + 'Tn) - 2<yn - -Tu»z) S O

Indeed, We consider

1y = 2]l < [|2n — 2]
& lyn = 2l* < o — 2|2
& lyn — 3”2 — |l — 2”2 <0

& (Yn— 2,9 —2) — (B0 — 2,2, —2) <0
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(Yo — 2,Un — 2) + {2 — Tp,Un — 2) + Un — 2,Zn — 2) — (Tn — 2, Tn —-2)<0
(Yn — 2,Un — 2) + {2 — Tny¥n — 2) + Wn — 2,20 — 2) + {2 — Tp, T — z) <0
(Yn—2+2— Ty Yn—2) + Yn — 2+ 2 —Tn,2n —2) L0

(U = TnsYn — 2) + (Yo — Tn, T — 2) <0

(Yn — Ty Yn + 2 —2—2) €0

(yn — TnyYn + Jf") - (yn — In, 2z) S 0

¢ ¢ ¢ ¢ ¢ T2

(yn — TnyYn + :En) > 2<yn — Tn, Z) S 0

It is easy to see that C, is closed and convex for all n € N. That is For each n € N,

we let 21,2, € C, and t € (0,1). Then we have

lyn — 2l < ll2n — 2|

and
v — z2ll < |l — 22-
That is
(Y — T, Un + Tn) — 2(Yn — Tny21) <0
and

(yn — Tny Un 4- -’En) - Q(yn — Ty, 22) S 0.
Since 0 < t < 1, we have

t(yn — TnyUn + :Bn) - 2t<yn — Ty, zl) S 0

and

(]‘ - t)i<y71 - ﬂ’-n!yn + :Un) - 2(1 S t)(yn T IL',” Zg) S U

Consider

(yu — TnyYn + mn) o 2(yn — &p, tzl + (1 - f)ZQ)

= (yn — TnyYn 4= :En) - 2(yn - ﬂ),,,iZl) == Z(yn — Lp, (1 - !)32)



= (yn — Tn,Yn + mn) - 2t(yn - "]Jn,Zl} - 2(1 ol t_)(yn — Tn, Z2>

= A4+ 0= 0)){Yyn — 2n,Yn +20)) — 2t{Yn — Tny 21) — 2(L — )(Yn

0.

I\

It is equivalent to
yn —tz1 — (1 = )zl < |2n — tz1 — (1 — t)22||.
Hence tz; + (1 — )22 € C,,. Therefore C), is convex for all n € N.

Hence D,, is closed and convex for all n € N. Next, we will show that

| yn — ?|l = ||len(zn — +Z a1 10 Ba(Sitn — Y+ (1N an)(1 — Ba) (wn —
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— Tn, Zg)

Pl

where ¥, = a2, + Yo (@im1 — ;) BaSizn + (1 — @) (1 — Bty First, we can easy

to see that

Un — P = Qply Iy Z(at 15 ﬁr!S Ty = (1 - an)(l - ﬁri)'un — i

In another considering, we can get that

n

C\'n(ﬂ;n - P) ot Z(ai—l = a'i)ﬁn(si:rn - P) 1N (1 — an)(l 7 ﬂn)('un —-P

i=1

= Qpdy — Oup == (1 — ﬂ’,,)(l L ,Bn)'un N (1 = 4 a'n)(l = ﬁn)p
+(1 - al)ﬁn(Slmn = P) = (0’1 - a’2)ﬁn(52xn - P) 4+
—|—(C(”_1 - an)}Bn(Sna:n - P)

= T, — P+ (1 - an)( ﬁn)'“n —pt+a,p+ JBH'JD = a',,ﬁ,lp

+(1 - Q’l),BnSIH;n + (051 - 0'2)/3115233?1 i o i (Oinfl - an),BnSn:vu

(1= an)Bu(p) — (01— 2)Bap) = - — (-1 — @)Ba(p)

)

= T, + (1 - an)(]- - ﬁn)“n —p+ ﬁnp - a'mBnp"i‘ Z(ai=l = O’i)ﬁ_nsimn

i=1

_6np + 0’1[3r1(})) = 0’1/3a:(?3) -+ QZ,BH (P) - Q’Zﬁn (P) + e + an—lﬁn(p)

#a'n—lﬁn (P) + anﬁnp
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anl, + (1 = Q’n)(l = 6n)un + Z(ai=1 = a’i),BnSimn —p
i=1

Yn — P-

This completes the proof.

For any p € I, since u, = Zy (2, — A\,Ax,) and I — A, A is nonexpansive, we have

IA

IN

IA

A

ln — 2l
”a'n(mn —/ p) -+ Z(ai—l Ti a'l')ﬁn(simn - P) =4 (}- ~ an)(]- = /Bn)('un = p)”
i=1

G‘nHﬂ;n ﬁp“ v Z(ai—l - a'i)ﬁnllsiﬂ;n - P” + (1 = G‘”)(l N ,Bn)”'un - P||

anln — pll + Y (@it — a:)Ballzn — |

+(1 - ay)(1 JZ)HZM (@0 — AadAa) — 2, (p — M AD)
ol — pll + (1 = aw)Bullzn — 2

+(1 — a)(1 = Ba)ll(zn — AnAzy) — (p = X Ap)||

tnllen — pll + (1 — 0w)Bullzn — pll + (1 — @)1 = Bu) |2 — 2

”xn —7l|-

This implies that I C C, for all n € N. Hence F' C N_,C};. That is

J T P for all n € N.

Since D,, is nonempty closed convex, we get that the sequence {z,} is well defined.

This completes the proof of Step 1.

Step 2. ||2ns1 — 24| = 0 as n — oo and there is 2* € X such that lim, ;o0 |2, —

%t || =0

It easy to see that D,y C D, for all n € N from the construction of D,.

Hence

Tpi2 = PD,,+1$1 € D,H_] cC D,.
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Since z,.1 = Pp,r1, we have
“wn-kl - 1'1” S ||$n+2 - .’131”,

for all n > 1. This implies that {||a:, — 2;||} is increasing. Note that X is bounded,

we get that {||a, — 21} is bounded. This shows that lim, e[|, — #1]| exists.

Since 441 = Pp, %1 and Ty = Pp, %1 € Dy C Dy, for all m > n, we have

(:Bn—%-l — 21, Tme1 — $u+1> =AY (3221)

It follows from (3.2.21) that

| Tme1 — $11+1”2 = || g8 = e 3»‘1)“2
= |@msr — 21]? + |2ns1 — 21 ]* = 2(@mi1 — 21y Tngr — 1)
= [lzm g Ellf o gk — 2R
\-2(Fnd B, Tmpr + Pagi)t Fudar] 21

= Ilmerl - -'51”2 - ||$n+l - -Tluz a4y 2(37114—1 — 21, Tm41 — $n+1)

IA

st = 1ll” = s = (3.2.22)

By taking m = n + 1 in (3.2.22), we have

[ Y | | [P s F A |2 (3.2.23)
Since the limits of ||z, — a;|| exists, we get that

|Znse — Znta|| = O, as n — 0o. (3.2.24)
This implies that

lim [|z,41 — 2] =0.

n—oo
Moreover, from (3.2.22) we also have

lim ||2ms1 — Tutl =0 (3.2.25)

mn—oo
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This shows that the sequence {z,} is a Cauchy sequence. Hence there is 2* € X
such that

z, > 2" € X, as n — co.

Step 3. Show that ||z, — u,|| = 0 as n = co.

Since #,41 € C, and lim, ;o |2y — Zpi1|| = 0, we have
lyn — Zngill € |20 — Tngal| = 0 as n — 00,
and hence
9n = Zall € llun — Tngall + |20 — Tngall = 0 as — 00.

Note that u, can be rewritten as u, = Zx, (x, — Ay Az,) for alln > 1. Taking p € F.
Since p = Zy, (p — A\uAp), A is A—inverse-strongly monotone, and 0 < A\, < 2\, we

know that, for all n € N,

letn = PI2 = 1|25, (20 — AnAzy) = Za, (0 — X AD)|?
< |l#w — \Az, —p+ A Ap|?
= @ —p) = Mu(Az, — Ap)|
= ||z — PI® = 2Nl — b, Awn — Ap) + A2 || Az, — Ap||?
< Jl2n — Pl = 22| Az — Ap|® + A2 || Az, — Ap|?

= [lzn — PIE+ Aa(An — 20) || A, — Ap][?

IA

ll = plI”. (3.2.26)
Using (3.2.20) and (3.2.26), we have

Hyn '—P”2

- ”an(mn = P) + Z(ai—l - a‘i)ﬁn(si-l‘n - P) + (1 - a'n)(]- - /Bn)('un - p)||2
i=1

S ar:[lmn - p“2 1 Z(ai—l - a’i)[jn”Simn - pl|2 it (1 - a'n)(l - ﬂrz)“un - P“2
i=1
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S a'n“ﬂ;n = ‘P||2 + Z(ai~1 - a’i)ﬁn”mn - ‘P||2
i=1
+(1 - an)(l - ﬁn)(”‘Tn - 'p||2 + ’\n(’\ﬂ - 2)\)”/133?1 - Ap||2)

= ”:En _P||2 + (1 - an)(l - ﬁn)’\n(’\n - 2}‘)”-Aln - Ap“za

and we will show that
2w = PlI* = llyn =PI < N2 — all(lzn — pll + llyn — 2.

For each z,y € X, we know that

lell = iyl < llz =

Then
2]l = Iyl < == yll, Y2,y € X.
This implies that
(Ul = Nyl + gD < e =yl el + i), Va,y € X.
Hence
ll” = llwll* < lle = yli(lzll + lyh), Va,y € X.

Consider © = z,, — p and y = y,, — p in the proposed inequality, we can completes

the proof. Hence

(1= a,)(1 — d)a(2) — b)|| Az, — Ap]|?

IA

(1 —an)(1 = B)Aa(2X = N[ Az, — Ap))?

IA

2w — 2l = llym — pII?

s ”wn - yﬂ”(”fun - PH + ||yr1 *‘P”)-
Note that {z,} and {y,} are bounded, a, — 0 and z,, — y, converges to 0, we get
that

lim ||Az, — Ap|| — 0. (3.2.27)

n—oo
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Using Theorem 3.2.3, we have

l|an — sz =

IA

This implies that

||ZA,. (ﬂ;n - )\nA-’En) - Z)\n (p - A,]AP)HQ

(:En - f\nAmn - (P - ’\nAp)a Uy — P)
1

1
_I|$n = ArtA:I:n - (]J - ’\HAP) o (uﬂ - p)”2)

“-Tn - /\nAﬂ:n - (P == ’\nAp)”2 + H‘“n = p”2

=l = pIP + X204z, = AplP + ey — I
— 2w =ty — An(Az, — Ap)||?)
Sl = Pl + N2l Az — AplPE = pI* = o —
+20 (@ — Uy, Az, — Ap) — N2|| Az, — Ap||?).

”'un T P“2 < ||:l"n - pHZ T ||1L‘n il unH2 + 2’\11(3"71 — Up, A‘Tn i AP)

From above inequality, we have

”yn ﬁp”2

= ”an (wn 2

IA

VAN

) 4 Z(aihl < a'i)ﬁn(si:rn > P) + (]- = an)(l 7 ﬁn)('un - p)“2

an“mn = P||2 & Z(ai—l —0;) By || Si = P”2 Flgh)(1— ﬁn)”'un - p||2
==k

an”:vu - P”2 + (I - an)ﬂn”mn —PHZ + (1 o an)(l - ﬁn)

X(Ill‘n - P||2 - ”mn - 'un”? + 2/\n<ﬂ;n - ’UH,JL'L‘" - AP))

IA

[|2n *p”z — {1 — )1 — Bl — 'UHHE

+2(1 = an)(]- = ﬁn)’\n (a:n — Up, Aﬂ“n - A-p)-n

and hence

(1 - d)(l - &rr)”l‘n - un[|2

S (1 - ,Bn)(l - a‘n)“:gn - 'u'n||2
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A

o= ”mn *])”2 - ”yn - p”2
+2(1 = Cl‘n)(]_ = ,Bn)/\n (fvn - umAan - AP)
< 2w = wall(len — 2l + Iy — 2Il)
+‘2(]— . an)(l i ﬁn)}\n“fﬂn — Uy H”A:Ln * Ap”-
From (3.2.27) and lim,_, ||2n — ¥n|| = 0, we have
1111_1}1;0 e~ arih="0.

Step 4. Show that lim, . ||z, — S;z,|| =0, for all i =0,1,....

It follows from definition of scheme (3.2.20) that
n

Un = Z(aifl d ai)ﬁn(ﬂ;n - Sifcn) W\ (1 3 G”)}BHIEH = Qp¥y + (1 4 aﬂ)(l L | 5")“"’
i=1

that is,

Z(ﬂiﬂ — ;) (@0 — Si®n)
= :::— Yo — Tn + a2y + (1 — ) Bun
(1 — an)(1 = By)un
= T = Yo+ (1= an)(By = Dan + (1 — an)(1 = fn)un

= X — Yt (1 - O—'n)(l ~~ ﬁn)(’un - $n)-

Hence, for any p € F, one has

n

Z(aifl - a'i)ﬁrl<$n - Simm Ly — P) - (1 - “n)(l - 6?:)(Un — T, Ty — P)

i=1
+{@n — Yn, T — D). (3.2.28)

Since each S; is nonexpansive and by (2.3.2) we get that

1Sin — 2all* < 2(x, — Sitn, 20 — p). (3.2.29)
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Hence, combining this inequality with (3.2.28), we have

1 n

5 Z(aiﬁl '—az‘)ﬁn IISi$r1 —Tn ”2 < (1 *an)(l _ﬁn)<'un —Tny Ty —P) & (-Tn —UYn: Ty —p):
i=1

that is

”Simn - 3;11“2

2(1 — an)(L = Bn) Uy — Ty Ty —. ———2
(qtim1 — @) B (ttn = Bny & = p) + (i1 — ) Bn

g 2(1 — a,))(1 =584) I
- (0t 1 770D

(f""n — YnyTn — P)

2
n :Ei"!“”:vn N\ p” + m”iﬂn - yn““:L-n - P“‘

Since ||un, — @,]| = 0 and ||z, — yal| — 0, we have
lim ||Siz, — n|| = 04 Wi=A, 2N
n—oo

Step 5. We show that z,, — 2 = Ppa;.

First, we show that 2* € N2, Fix(S;). Since

lim 2, =2* and lim ||S;z, — 2,|| =0,
TG0 n—oco

we have

2 e Fix(S;) foreath ¢ D12 47\

Hence 2* € N2, Fix(S;). Next, we show that 2* € SGVEPR(p,T). Note that

u, = Zy,(xn — A\yAz,), one obtains

e

(y*'um 'u'n—mrz) € C, Vy e X,
An

(19('“11: y)‘l—@(T'Um T)(ya 'un)>+6<Aﬂ:m y_'urt>+

which implies that

0 € o(y, un) —{e(Tun, n(y, un))+e(f1wn,y—u”)Jr/\i(y—u,,, Uy — 2, }+C,Vy € X.

n

(3.2.30)

Put v, = ty + (1 — t)a*, for all ¢ € (0,1) and y € X. Then, we have v; € X. So,
from (3.2.30), we have

Uy — Ty
An

)

e(vy — up, Avy) € ey — Uy, Avy) — e(vy — uy, Axy) — e{vy — uy,



+o(vy, wy) + (T, N(un, vr)) + C.

= e{v — Up, Avy — Attn) + (v — Uy, Auy,

Uy =Ty
An

+e(Tup, n(un, v)) + C.

*5(”1‘ — Up, ) + ‘P(‘Ut: Up

Since ||z, — u,|| = 0 and the properties of A , we have

Up — Ty
Au,, — Az, || = 0, .

N

From the monotonicity of A, we have
(Vg — Uy, Avy — Au,) > 0.
Thus
e{vy — up, Avy — Auy,) € C.
So, from (3.2.31)-(3.2.33) and condition (A5), we have
elv, — a*, Avy) € p(v,2*) + e(Ta*, (2%, v)) +C.
Since ¢ is C'—convex, we have

to(ve, y) + (1 = elv, 2*) € (v, ve) + C.

Since for any u,v € X, the mapping @ — (T'v,n(2,u)) is convex, we have

(Tx*,n(ve,v)) < T2 n(y,v,)) + (1 —t)(T2*, n(a", v)).

This implies that

= 0, (vy — uy, Au, — Az,) — 0.

- Aﬂ:n)

et{Tz", n(y, ) +e(l — ){Ta*, n(a*,v)) € e(Ta™, n(ve, ve)) + C.

From (3.2.35) and (3.2.36), we get that
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(3.2.31)

(3.2.32)

(3.2.33)

(3.2.34)

(3.2.35)

(3.2.36)

to(uy, y) + (1 — (v, 2*) + et{Ta*, n(y, ve)) + e(1 — ){Ta", n(x*,v))



€ e(T2" (v, v)) + @(v,v) +C = C,

which implies that
—t(ip(vr, y)+e(Ta", 0y, w))) — (1 =) (p(vr, 2%) +e(Ta", 92", w))) € ~C. (3.2.37)
From (3.2.34) and (3.2.37), we have
—t(p(v,y) + e(Ta*, n(y, v))) € (1 —1)(penz”) + e(Ta", (e, v))) — C
€ (1—te{y —a*, Ay = C.
This implies that
—t(p(ve, y) + e{T2* n(y, ) — e(l — )i(y — a*, Av) € —C.
It follows that
(o(v,y) + e(Ta* n(y, v))) + el — t){y — 2™, An) € C.
As t — 0, we obtain that for each y € X,
(o2, y) +e(T2*, n(y, ")) +e(l - H(y — 2", A") € C.

Hence 2* € SGVEPR(p, T). Finally, we prove that &* = Ppa. From 2,41 = Pp,®

and F C D,, we have

(& — Tpg1,Tps1 —0) 2 0, Yve F. (3.2.38)
Note that lim,_,e z, = 2*, we take the limit in (3.2.38), then we have

(z —a*, 2" —v) 20, Vv e F.
We see that 2* = Ppz by (3.2.8). This completes the proof.

Remark 3.2.5. f Y = R, C = R* and e = 1, then Theorem 3.2.4 extends and

improves Theorem 3.1 of Wang, Marino and Wang [62].
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3.3 Existence Results for Generalized Nonlinear Vector
Mixed Quasi-Variational-Like Inequality Governed
by a Multi-Valued Map

In this paper, we consider a generalized nonlinear vector mixed quasi-variational-
like inequality governed by a multi-valued map and establish some existence results
in locally convex topological vector spaces by using the fixed point theorem.

Let Y be a locally convex Hausdorft topological vector space (l.c.s., in short)
and K be a nonempty convex subset of a Hausdorff topological vector space (t.vs.,
in short) £. We denote by L(E,Y) the space of all continuous linear operators
from E into Y and (I, ) the evaluation of | € L(E,Y) at € F. Let X C L(E, Y).
From corollary of the Schaefer [93], L(E,Y) becomes a lL.c.s.. By Ding and Tarafdar
[94], we have the bilinear map (,-) : L(K,Y) x I — Y is continuous. Let intA
and co(A) represent the interior and convex hull of a set A, respectively. Let
C : K — 2" be a set-valued mapping such that intC'(z) # 0 for each v € K,

n: K x K — E be a vector-valued mapping,.

Let N : L(E,Y) x L(E,Y) x L(E,Y) — 245Y) he a set-valued mapping,
H:KxK—=2'. D:K—2%and T, A, M : K — 2% be set-valued mappings and
g : K — K a single-valued mapping. For each w* € L(E,Y ), we consider the fol-
lowing class of generalized nonlinear vector mixed quasi-variational-like inequality

governed by a multi-valued map :
find v € K such that « € D(u) and for each v € D(u),
(P) < there exist z € T'(u),y € A(u) and z € M (u) satisfying (3.3.1)
(N(z,y,2) — w*,0(v, g(u)) + H(g(w),v) € —intC(u).

The problem (P) encompass many models of variational inequality problems. The

following problems are the special cases of (P).

(a) If N : L(B,Y) x L(E,Y) x L(E,Y) - L(E,Y) and H : Kx K —Y are



()

(d)
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two single-valued mappings, N(z,y,z) = A(z) where A : L(E,Y) — L(E,Y)
and w* = 0, then the problem (P) reduces to the following generalized vector
mixed general quasi-variational-like inequality problem for finding v € K

such that v € D(u) and for each v € D(u), there exists € T'(u) satisfying
(A@),n(v, 9(w))) + H(g(u), v) ¢ —intC(u). (3.3.2)

The problem (3.3.2) was studied by Ding and Salahuddin [95]. Some exis-
tence results of solutions are established under suitable assumptions without

monotonicity and compactness.

If g is an identity mapping and w* = 0, then the problem (7) reduces to the
following generalized nonlinear vector quasi-variational-like inequality prob-
lem for finding (w1, 2,y,2) € K x U x V x W such that « € D(u) and for each

v € D(u), there exist z € T'(u),y € A(u) and z € M (u) satisfying
(N(z,y,2),n(v,u)) + H(u,v) € —intC'(u). (3.3.3)

The problem (3.3.3) was studied by Husain and Gupta [96].

If D(u) = K, then the problem (3.3.3) reduces to the problem of finding

u € K such that there exist 2 € T'(u),y € A(u) and z € M (u) satisfying
(N(z,y,2),n(v,w)) + H(u,v) € —intC(u),Vv € K, (3.3.4)

which is introduced and studied by Xiao, Fan and Qi [36). When N :
L(E,)Y)x L(E,Y) x L(E,Y) - L(E,Y) and H : K x K — Y are two
single-valued mappings The problem (3.3.4) includes some generalized varia-
tional inequality problems investigated in [39, 42, 97, 98, 99, 100] as special

cases.

If T(u) = A(u) = 0 for all w € K, and N is an identity mapping, the problem

(3.3.3) reduces to the problem of finding u € K such that v € D(u) and for
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all v € D(u),
(T(w),n(v,x)) + H(u,v) € —intC'(u),

which is introduced and studied by Peng and Yang [101].

For suitable and appropriate conditions imposed on the mappings C', N, 11, D,
T, A, M,n and g and by means of the fixed point theorem, we establish some ex-
istence results of solutions for the problem (P). It is clear that the problem (7)
is the most general and unifying one, which is also one of the main motivations of

this paper.

3.3.1 Existence Results

In this section, we shall derive the solvability for the problem (7) under certain

conditions.

First, we give the concept of 0—diagonally convex which is useful for estab-

lishing existence theorem for the problem (7).

Definition 3.3.1. Let K a convex subset of a t.v.s F and Y be a t.v.s.. Let
C : K — 2Y be a set-valued mapping and g : K — K a single-valued mapping.
Then the multi-valued mapping H : K x K — 2" is said to be 0—diagonally convex
with respect to g in second variable, if for any finite subset {z;,...,2,} of K and

any @ = Y b o with oy > 0 fori=1,...,n,and 7, a; =1,

S0, oy H(g(a), 2:) € —intC().
Remark 3.3.2. (i) If g is an identity mapping, then the concept in Definition

3.3.1 reduces to the corresponding concept of 0—diagonally convexity in [102].

(i) If H : K x K — Y is a single-valued mapping, then the concept in Defini-
tion 3.3.1 reduces to the corresponding concept of 0—diagonally convex with

respect to g in the second variable in [95].



79

Example 3.3.3. LetY =R, K =R, C(z) =R* forallz € K,
g(z)=22, Vee K

and

H(z,y)=z+y, Y2,y € K.

7

Let {z1,...,2,} € K and © = Y o4%; with oy > 0 for i = 1,...,n and

n
Z;=1 a; =1.
We consider

Zaiﬂ(g(m),m,—) == ZaiH(Q:v,a:,-)

i i=1
= a H(22,21) + apH(22,23) + ... + a, H (22, 2,)
= o204+ 21) + (2x + 22) + ... +an (22 + 2p)

= (B

This implies that

n

Za;l](g(m), ;) € (—00,0) = —int Rt = —int C(x).

i=1
Theorem 3.3.4. Let Y be a lc.s., K be a nonempty compact convex subset of
a Hausdorff t.v.s. I5, X a nonempty compact convex subset of L(I5,Y), which is
equipped with a o—topology. Let g : K — K, w* € L(E,Y) and T, A, M : I —
2X be upper semicontinuous set-valued mappings with nonempty compact values.

Assume that the following conditions are satisfied:
(i) D : K — 2% is nonempty convex set-valued mappings and have open lower
sections;
(ii) for each v € K, the mapping
(N, ) —w*, (v, )) + H(-,v) : L(E,Y)x L(E,Y) x L(E,Y) x K x K — 2"

is a upper semicontinuous set-valued mapping with compact values;
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(iii) C': K — 2Y is a convex set-valued mapping with intC(u) # 0 for allu € K;
(iv) n: KxIK — E is affine in the first argument and for allu € K, n(u, g(u)) = 0;
(v) H: K x K — 2Y is generalized vector 0—diagonally convex with respect to g;
(vi) g: K — K is continuous;

(vii) for each u € K, the set {u € K : coh(u) N D(u) # 0} is closed in K, where
A(u) defined as

ve K (N(z,y,z) —w (v, g(u)) + H(g(u),v) € —intC(w),
Va € T(u),y € A(u),z € M(u)

Aluw) =

(viii) Y\ {~intC(u)} is an upper semicontinuous set-valued mapping.
Then the problem (P) admits at least one solution.

Proof. Let w* € L(E,Y). Define a set-valued mapping () : K — 2% by

Ou) ve K : (N(,vy,2) — w0 gw)) + H(g(u),v) C —intC(u),

U - )
Vo € T(u),y € A(u),z € M(u)

for all u € K. We first prove that u & coQ(u) for all u € K. To see this, suppose,

by the method of contradiction, that there exists some point u € K such that

@ € coQ(w). Then there exists a finite subset {v;,va,... ,Un} C Q(u), for u €

co{vy, vy, ..., v}, such that
(N(Z,7,2) — w*,n(vi, 9(1))) + H(g(@),v;) C —intC (), i=1,2,...,Mm

Since intC(#) is convex set and 7 is affine in the first argument, ford = 152, « 1

o; > 0 with Y, a; = 1,% =) a;v;, we have

(N(3,5,2) — ' 0> e g(@)) + Y all (9(@), v7) € ~intC(a).
i=1 =1
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Since n(u, g(u)) = 0 for all v € K, we have
Zaiﬂ(g(ﬂ),'v,-) C —intC(@),
i=1

which contradictis the condition (v), so that u & coQ(u) for all u € K.

We now prove that

we K: (N(z,y,2) —w, (v, g(w)) + H(g(u),v) C —intC(v)
Va € T(u),y € Au),z € M(u)

Q') =

is open for all v € K. That is ) has open lower sections.

Consider a set-valued mapping J : K — 2% is defined by

ve K:3xeT(u),ye A(u),z € M(u) such that

J(olff [=
(N(x,y,2,) — w',n(v,g(w))) + H(g(w),v) € —intC(u)

We only need to prove that J(v) is closed for all v € K. Let {u,} be a net in J(v)
such that

Uy — U
Since g is continuous, we have
g(ua) = g(u).
Then there exists o € T'(ta), Ya € A(ua) and zq € M(us) such that
(N(Zas Yo, Zar ) — W (v, 9(1a))) + 1(g(1a), va) Z —intC'(uq)-

Since 7', A, M are upper semicontinuous set-valued mappings with compact val-
ues, by Lemma 2.2.26, {z,}, {¥a}, {2a} have convergent subnets with limits, say
2t y*, 2t and 2* € T(u*),y* € A(v*) and z* € M(u*). Without loss of generality

we may assume that 2, — 2*,y, = ¥* and z, — z*. Suppose that

Ma € {{N(Za, Yo Zar ) — W NV, 9(2a))) + H(9(tta),v)} € —intC(ua).-
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Since (N (-, -, ") —w*,n(v,-)) + H(-,v) is upper semicontinuous with compact values,
by Lemma 2.2.26, there exists m* € (N(z*,y*, z*) —w*, n(v*, g(u*))) + H(g(u*),v")

and a subnet {mg} of {m4} such that mg — m*. From (viii), we can get that
m* €Y \intC(u").
That is
(N(2*,y*,2*) —w*, n(v*, g(x*))) + H(g(u'),v*) € intC'(u).

Hence J(v) is closed in K. So that @ *(v) is open for each v € K. Therefore (2 has
open lower sections.

Consider a set-valued mapping G : K — 2% defined by
G(u) = coQ(u) N D(u), Vu € K.

Since D has open lower sections by hypothesis (i), we may apply Lemma 2.2.25 to

assert that the set-valued mapping G has also open lower sections. Let
Z={ue K :G(u)+# 0}.
There are two cases to consider. In the case Z = (), we have
coQ(u) N D(u) = 0, for each u € K.
This implies that, for each u € K,
Qu) N D(u) = 0.

On the other hand, by condition (i), and the fact K is a compact subset of
E, we can apply Lemma 2.2.27, in this case that I = {1}, to assert the existence

of a fixed point u* € D(u*), we have
Q(u*) N D(u*) = 0.

This implies Yo € D(u*), v € Q(u*). Hence, in this particular case, the assertion of

the theorem holds.
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We now consider the case Z # (). Define a set-valued mapping S : i — 2K by

G(u), ue€E Z;
D(u), ne K\ Z.

S(u) =

Then, for each u € K, S(u) is convex set and for each t € K,
ST =G @)U (K \ 2)n (D).

Since D~1(t), coQ~'(t) are open in K and K\ Z is open in K by condition (vii), we
have S 1(t) is open in I{. This implies that S has open lower sections. Therefore,

there exists u* € K such that u* € S(u*). Suppose that u* € Z, then
u* € coQ(u*) N D(u*),
so that u* € coQ(u*). This is a contradiction. Hence, u* ¢ Z. Therefore,
u* € D(u*), and G(u*) = 0.

Thus

u* € D(u*), and coQ(u*) N D(u*) = 0.

This implies

Q)N D(u) = 0.

Consequently, the assertion of the theorem holds in this case. The the problem (P)

admits at least one solution. O

Example 3.3.5. E|;Y =R, K = [0, 0).
C(z) = [0,00) for each x € K.
D(z) = [0,2z) for each v € K.
N(z,y,2) =1, foralzy,z€X andw” =1

g(u) =2u and H(z,y) =2 +y
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n(u,v) = 2u —v.

First, we show that D has open lower section. Consider
D Yy) ={x €[0,00) : y € D(z)}, Vye K.

D7H0) = {z € [0,00) : 0 € [0,22)} = (0, 00).
DY(1) = {z € [0,00) : 0 € [0,22)} = (%,oo).
D) = (5,00)

It is easy to see that D '(y) is open for all y € K. That is D is nonemply convex

set valued mapping and has open lower section.

Nest, we show that C satisfies condition (ii) and (viii). It is easy to see
that condition (iii) satisfied. We just show that Y \ —intC' : K — 2 which defied
by

(V'\ —intC)(z) =Y \ {—intC'(x)}

for each & € K is an upper semicontinuous set-valued mapping. If we define
F(z) = (Y \ —intC)(z).

Then

F(z) = (Y \-intC)(=)
= (R\ —intC)(z)
= R\ —intC(z)

= [0,00).

It is easy to show that F is upper semicontinuous.

Nezxt, we show that condition (i) satisfied. Since n(u,v) = 2u — v, we can

see that 1) is affine in the first argument. Since g(u) = 2u, we have g 1s continuous
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and
7w, g(u)) = 2u — 2u = 0.
The previous example can get that H is 0—diagonally convex with respect to
qg.
We consider
Afa) v € K : {N(2,y,2) —w*, (v, g(w))) + H(g(u),v) € —intC'(u),
By e

Vo € T(u),y € A(u),z € M(u)
= {ve[0,00):2u+v e (—00,0)}

= {ve0,00):v € (~oo, —2u)} = 0.
We can see that condition (vii) satisfied.

We would like to find u € [0, 00) such that u € [0,2u) and for each v € [0, 2u)
2u+v & (—o0,0)

That is
2u+ v € [0,00).

Then it is very easy to see that (P) has at least one solution.

Corollary 3.3.6. Let Y be a l.c.s., K be a nonempty compact convex subset of
a Hausdorff tv.s. E, X a nonempty compact convez subset of L(E, Y), which is
equipped with a o—topology. Assume that N and H are single-valued mappings and
T, A M : K — 2% are upper semicontinuous set-valued mappings with nonempty
compact values. Let w* € L(E,Y) and g : K — K. Assume that the following

conditions are salisfied:

(i) D: K — 2K is a nonempty convex set-valued mappings and have open lower

sections;
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(i) for each v € K, the mapping
(NC, ) —w? (v, )+ H(,v) : L(E,Y)X L(E,Y)x L(B,)Y)x K x K — 2"
is continuous,
(iii) C': K — 2Y is a convex set-valued mapping with intC'(u) # @ for all u € K;
(iv) n: KxK — E is affine in the first argument and for allu € K, n(u, g(v)) = 0;
(v) H: K x K — 2" is vector 0—diagonally convex with respect to g;
(vi) g: K = K is conlinuous;

(vii) for each u € K, the set {u € K : coA(u) N D(u) # 0} is closed in K, where
A(u) defined as

ve K:(N(z,y,z) —w,n, gw)) + H(g(w),v) € —intC(u),
Vo € T(u),y € A(u),z € M(u)

M/ =

(viii) ¥ \ {~intC(u)} is an upper semicontinuous set-valued mapping.
Then there exists a point @ € K such that @ € D(@) and for each v € D(u), there
exists T € T(u),y € A() and zZ € M (@) such that

(N(ji;g'.‘ 2) N W*) 'I](’U, g(ﬂ))> + H(g(ﬂ)a 'U) ¢ —illtC'(‘lﬁl.).
Proof. Define a set-valued mapping @ : K — 2 by

Qu) = ve K : (N(z,y,2) —w,n(v,g(w)) + H(g(u),v) € —intC(u),
Va € T(u),y € A(u).z € M(u) ’

for all u € K. We now prove that @~ (v) is open for each v € K, that is,

we K :3xeT(u),y € A(u), z € M(u) such that

(Q@7'(v) =
(Nr(j“a Y, Z) - W*: TI(‘Ua g(“))) #* H(g(u)v 'U) ny \ {*i]ltC(U)} % @
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is closed in K. Let {u,;} be a net in (Q'(v))" such that
g(ue) — g(u*) € K.

Then there exist z; € T'(u,), v € A(u;) and z € M(u,) such that

(N (24, Ye, 2e) — W' 0(v, 9(we))) + H(g(u),v) € Y \ {—intC(u)}.

The upper semicontinuity, compact values of T', A, M and Lemma 2.2.26 imply that

there exist convergent subnets {2}, {y,} and {z;} such that
xy, = 2%y, — Y and z; 2

for some 2* € T(w),y* € A(u) and 2* € M(u). Since (N(:,-,-)—w*,n(v,))+H(:,v)

is continuous, we have

(N (@), Y10 2;) — w0 (v, g(u,))) + H(g(wy;),v)

S (N5, 27) — ' v, g(u))) + H(g(), v).

From Lemma 2.2.20 and upper semicontinuity of ¥\ (—intC(u)), we have
(N (a5, 7°) — ' (o, g(a)) + H(g(u)y) € Y\ (~intC()),

and hence u* € (Q'(v))¢, which gives that (@ *(v))¢ is closed. Therefore ) has
open lower sections. For the remainder of the proof, we can just follow that of

Theorem 3.3.4. This completes the proof. o

Theorem 3.3.7. Let Y be a Lc.s., K be a nonempty convezx subset of a Hausdorff
tv.s. E, X a nonempty compact convez subset of L(E,Y ), which is equipped with
a o—topology. Let w* € L(E\)Y) , 9 : K - K and T,A,M : K — 2% be up-
per semicontinuous set-valued mappings. Assume that the following conditions are

sotisfied.

(i) D: K — 2K is a nonempty convex set-valued mapping and has open lower

secltions,
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(ii) for each y € K, the mapping
(N(, - ) —w* (v, )+ H(,v) : L(B,Y)x L(B,Y)x L(B,Y) X K x K = 2
is upper semicontinuous;
(i) C: K — 2" is a conves set-valued mapping with intC'(u) # 0 for all u € K;
(iv) n: KxK — E is affine in the first argument and for allx € K, n(u, g(w)) = 0;
(v) H: K x K — 2Y is generalized vector 0—diagonally convez with respect to g;
(vi) g: K — K is continuous;

(vii) For each u € K, the set {u € K : coA(u) N D(u) # 0} is closed in K, where
A(u) defined as

ve K (N(z,y,z) — w,n(v, gw)) + H(g(w),v) € —intC(u),
Vo € T'(u),y € A(u), z € M(u)

uy /=

(viii) for a givenu € K, and a neighborhood O of u, for allt € O, intC'(u) = intC'(t).

Then the problem (P) admits at least one solution.

Proof. Define a set-valued mapping Q : K — 2% by

Q) — ve K : (N(2,y,2) —w,n(v,gw)) + H(g(u),v) C —intC'(u),
Vo € T(u),y € Alw),z € M(u) i

for all u € K. We now prove that for each v € K,,

0-i(o) = ue K (N(z,y,2z) — w9, g(w)) + H(g(w),v) € —intC(u),
Va € T(u),y € Aw),z € M(u) ’

is open. That is, () has open lower sections in K. Indeed, let @ € Q (v), that is,

(N(2,y,2) —w*,n(v,g(@)) + H(g(a),v) C —intC(a).
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Since (N(-,+,+) —w*,n(y,9(-))) + H(g(:),y) is upper semicontinuous, there exists a

neighborhood O of % such that

(N(z,y,2z) —w*,n(v,g(w)) + H(g(u),v) C —intC(u), Yu € 0.

By (vii),

(N(z,y,2) —w*,n(v,9(n)) + H(g(u),v) C —intC(z), Vu € 0.

Hence, O C Q™ (v). This implies @~ (v) is open for each v € K, and so  has open
lower sections. For the remainder of the proof, we can just follow that of Theorem

3.3.4. This completes the proof. O

Corollary 3.3.8. Let Y be a l.c.s., K be a nonempty convex subset of a Hausdorff
t.v.s. FE, X a nonempty compact convexr subset of L(F,Y), which is equipped
with @ o—topology. Let w* € L(E,Y),g : K = K and T,A,M : K — 2% be
upper semicontinuous set-valued mappings Assume that the following conditions

are satisfied.
(i) D: K — 2K is a nonempty convex set-valued mapping and have open lower
sections;
(i) for each y € K, the mapping
(N(-, -, )—w*,n(v,g(:))+H(g(-),v) : LIE,Y)XL(E,Y)XL(E,Y)xKxK — ¥
is upper semicontinuous;

(iii) C': K — 2Y is a convex set-valued mapping such that for eachu € K,C(u) =

C is a convex cone with intC'(u) # 0 for all u € I
(iv) n: KxK — E is affine in the first argument and for allu € K, n(u, g(u)) = 0;

(v) H: K x K — 2Y is generalized vector 0— diagonally convex with respect to g;
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(vi) g: K — K is continuous;

(vii) for each u € K, the set {u € K : coA(u) N D(u) # 0} is closed in K, where
A(u) defined as

v e K : (N(z,y,z) — w0, g)) + H(g(u),v) € —intC(xw),

Alw) =
Vo € T(u),y € A(u),z € M(u)

Then the problem (P) admits at least one solution.

Proof. By hypothesis (iii), the condition (vii) in Theorem 3.3.7 is satisfied.

Hence, all the conditions in Theorem 3.3.7 are satisfied. O



CHAPTER IV

WELL-POSEDNESS FOR GENERALIZED

VARIATIONAL INEQUALITY PROBLEM

4.1 Well-posedness by perturbations for the hemivariational
inequality governed by a multi-valued map perturbed

with a nonlinear term

The well-posedness which significant for both optimization theory and numerical
methods of optimization problems, which guarantees that, for approximating solu-
tion sequences, there is a subsequence which converges to a solution. This means
that if there is a iterative sequence which satisfies property of approximating solu-
tion sequence, then it will converges to a solution or there is a subsequence which

converges to a solution.

Let K be a nonempty subset of a real Banach space F with its dual F*,
F: K — 2% a multivalued mapping. Let T : E — LP(€;R¥) be a linear compact
operator, where 1 < p < oo and k& > 1, and Q a bounded open subset of RY. Let

3 : 0 x R¥ = R be a function such that the mapping
i, y) : Q@ — R is measurable, Yy € R". (1)

We shall denote @ := Tu, j°(x,y; h) denotes the Clarke’s generalized directional
derivative of a locally Lipschitz mapping j(2,-) at the point y € R* with respect

to direction h € R*, where 2 € Q.

For the given bifunction f : K x K — [—o0,+oco| imposed the condition
that the set Di(f) = {u € K : f(u,v) # —oo, Vv € K} is nonempty, Wangkeeree
and Preechasilp [47] introduced and studied the existence of a solution for the

following hemivariational inequality governed by a multi-valued map perturbed
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with a nonlinear term

Find u € D(f) and u* € F(u) such that
(HVIMN) $ (u*, v — u) + f(u,v) + [, 3°(2, @(2); 0(2) — @(z))dz = 0, (4.1.1)
Yv € K.

Now, let us consider some special cases of the problem (4.1.1). If f(u,v) = ¢(v) —
$(u), where ¢ : X — RU {+oco} is a proper, convex and lower semicontinuous
function such that Ky = K N domg # @, then Dy(f) = Ky and (4.1.1) is reduced
to the following variational-hemivariational inequality problem: Find u € Kg4 such

that
(u*,v — u) +o(v) — o(u) + / j(z, a(x); 0(z) — 4(z))dz >0, Vv € K. (4.1.2)

The problem (4.1.2) was studied by Costea and Lupu [103] by assuming that F' is
monotone and lower hemicontinuous and several existence results were obtained.
Furthermore, if F = 0 and f(u,v) = Au,v) — (g%, v — u), where A : JC X K—R

and ¢g* € X*, then (4.1.1) reduces to the problem: Find u € /K such that
A(u,v) + f j(zy a(a); () — t(2))dz > (g%, v —u), Ywel (4.1.3)
)

The problem (4.1.3) was studied by Costea and Radulescu [104] and it was called
nonlinear hemivariational inequality (see also Andrei and Costea [105] for some

applications of nonlinear hemivariational inequalities to Nonsmooth Mechanics).

Now, suppose that L is a normed space, P C I is a closed ball with positive
radius p* € P is a fixed point. Let F P x K — 25 be multivalued mapping.
Let T : P x E — LP(Q;R*) be a linear continuous mapping, where 1 < p <
0ok >1and j: PxQxRF— R a function. We denote 5; (z,y; h) denotes the
Clarke’s generalized directional derivative of a locally Lipschitz mapping i(p, @)
at the point y € R* with respect to direction h € R*. For the given bifunction

[P x K x K — [—0c0,+00], we assume the condition

Di(f)={ue K|f(p,u,v) # —o0, Vv € K} # 0.
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The perturbed problem of the HVIMN (4.1.1) is given by

Find u € Dy (f) and u* € F(p,u) such that
(HVIMN,) ¢ (u,0 — ) + [(p.u,v) + fy (e () @) — a))dw > 0,
Vv e K.

where f(p*,u,v) = f(u,v), F(p*,u) = F(u),j(p,2,) = j(z,").

4.1.1 Well-posedness by perturbations and metric characterizations

In this section, we generalize the concepts of well-posedness by perturbations to the
variationalhemivariational inequality and establish their metric characterizations.
In the sequel we always denote by — and — the strong convergence and weak

convergence, respectively. Let @ > 0 be a fixed number.

Definition 4.1.1. Let {p,} C P be such that p, = p*. A sequence {u,} C Bis
called an a-approximating sequence corresponding to {p,} for HVIMN (4.1.1) if
there exist a sequence {z,} of nonnegative numbers with €, — 0, u;, € F‘(p,,,-u,,)
such that u, € f)l(f), and

(R s D)+ fu o (2, ia(@); 0(z) — fia(2))d

o
2 _EHU - '”n”2 o VU = I{

for each n > 1. Whenever o = 0, we say that {u,} is an approximating sequence
corresponding to {p,} for HVIMN (4.1.1). Clearly, every ap—approximating se-
quence corresponding to {p, } is a; —approximating sequence corresponding to {p, }

whenever a; > as > 0.

Definition 4.1.2. We say that HVIMN (4.1.1) is strongly (resp., weakly) a—well-

posed by perturbations if

(i) HVIMN (4.1.1) has a unique solution
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(ii) for any {p,} C P with p, — p*, every a—approximating sequence corre-

sponding to {p,} converges strongly (resp., weakly) to the unique solution.

In the sequel, strong (resp., weak) O—well-posedness by perturbations is
always called as strong (resp., weak) well-posedness by perturbations. If oy >
oy > 0, then strong (resp., weak) o;—well-posedness by perturbations implies

strong (resp., weak) ap—well-posedness by perturbations.

Definition 4.1.3. We say that HVIMN (4.1.1) is strongly (resp., weakly) general-

ized a—well-posed by perturbations if

(i) HVIMN (4.1.1) has a nonempty solution set S

(i) for any {p,} C P withp, — p*, every a—approximating sequence correspond-
ing to {p,} has some subsequence which converges strongly (vesp., weakly)

to some point of S

In the sequel, strong (resp., weak) generalized 0—well-posedness by per-
turbations is always called as strong (resp., weak) generalized well-posedness by

perturbations.

If a; > ay > 0, then strong (resp., weak) generalized oy —well-posedness

by perturba'tions implies strong (vesp., weak) generalized ay—well-posedness by

perturbations.

To derive the metric characterizations of a-well-posedness by perturbations,

we consider the following approximating solution set of HVIMN (4.1.1):

Qule) = U {ue Dy(f),u* € F(p,u) : (u',v—u)+ f(p,u,v)

pEB(p*e)

Jr] jg(ru,ﬁ(:v); o(2) — d(z))dz > —%H-v —u* —¢,Vve K}
0
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when B(p*,¢) denotes the closed ball centered at p* with radius €. In this section,

we assume that @ is a fixed solution of HVIMN (4.1.1). Define
0(e) = sup{|lu — @|| : u € Qu(e)}, Ve = 0.

It is easy to see that A(g) is the radius of the smallest closed ball centered at @
containing 2, (g). Now, we give a metric characterization of strong a-well-posedness

by perturbations by considering the behavior of 6(¢) when ¢ — 0.

Theorem 4.1.4. HVIMN (4.1.1) is strongly a—well-posed by perturbations if and

only if 0() = 0 as e — 0.

Proof. Assume that HVIMN (4.1.1) is strongly a—well-posed by perturbations.
Then i € E is the unique solution of HVIMN (4.1.1). Suppose to the contrary

that #(g) /4 0 as € — 0. There exist d > 0 and 0 < ¢, — 0 such that
B(en) > 6 > 0.
By the definition of 8, there exists u, € Qa(en) such that
[[un — ul| = 6. (4.1.4)

Since u, € Qa(€,), there exist p, € B(p*, ), u;, € F(py, uy) such that
S ~o — = " o
(ur, v — up) + (P, Un,v) + f T2, U (); D) — ity (x))dz > —EHU —u||? — €,
0

for all v € K and n > 1. Since p, € B(p*,e,), we have p, — p*. Then {u,} is an a
approximating sequence corresponding to {pn} for HVIMN (4.1.1). Since HVIMN
(4.1.1) is strongly a—well-posed by perturbations, we can get that ||u, — || = 0,

which leads to a contradiction with (4.1.4).

Conversely, suppose that #(g) — 0 as ¢ — 0. Then @ € F is the unique
solution of HVIMN (4.1.1). Indeed, if 4 is another solution of HVIMN (4.1.1) with

i # i, then by definition,

B(e) > |la—al| > 0, Ve >0,



96

a contradiction. Let p, € P besuch that p,, = p* and let {u, } be an a—approximating
sequence corresponding to {p,} for HVIMN (4.1.1). Then there exist 0 < &, —

0,u}, € ﬁ'(p,l,'u.n) such that u, € Dl(f) and

(uh, v —uy,) + f(p", U, V) + ./n};" (2, i, (2); 0(2) — fip(2))dx

«
> '_5”” - 'unH2 — En,

for all v € K and n > 1. Take 8, = ||p, — p*|| and €}, = max{d,,€,}. It is easy to
n

verify that u, € Qa(c),) with €, — 0. Put
th = |lun — €|
by definition of 8, we can get that
Plel) 2 I = [Is = 2]

Since 0(¢’,) — 0, we have ||u, — @l — 0 as n — oo. So, HVIMN (4.1.1) is strongly

a—well-posed by perturbations. O

Now, we give an example to illustrate Theorem 4.1.4.

Example 4.1.5. Let E = R, P = -1, K = R,p* = 0,a = 2, F(p,u) =
{2u},5 = 0,f(p,u,v) = (1 — (1?11—)2)‘1;2 for all p € Pyu,v € K. Clearly u = 0
is a solution of HVIMN (4.1.1). For any e > 0, it follows that
- s - 2 1 2
e) = {ueDi(f)u" € F(pu): (', v—u)+ u? — (p—jli—)-u?
> —(v—ulP—¢e WYwek}

Y 2
= {ueR:2ulv—u)+u®— (p_+1)_u2 > —(v—u)>—e, VweER}

1 2
2 1 2
= {ueR:—u’+2uv— (ﬂz—)-tﬁ > —(v—u)’—¢, YweR}
2 2
= {ueR:v*— (v—u)— (P_Z_l)_uz > —(v—u)*—e YveR}

2 i 2
= {ueR:—V"+ (L%——)'u? < +e&, YveR}
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Therefore,

peB(0,e)

for € > 0. By trivial computation, we have
f(c) =sup{u—u:u€ Qu(e)} =2y >0 ase — 0.

By Theorem 4.1.4, HVIMN (4.1.1) is 2-well-posed by perturbations

To derive a characterization of strong generalized a—well-posedness by per-

turbations, we need another function ¢ which is defined by
q(e) = e(Qua(€), S), Ve =0,
where S is the solution set of HVIMN (4.1.1) and e is defined as in definition 2.3.9.

Theorem 4.1.6. HVIMN (4.1.1) is strongly generalized a—well-posed by pertur-

bations if and only if S is nonempty compact and glg) > 0ase—0.

Proof. Assume that HVIMN (4.1.1) is strongly generalized a—well-posed by per-
turbations. Clearly, S is nonempty. Let {u,} be any sequence in S and {p.} C P
be such that p, = p*. Then {u,} is an a-approximating sequence corresponding
to {p,} for HVIMN (4.1.1). Since HVIMN (4.1.1) is strongly generalized a—well-
posed by perturbations, we have {u,} has a subsequence which converges strongly
to some point of S. Thus S is compact. Next, we suppose that g(e) /» 0ase — 0,

then there exist I > 0,0 < &, — 0 and u,, € Qa(£,) such that
u, € S+ B(0,1), Vn > 1. (4.1.5)

Since 1, € Qa(g,), there exist p, € B(p™, ¢ .’ € F(py,uy,) such that u, € Dy f
n

and

(ul, v —up) + F (Pt v) + / Egn(nr,-&n(m); b(x) =ty (2))dz > _%Hv —u,||? — &,
)
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for all v € K and n > 1. Since p, € B(p*,&,), we have p, — p*. Then {un}
is an o approximating sequence corresponding to {p,} for HVIMN (4.1.1). Since
HVIMN (4.1.1) is strongly generalized a—well-posed by perturbations, there exists
a subsequence {u,, } of {u,} converging strongly to some point of S, which leads

to a contradiction with (4.1.5) and so g(¢) — 0 as € = 0.

Conversely, we assume that S is nonempty compact and g(e) — 0 as € — 0.
Let {p,} C P be such that p, — p* and let {u, } be an a—approximating sequence
corresponding to {p,}. Take &/, = max{z,, [[p, — p*||}. Thus €, — 0 and u, €

Qa(el). 1t follows that

d(un, S) > e(Qaley,), S) = a(e,) = 0.

n

Since S is compact, there exists 1, € S such that
\\ Ve
|, — @n|| = d(z,, S) — 0.

Again from the compactness of S, {#,} has a subsequence {iy,, } which converges to

ii. Thus HVIMN (4.1.1) is strongly generalized a—well-posed by perturbations. U

The following example is shown for illustrating the metric characteriza-

tions in Theorem 4.1.6.

Example 4.1.7. Let ¥ = R, P = [-1,1], K = R,;p* = 0,a = 2, F(p,u) =
{2u},7 = O,f(p,-u.,‘u) e W)u2 for all p € Pyu,v € K. It is easy to
see that w = 0 is a solution of HVIMN (4.1.1). Repeating the same argument as in
Ezample 4.1.5, we obtain that

QW)= |J %)

peB(0,e)

[ 2v5.2v8),
for € > 0. By trivial computation, we have

q(c) = e(Qu(c),S) = sup d(u(e),S) = 0 ase— 0.

u(e)€L2q (€)

By Theorem 4.1.6, HVIMN (4.1.1) is strongly generalized a—well-posed by pertur-

bations.
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The strong generalized a-well-posedness by perturbations can be also char-

acterized by the behavior of the noncompactness measure 1(Q4a(€)).

Theorem 4.1.8. Let L be finite-dimensional, jg(n:,y) be upper semicontinuous as
a functional of (p,z,y) € PX EX E and f is convex. Let F is closed on P x K
and f be continuous on P x K x K. Then HVIMN (4.1.1) is strongly generalized
a—well-posed by perturbations if and only if Qa(€) # 0,Ve > 0 and p(Sa(e)) = 0

ase — 0.

Proof. First, we will prove that Qa(e) is closed for all € > 0. Let {u,} C Qa(e)
with u, — @. Then there exist p, € B(p*,€),u;, € I (py,u,) such that u, € Di(f)

and
(ul, v — tp)t f(pn,-u,,,-v) - f jgn(a:,ﬂ,, (2);(2) — @t (2))dz > —%“-v — | — &,
3

for all v € K and n > 1. Without loss of generality, we may assume that p, = p €
B(p*, ) because L is finite dimensional. Since 51,(3;, y) is upper semicontinuous as

a functional of (p,z,y) € P x E x E. Hence by the continuity of f that

{(u*, v —T) + F(p,a,v) + / jg(m,‘z’}n(:ﬂ);ﬂ(m) — i, (z))dx

Q

> limsup{u}, v — uy,) + F (P s v) + f E;H(;zr,-&,t(m); b(x) — G, (x))dz
Q0

n—oc

> limsup ﬁg”‘u — up|* — e,
n—oeo 2

=3 #%Hv —a|?—e Ve K.

Thus % € Qa(e). Hence Q4 (¢) is closed.

Next, we show that

S = le). (4.1.6)
e>0

It is easy to see that S C Ne»0f2a(g). Thus, we show that Nespf2a(s) € S. Let

i € Nesofa(€). Let {e,} be a sequence of positive real numbers such that e, — 0.
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Thus
i€ Qalen)

and so there exist p, € B(p*,¢,) and u* € F (pn, i) such that u € Dy ( f ) and

(u*av—'ﬁ)wa(Pmﬂ,v)"i-/Jpr,( Jiu(2); d(2) — u(w))de 2 ——Ilv—UII ~ Eny

for all v € K and n > 1. It is easy to verify that p, — p*. Taking limit as n — oo,

we can get that

(u*,v—1) + f(u,v) +/ °(x,u(x); d(z) — u(x))dz
= (w0 — @)+ f(p*, @ U)+]S;‘]p (,1(x); 0(2) — u(x))dz

> —%H-u —al?, Wwek (4.1.7)

Since F is closed on P x K, we have u* € () and for any z € K and ¢ € (0, 1),

letting v = % + t(z — 4) in (4.1.7), we can get from T is linear, f is convex and

definition of j° that

t(u*, z—uy +tf(u,2) + / 3°(z, u(z); o(2) — u(z))dz

Q

>t z—u) + f(@,a+t(z—1a)+ f 32, i(2); 2(x) — u(z))de

Q

> -——5—”2 < ’l_.Ll|2

This implies that
(u*,z— @)+ tf(T, 2) +f3 (z,u(z); D(z) — u(z))de > ——Hz— il Vz e K.
As t — 0 in the last inequality, we get

(-u.*,z—-ﬂ)+tf(-ﬂ.,z)—|—fnj°(q, a(z); o(z) — t(x))dz > 0 Vz € K.
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Hence # € S and thus it completes the proof. Next, we suppose that HVIMN
(4.1.1) is strongly generalized av—well-posed by perturbations. By Theorem 4.1.6,
we can get that S is nonempty compact and g(¢) — 0. Since S C Q4(¢) for all
€ > 0, we have

Qu(e) #0, Ve>0.
We observe that for each € > 0,
H(4(€), S) = max{e(Qa(2),5), e(S, Qua(€))} = e(Qale), 5).
By the compactness of S, we have
1(Qa(e)) < 2H(Qa(e), 5) = 29(e) = 0.

Conversely, we suppose that Q,(2) # 0, Ve > 0and p(Q,(e)) - 0ase — 0. Since

Qa(+), by the Kuratowski theorem, we can get from (4.1.6) that
q(e) = H(Q(€),S) =20 as ¢ =0

and S is nonempty compact. Hence HVIMN (4.1.1) is strongly generalized a—well-

posed by perturbations by Theorem 4.1.6. O

The following example is given for illustrating the measure in Theorem 4.1.8.

Example 4.1.9. Let E = R,P = [-1,1,K = R,p* = 0,a = 2, F(p,u) =
{2u},j = O,f(p, 4,9 = (e W)u2 for all p € Pyu,v € K. It is easy to
see that w = 0 is a solution of HVIMN (4.1.1). Repeating the same argument as in
Exzample 4.1.5, we obtain that

Q) = | Qf;(e)z[—Z\/E,Q\/E].

pEB(0,£)

We will show that 12(Q4(€)) = 0 for each ¢ > 0. Let € > 0. Consider
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1(Qale)) = inf{\ > 0: [42\/2,2\/2] £ U[a;\., by], with diam|ay, bx] < A,
k=1
Vi=1,...,n,3n € N}.

For every A > 0, we can find n € N with a; = —2 VG, by = 2,/e such that

[—2\/5,2\/5] C U[ak_,bk] and diamag, bx] < A.

k=1
This implies that p£(Qa(€)) = 0 for each ¢ > 0. Then HVIMN (4.1.1) is strongly

generalized a—well-posed by perturbations.

Remark 4.1.10. Any solution of HVIMN (4.1.1) is a solution of the a problem:
find u € D;(f) and u* € F(u) such that

(u*, v —u) + flu,v) + f j°(x, @(z); O(x) — @(x))dr 2 —%lly —a|? Ve e K,
0
but the converse is not true in general. To show this, let K =R,
F(u) = {u}, f(u,v) = ou® — v and 3 =0,

for all u,v € K. It is casy to sce that the solution set of HVIMN (4.1.1) is empty

and u* = v = 0 is the unique solution of the corresponding « problem with o = 2,



CHAPTER V

CONCLUSION

In this section, we summarize and give some concluding remarks. Finally we

delineate some important questions that are related to the work in this dissertation.

We introduce and analyze the new generalized mixed equilibrium problems
(NGMEP) and the bilevel 1.1ew generalized mixed equilibrium problems (BNGMEP)
in Banach spaces. First, by using a minimax inequality, some new existence the-
orems of the solution and the behavior of solution set for the NGMEP and the
BNGMEP are obtained in Banach spaces. Next, by using auxiliary principle tech-
nique, some new iterative algorithms for solving the NGMEP. and the BNGMEP
are suggested and analyzed. The strong convergence of the iterative sequences gen-
erated by the algorithms are also proved in Banach spaces. These results are new

and generalize some recent results in this field.

Furthermore, we consider an auxiliary problem for the generalized mixed
vector equilibrium problem with a relaxed monotone mapping and prove the exis-
tence and uniqueness of the solution for the auxiliary problem. We then introduce
a new iterative scheme for approximating a common element of the set of solu-
tions of a generalized mixed vector equilibriuum problem with a relaxed monotone
mapping and the set of common fixed points of a countable family of nonexpansive
mappings. Moreover, we introduce and study a new class of generalized nonlinear
vector mixed quasi-variational-like inequality governed by a multi-valued map in
Hausdorff topological vector spaces which includes generalized vector mixed gen-
eral quasi-variational-like inequalities, generalized nonlinear mixed variational-like
inequalities, and so on. By using the fixed point theorem, we prove some existence

theorems for the purposed inequality.

On the other hand, we introduce the notion of well-posedness to the hemi-
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variational inequality governed by a multi-valued map perturbed with a nonlinear
term (HVIMN) in Banach spaces. Under very suitable conditions, we establish
some metric characterizations for cheking the well-posed (HVIMN). In the setting
of finite-dimensional spaces, the strongly generalized well-posedness by perturba-
tions for (HVIMN) are established. Our results are new and improve recent existing

ones in the literature.
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