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ABSTRACT

In this research, we establish the following results. Firstly, we create and
prove a strong convergence theorem by using the hybrid iterative algorithm which
was proposed by Yao et al. for finding the common element of fixed point set of a
Lipshitz pseudo-contraction and the set of equilibrium problem in Hilbert spaces.
Secondly, we construct a sequence by using some appropriated closed convex sets
based on the hybrid shrinking projection methods to find a common solution of
fixed point problems of a Lipschitz pseudo-contraction and generalized mixed equi-
librium problems in Hilbert spaces. Thirdly, we study the new type of mappings
called G-quasi-strict psendo-contractions and to create some iterative projection
techniques to find some fixed points of the mappings. Fourthly, we introduce and
consider two new mixed vector equilibrium problems i.e., a new weak mixed vector
equilibrium problem and a new strong mixed vector equilibrium problem which are

combinations of certain vector equilibrium problems and vector variational inequal-



ity problems. We prove existence results for the problems in non-compact setting.
Finally, we apply some results for solving the equilibrium problems and zeroes of

Lipshitz monotone operators in Hilbert spaces.
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CHAPTER I

INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - ||. Let
C' be a nonempty closed convex subset of H and F : C' x ¢ — R be a bifunction,
where R is the set of real numbers. The equilibrium problem (for short, EP) is to

find z € C such that
F(z,y) > 0,Yy € C. (1.0.1)

The set of solution (1.1) is denote by EP(F). Given a mapping 7" : C' — H and
let F(z,y) = (Tx,y — z) for all x,y € C. Then, x € EP(F) if and only if z € C is
a solution of the variational inequality (Tz,y — ) > 0 for all y € C. In addition,
there are several other problems, for example, the complementarity problem, fixed
point problem and optimization problem, which can also be written in the form of
an BEP. In other words, the EP is an unifying model for several problems arising in
physics, engineering, science, optimization_, economics, etec. There are many papers
have appeared in the literature on the existence of solutions of EP (see, for example
[1-4]) and references therein. Motivated by the work [5-7], Takahashi and Taka-
hashi [8] introduced an iterative scheme by the viscosity approximation method for
finding a common element of the set of solutions of the EP (1.0.1) and the set of
fixed points of nonexpansive mappings in the setting of Hilbert space. They also
studied the strong convergence of the sequences generated by their algorithm for a
solution of the E'P which is also a fixed point of a nonexpansive mapping defined
on a closed convex subset of a Hilbert space. We use F(T) to denote the set of
fixed points of T

Construction of fixed points of nonexpansive mappings via Mann’s algorithm
[9] has extensively been investigated in the literature, see, for example [9ﬁ15]'and
references therein. However we note that Mann’s iterations have only weak conver-

gence even in a Hilbert space (see e.g., [16]). If 7' is a nonexpansive self-mapping



of €, then Mann’s algorithm generates, initializing with an arbitrary z; € C, a
sequence according to the recursive manner

Tpp1 = Wy + (1 — )Tz, VR 1, (1.0.2)

where {a,,}22, is a real control sequence in the interval 0,1).IfT:C—Cisa
nonexpansive mapping with a fixed point and if the control sequence {on )}, s
chosen so that 3 72 | a,(1—a,) = oo, then the sequence {z,} generated by Mann’s
algorithm converges weakly to a fixed point of T'. Reich [11] showed that the con-
clusion also holds good in the setting of uniformly convex Banach spaces with a
Fréchet differentiable norm. It is well know that Reich’s result is on of the funda-
mental convergence results. Recently, Marino and Xu [17] extended Reich’s result
[11] to strict pseudo-contraction mapping in the setting of Hilbert spaces. From a,
practical point of view, strict pseudo-contractions have more powerful applications
than nonexpansive mappings do in solving inverse problems (see [18]). Therefore, it
Is important to develop theory of iterative methods for strict pseudo-contractions.
Indeed, Browder and Petryshyn [19] prove that if the sequence {@,} is generated
by the following:

Tnt1 = Qp®p + (1 — ap)Tz,, 720, (1.0.3)

for any starting point @y € C, « is a constant such that k < a < 1, ,, converges
weakly to a fixed point of strict pseudo-contraction 7' Marino and Xu [17] extended
the result of Browder and Petryshyn [19] to Mann’s iteration (1.0.2), they proved
{zs} converges weakly to a fixed point of T, provided the control sequencel {an}
satisfies the conditions that k < a,, < 1, for all n and Yomolan — k) (1 — ap) = 0.

In order to obtain a strong convergence theorem for the Mann iteration
method (1.0.2) to nonexpansive mapping, Nakajo and Takahashi [20] modified
(1.0.2) by employing two closed convex sets that are created in order to form the

sequence via metric projection so that strong convergence is guaranteed. Later,

it is often referred as the hybrid algorithm or the CQ algorithm. After that, the



hybrid algorithm have been studied extensively by many authors (see, for example
[17, 21-26]).

From a practical point of view, strict pseudo-contractions have more pow-
erful applications than nonexpansive mappings do in solving inverse problems (see
[27]). Therefore, it is important to develop theory of iterative methods for strict
pseudo-contractions.

A few years ago, Takahashi and Zembayashi (28, 29] proposed some hybrid
methods to find the solution of fixed point problem and equilibrium problem in Ba-
nach spaces. Subsequently, many authors (see, e.g. [30-34] and references therein.)
have used the hybrid methods to solve fixed point problem and equilibrium prob-
lem.

In 1994, Alber [35] introduced the generalized projections g : E* — C
and I[Ig : E — C from Hilbert spaces to uniformly convex and uniformly smooth
Banach spaces and studied their properties in detail. In [36], Alber presented some
applications of the generalized projections to approximately solving variatioﬁal in-
equalities and Von Neumann intersection problem in Banach space. In addition,
Li [37] extended the generalized projections from uniformly convex and uniformly
smooth Banach spaces to reflexive Banach spaces, and established a Mann type
iterative scheme for finding the approximate solutions for the classical variational

inequality problem in compact subset of Banach spaces.

Recently, Wu and Huang [38] introduced a new generalized f-projection op-
erator in Banach space. They extended the definition of the generalized projection
operators introduced by Abler [35] and proved some properties of the generalized f-
projection operator. Wu and Huang [39] continued their study and presented some
properties of the generalized f-projection operator. They showed an interesting re-
lation between the generalized f-projection operator and the resolvent operator for
the subdifferential of a proper, convex and lower semicontinuous functional in reflex-

ive and smooth Banach spaces. They also proved that the generalized f-projection



operator is maximal monotone. By employing the properties of the generalized f-
projection operator, Wu and Huang [40] established some new existence theorems
for the generalized set-valued variational inequality and the generalized set-valued

quasi-variational inequality in reflexive and smooth Banach spaces, respectively.

Very recently, Fan et al. [41] presented some basic results for the generalized
f-projection operator, and discussed the existence of solutions and approximation
of the solutions for generalized variational inequalities in noncompact subsets of

Banach spaces by using iterative schemes.

In 2012, K. Ungchittrakool [42] provided some examples of quasi-strict
pseudo-contractions related to the function ¢ in framework of smooth and strictly
convex Banach space. He obtained some strong convergence results in Banach

spaces.

In 2013, Saewan et al. [43] introduced and studied the modified Mann
type iterative algorithm for some mappings which related to asymptotically nonex-
pansive mappings by using hybrid generalized f-projection method. Saewan and
Kumam [44] also provided and studied the new hybrid Ishikawa iteration process
by the generalized f-projection operator for finding a common element of the fixed
point set for two countable families of weak relatively nonexpansive mappings and
the set of solutions of the system of generalized Ky Fan inequalities in a uniformly

convex and uniformly smooth Banach space. Some relevant papers, please see

[43-58] for more details.

In 2014, Rahaman and Ahmad [59] considered two types of mixed vector
equilibrium problems which were combinations of a vector equilibrium problem and
a vector variational inequality problem. Remark that C' C Y is a pointed closed
convex cone with nonempty interior i.e., intC' # @. The partial ordering induced
by C on Y is denoted by <¢ and is defined by # <¢ y if and only if y — z € C.
Let f: KxK —Y and T : X — L(X,Y) be two mappings, where L(X,Y) is the



[

space of all linear continuous mappings from X to Y. Here (T'(z),y) denotes the
evaluation of the linear mapping T'(z) at y.

Motivated and inspired by the above work, the purposes of this thesis are
to extend, to generalize, to improve existence theorems of generalized equilibrium
problems and the iteration schemes of some nonlinear operators for finding a com-
mon element of the solutions of generalized vector equilibrium problems and fixed
point problems.

This thesis is divided into 5 chapters. Chapter 1 is an introduction to the
research problem. Chapter 2 is dealing with some preliminaries and give some use-
ful results that will be duplicated in later Chapter.

Chapter 3 and 4 are the main results of this research. Precisely, in section
3.1, we create and prove a strong convergence theorem by using the hybrid itera-
tive algorithm which was proposed by Yao et al. [Y.H. Yao, Y.C. Liou, G. Marino,
A hybrid algorithm for pseudo-contractive mappings, Nonlinear Anal. 71 (2009)
4997-5002] for finding the common element of fixed point set of a Lipshitz pseudo-
contraction and the set of equilibrium problem in Hilbert spaces. In section 3.2, we
construct a sequence by using some appropriated closed convex sets based on the
hybrid shrinking projection methods to find a common solution of fixed point prob-
lems of a Lipschitz pseudo-contraction and generalized mixed equilibrium problems
in Hilbert spaces. In section 3.3, we study the new type of mappings called G-quasi-
strict pseudo-contractions and to create some iterative projection techniques to find
some fixed points of the mappings. Moreover, we also find the significant inequality
related to such mappings in the framework of Banach spaces. By using the ideas
of the generalized f-projection, we propose an iterative shrinking generalized f-
projection method for finding a fixed point of G-quasi-strict pseudo-contractions.

Section 4.1, we introduce and consider two new mixed vector equilibrium
problems i.e., a new weak mixed vector equilibrium problem and a new strong
mixed vector equilibrium problem which are combinations of certain vector equi-

librium problems and vector variational inequality problems. We prove existence



results for the problems in non-compact setting.

The conclusion of research is in Chapter 5



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapter.

2.1 Banach spaces and Hilbert spaces

Definition 2.1.1. [60] A norm on a (real or complex) vector space H is a real-
valued function on H whose value at an & € H is denoted by ||z|| and which has
the properties

(N1) [l]l = 0

(N2) |zll=0z=0

(N3) Nlew]| = |alfl=|l

(N4) iz +yll < [l + |yl

here = and y are arbitrary vectors in H and « is any scalar. A normed space H is

a vector space with a norm defined on it which is denoted by (H, || - ||) or simply

by H.
Definition 2.1.2. [60] A Banach space is a complete norm space.

Definition 2.1.3. [60] A sequence {z,} in a normed space H is said to be a Cauchy

Sequence if for every ¢ > 0 there is a positive integer N such that

|Zm — zn|| <& for every m,n > N.



The following definitions and lemmas are the concept of the continuous

mappings.

Definition 2.1.4. [60] Let X and Y be normed spaces over the ficld K and T :
X — Y be a mapping. A mapping T is said to be continuous at o € X, if for
every € > 0 there exists § > 0 such that ||T'(z) —T(zo)|| < e for allz € X satisfying

|z — 2o|| < 8. Furthermore, a mapping T is continuous, if T' is continuous at every

T € X.

Lemma 2.1.5. [60] A mapping T of a normed space X into a normed space Y
is continuous if and only if the inverse image of any open subset of ¥ is an open

subset of X.

Definition 2.1.6. A mapping T : C' — €' is said to be closed if for any sequence

{zn} € C with z, — %, and Tz, — y, then Tz = v.

Lemma 2.1.7. [60] A mapping T of a normed space X into a normed space Y is

continuous at a point & € X if and only if z, — g implies T'z,, — Tx,.

Definition 2.1.8. [60] Let X and Y be vector spaces over the field K.

(i) A mapping T : X — Y is called a linear operator if T(x +y) = Ta + Ty and
T(az) = aT's, for all z,y € X, and for all a € K.

(i) A mapping T : X — K is called a lnear Junctional on X if T is a linear

operator.

Definition 2.1.9. [60] Let X and Y be normed spaces over the field K and 7T :
X —'Y a linear operator. A mapping 7T is said to be bounded on X , if there exists

a real number M > 0 such that | T'(z)|| < M||z|, for all z € X

Let E be a real Banach space, and E* the dual space of E. Let C be

a nonempty closed convex subset of E. Let © : C x C — R be a bifunction,



¢ : C — R be a real-valued function, and A : ¢ — E* be a nonlinear mapping.

The generalized mixed equilibrium problem, is to find z € ¢ such that
O (z,y) + (Az,y — &) + p(y) — p(z) >0, VyeC. (é.l.l)
The solution set of (3.2.1) is denoted by GM EP (0,4, ), ie.,
GMEP (©,A,p) ={z € C: 0 (z,y)+ (Az,y — z) + e(y) —p(z) >0, VyeC}

If A =0, the problem (3.2.1) reduces to the mixed equilibrium problem for ©,
denoted by M EP (O, ), which is to find z € C such that

O (z,y) +¢(y) —p(z) >0, VyeC.

If© = 0, the problem (3.2.1) reduces to the mixed variational inequality of Browder

type, denoted by VI (C, A, ), which is to find © € C such that
(Az,y — ) + ¢(y) — p(x) > 0, Vy e C.

If A= 0 and ¢ = 0, the problem (3.2.1) reduces to the equilibrium problem for ©
(for short, EP), denoted by EP (©).

Let E be a smooth Banach space and let E* be the dual of E. The function
¢: E x E — R is defined by

¢, 2) = llyll* — 24y, J) + ||=” (2.1.2)

for all ,y € E, which was studied by Alber [36], Kamimura and Takahashi [61],
and Reich [62], where J is the normalized duality mapping from E to 25" defined
by

J(@)={f € B : (x, f) = ||z = | £]I"}, - (2.1.3)

where (-, -) denotes the duality paring. It is well known that if E is smooth, then

J is single valued and if E is strictly convex, then J is injective (one-to-one).
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Lemma 2.1.10. [1] Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let © be a bifunction of C x C into R

satisfying (A1) - (A4). Let r > 0 and = € E. Then, there exists z € C' such that

O(z,y) + %(y —2z,Jz—Jz) > 0for all y € C.

The proof of the following lemma appears in [63, Lemma 2.8].

Lemma 2.1.11. Let C be o closed convex subset of a uniformly smooth, strictly
convez and reflezive Banach space E and let © be a bifunction from C x C to R
satisfying (A1) - (A4). Forr > 0 and = € E, define a mapping T : E — C as

follows:
Tix={z€C:0(zy)+ %(y —2z,Jz— Jz) >0, for ally € C}

for all x € C. Then, the following statements hold:

(1) T, is single-valued;

(it) T, is a firmly nonezpansive-type mapping, i.e., for any =,y € H,

(Tox — Ty, JTx — JThy) < (Tra — Toy, Jz — Jy);
(i6) F(T,) = EP(O);
(vi) EP(O) is closed and convez.

Lemma 2.1.12. [64] Let C be a closed convex subset of a smooth, strictly convex
and reflexive Banach space E, Let A : C — E* be a continuous and monotone
mapping, ¢ : C — R be a lower semi-continuous and convex function, and © be a
bifunction of C'x C' to R satisfying (A1) - (A4). For r > 0 and & € E. Then, there

exists u € C such that

1
e(zsy) + (Auay - ’l&) + (P(y) — (la(u) + ;(y C Ju — J:B): v Y€ C.



i |

Define a mapping K, : C — C as follows:

Ki(z) = {ueC:0(uy)+ (Au,y —u) + ¢(y) — o(u) + 2 (y —u, Ju — Jz)
<0,Vy € C)

for all z € C. Then, the following conclusions hold:

(i) K, is single-valued;

(ii) K, is a firmly nonexpansive-type mapping, i.e., for any z,y € E,

(Kyz — Ky, JK,x — JKy) < K,z — Ky, Jx — Jy);
(ii) F(K,)=GMEP (8, A, y);
(iv) GMEP (0, A, ) is closed and convex;
(v) 60, Kr2) + $(K,2,2) < $(p, 2), Vp € F(K,), 7 € E.

Remark 2.1.13. In the framework of Hilbert spaces, it is well known that J = I

and then K, is firmly nonexpansive.

Definition 2.1.14. [65] A Banach space F is said to be strictly conves if &L < 1

for all z,y € E with ||z|| = |ly|| = 1 and & # y.

Definition 2.1.15. [66] A Banach space E is said to be uniformly convez if for each
0 <& < 2, there is § > 0 such that for all z,y € E, the condition lz|| = |ly]| = 1,

and ||z — y|| > ¢ imply || 22| < 1—4.
Definition 2.1.16. [66] Let E be a Banach space. Then the modulus of convexity
of E, :0,2] — [0,1] defined as follows:

Tty
2

8(¢) = inf { 1-

el < 1yl < 1,z — gl > }

Theorem 2.1.17. [66] Let £ be a Banach space. Then E is uniformly convex if

and only if §(¢) > 0 for all € > 0.
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Definition 2.1.18. Let S(E) := {x € E : ||z| = 1} be the unit sphere of E. Then

a Banach space E is said to be smooth provided

ot tyl = o]
t—0 t

(2.1.4)

exists for each x,y € S(E). In this case, the norm of E is said to be Gateauz
differentiable. The norm of E is said to be Fréchet differentiable if for each z €
S(E), the limit (2.1.4) is attained uniformly for y € § (E). The norm of E is said
to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the
limit (2.1.4) is attained uniformly for z,y € S(E).

A Banach space F is said to have the property (K) (or Kadec-Klee property)
if for any sequence {x,,} C E, if z, — 2 and ||z,|| — lz|, then ||z, — z|| — 0. We
also know the following properties are true (see [67-69] for details):

(i) if B is smooth(< E* is strictly convex), then J is single-valued;

(i) if B is strictly convex(<> E* is smooth), then J is one-to-one (i.e., J(z) N
J(y) =0 for all @ # y); _

(iii) if £ is reflexive(¢> E* is reflexive), then J is surjective;

(iv) if E* is smooth and reflexive; then J= : B* — 2 is single-valued and demi-

continuous(i.e. if {«}} C E* such that & — z*, then J zz) — T (z));

1

(v) If E is a reflexive, smooth and strictly convex Banach space, J*: E* — F is

the duality mapping of F*, then J~! = J' JIP =1, IS = I
(vi) E is uniformly smooth if and only if E* is uniformly convex;
(vii) if £ is uniformly convex, then

(i) it is strictly convex;

(ii) it is reflexive;
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(iii) satisfy the property (K);

(viii) if E is a Hilbert space, then J is the identity operator.

It is also very well know that if C is a nonempty closed convex subset of a
Hilbert space H and Pg : H — C is the metric projection of H onto C, then P is
nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it
is not available in more general Banach spaces. Next, we assume that E is a real

smooth Banach space. Let us consider the functional defined as [70, 71] by
H(z,y) = ||lo||* = 2(z, Jy) + 3> for z,y € E. (2.1.5)
Observe that, in a Hilbert space H, (2.1.5) reduces to ¢(z,y) = le—yl|?, =,y € H.
The generalized projection Il : E — C'is a map that assigns to an arbitrary

point € X the minimum point of the functional $(z,y), that is, gz = Z, where

% is the solution to the minimization problem

&(Z, z) = minyecd(y, z), (2.1.6)

existence and uniqueness of the operator Ilg follow from the properties of the
functional ¢(z,y) and strict monotonicity of the mapping J (see, for example,
(35, 36, 61, 65, 69]). In Hilbert spaces, llc = Pe. It is obvious from the definition

of function ¢ that

(lyll = Nl=1)? < bz, v) < (il + |lll)?

and

(}5(3), y) = ¢(1"= Z) + ¢(Z, y) 3 2(1’ - Z, Jz — Jy)

for all o,y € E.

Let C be a closed convex subset of . A mapping 7' from C into itself is
said to be a quasi-strict pseudo-contraction if there exists a constant x € [0, 1] and
F(T) # 0 such that ¢(p, Tw) < ¢(p, z) + Ke(2, Tx) for all z € C and p € F(T).
In particular, T is said to be quasi-nonexpansive if £ = 0 and 7T is said to be

quasi-pseudo-contractive if x = 1.
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Example 2.1.19. Let E be a reflexive, strictly conver and smooth Banach space.
Let A C X X X* be a mazimal monotone mapping such that A~'0 is nonempty.
Then, J, = (J+rA)™' J is a closed and quasi-strict pseudo-contraction mapping

from E onto D(A) and F(J,) = A~10.

Example 2.1.20. Let E be the generalized projection from a smooth, strictly convez
and reflezive Banach space E onto a nonempty closed convex subset C' of E . Then,

¢ is a closed and quasi-strict pseudo-contraction from E onto C with F(Ilg) = C.

Next, we recall the concept of the generalized f-projection operator, to-
gether with its properties. Let G : C'x E* — RU {400} be a functional defined as

follows:

G(&,0) = lIEN* — 2¢¢, o) + llepll® + 2p£(£), (2.1.7)

where £ € C,p € E* p is a positive number and f : C —» RU {+o0} is proper,
convex and lower semicontinuous. It is obvious from the definition of function @

that
Gz, Jy) = G(z, J2) + G(z, Jy) + 2(z — z,Jz — Jy) — 2pf(2) (2.1.8)
for all z,y,z € C.
From the definitions of G and f, it is easy to see the following properties
are true:
(i) G(&,¢) is convex and continuous with respect to ¢ when € is fixed;

(ii) G(&, ) is convex and lower semicontinuous with respect to £ when ¢ is fixed.

Definition 2.1.21. [38] Let E be a real Banach space with its dual E*. Let C'
be a nonempty closed convex subset of E. We say that ﬂé((p) : B* — 2 is a

generalized f-projection operator if

hip = {u €eC:G(u,p) = Inf G(¢, sa)} , VpeL”
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For the generalized f-projector operator, Wu and Huang [38] proved the
following basic properties.
Lemma 2.1.22. [38] Let E be a real reflexive Banach space with its dual E* and
C is a nonempty closed convex subset of E. The following statements hold:
(1) ﬁé.((p) is a nonempty closed convex subset of C for all ¢ € E*

(i) if £ is smooth, then for all ¢ € E*,z € wl(p) if and only if
(@ ~y,0 = Ja) +pf(y) — pf(z) 20, VyeC;

(i) if E is strictly convex and f : C — R U +oo is positive homogeneous (i.e.,
f(tw) = tf () for all t > 0 such that tz € C where € C), then 77 is a single

valued mapping.

Recently, Fan et al. [37] shew that the condition f is positive homogeneous

of (#72) in Lemma 2.1.22 can be removed.

Lemma 2.1.23. [37] Let E be a real reflexive Banach space with its dual E* and
C' is a nonempty closed convex subset of E. If E is strictly convex, then 'rré is

single-valued.

Recall that the operator J is a single-valued mapping when E is a smooth
Banach space. There exists a unique element ¢ € E* such that @ = Jz for each

x € E. This substitution for (2.1.7) gives

G(&, Jz) = [IElI* — 2(¢, Jw) + ||z + 2p£ (£). (2.1.9)

Now we consider the second generalized f-projection operator (2.1.9) in a Banach

space.

Definition 2.1.24. Let E be a real smooth Banach space and C be a nonempty

closed convex subset of E. We say that IT/, : E — 2€ is a generalized f-projection
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operator if

e = {u € C:G(u,Jz) = Eilé}éG(f, J'c)} , Vz€E.

In order to obtain our results, the following lemmas are crucial to us.

Lemma 2.1.25. [72] Let {a,} be a sequence of real numbers. Then, lim @, = 0
n—co
if and only if for any subsequence {a,,} of {a,}, there exists a subsequence { a,,,.j}

of {an,} such that lim a,, =0.
joeo

Lemma 2.1.26. [73] Let E be a real Banach space and f : E — R U {400} be a
lower semicontinuous convex functional. Then there exist z* € E*and a € R such

that
f(z) > (z,2")+a, VYze€eE.

Lemma 2.1.27. [61] Let E be a uniformly convex and smooth Banach space and
let {yn}, {22} be two sequences of E. If ¢(y,, 2,) — 0 and either {y,} or {z.} is

bounded, then ¥, — 2z, — 0.
Lemma 2.1.28. [74] Let E be a real reflexive and smooth Banach space and let
C be a nonempty closed convex subset of E. The following statements hold:

(i) Hé:z: is a nonempty closed convex subset of C for all z € E;

(ii) forallz € E, % € Héa; if and only if

(& —y,Jo—Ji) +pf(y) — pf(&) >0, VyeC; (2.1.10)

(iii) if E is strictly convex , then Hé:c is a single valued mapping.

Lemma 2.1.29. [74] Let E be real reflexive and smooth a Banach space, let C' be

a nonempty closed convex subset of E, and let x € E, % € Hém Then

oy, &) + G(Z, Jz) < G(y, Jz), VyeC. (2.1.11)
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Definition 2.1.30. A mapping T : C — C is said to be G-quasi-strict pseudo-
contraction if F(T') # 0 and for p € F(T), then there exists & € [0,1) such that

G(p, JTz) < G(p, Jz) + K(G(z, JTx) — 2pf(p)), Vz€C. (2.1.12)

It is obvious from above definition that (2.1.12) is equivalent to

¢(p, Tx) < ¢(p, x) + kp(x, Tx) + 26p(f(z) — f(p)), Vo € C and p € F(T).

Before providing some examples of this mapping, let us consider the follow-

ing remark.

Remark 2.1.31. Let o be any real number be such that « € (=00, —1] U [1:2).

Then z2=t= € [0,1).

Proof.  Since v < —1 or & > 1, it is easy to obtain that a® — 1 > 0. Notice that

(1—a@)®+2> 2. Then ﬁ*&i 2 0 for any o € (—o0, ~1]U[1,2). It remains to

o1

show that T < 1. It can be found that if & < 2 or a < —1, then
0<2(2-a)=14+(1—2a)+2. (2.1.13)

Adding to both sides of (2.1.13) with a?, we obtain
?<1+(1-20+0?)+2=1+(1-a)?+2.

By a simple calculation, we find that (—1% < 1. This completes the proof. O

Example 2.1.32. Let E be a smooth Banach space, o € (—00,—1] U [1,2) and
Ty : E — E be a mapping defined by Thx = ax for all x € E. Then, T, is a

G-quasi-strict pseudo-contraction.

Proof. It is easy to see that F(T,) = {x € E : Tyx = a} = {0}. By Remark

2.1.31, we can find « € [0,1) such that (1_(—12531—%_2 < k. Moreover, it is found that

¢(0,Tz) = [[0]]* - 2(0, J (a@)) + [low|* = &?[|al|* = (1 + o® — 1) ||a|?
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B (1-a)’+2 of — 27

o (2522) )
_ —a)? (@*—1) (a® —1) 2|2
—(1+(1 )(1_a)2+2”(1_a)2+2)”-”

<1+ (1 —a)’k+26) ||zl> = 1+ (1 - 20 + ?) & + 2) ||z||?

= [lzlI” + & (lll* - 2|2 ]* + ?||=]1%) + 26l
=¢(0,2) + & (l=]* - 2 (e, J (o)) + [laz]?)
+25(1) ([ll|* - [/0])

=9 (0,2) + £ ([2|* - 2 (e, J (Tax)) + | Tuz|)
+2r(1) ([l - [|o]|*)

= ¢ (0,2) + k¢ (2, Tuz) + 26(1) (|lz]|* - [|0]%)

for all z € E, where p = 1 and f = || - ||°. Furthermore, if {z,} C E such that
T, — %, then we have Tyx,, = az, — az. Notice that T,z = az. This means that

T, is a closed and quasi-strict G-pseudo contraction. This completes the proof. [

Now, we recall the definitions of Hilbert spaces and also the fundamental

properties of Hilbert spaces.

Definition 2.1.33. [60] An inner product on H is a mapping of H x H into the
scalar field K of H; that is, with every pair of vectors z and y there is associated
a scalar which is written by (z,y) and is called the inner product of z and y, such
that for all vectors z,y, z and scalars a we have

(IP1) (x +y,2) = (x,2) + (y, 2);

(IP2) (az,y) = alz,y);

(IP3) (z,y) = (y,z);

(1P4)
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Definition 2.1.34. [60] The space H is said to be complete if every Cauchy se-

quence in H converges (that is, has a limit which is an element of H ).

Definition 2.1.35. A Hilbert space is an inner product space which is complete

under the norm induced by its inner product.

Definition 2.1.36. A sequence of points z,, in a Hilbert space H is said to converge
weakly to a point x in H if lim, (%, y) = (x,y) for all y € H. The notation

Tp, — ¥ is sometimes used to denote this kind of convergence,

An inner product space is a vector space H with an inner product defined

on f. Let H be an iner product space. For each z in H, we define its norm [l
by ll2]l = /(2.

Lemma 2.1.37. [72](The Schwarz inequality). Let H be an inner product

space and let = and y be elements in H. Then, the following holds:

Iz, )| < ll[lllyll-

The following article is the properties of the inner product which need in
this dissertation. The following equalities hold for all Ty :
le+ul* = llel®+[lyl? + 2(z, y),
le=wll* = ll=I” + [lyl* - 2(z, y).
The following lemma provides some useful properties of firmly nonexpansive

mappings on Hilbert spaces.

Lemma 2.1.38. [75, Lemma 2.5] T is firmly nonexpansive if and only if (I — T)

is firmly nonexpansive.

Let H be a real Hilbert space with inner product (-,-) and norm || - || and
let C be a closed convex subset of H. For every point @ € H there exists a unique

nearest point in C, denoted by Py(z), such that

e = Feell < llz -yl Vyec,
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where F¢ is called the metric projection of H onto C. We know that P is a
nonexpansive mapping. It is also known that H satisfies Opial’s condition, i.e., for

any sequence {z,} with z,, — z, the inequality
liminf ||z, — z|| < liminf ||z, — y||
n—oeo n—oo
holds for every y € H with y # =.

For a given sequence {x,} C C, let wy(z.) = { : 3xn, — 2} denote the

weak w-limit set of {x,}.

Now we collect some lemmas which will be used in the proof of the main
result in the next section. We note that Lemma 2.1.39 and Lemma 2.1.40 are well

known.

Lemma 2.1.39. Let H be a real Hilbert space. There holds the following identities

(@) llz =yl = l2l* = llyll* = 2(v —y,) Va,y € H.

(ir) 1Az + (1 = Xyl = All=[|* + (1 = Mlyll> — A1 = N||lz — yl|* Yo,y € H and
A€ 0,1]
Lemma 2.1.40. Let C be a closed convex subset of real Hilbert space H. Given

x € H and z € C. Then z = Pgx if and only if there holds the relation

(x—2zy—2)<0 VyeCl.

For solving the equilibrium problem for a bifunction F': C x C — R, let us
assume that F'satisfies the following condition:
(Al) F(z,z) =0 for all z € C,
(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;
(A3) for each z,y,z € C,
limgjoF'(tz + (1 — t)z,y) < F(z,y);

(A4) for each z € C, y — F(x,y) is convex and lower semicontinous.

The following lemma appears implicitly in [1].
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Lemma 2.1.41. [1] Let C be a nonempty closed convex subset of a Hilbert space
H and let I be a bifunction of C x C into R satisfying (A1) - (A4). Let 7 > 0 and
x € H. Then, there exists z € C such that

F(z,y) + 2y—2,2—2) >0forally € C.

The following lemma was also given in [5].

Lemma 2.1.42. [5] Assume that F': C' x C' — R satisfy (A1) - (44).

Forr > 0 and € H, define a mapping T : H — C as follows:
1
To={z€C: F(5y)+ {y—27-2) 20,V € C}

for all x € H. Then, the following statements hold:

(i) T, is single-valued;

(ii) T is firmly nonexpansive, i.e., for any z,y € H,

T2 — Toyll* < (Tx — Ty, z — y);
(i) F(T)) = EP(F);
(iv) EP(F) is closed and convex.

Lemma 2.1.43. [76] Let H be a real Hilbert space, C' a closed convex subset of

Hand T : C — C a continuous pseudo-contractive mapping, then

(i) F(T) is closed convex subset of C;

(i) I —T is demiclosed at zero, i.e., if {n} is a sequence in C such that z, — z

and (I — T)z, — 0, then (I — T)z = 0.

Lemma 2.1.44. [70] Let C be a closed convex subset of H. Let {2} be a sequence
in H and v € H. Let ¢ = Pgu. If {z,} is such that wy(,) C C and satisfies the

condition
@0 —ull < lu—q|| ¥neN.

Then z,, — q.
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2.2 Lipschitzian and convexity

Definition 2.2.1. [72] Let K be a nonempty subset of H. A single-valued mapping

T : K — H is said to be a nonezpansive mapping if
Tz — Ty|| < ||e—yl|, forall zvy¢e K.

Definition 2.2.2. [77] A single-valued mapping T : H — H is said to be a ¢-

Lipschitzian mapping if there exists a real number ¢ > 0 such that
Tz — Ty|| < €llz —yl|, forall z,y e H.

Definition 2.2.3. [72] Let K be a subset of H. A set K is called to be convez if the
line segment joining any two points z and y in K is contained in K : algebraically,

for each z,y € K and A € [0,1] such that
Az+(1- Ay e K. (2209

Definition 2.2.4. [78] The smallest convex subset containing & C H is called a

conves hull of K.

Definition 2.2.5. [79] Let C be a nonempty subset, of a real vector space H.

1. The set C' is called a cone, if x € C, XA > 0 then \z € C.
2. A cone C is called pointed, if C'n (-=C) = {0}.
3. A cone is convex, if C +C C C.
4. A cone C is proper if and only if 0 ¢ C.
Let X be a Hausdorff topological vector space, K be a subset of X, and

J 1 K x K — R be a mapping with f(z,2) = 0. The classical, scalar-valued

equilibrium problem deals with the existence of # € K such that

f(#y)>0; WyeKk



23

Moreover, in the case of vector valued mappings, let Y be a another Hausdorff
topological vector space, C' C Y a convex cone with nonempty interior. Given a

vector mapping f: K X K — Y, then the problem of finding & € K such that
f(@,y) ¢ —intC; VyeK,

is called weak equilibrium problem and the point # € K is called weak equilibrium
point, where intC' denotes the interior of the cone C in Y. Remark that C C Y
is a pointed closed convex cone with nonempty interior i.e., intC' # (). The partial
ordering induced by C' on Y is denoted by <¢ and is defined by = <¢ v if and only
ify—zeC.

Definition 2.2.6. Let g : X — Y be a mapping. Then g is said to be C-convex,
if for all z,y € K and A € [0,1]

9(Az + (1 - A)y) <¢ Ag(z) + (1 = A)g(y),
which implies that
9(Az + (1 = AN)y) € Ag(z) + (1 — Ng(y) - C.

Definition 2.2.7. A mapping ¢: K — Y is said to be

1. lower semicontinuous with respect to C' at a point % € K, if for any neigh-
borhood V' of g(zo) in Y, there exists a neighborhood U of zy € X such that
gUNK)CV+C,

2. upper semicontinuous with respect to C' at a point zy € K, if gUNK) C
V-C;

3. continuous with respect to C' at a point x¢ € K, if it is lower semicontinuous

and upper semicontinuous with respect to C' at that point.

Remark 2.2.8. If g is lower semicontinuous, (upper semicontinuous and continu-
ous) with respect to C' at any point of X, then g is lower semicontinuous, (upper

semicontinuous and continuous) with respect to C on X, respectively.
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Definition 2.2.9. A mapping f: K x K — Y is said to be C-monotone, if for all
z,y€ K

flx,y) + f(y,z) € —C.

Lemma 2.2.10. [80] If g is a lower semicontinuous mapping with respect to C,
then the set
{z € K :g(z) ¢ intC}

is closed in K.

Lemma 2.2.11. [81] Let (¥,C) be an ordered topological vector space with a

pointed closed convex cone C. Then for all z,y € Y, we have

L. y—z €intC and y ¢ intC imply z ¢ intC;

2. y—x € C and y ¢ intC imply z ¢ intC:;

3. y—xz € —intC and y ¢ —intC imply z ¢ —intC;
4. y—xz € —C and y ¢ —intC imply x ¢ —intC.

Definition 2.2.12, [82] Consider a subset K of a topological vector space and a
topological space Y. A family {(C;, Z;)}ier of pair of sets is said to be coercing for

a multivalued mapping F' : K — 2Y if and only if

(i) for each i € I, C; is contained in a compact convex subset of K and Z; is a

compact subset of Y
(ii) for each 4,5 € I, there exists k € I such that Ci;UC; C Cy;

(iii) for each ¢ € I, there exists k € I with Neeg, F(@) € Z;.
Definition 2.2.13. Let K be a nonempty convex subset of a topological vector

space X. A multivalued mapping F : I — 2¥ is said to be KKM mapping, if for

every finite subset{z; };c; of K,

Co{z;:ie I} C UF(-’C;'L

el



where Co{z; : ¢ € I'} denotes the convex hull of {x;}ic;.

Theorem 2.2.14. [82] Let X be a Hausdorft topological vector space, Y a convex
subset of X; K a nonempty subset of ¥ and F' : K — 2¥ a KKM mapping with
compactly closed values in Y (ie., for all © € K, F(z) N Z is closed for every
compact set Z of Y). If F' admits a coercing family, then

ﬂ F(z) # 0.

zeK

Condition(C): We say that the cone C satisfies Condition(C), if there is a

pointed convex closed cone C' such that C'\ {0} C intC.

Lemma 2.2.15. Let E be a Banach space and § # C C E be a closed convez set,

a€R and
K={veC:a<g)},

where g is upper semicontinuous and concave functional. Then the set K is closed

and convezx.

Proof.  Firstly, we wish to show that K is closed. Let {x,} C K be such that
&n — € C. Thus we have a < g(z,) for all n € N and then a < limsup g(z,,) <
9(w). Therefore, # € K and hence K is closed. For the convexity ogl;(,o,owe notice
that for all z,y € K and ¢ € [0,1], we have tz + (1 — t)y € C, g(z) > q, g(y) > a,

and then the concavity of g allows
g(tz + (1 —t)y) = tg(z) + (1 - t)g(y) > ta+ (1 - t)a = a.

This shows that K is convex. ]



CHAPTER III

ITERATIVE APPROXIMATIONS VIA HYBRID
ALGORITHMS FOR PSEUDO CONTRACTION

TYPE MAPPING

3.1 Strong convergence by a hybrid algorithm for solving equilibrium
problem and fixed point problem of a Lipschitz pseudo-contraction

in Hilbert spaces

In this work, we assume that H be a real Hilbert space with inner product (-, -) and
norm | - ||. Let C be a nonempty closed convex subset of H and F: C' x C —» R
be a bifunction, where R is the set of real numbers. The equilibrium problem (for

short, EP) is to find 2 € C such that
F(z,y) 2 0,Yy € C. (3.1.1)

The set of solution (3.1.1) is denote by EP(F'). Given a mapping 7 : C — H and
let F(x,y) = (T@,y — ) for all &,y € C. Then, x € EP(F) if and only if x € C' is
a solution of the variational inequality (Tz,y — ) > 0 for all y € C.

Recall, a mapping 7" with domain D(T') and range R(T) in H is called

nonexpansive if
1Tz - Tyl| < ||z - yll, Ve, y € D(T).

The mapping T is said to be a strict pseudo-contraction if there exists a

constant 0 < & < 1 such that

IT2 = Tyll* < llo = ylI* + &I = T)z — (I - T)y|*,Va,y € D(T).  (3.1.2)
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In this case, T' may be called as k-strict pseudo-contraction mapping. In the case

that k = 1, T is said to be a pseudo-contraction, i.e.,

1Tz =Tyl < lle = yl* + I/ - T)x — (I - T)yl*, Y,y € D(T).  (3.1.3)
It is easy to see that (3.1.3) is equivalent to

(z—y,(I =T)z — (I - T)y) = 0,Yz,y € D(T).

By definition, it is clear that
nonexpansive = strict pseudo-contraction = pseudo-contraction.

Yao et al. [83] introduced the hybrid iterative algorithm which just involved
one sequence of closed convex sets for pseudo-contractive mappings in Hilbert

spaces as follows:

Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T': C — C be a pseudo-contraction. Let {a,} be a sequence in (0,1). Let zo € H.

For €y = C and z; = P, (o), define a sequence {,} of C as follows:

’

Un = (1 - a’n)ﬂ;n 11 ansz

. Cn+1 = {'U 5 Gﬂ . ”a'n (I T T)yn.||2 < 20, (mn -, (I - T)yn}} ) (314)

| Tur = Peop(20).

Theorem 3.1.1. [83] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T': C' — C' be a L-Lipschitz pseudo-contraction such that F(T) # @.
Assume the sequence {a,} C [a,b] for some a,b € (0, L#H) Then the sequence

{z.} generated by (3.1.4) converges strongly to Pr(r) (o).

Theorem 3.1.2. [83] Let C be a nonempty closed convex subset, of a real Hilbert
space H. Let T': C' — C be a L-Lipschitz pseudo-contraction such that F' (T') £
Assume the sequence {a,} C [a,0] for some a,b € (0, £r7). Then the sequence

{z.} generated by (3.1.4) converges strongly to Pr(r) (o).
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Now, by employing (3.1.4) we create a hybrid algorithm to find the common
element of fixed point set of a Lipshitz pseudo-contraction and the set of equilibrium

problem.

Theorem 3.1.3. Let C be a nonempty closed convex subset of a real Hilbert space
H, T :C — C be L-Lipschitz pseudo-contraction and F be a bifunction of C x C
into R satisfying (A1) — (A4) with F := F(T) N EP(F) # @. Let zo € H. For
Ci1 = C and 21 = Pg, (), define a sequence {x,} of C as follows:

'

Yo = (I—on)an+ anT'z,
Zn = (1= 0)2n+ Botn,
Up € C such that F(u,,y) + &(y — Un, Uy, — Zy) 20, forally € C,
Copr = {v€Cn:llanl = T)gnll? + (1 — Bn)ll@n — ual®
L 200y —v, (I — Tyn) +4{xn — v, (I — T)) 20 — (T — up))
+2anSn Ll = vallllyn — @ + 0 (I — Tyl

+0ullTn — wnl|* + Bl (I = T, )znl*}

Tnl = PC',—,_H (:UU)

(3.1.5)

Assume that {an}, {On} and {r,} are sequences such that
(D0<a<apb< 77 <1forallneN,
(2) 0 < B, <1 for all n € N with lim,,_,o, B, = 0,
(3) r, > 0 for all n € N with liminf,_,o 7, > 0.

Then {x,} converges strongly to Pg(zo).

Proof. By Lemma 2.1.43 (i) and Lemma 2.1.42 (iv), we see that F(T) and EP(F)
are closed and convex, then F is also. Hence P is well defined. Next, we will prove
by induction that Fc C., for all n € N. Note that F ¢ C = C1. Assume that

FcC Cy. holds for some k > 1. Let p € F , thus p € C}.. We observe that
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lzx — p — a(I — Tyl

s = pII* = llow (I — T)yull* — 200 (T — Ty, 1 — p — (I — Ty
e = plI* = llaw(T — T)yell* — 20 {(I — Ty — (I — T)p, v — 1)
=20 (I — 1)y, xr — Y — (I — T)yi)

s = pII* = llee(Z = T)yill® — 260 (T — Ty, 21 — i — (T — Ty
ok = pIP = (2 = ) + (g = 4+ (L = D) |

=20y (I — Ty, xr — Y — (I — Ty

Mo = 21> — lloe = ell® = llyw — e + (I — Ty

—2{@k — Y, Yo — T + (I — Typ,)

=20 (I — Ty, wr — yr — ax(L — Ty

llzx — P|[2 — || — L‘J’k||2 — lyx — @k + (I — T)yk||2

2| (o = yr — a(l — T)yr, or — yo — ar(d — T)y) |. (3.1.6)

Consider the last term of (3.1.6) we obtain

V/AN

V/AN

| (@ — g — (T — T)yr, yre — 2k + (L — T)yie) |

k| (mk — Tz — (I — T)yn, v — 21 + (I — Ty |

ol (@ — Tap + Tay — Tz — (I — T)yx, Yo — o + an(I — T)yi) |
ag| (I = T)ax — (I = T)yry Yo — 21 + (I — T)y)

+ Tz — T,y — wr + (I — Ty |

ar(L+ Dllzk — yellllys — 21 + (X — T)ys|

+or Lz — 2 l||lye — @x + an(I — T)us|

ak(L + 1)
2

arfi Lz — willllyr — 2|l + axl|(I — Tyl (3.1.7)

(lze = vell® + llyx — 2% + oI — T)i|?)
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Substituting (3.1.7) into (3.1.6), we obtain

lze —p — ax(I = T)yll®> < Nl — plI* = Nl — wxll® = llye — 2 + (T = T)yel|?
(L + 1) (o — yell?
Hlye — @ + ar(I — T)yel*)
+2o0 B L|lwr — wrellllys — x4+ (I — Tyl
< Nlwe =Pl + 208k Ll — welllys — 2|

+ou|( = Ty (3.1.8)

Notice that
llzr—p—an(I=T)ye||* = ||zwe—pl|°—2ax {zx — p, (I — T)ye)+llex(T=T)yell*. (3.1.9)

Therefore, from (3.1.8) and (3.1.9), we get

lax(I=T)yx|® < 2ax (xx — p, (I — T)y) +20085 Ll — e || |y — 2o (T—T )y ||

(3.1.10)

On the other hand, we found that

ok — p — Bre(X = Ty, ) 2|
= |lzx —pl* = 18I = T2l — 26k (I — T )2y wi — p — BT — Tr,)2)
= |lzx = pll* = 18 = T)2ll® = 26k (L = T )2 — (I = T, ), 21 — )
=26 ((I = T3, 2y i — 21 — Br(d — Ty, )2)
< lze — plI? = 18 — T zel? — 2 (Br(I — T, )20, T — 20 — Prld — T )2)
= |lex —pl* = 18:( — T )2e?
+ (18I = T )2ll® = Nl — 2| + o — 2 — BT = T, )2el|?)
= (@ — 2) + (2 — PI® = llox — 2zl® + 18I — Tr)awe — Bu(I — Tzl
= |lox — zll® + 2 (@ — 26,26 — ) + |2 — Pl — ll2r — ]|

HIB(I = Ty )a — Bl — Tr,)ze”
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= 2(zk — 2, (2 — @) + (2 — ) + (1 = Be)(@x — p) + (T — p)II
HIBk(I = T )z — Bl — Tr) 2

2 (e — p, Bl — Tr)wn) — 2llww — 2l|* + Bl Ty — pII®

—Br(1 = Be)llwx — Toaell® + (L = Bi)llww — pl|* + Bellew — 2|

2 (2 — 0, Br(I — T )wa) + Bellew — plI” + (1 = Bi) |k — pII?

—Bi(1 = Bl — T el + BN — T ||

= 2(z —p, Bl — Tr)ma) + |l = plI* = AL — Bi)llew — well®

B¢l = ur . (3.1.11)

/AN

A

Notice that

ek —p =B =T, ) 2| = llwe—pIP = 2Bs (wn = p, (I = T )z} + B (T =Ty )2l

(3.1.12)

Combining (3.1.11) and (3.1.12) and then it implies that

Be(1 = B)llzr —wl> < 4Bk (mr — p, (I — T )zn — (@ — wi)) + Billww — w)?

+BI - T)all®.
Since 3, > 0 for all n, so we get

(1= Bllze —wel® < 4@ —p, (L — Tp)z — (mr — ux)) + Brllor — wl)?

+Bell(I = Tr) ]| (3.1.13)

It follows form (3.1.10) and (3.1.13) we obtain
llow( = T)yiell* + (1 = Bi)llwr — wxll®
< 20 (zk —p, (I = Ty) + 4w — p, (I = T )2 — (@ — w))
+2ay B Ll|zk — wllllye — @ + on(I — T)yiel| + Brller — el

BT = T) el
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Therefore, p € Cy1. By mathematical induction, we have F C C,, for alln € N. It
is easy to check that C,, is closed and convex and then {x,} is well defined. From
zn, = Pg, (x9), we have (g — ©,, %, —y) = 0 for all y € C,,. Using Fc C,, we also

have (xg — z,, %, —u) = 0 for all u € F. So, for u € F , we have

0 < (T9g— Tn,Tn —u) = (Tg — Tp, T — To + Tog — W)
= —[lwo — @nl® + (w0 — @n, B0 — w)
< —llwo — 2all* + llzo = @allllzo — |-
Hence,
lzo = ull < llwo — || for all we F. (3.1.14)

This implies that {z,} is bounded and then {y,}, {Tv.}, {2}, {7, 2.} and {u,}

are also.

From z, = Pg,(%0) and 2,41 = Pe,,,(%0) € Chya C Cy, we have
(%o~ Tn, Tn = Tp41) 2 0. (3.1.15)

Hence,

o
/AN

(wO — ¥, Tn — wn+1) 52 (wl] —Bn, T~ Lo+ 1P0 — $n+1>
= _”‘(BO \ ¥ ‘(Bn”2 T (1’0 — Tn, T — -’Bn.-‘rl)

< —llwo — zll* + ll@o — zallllwo = @nall;

and therefore
0 — all < Il — Tnall

which implies that lim,_, ||z, — @o|| exists. From Lemma 2.1.39 and (3.1.15), we

obtain
|Zns1 —%al® = [[(®a41 — %0) — (20 — z0)||?

|n 1 = zoll* = llzn = Zoll* — 2 (Tnt1 — Tn, Tn — To)

< N@nt1 — @ol* = |zn —2o|> 2 0 as n — oo.
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Since Tn41 € Cpy1 C Cy, we have
llen(I = T)yall* + (1 = Bu)l|lTn — uall®

Qan (mn — Tnya, (I - T)yn) + 4 (-'Cn — Tp41, (I - Trn)zn - (wn - u-n))

/AN

+200 00 Ll|@n — Unlllyn — T + @n(d = Tyull + Bullzn — u'n||2
+ﬂn”(f - Trn)zn”2
—0 as n— o0.
Therefore, we obtian
lvn =Tyl = 0 and ||z, —u,] -0 as n— oo. (3.1.16)

We note that

Ilmn ¥ 7 T:En” < ”-'Cn —7 yn” = - “yn 75 Tyn.” ot ”Tyn - T.’D,,”
“<- (L 43 1)”'Bu = yn-” i ”yn - Tyn“
Q Q‘n(L + 1)“3'71 A Tzn” Ui ”yn | Tyn“
< (L + 1))z — Tl + an(L + V)| T2, — Tz + |lyn — Tyl
S (L4 1)||zn — Tan|| + anfBo L+ 1)||@n — wn|l + |lyn — Tyl
(3.1.17)
that is,
anfBnL(L + 1) 1
Tpn—1L Ty g'—‘~u_' AT L ey n— n c .
len=Teall < 208 gyllon =l {3 I Tonll 0 35 7= o
Next, we will show that
wy(2) C F. (3.1.18)

Since {@,} is bounded, the reflexivity of H guarantees that w,(z,) # @. Let
P € wy(zy,), then there exists a subsequence {z,,} of {z,} such that z,, — p and
by Lemma 2.1.43 (ii) we have p € F(T'). On the other hand, since ||z, — u,|| — 0
and z,, — p, so we have u,, — p. It follows from u, = T}, x, and (A2) that

1
—(Y — Un, Un — Tp) > F(y,u,) forall yeC.

?H
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Replacing n by n;, we have

Up; — Tn;
'—) > F(y, uni)'

nj

(y — Un,,

By using (A4) and the assumption (3) on {r,,}, we obtain 0 > F(y,p) for ally € C.
So, from (A1) and (A4) we have

0= F(ye,y) = Flye, ty + (1 — t)p) < tF(ye,y) + (1 — ) F(ye, p) < tF (e, y).
Dividing by ¢, we have
F(y,,y) 2 0 forall ye C.

From (A3) we have 0 < lim; o F(y,y) = limyo F(ty + (1 — ¢)p,y) < F(p,y) for
all y € C, and hence p € EP(F). So, p € F(T) N EP(F) = F and then we
have (3.1.18). Therefore, by inequality (3.1.14) and Lamma 2.1.44, we obtain {z,}

converges strongly to Pg(zp). This completes the proof. 0O

Corollary 3.1.4. [83] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C — C be an L-Lipschitz pscudo-contraction such that F(T') #

@. Assume that {a,} is a sequence such that 0 < e < @, b < < 1 for all n.

L+1

Then the sequence {,} generated by (3.1.4) converges strongly to Prr)(wo)-

Proof. Put F(z,y) =0forallz,y € C andr, = 1 forall n > 1 in Theorem 3.1.3.
Then, T,,, = P¢ for all n > 1. So, w, = Pgx, for all n > 1(Note that x; = Peay).
Since z,, = Pg,x9 € C,, C C for all n > 1, so we have u, = x, and then z, = z,
for all n > 1. Thus (I —T,.,)2z, = ©n — Po®, = 0 for all n > 1. For this reason,
(3.1.4) is a special case of (3.1.5). Applying Theorem 3.1.3, we have the desired
result. 0

Recall that a mapping A is said to be monotone, if (v —y, Az — Ay) = 0
for all z,y € H and inverse strongly monotone if there exists a real number v > 0

such that (z —y, Az — Ay) > v||Az — Ay||? for all z,y € H. For the second case
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A is said to be v-inverse strongly monotone. It follows immediately that if A is
7y-inverse strongly monotone, then A is monotone and Lipschitz continuous, that
is, Az — Ayl < %H’c — y||. The pseudo-contractive mapping and strictly pseudo-
contractive mapping are strongly related to the monotone mapping and inverse

strongly monotone mapping, respectively. It is well known that

1. A is monotone <= T := (I — A) is pseudo-contractive.

2. Aisinverse strongly monotone < T := ([ —A) is strictly pseudo-contractive.

Indeed, for (ii), we notice that the following equality always holds in a real Hilbert

space

I(I=A)e— (I~ Ay|* = lz—yl*+||Ax—Ay|* -2 (z — y, A — Ay) Vz,y € H,

(3.1.19)

with out loss of generality we can assume that -y € (0, 1] and then it yields

(v -y, Av = Ay) > V|| Ax — Ay|* <= 2 (v -y, Av — Ay) < —29| A — Ay|?

= U= A= (- Al < lle -yl + (1 - 29)[| Az — Ay|® (via (3.1.19))
= [Tz —Tyl* < llz = yll* + &Il (I = T)z — (I — T)y]|? (3.1.20)

(where T:= (I — A) and x:=1-2).

Corollary 3.1.5. Let A: H — H be an L-Lipschitz monotone mapping and F be
a bifunction of C'x C' into R satisfying (A1) — (Ad) which A~'(0) N EP(F) # @.
Let g € H. For Cy = C and x1 = Pg, (o), define a sequence {z.} of C as follows:
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Yn = Ty — (0 — 2,) — nAzy,

2 = (1- 8z, + By,

Up € C such that F(uy,y) + r—ln(y = Uy Uy — Ty 2 0

Cot1 = {v€Ch:|landynl® + (1 - Ba)||lzn — un?
< 200 (%0 — 0, AYn) + 4 (@ — v, (I = T}, )20 — (20 — Un))
2000 L|Tn — tn ||y — Tn + cn Ay

Bl = wnll* + Pull( — T, )20 |*}

xﬂr+1 i PCH+J. (TD)

(3.1.21)

Assume0<a< a, <b< 3 < lforalln € N, {8,} and {r,} are as in Theorem

3.1.8. Then {z,} converges strongly to Pa-1o)ngp(r)(2o).

Proof.  Let T := (I — A). Then T is pseudo-contractive and (L + 2)-Lipschitz.

Hence, it follows from Theorem 3.1.5, we have the desired result. O

3.2 Strong convergence by a hybrid algorithm for solving generalized
mixed equilibrium problems and fixed point problems of a Lip-

schitz pseudo-contraction in Hilbert spaces

Let E be a real Banach space, and E* the dual space of E. Let C be a nonempty
closed convex subset of E. Let © : €' x ' — R be a bifunction, ¢ : ¢ — R be
a real-valued function, and A : C — E* be a nonlinear mapping. The generalized

mixed equilibrium problem, is to find z € C such that
O (,y) + (Az,y — =) + o(y) — p(z) >0, VyeC. (3.2.1)

The solution set of (3.2.1) is denoted by GM EP (0,4, ), ie.,
GMEP (©,4,0) ={x € C: 0 (z,9) + (Az,y — ) +@(y) — p(z) > 0,Vy € C}.
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If A =0, the problem (3.2.1) reduces to the mixed equilibrium problem for ©,
denoted by M EP (O, ), which is to find € C such that

© (z,y) +¢(y) —¢(z) 20, VyeC.

If © = 0, the problem (3.2.1) reduces to the mixed variational inequality of Browder

type, denoted by VI (C, A, ¢), which is to find 2 € C such that
(Az,y — ) + ¢(y) — p(z) 20, Vy € C.

If A= 0 and ¢ = 0, the problem (3.2.1) reduces to the equilibrium problem for ©
(for short, EP), denoted by EP (©), which is to find & € C such that

O(z,y) =0, Vyel. (3.2:2)

Recall, a mapping 7" with domain D(7T") and range R(T) in H is called firmly

nonexpansive if
”T:E - Ty“2 B (T:E 7 Ty,.’.l’,' T y) :Vﬂ;’y € D(T):
nonexpansive if

Tz — Ty|| < ||z~ yl|,Vz,y € D(T).

Throughout this paper, I stands for an identity mapping. The mapping T
is said to be a strict pseudo-contraction if there exists a constant 0 < s < 1 such

that
1T — Ty|I* < |l =yl + &|(I = T)z — (I — T)y|1*,Vz,y € D(T).

In this case, T" may be called as a k-strict pseudo-contraction mapping. In the even

that Kk =1, T' is said to be a pseudo-contraction, i.e.,

1Tz — Tyll* < llo — yl* + I = T)z — (I = T)yl*, Yo,y € D(T).  (32.3)
It is easy to see that (3.2.3) is equivalent to

(x—y,(I —T)e— (I —-T)y) > 0,Vz,y € D(T).

By definition, it is clear that
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firmly nonexpansive = nonexpansive = strict pseudo-contraction =

pseudo-contraction.

However, the following examples show that the converse is not true.
Example 3.2.1 (Chidume and Mutangadura [84]). Take H = R?, B = {& €
R?: ||o|| <1}, Bi={z € B:|z| <3}, Bo={reB:;<|z|| <1}. If
x = (a,b) € X we define x* to be (b,—a) € X. DefineT : B— B by

T+ zth, z € By,
T =

i”—:c—krvl, z € B,.

ll=

Then, T s a Lipschitz and pseudo-contraction but not a strict pseudo-contraction.

Example 3.2.2. Take H = R! and define T : X — X by Tx = —3z. Then, T is
a strict pseudo-contraction but not a nonezpansive mapping.
Indeed, it is clear that T is not nonexpansive. On the other hand, let us

consider

7o~ Tyl = 1(~32) — (=3y)I = 9llz = yI* = llz ~ ylP + 8l ~ oI
=l =yl + e~ 9l = o~ + 514z — 4y
= o~ + 3001 = (=8 = (1~ (=3P
=l =yl + 5~ T)o— (1 - Tyl

< llz = yll® + 6l =Tz = (I - T)yl*

for all k € [%,1). Thus T is a strict pseudo-contraction.

Example 3.2.3. Take H # {0} and let T = —1I, it is not hard to verify that T is

nonexpansive but not firmly nonezpansive.

Yao et al. [83] introduced the hybrid iterative algorithm which just involved
one sequence of closed convex sets for pseudo-contractive mappings in Hilbert

spaces as follows:
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Let C' be a nonempty closed convex subset of a real Hilbert space H. Let
T : C' — C be a pseudo-contraction. Let {a,} be a sequence in (0,1). Let xp € H.
For C) = C and x; = Pg, (%), define a sequence {x,} of C as follows:

"
Yn = (]- - Q‘")IEH + anTzn.a

{ Croti = {0€C,:|lonI = Tnll® € 200 (0 —v, (I — Tyn)},  (3:24)

{ Tpy1 = PCn+1 (fl:[))

Theorem 3.2.4. [83] Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let T : C' — C be an L-Lipschitz pseudo-contraction such that F(T') # .

Assume the sequence {a,} C [a,b] for some a,b € (0 Then the sequence

NEAT)-

{x.} generated by (3.2.4) converges strongly to Prry(2o).

Very recently, Tang et al. [85] generalized the hybrid algorithm (3.2.4) in

the case of the Ishikawa iterative process as follows:

2
Yn = (1 — Qg )«'Bn. +0:T 24,

Zn S (1 b /671)1:71, = ¢ ﬁnTﬂ;n;
|\ Cot1 = {v€Cyr:|lanlI = Dyull® € 20, (2, — v, (I — T)yy) (3.2.5)

+20—’nﬁnL“$n = Tmn” ”yn- —Tn+ an(I - T)yn “} )

L Tntl = PCn+1($0)'

Under some appropriate conditions of {a,} and {8,}, they proved that (3.2.5)
converges strongly to Ppr)(wo).

Now, by employing (3.2.4) and (3.2.5) we construct a sequence by using some
appropriated closed convex sets based on the hybrid shrinking projection methods
to find a common solution of fixed point problems of a Lipschitz pseudo-contraction

and generalized mixed equilibrium problems in Hilbert spaces.

Theorem 3.2.5. Let C be a nonempty closed convex subset of a real Hilbert space

H,T:C — C be an L-Lipschitz pseudo-contraction. Let © be a bifunction from
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C x C into R satisfying (A1) — (A4) , ¢ : C — R be a lower semicontinuous and
convez function, A : C — E* be o continuous and monotone mapping such that
Q:=F(T)NGMEP (0,A,9) #0. Let vy € H. For C; = C and z, = Pg, (o),
define a sequence {x,} of C as follows:

’

Un = (1 —a,)zn + ayTzp,

zn = (1= PBn)Tn+ Battn,

Un € C such that ©(us,y) + (Aun, ¥y — uy) + ©(y) — o(un)
. +é(y — Up, Us = Tp) 20,

C:’1'1+1 = {‘U = Cn . ”an(I - T)yn.“2 + ”:En. - u‘n“ S 20{71 (xn — v, (I - T)yn)

+\/<5L‘n — U, Tn = Un) (2008n L ||y — Tn + an(I — T)yal| + D},

Tntl = ‘DC'n+1($0)'

(3.2.6)

Assume that {a,}, {Bn} and {r,} are sequences such that
(1)0<a§angb<L—i—l<1fm‘allnGN,
(2)0< B <1 forallneN,

(3) rn > 0 for all n € N with liminf,_,. 7, > 0.

Then {x,} converges strongly to Po(zp).

Proof. By Lemma 2.1.43 (i) and Lemma 2.1.12 (iv), we see that F(T) and
GMEP (0, A, ¢) are closed and convex respectively, then € is also. Hence Py, is
well defined. Next, we will prove by induction that  c C, for all n» € N. Note
that {2 C C = . Assume that Q C C} holds for some k > 1. Let p € Q, thus
p € C.. We observe that

lzx — p — ar(l — Tyl
= |lox — plI* — llax(I — T)yell* — 200 (I — Ty, or — p — (I — T)ie)

= llze = pl* = llow( = T)yall® — 204 (I = Ty — (I - T)p, s — 1)
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=204 (I — Ty, oo — yr — a(L — Ty

< ok = pll* = llew(I = Thgwll® — 205 (I = T)yi, v — v — (. — T)wi)
= Jlzx = plI* = (@x — 9) + W5 — 2 + (T — Tye)|I?
—2ar (L — T)yr, 2 — y — on(d — T)ys)
= lzx = plI* = llox — gll® = ok — 21 + k(I — T2
=22k — Y Yr — Tk + ar(l — T)y)
=20, (I — T)yr, @ — Yo — (I — T)yy)
< o = 2l* = llzw = wll® = llyx — 2 + (I — T)ygll?

42] (o =y — (T — Ty, 3 — v — oI = Ty | (3.2.7)

Consider the last term of (3.2.7) we obtain
| {=r — Y — an(l = T)yn, Yo — @ + (L — T)yi) |
= ol (@r — Tz — (I — T)yr, ys — xx + (I — T)yi) |
= ol (zp — Ty + Tap — Tz — (I — T)yr, yx — 1 + (I — Ty |
= ol {(I —T)ar — (I — T)yr, yr — T + (I — Ty,

+ (T:Bk — T2, Y — Ty + O:k(-lr - T)yk) |

/N

ar(L+ 1)z — vellllye — 2 + ar(I — T)ys|

FonL|lek — 2| llye — xx + (L = T)ye]
O.'k(L + 1)
2
oLl — willllye — x4 (X — T)yl). (3.2.8)

F/AN

(Nlex = well® + |l — zx + (I — T)yi||?)

By connecting (3.2.7) and (3.2.8), we obtain

lox —p— (T = Tyl < Nwr — Pl = Nl — gl = llvr — @k + ol — Tyl |2
+ar(L+ D(llwe — wll® + llye — 2x + ol — T)yel?)
+20 Bk L || — wr|||lye — @x + ar (I — T)yg|

< i = plf?



42

+2a’kﬁkL”$k — uk||||yk —iE Cllk(I — T)yk”. (329)

Notice that ug = (. Zr and by Lemma 2.1.38, we observe that

o —wel® = (I — K )z — (I - K, )pl)?
((I - I{rk)mk - (I - I{T,L-)pa T — p)

= ((I - K,,)zr, x — p).

IA

So, we have

”’Lk = 'U;,g” < \/(’CL — T — 'lLk>. (3.2.10)

Joining (3.2.9) and (3.2.10), we obtain

lze —p— ar = T)yell® < ok — plI® + 2008 L/ @k — Py Tr — wi || — 2%

+ap(I — Ty (32113
Notice that

o = = (T = T)yill* = llr — plI* — 200 {zx — p, (1 = T)yi) + [l (T — T

(3.2.12)

By (3.2.11) and (3.2.12), we have

llow(I = T)yell* < 2a (@ — p, (I = Tw) + 2008 L/ (@ — p, o — wi) |y — i
+ar(I — Tyl (3.2.13)
Combining (3.2.13) and (3.2.10) we obtain

llow( = T)yel|® + [|ax — |

< 20 (e — p, (I — T)yw)

+ V@k — p,m — w) CarBil |y — zx + (I — T)yx| + 1).
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Therefore, p € Ciy1. By mathematical induction, we have Q C C,, for all n € N.

Let fo(:) == 20 (@n — (), I = T)yy)
+ /(@0 — (), 0 — wa) (20nBuL |Yn — T + oy (I — Tyl + 1), it is not hard to see

that the linearity of (z, — (-), ( — T)yn) and (@, — (), z, — u,) together with the
continuity and concavity of m allow f,, to be continuous and concave. By Lemma
2.2.15, C,, is closed and convex for all n € N. Therefore, {z,} is well defined. From
T, = Pg, (o), we have (29 — 25,2, —y) = 0 for all y € C,,. Using Q C C,,, we also
have (xg — 2, 2, —w) = 0 for all u € Q. So, for u € Q, we have
0 < (To— 2, 2Tn —u) = (To — Ty, T — Tg + Tp — )

= —|lmo — zull® + (zo — 0, 70 — 1)

< —llwo — zal? + [lwo — @nllllzo — ull.
Hence,

lzo — za|| < ||zo —u|| for all u e €. (3.2.14)

This implies that {x,} is bounded and then {y,}, {Ty,} and {u,} are also.

From z, = Pg, (o) and zny1 = Py, ,, (%0) € Chy1 C Cy, we have
(o — Tpy T — Tpy1) = 0. (3.2.15)

Hence,

0

F/a\

0 < By, — $n+l> = (%9 — T, Tp — To + T — Lipeict)
= _”330 ~ mn”g - Trt1)
< —llwo — @l + [lzo — @allllzo — T,

and therefore

lZo — |l < |l2o — T,

which implies that lim, o ||z, — 2o|| exists. From Lemma 2.1.39 and (3.2.15), we
obtain
|Zns1 — wn-Hz = [[(@n+1 — 20) — (20 — o) ||*
= l@ntr = zoll” = ll#n — @0l — 2 (w41 — @, 20 — 20)

< |%arr —@ol> = |z — x> =0 as n— .
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Since 41 € Cpy1 C C,, we have

“an(I - T)’yn||2 + “3411 — |

g 20’1’! (fb'n — Tnp+1, (I - T)y")

o \/('En — Tnp41, T — Un,) (2anﬁnL Hyn — &p i O"n(I - T)yn“ + ]-)

—0 as n— oo
Therefore, we obtain

lyn — Tyn]l = 0 and ||z, —unl]| =0 as n— co.

We note that
[2n = T2all < 2w = all + (1Yn — Tall + 1 Tyn — Tzall
< (L +Dlzn = yall + lyn — Tyl
< an(LA+ ||zn = T2l + llyn — Tyl
< an(L+Dlzy — Taall + an(L + D||Twn — Tzl + [[yn — Tyall
< (L +1wn — Tall + anBaL(L + 1) |20 — twall + [Yn — Tynll,
that is,

anfBaL(L+ 1)

-‘nﬁTt n ‘~<\ n- “n T ANV TrS, n_T n 0 .
|n—T0|| 1—an(L+1)”$ u ||+1_a,n(L+1)||y Ya| 2 0 as n— oo
Next, we will show that

wa(Zn) C L. (3.2.16)

Since {z,} is bounded, the reflexivity of H guarantees that wy,(z,) # @. Let
P € wy(x,), then there exists a subsequence {x,,} of {z,} such that z,, — p and
by Lemma 2.1.43 (ii) we have p € F(T'). On the other hand, since ||z, — un|| — 0
and z,,, — p, so we have u,, = p. Define G: C x C — R by G(z,y) = O(z,y) +
(Az,y — z) + @(y) — () for all z,y € C. It is not hard to verify that G satisfies
conditions (A1) — (A4). It follows from u, = K, x, and (A2) that

1
— (Y — Un, U — Tp) > G(y,u,) forall yeC.

Tn
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Replacing n by n;, we have

By using (A4), we obtain 0 > G(y,p) for all y € C. For t € (0, 1] and y € C, let
Ys =ty + (1 — t)p. So, from (A1) and (A4) we have

0= Gy, ve) = Glys ty + (1 - )p) <Gy, y) + (1 — O)C(w,p) < tG (3, y).
Dividing by ¢, we have
Gy, y) > 0 for all y € C.

From (A3) we have 0 < lim,_, Gy, y) = limy_o Gty + (1 — t)p, y) < G(p,y) for
all y € C, and hence p € GMEP (O, A, @) So,pe F(T)NGMEP (6, A, @) =
and then we have (3.2.16). Therefore, by inequality (3.2.14) and Lamma 2.1.44,

we obtain {x,} converges strongly to Pq(@p). This completes the proof. O

Remark 3.2.6. It is interesting that the assumption on a sequence of scalars {f3,}
is very mild condition. This is a direct result of the firmly nonexpansiveness of
I — K,, together with the structure and the definition of the set Cu- If B, =0 for
all n, then z, = %, and the sequence {¢.} and {u, } are independent. However, the
properties of Cy, still force to produce the sequence {zn} to cause a convergence to

the common solution P ().

If A=0and ¢ =0, then we have the following corollary.

Corollary 3.2.7. Let C be a nonempty closed convex subset of a real Hilbert space
H,T:C — C be an L-Lipschitz pseudo-contraction. Let © be q bifunction from
C x C into R satisfying (A1) — (A4), such that ) = F(T)NEP(O) # @. Let
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xg € H. For Cy = C and z; = Pg,(zy), define a sequence {z,} of C as follows:

’

Yn = (1 - a’n)ﬂ:n + CYnTzns
Zn = (]- - ﬁn)ﬂjn + Bnum
Un € C such that ©(un, y) + ;- (y — Un, Uy — Tn) > 0,

Coy1 = {U Eln ”O"n(f - T)’yn”2 + “’Ln = un” < 2ap (*’Bn -, (I - T)@’ﬂ)

+\/(3:n — UV, Ty — un) (2anﬁnL ”yn — Tn + an(I - T)yn“ + 1)}:

Tpy1 = Pc,,+1($0)-
(3.2.17)

Assume that {an}, {Bn} and {r,} are as in Theorem 3.2.5. Then {x,} converges

strongly to Pg(xp).

Corollary 3.2.8. [83] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T': C' — C be an L-Lipschitz pseudo-contraction such that F(T) #
@. Assume that {a,} is a sequence such that 0 < a < a,, < b < L+—1 < 1 for all n.

Then the sequence {,} generated by (3.2.4) converges strongly to Pr(r)(wo).

Proof. Put©® =0, A=0,¢ =0and r, =1 for all » > 1 in Theorem 3.2.5.
Then, K,, = F¢ for all n > 1. So, u, = Pgw, for all n > 1(Note that z; = Poxy)-
Since z, = FPg,x9 € C,, C C for all n > 1, so we have u, = z, and then z, = z,
for all n > 1. Thus x, — u, = 0 for all n > 1. For this reason, (3.2.4) is a special

case of (3.2.6). Applying Theorem 3.2.5, we have the desired result. O

Recall that a mapping B is said to be monotone, if (z —y, Bx — By) > 0
for all z,y € H and inverse strongly monotone if there exists a real number v > 0
such that (z —y, Bx — By) > || Bz — By||? for all 2,y € H. For the second case
B is said to be ~y-inverse strongly monotone. It follows immediately that if B is
7-inverse strongly monotone, then B is monotone and Lipschitz continuous, that

is, | Bz — By|| < %{H'L — y||. The pseudo-contractive mapping and strictly pseudo-
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contractive mapping are strongly related to the monotone mapping and inverse

strongly monotone mapping, respectively. It is well known that

(i) B is monotone <= T := (I — B) is pseudo-contractive.

(ii) B isinverse strongly monotone <= T := (I— B) is strictly pseudo-contractive.

Indeed, for (ii), we notice that the following equality always holds in a real

Hilbert space

I(I~B)e—(I- Byl = |w—yl?+|Bz—Byl|*~2 (x — y, Bz — By) Va,y € H.
(3.2.18) -

With out loss of generality we can assume that y € (0, 3] and then it yields

(¢ —y, Bz — By) > 7||Bz — By||?
<= —2(z — y, Bz — By) < —2v| Bz — By||*
<= (I - B)z = (I - Bly|l* < ll= — yl* + (1 - 29)|| Bz — By|
(via (3.2.18))
<= T — Ty|l* < llw —yl” + sll( = T)z — (I - T)y|?
(where T :=(/ — B) and &:=1-—2y).
Corollary 3.2.9. LetC, H, ©, A and ¢ be as in Theorem 3.2.5 andlet B: H — H

be an L-Lipschitz monotone mapping such that @ = B~*(0)NGMEP (0, A,¢) #
&. Let xg € H. For Cy = C and x1 = P, (xo), define a sequence {x,} of C as
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follows:
'8
Yn = Tp— G’,;(.’Cﬂ - zn) - an.an:
Zn = (1 - ﬁn)mn + lgn.un.s

un € C such that O(u,,y) + (Aun,y — upn) + (y) — ©(u,)
oo (Y — Un, Uy — T) > 0,

C'n-l-l = {U = Cn : ”a'nByn”2 + ”:Ln - un” S 2Q’n (wn -, Byn)

+\/($n — U, T — un) (20'11/3:111 ”yn — Tp+ anByn“ + 1)}1

Tnt1 475 PC'n+1 ('EO)

(3.2.19)

Assume0<a < a, <b< L+_2 <1 foralln € N, {$,} and {r,} are as in Theorem

3.2.5. Then {z,} converges strongly to Po(z).

Proof.  Let T := (I — B). Then T is pseudo-contractive and (L -+ 2)-Lipschitz.

Hence, it follows from Theorem 3.2.6, we have the desired result. O

3.3 An iterative shrinking generalized f-projection method for G-

quasi-strict pseudo-contractions in Banach spaces

Let E be a real Banach space with its dual E*, and let C be a nonempty closed
convex subset of E. In 1994, Alber [35] introduced the generalized projections
¢ B* — C and Ilg : E — C from Hilbert spaces to uniformly convex and
uniformly smooth Banach spaces and studied their properties in detail.

Let E be a smooth Banach space and let E* be the dual of E. The function
¢: Ex E — Ris defined by

¢(v,2) = lyll* — 2 (y, Jo) + |||” (3.3.1)

for all z,y € E, which was studied by Alber [36], Kamimura and Takahashi [61],

and Reich [62], where J is the normalized duality mapping from E to 25" defined
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J(@) ={f € B*: (x, f) = |l=* = I£1°}, (33.2)

where (-, ) denotes the duality paring. It is well known that if E is smooth, then

J is single-valued and if F is strictly convex, then J is injective (one-to-one).

In 2005, Matsushita and Takahashi [71] applied (3.3.1) to define the mapping
T : C — C called the relatively nonexpansive mapping where C is a nonempty
closed convex subset of a uniformly convex and uniformly smooth Banach space F
and they proposed the following projection algorithm based on the ideas of Nakajo

and Takahashi [86] to find a fixed point of 7"

,
%y € C' chosen arbitrarily,

yrz N J—l (Q’,,JJ?” + (1 e a’n) JT:'C”) 3
1Cn={2€C:¢(2,y.) < ¢(z.)},

Qﬂ_={zeo:(xrz_z7J$OHJ$ll>20}’

k$n+1 = HCann fﬂo,

where {a,} C [0, 1] which satisfies some appropriate conditions and O¢.no, is the

generalized projection from E onto C, N Q,,.

In 2007, Takahashi et al. [87] studied a strong convergence theorem for a
family of nonexpansive mappings in Hilbert spaces as follows: ro€ H,Cy =Cand

T1 = P, o, and let

4

UYn = Qpy + (1 - a'n.)Tn:Uﬂ:

$ G = {2 € Gt gm— 2 < 17 — [},

(Tns1 = Pc,.1%o, n €N,

where 0 < a, < a < 1 foral n e€ N and {T%.} is a sequence of nonexpansive

mappings of ' into itself such that (| F(T,) # @. They proved that if {Z,}

n=1
satisfies some appropriate conditions, then {z.} converges strongly to Pre, Fer,)o.
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In 2010, Zhou and Gao [88] introduced the definition of a quasi-strict pseudo
contraction related to the function ¢ and proposed a projection algorithm for find-
ing a fixed point of a closed and quasi-strict pseudo contraction in more general

framework than uniformly smooth and uniformly convex Banach spaces as follows:

s
%o € E, chosen arbitrarily,

C,=0C,
1 = llg, (o),
%1 = o, (vo) (3.3.3)
(b(-";mTl'n)
CY‘n.-}-l 7= e Cn 2
S 7% @ =2, Jon — JTay)

| Zna1 =g, (%0),

where k € [0,1) and I¢,,, is the generalized projection from E onto Cpyq.

In 2012, K. Ungchittrakool [42] provided some examples of quasi-strict
pseudo-contractions related to the function ¢ in framework of smooth and strictly
convex Banach space. He obtained some strong convergence results in Banach

spaces.

In 2013, Saewan et al. [43] introduced and studied the modified Mann
type iterative algorithm for some mappings which related to asymptotically nonex-
pansive mappings by using hybrid generalized f-projection method. Saewan and
Kumam [44] also provided and studied the new hybrid Ishikawa iteration process
by the generalized f-projection operator for finding a common element of the fixed
point set for two countable families of weak relatively nonexpansive mappings and
the set of solutions of the system of generalized Ky Fan inequalities in a uniformly
convex and uniformly smooth Banach space. Some relevant papers, please sce

[43-58] for more details.

Recently, Li et al. [74] studied the following hybrid iterative scheme for a

relatively nonexpansive mapping by using the generalized f-projection operator in
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Banach spaces as follows:

(SL‘UGC, Cg:C,

) Yo = J HanJzn + (1 — o) JTxy),

Crr1 ={w € C, : G (w, Jy,) < G (w, Jz,)},

[ Tnt1 = Hé."H:Eg, n=>1.
Under some appropriate assumptions, they obtained strong convergence theorems
in Banach spaces.

We introduce a mapping called G-quasi-strict pseudo-contractions (2.1.12)
in the framework of smooth Banach spaces and also provide an inequality related
to such a mappings. The inequality was taken to create an iterative shrinking
projection method for finding fixed point problems of closed and G-quasi-strict
pseudo-contractions. Its results hold in reflexive, strictly convex and smooth Ba-

nach spaces with the property (K).

Lemma 3.3.1. Let C be a nonempty closed convex subset of & smooth Banach
space B2 and T' : C — C be a G-quasi-strict pseudo-contraction. Then the fized
point set F'(T') of T is closed and convez.

Proof.  Firstly, we wish to show that F(T) is closed. Let {p»} be a sequence in
F(T') such that p, — p € C as n — co. From the definition of T, we have

G(pn, JTP) < G(pn, Jp) + £(G(p, JTp) — 2pf (pn)).

By using (2.1.8), we obtain

G(pn, Jp) + G(p, JTp) + 2{p, — p, Jp — JTp) — 2pf(p)

< G(pn, Jp) + £(G(p, JTD) — 2pf (pa)).

By simple calculation, we have

(1 = &)G(p, JTp) < 2(p — pn, Jp — JTD) + 2pf(p) — 260f (pr).
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Next, it becomes

(1 = K)o, Tp) + (1 — £)2pf (p) < 2(p — pn, Jp — JTp) + 2pf(p) — 26pf (Pn)-

And hence

2Kp

85, T5) < T (p— bu, Jp — JTo) + 1oL ((0) ~ (o). (3:3.4)

1—k

Take limsup,,_,,, on the both sides of (3.3.4), so we have

é(p, Tp) = limsup ¢(p, Tp)

n—co

n—co 1_1‘5

= lim sup (%(p — Pny JD=JTp) + zﬂ(f(?’) - f(Pn)))

2
< - limsup(p — pn, Jp — JTp) +

: o RN ) — f(rw))

— KR a0 ]- — KR n—oo

n—eo n—eo

2
7 % (lim sup f (P) + lim sup(— f(‘Pn)))
2Kp

(£@) ~timint £(p,)) < 0.

1—-k
This means that p = T'p.

We next show that F(T') is convex. For arbitrary p;,p; € F(T) and ¢t €
(0,1), we let pr = tp; + (1 — t)pe. By the definition of 7', we have

G(p1, JTpe) < G(pr, Ipe) + £(G (e, JTpe) — 20f (1)) (3.3.5)
and
G(pa, JTp) < G(p2, Ip) + 5(G(pe, JTp:) — 2pf (p2)). (3.3.6)

By (2.1.8) it is easy to see that (3.3.5) and (3.3.6) are equivalent to

HouTo) < (=1, o= JTo) + Lo (fp) — ) (337)
and
¢(pe, Tps) < T _2_ rz(pt —p2, Jpr — JTpy) + f_f%(f(pt) — f(p2)), (3.3.8)
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respectively. Multiply into both sides of (3.3.7) and (3.3.8) with ¢ and (1 —1t), re-
spectively. And then adding two equations together with the property of convexity

of f, we have

$0uT0) < T2 (00—, I TR+ 28 (£ (p) —£(0r) — (1) () < 0.

Hence T'p; = p;. This completes the proof. O

Theorem 3.3.2. Let E be a reflevive, strictly conver and smooth Banach space
such that E and E* have the property (K). Assume that C is a nonempty closed
convex subset of E, T : C' — C is closed and G-quasi-strict pseudo-contraction and
f i E— RU{+o00} is a proper, convex and lower semicontinuous mapping. Define
a sequence {z,} of C as follows:

¢

xg € C,
C,=C,
\ T = Hél(ib'o),

C;"n+l = {Z = Cn I ¢($n:T$n) S '1_%(7"71 - Z, Jﬂ:n O JT:LH)  J f_iﬂ(f(’l'n) - f(z)) } )

K

Tyl = H(f;'n+1 (3-70); n 2> 01

(3.3.9)

where k € [0,1). Then {z,} converges strongly to H';—.(T)(IO).
Proof.  We split the proof into seven steps.

Step 1. Show that F'(T) is closed and convex.

Since T is a G-quasi-strict pseudo-contraction, F (T") # 0. It follows from
Lemma 3.3.1 that F(T) is closed and convex. Therefore, Hi(’!‘) (o) is well defined

for every zy € E.

Step 2. Show that C, is closed and convex for all n > 1.
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For £ = 1,C; = C is closed and convex. Assume that C} is closed and

convex for some k € N. For z € Cj,, we have that

2
qﬁ(:r:k,T:ck) S 1 K,<$k — Z, J'Lk — .]T’Lk)

25 (§(x) — £(2)).

+1—n

Define gi (-) := 1222 (zx — (), Jor — JTax) + 22 (f(2x) — (). It is not hard to
see that the linearity of (zx — (-), Jox — JTzy) together with the upper semiconti-
nuity and concavity of —f(-) allow g to be upper semicontinuous and concave. By

applying Lemma 2.2.15, Cj4; is closed and convex. By mathematical induction,

we obtain that C, is convex for all n € N.

Step 3. Show that F(T") C C,, for all n > 1.

It is obvious that F(T) C C = Cj. Suppose that F(T) C Cj for some

k € N. For any p' € F(T'), one has p' € Ci. By using the definition of 7', we have
G(p', JTwr) < G, Jr) + k(G(zk, JTz1) — 2pf (p))-

Using (2.1.8) and by a simple calculation, we obtain

(:Bk ~= p’, Jfl:,g- = JT.'B,[:)

(f(zx) = £(P)),

2
o, Tox) < 7=

2Kp

+1—n‘

which implies that p’ € Cjy1. This implies that F(T') C C,, for alln > 1. Therefore,
F(T)Cc (M Cu#0:=D.
Step 4. Show that {,} is bounded and the limit of G(z,, Jx,) exists.

By the properties of f together with Lemma 2.1.26, we see that there exists
2* € E* and a € R such that

fy) > (y,2*) +a, VyecE.
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It follows that

G(n, Joo) = [|%all® — 2(zn, J2o) + [lzoll* + 20 ()
> [lwall® = 2(@n, Jao) + [lzol®
+ 2p(zn, %) + 2pa
= [|@nll® — 2(xn, Jzo — p*) + [|o||® + 2pcx
> |lzall® — 2l Jwo — pa*|[leall + llzol|* + 2pc
= (lzall = 1720 — p2*[])?

+ |lzol|* = || Jwo — pz*||* + 2pc. (3.3.10)
Since z, = Héﬂ (o), it follows from (3.3.10) that

G(u, Jzp) > G(2n, JT0)
> (llzall = || Jzo — pa*]])?

+ [lwoll* = | Jo — pa*||* + 2pey

for each v € F(T'). This implies that {z,} is bounded and so is {G(z,, Jzo)}. By
the fact that zp41 € Chqy C O, and (2.1.11) of Lemma, 2.1.29, we obtain

¢($n+l: mn.) + G(wm J'LO) < G(g-:n—%l; J'LO)
Since ¢(&nt1,%n) = 0, {G(@n, Jzo)} is nondecreasing. Therefore, the limit of
{G(@n, Jwo)} exists.
Step 5. Show that x, — p as n — oo, where p = ngo.

Let {zn,} C {zn}. From the boundedness of {z,, } there exists {zn,} C
{@n, } such that Tny, = P- Write £; = Zn,, 1t is easy to see that p € C; where

C:’j = anj- Note that

G(Z;, Jzo) = inf G(&, Jxo) < G(p, Jx). (3.3.11)
£eC;
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On the other hand, since ; — p, the weakly lower semicontinuity of || - ||* and f
yields

¢(p, %0) < lim inf ¢(;, z0), (3.3.12)
and

f(p) < liminf f(;). (3.3.13)

By (3.3.12) and (3.3.13), we obtain

G(p, Jzo) = ¢(p, x0) + 2pf (p)

< liminf ¢(&;, xo) + 2pliminf f(%;)
co j—oo

i
< lim inf(¢(%, wo) + 20 (45))
= liminf G(, Jao). (3.3.14)
By connecting (3.3.11) and (3.3.14), we have
G(p, Jxp) < 1i}1l§31f G(Z;, Jwo) < limsup G(;, Jxo)
j—00
< G(p, Jxo),
and then
Jllngo G(z;5, Jzo) = G(p;Jxp).
Next, we consider
linnsup ¢(%;5, mo) = limsup(G(Zj, Jxo) — 2pf(%;))
—00 00
< G(p, Jzo) — 2plimint f(z)
< G(p, Jao) — 2pf(p) = ¢(p, o). (3.3.15)

Combine (3.3.12) and (3.3.15), we obtain

¢(p: :BO) < hln inf QS(fJ, :Dﬂ) < lim sup q{)(f]: :UO) £ ¢(p, :EU):
j—oo

Jj—o0



and then

lim (5, zo) = H(p, o).
j—oo
Note that f(@;) = 515(6'(2’:'3-, Jxo) — ¢(&j,%0)). Then, we have

. > 1. ~ »
lim f(z;) = %}l}}; (G(%;, Jwo) — (T, o))

j—oo

— % (G(p, JIB(]) — ¢('p: 3’0))
- % (20f()) = £(0).

The virtue of Lemma, 2.1.25 implies that

lim f(2,) = f(p).

Notice that =; = Hé}:l)g, by using Lemma 2.1.29 we obtain
J
&(p,z;) < G(p, Jxo) — G(T;, Jxp). (3.3.16)

Taking j — oo in (3.3.16), we obtain

lim ¢(p, £;) = 0.

j—oo
By virtue of Lemma 2.1.27, it follows that @; — p as j — oo. This implies by

Lemma 2.1.25 that @, — p as n — oo. It follows from z,, = Hénfl'g and (2.1.10) of

Lemma 2.1.28 that
(Tn — Y, JT0 — Jzn) + pf () — pf () 20, VyeC,.
In particular, because we know that D = ﬂ;";l C, C C, for all n > 0 so we have
(0 — ¢, Jxo — Jz) + pf(y) — pf(zy) >0, Vye€ D. (3.3.17)
Taking n — oo on (3.3.17) to get
(p—y,Jwo — Jp) +pf(y) —pf(p) 20, VyeD. (3.3.18)

By applying (2.1.10) of Lemma 2.1.28 to (3.3.18) we obtain p = H£$0.
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Step 6. Show that p € F(T).
Firstly, we wish to prove that {T'z,} is bounded. Indeed, take ¢ € F(T) C
Cny1, we have

E K (-’vn —q, an, - JTle) 12’%[) ( (23-,1) f(Q))

Dl Tt} £

e,

||3;n||2—2(g:,“ JT,L'L)+ |IT$"||2 S

lea=dll(lleall+1Tall)+ (f(wn) f(q))-

It follows that

1T |*

2 2
2l = bl = Jaol? + (2l + 2l ) [T

+2(flza) ~ F(a)).

Since {||zn||} and {f(z,)} are bounded, we obtain that {||T%,||} is bounded. From

Zng1 € Gy, one has

O(q, Tan) < 2(%y —Tpi1, JTn— JT"cn)+I-——2p(( n)— f(Zn1)). (3.3.19)

— K
By step 5, we obtain that .41 — 2, — 0 and lim,, ., f(z,) = f(p). Taking limit
on the both sides of (3.3.19), we obtain that ¢(z,,T%,) — 0 as n — oo. Noting
that 0 < (||za] = |T20]))? < ¢(zn, Tz,). Hence ||Tx,|| — ||p|| and consequently
|J(Tz,)|| — ||Jp||. This implies that {||J(Tz,)||} is bounded. Since E is reflexive,

E* is also reflexive. So we can assume that
J(TIE,I,) — fo € E*.

On the other hand, in view of the reflexivity of E, one has J(E) = E*, which means

that for fy € E*, there exists z € E, such that Jx = f,. It follows that

(Tn, Txn) = “511”2 — 2(zn, JTz,) + ”Tﬂ;n“2

= N@all® = 2(@n, JTza) + | T (T2,
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taking liminf,_,, on the both sides of equality above, we have

0 > [l - 2(p, fo) + Il foll?

= pll* - 2(p, Jz) + || J=|*
= ¢(p,2).
We have ¢(p, ) = 0 and consequently p = z, which implies that fo = Jp. Hence
J(Tz,) — Jp € E*.
Since ||J(T'z,)|| — ||Jp|| and E* has the property (K), we have
|J(T%n) — Jp[ — 0.
Noting that J=! : E* — E is demi-continuous, we have
Tz, —~pekFE.
Since ||Tz,|| — |lp|l and E has the property (K), we obtain that 7'z, — p as
n — 00. From z,, — p and the closeness property of T, we have p € F (7).
Step 7. Show that p = H{;(T)H}g.
It follows from steps 5 and 6 that
G(p,zo) =G (Hgmo,mo) = ggIgG(é, To)

<G (H'};(T)wl), 3-"0)

< G (p o),

which implies that G (Hgmmg, rcg) = G (p, o). It follows from the uniqueness, we

can conclude that p = H';.(T)mg. This completes the proof. O

If f(z) = ||lz||* for all = € E, then G(¢, Jz) = ¢(€,2) + 2p|€|* and Iz =

Hg'.”:,a:. By Theorem 3.3.2, we obtain the following corollary.
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Corollary 3.3.3. Let E be a reflexive, strictly convex and smooth Banach space
such that E and E* have the property (K). Assume that C is a nonempty closed
convex subset of E, T : C'— C'is closed and G-quasi-strict pseudo-contraction(where

FC)=1-1?). Define a sequence {x,} of C as follows:

(

Ty € C” Cl = O)

T = H{;l (o),

4 e j;;") (3.3.20)

On+1 =4 zZ€ Cn < ($n — %, an - JT‘T“)

L

2
- (lleal = I12IP)

2
Tn1 = H" ; ("UO): n 2= 0:
\

_|_

Cnt1

4 11
where k € [0,1). Then {x,} converges strongly to 11 F(r)(%o).

If f(z) = 0 for all z € E, then G(¢,Jz) = ¢(¢, ) and Iz = Moz, By

Theorem 3.3.2, we obtain the following corollary.

Corollary 3.3.4. [88] Let E be a reflexive, strictly convex and smooth Banach
space such that £ and E* have the property (K). Assume that C is a nonempty
closed convex subset of E. Let T : C — C be a closed and quasi-strict pseudo-
contraction. Define a sequence {z,} as in (3.3.3). Then {x,} converges strongly

to po = Ip(1)@o.



CHAPTER IV

EXISTENCE RESULT FOR VECTOR EQUILIBRIUM

PROBLEMS

4.1 Existence results for new weak and strong mixed vector equilib-

rium problems on non-compact domain

Let X be a Hausdorft topological vector space, K be a subset of X, and f : K xK —
R be a mapping with f(z,2) = 0. The classical, scalar-valued equilibrium problem

deals with the existence of & € K such that
f(&y)>0; VyeKkK.

Moreover, in the case of vector valued mappings, let ¥ be a another Hausdorff
topological vector space, C' C Y a convex cone with nonempty interior. Given a

vector mapping f : K X i — Y, then the problem of finding # € K such that
f(@y) ¢ —intC; Vy € K,

is called weak equilibrium problem and the point # € K is called weak equilibrium
point, where intC denotes the interior of the cone C in Y. In 2014, Rahaman and
Ahmad [59] considered two types of mixed vector equilibrium problems which were
combinations of a vector equilibrium problem and a vector variational inequality
problem. Remark that C' C Y is a pointed closed convex cone with nonempty
interior i.e., intC' # @. The partial ordering induced by C on Y is denoted by
<c¢ and is defined by z <¢c y ifand onlyif y —2z € C. Let f: K xK - Y
and 7' : X — L(X,Y) be two mappings, where L(X,Y) is the space of all linear

continuous mappings from X to Y. Here (T'(z),y) denotes the evaluation of the
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linear mapping 7'(z) at y. They considered the following two problems:

Find & € K such that
f(@,y) +(T(@),y — %) ¢ —intC; VyeK, (4.1.1)
and

f@y) +(T(@),y-2) ¢ -C\{0}; Wyek (4.1.2)

It is clear that the solution set of (4.1.2) is a subset of the solution set of
(4.1.1). Also if we consider Y = R? and C' = {(z,%) : ¢ € R} then intC = @ and
the solution set of (4.1.1) is always the whole set K. They called problem (4.1.1)
as weak mixed vector equilibrium problem and problem (4.1.2) as strong mixed
vector equilibrium problem. Problems (4.1.1) and (4.1.2) are unified models of
several known problems used in applied sciences, for instance, vector variational
inequality problem, vector complementarity problem, vector optimization problem

and vector saddle point problem, see e.g. [80, 89-93] and references therein.

With the inspiration from the notice of some characteristics of the mappings
of the original problem, we are interested and motivated in the development of the
existing problems to the new weak mixed vector equilibrium problem and the new

strong mixed vector equilibrium as follows:

Find & € K such that

f(@y) +(T(&),y — &) +7(%,9) + (y — & Di — Dz) ¢ —intC; Vye K,
(4.1.3)

and

F(@y) +(T(&),y - &) + 7(%,y) + (y — ,D% — Dz) ¢ ~C\ {0}; WyeK,
(4.1.4)

where 7: K X K — Y is a bifunction, D : X — L(X,Y), and z € X.
We prove the following existence results for new weak and strong mixed

vector equilibrium problems (4.1.3) and (4.1.4) for non-compact domains.
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Theorem 4.1.1. Let K be a nonempty closed convez subset of a Hausdorff topolog-
ical vector space X, Y a Hausdorff topological vector space and C' a closed convex
pointed cone in Y with intC # 0. Let f : KxK - Y, 7: KxK - Y,
T:K— LX,)Y) and D : X — L(X,Y) be four mappings satisfy the following

conditions:
(i) f and T are C-monotone;

(it) f(z,z) =0, and 7(z,z) =0 for all z € K

(i) for any fived z,y € K; t € [0,1] — f(ty+ (1 —t)z,y) €Y and t € [0,1] —

T(ty + (1 — t)z,y) € Y are upper semicontinuous with respect to C at t = 0;

(1) for any fized z € K, f(z,-),7(z,) : K — Y are C-convez, lower semicontin-

uous with respect to C' on K;

(v) D and T are upper semicontinuous with respect to C' with nonempty closed

values;

(vi) there exists a family {C;, Z;}icr satisfying conditions (i) and (ii) of Definition
2.2.12 and the following condition: For each i € I, there exists k € I such
that

{zeK: f(y,2) — (T'z,y — @) + 7(y,2) — {y — v, Dz — Dz) ¢ intC, Vy € Cy}
.5

Then, there exists a point & € K such that

f@y) +(T(&),y — &) +7(2,y) + (y — , Dx — Dz) ¢ —intC; Vy € K.

For the proof of the Theorem 4.1.1, we need the following proposition, for

which the assumptions remain same as in Theorem 4.1.1.

Proposition 4.1.2. The following two problems are equivalent:
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(i) Find& € K such that f(y, &)—(T(Z),y—2)+7(y, 2)—(y—3, Di—Dz) ¢ intC,
Vy € K;
(i) Find & € K such that f(%,y) + (T(&),y — &) + 7(Z,y) + (y — 3, D% — D2) ¢
—intC; Yy € K.
Proof. Suppose (i) holds. Then for fixed y € K, set z; = ty+ (1 — )z, for ¢ € [0, 1].
It is clear that z; € K, for all ¢ € [0, 1] and hence
f(z, &) — (T(Z), % — &) + 7(24, &) — (2 — T, DF — D2z) ¢ intC. (4.1.5)

Since f(z,2) =0 and f(z,-) is C—convex, we have

0= f(zt, %) <c tf(ze,y) + (1 — 1) f(ze, )

= tf(w,y) + (1 —)f (20, %) € C. (4.1.6)
On the other hand, the convexity of 7 in the second variable implies that

0 = 7(@, x) <c tr(wg,y) + (1 — t)7(wy, &)

= tr(ze, y) + (1 — t)7(z, %) € C. (4.1.7)
Also,
(T'(%), @ — %) = T(&),y — T) (4.18)
= (1 -OT(&),y —3) — (1 —t(T'(&), =, — &) = 0.
And
(¢t — &, D% — Dz) =t{y — &, D& — Dz)
= (1-t)tly—%,Dz —Dz) — (1 —t){w; — &, D% — Dz) =0 (4.1.9)

Combining (4.1.6), (4.1.7), (4.1.8) and (4.1.9), we obtain

t(f(ze,y) + 7(ze,y) + (1 — O){f (e, &) + 7(24, %) — (T(T), w2 — F)
— (2 — &, D% — D2)} + (1 — t{{T @),y — &) + (y — %, D7 — D2)} € C,
(4.1.10)



for all ¢ € [0, 1]. Tt is not hard to see that (4.1.10) equivalent to

(1= t){f (w0, &) + (30, &) — (T(3), % — T) — (@, — & DF— Dz)}  (4.1.11)

— (—t(f (2, y) + (2, y)) — 1 = ){(T(@),y — &)
+(y — %, D& — Dz)}) € C.

By using (4.1.5) and (4.1.11) and (ii) of Lemma 2.2.11, we have

t(f(zey) +7(2e, ) + (1 = (T (@), y = 2) + (y — &, DT — Dz)} ¢ —intC
=7 f('l't:y) g7 T("Et:y) = x (1 I t)(T(i):y = 5;) + (1 {2 t)<y - ,D% — DZ)

¢ —intC, Vt € (0,1]. (4.1.12)

By condition (iii) of Theorem 4.1.1 as t — f(ty + (1 —t)z,y) and t — 7(ty + (1 —
t)z,y) are upper semicontinuous with respect to C' at ¢ = 0, therefore from (4.1.12)

we have
f(&,y) +(T(@),y — &) + 7(2,y) + (y — & D& — Dz) ¢ —intC,

and hence (ii) holds.
Conversely, we assume that (ii) holds. In order to prove (i), on contrary

suppose that there exists a point 4 € K such that

F(§,8) —(T(%),5 — &) + 7(§, ) — (§ — &, DF — Dz) € intC

= f(#,%) +7(#,%) — (§ — & D& — Dz) = (T(3),§ — &) + w; (4.1.13)

for some w € intC.

On the other hand, since f and 7 are C-monotone, we have
[@,9)+ /(5,%) € -C = [(5,%) = - f(&7) —v; (4.1.14)
for some v € C' and

7(Z,9) +7(7,%) € —C = 7(§,%) = —7(%,§) — v (4.1.15)
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for some v € C. Combining (4.1.13), (4.1.14) and (4.1.15), we have
F(@&9) +(T(@),§ — &) + 7(2,§) + (§ — %, D3 — Dz) = —w — v —u € —intC;

which contradicts assumption (ii). Therefore (i) holds. O
Now, we are able to prove Theorem 4.1.1 which has the following details:

Proof. For each y € K, consider the set

Fly) ={z e K: f(y,2) = (T(x),y ~ z) + 7(y, )
—({y — @, Dz — Dz) ¢ intC}.
By Lemma 2.2.10, F(y) is closed in X and hence F has compactly closed values
in K. Now, we show that F' is a KKM map. For this, let {yi 17 € I} be a finite
subset of K and u € Co{y; : ¢ € I'}. We claim that
Co{yi:ie I} C UF(y,-).
i€l

In contrary, suppose that u ¢ J,.; F(y:). As u € Cof{y; : i € I}, we have u =
> ier Nivi with A; > 0 and > icr Ai = 1. This follows that

i, w) — (T(u), y; — w) + 7(yi,w) — (y; — z, Dz — Dz) € intC.

Since intC' is convex, therefore

> NS i w) = (T(w), 4 = v) + 7(i,u) — (i — 2, Do — Dz)} € intC

icl
Since f(z,) is C-convex and C-monotone, we have

D i (i) <c > NN F @i ys)

i€l ijel

1 i
=5 2 AN @ v) + F(y5, %)} <c 0. (4.1.16)
ijel

On the other hand, the convexity of 7 in the second variable and C-monotonicity,
implies that

Z/\if(yi,ﬂ) <¢ > ANT®: )

el i,j€l
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= 2 3 AT 1) + (w5800} < 0. (4.117)

i,jel

Furthermore,

0= (T(u),u—u) = (T(u), Z)\yl Z)\u)

= (T(u), Z iy — w)) = Z (T (), (y; — w)). (4.1.18)

And

0= (u—w,Dz— Dz) = ZAy, Z,\lu Dz — Dz)

iel icl

= () Xy —u), Dz — Dz) = = > "\ — u), Dz — D2). (4.1.19)

iel icl

Combining (4.1.16), (4.1.17), (4.1.18) and (4.1.19), we have

> Ail(y: —w), Dz~ Dz) + D AT (w), (3 — ) — > Xif (i)

iel i€l il
- Z/\,-_T(yi, u) e C
= Z Al f (i w) + (i, w) — (T(w), (3 — w)) — ((y; — w), Dz — Dz)} € —C.

(4.1.20)

From (4.1.16) and (4.1.20), we conclude that
Z )\i{f(yia 'lL)
i€l

+ 7(yi, u) — (T(u), (yi — w)) — (% — u), Dz — Dz)} € intC'n (-C) = 0,

which is a contradiction. This follows that u € Uier F(v:) and hence Co{y; : i €
1} € User F(y:). Thus, F is a KKM mapping. From the assumption (vi), we can
see that the family {(C;, Z;)}.c; satisfies the condition which is for all i € I , there
exists k € I such that

ﬂ Fly) C Z;

yeCk
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and therefore it is a coercing family for F. We deduce that F satisfies all the

hypothesis of Theorem 2.2.14. Therefore, we have

() Fy) #0.

yeCy,

Hence, there exists & € K such that for any y € K
f(y, %) —(T(&),y — &) +1(y,%) — (y — &, D& — Dz) ¢ intC.

Now applying Proposition 4.1.2, we obtain that there exists & € K such that for
allye K

F(@y) +(T(@),y — 2) +7(3,y) + (y — &, D& — Dz) ¢ —intC.
Hence problem (4.1.3) admits a solution. This completes the proof. O

Corollary 4.1.3. Let K, C,{(C;, Zi) }ier, f, 7, T and D satisfy all the assumptions
of Theorem 4.1.1. In addition, if C satisfies Condition(C), then the problem (4.1.4)

is solvable i.e., there evists & € K such that for anyy € K

Proof. Suppose that C satisfies Condition(C). Then there is a pointed convex and
closed cone C' in Y such that C'\ {0} C intC. Therefore, it is not hard to see that
K,C,{(C;, Z)) }ier, f, 7, T and D satisfy all the assumptions of Theorem 4.1.1. It

follows from Theorem 4.1.1 that

f(@&y) + (T(&),y — &) +7(2,9) + (y — %, DF — Dz) ¢ —intC; Wy € K.
(4.1.21)

Since —(C'\ {0}) C —intC, (4.1.21), yields that there exists # € K such that
f@y) +(T(@),y— &) +7(2,y9) + (y— & D& — Dz) ¢ —(C\{0}); WyeK.

Therefore, problem (4.1.4) admits a solution. This completes the proof. [l
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In the case of 7 = 0 and D = 0, we obtain the following corollaries.

Corollary 4.1.4. [59] Let K be a nonempty closed convex subset of a Hausdorf
topological vector space X, ¥ a Hausdorff topological vector space and C a closed
convex pointed cone in ¥ with intC' # 0. Let f : KxK — Y and T : K — L(X,Y)
be two mappings satisfying the following conditions:

(i) f is C-monotone;

(i) f(z,z) =0,% € K;

(i) for any fixed z,y € K;t € [0,1] — f(ty + (1 —t)z,y) € Y is upper semicon-

tinuous with respect to C' at ¢ = 0;

(iv) for any fixed 2 € K, f(z,-) : K — Y are C-convex, lower semicontinuous

with respect to C' on K;
(v) T is upper semicontinuous with respect to C' with nonempty closed values;

(vi) there exists a family {C;, Z;}¢; satisfying conditions (i) and (44) of Definition
2.2.12 and the following condition: For each i € I, there exists k € I such
that

{reK: fly,z) = (Tz,y —z) ¢ intC, Yy € Cx} C Z.

Then, there exists a point & € K such that
f@,y) +(T(z),y - &) ¢ —intC; VyeK.

Corollary 4.1.5. [59] Let K, C, {(C}, Z;) }ier, f and T satisfy all the assumptions
of Corollary (4.1.4). In addition, if C satisfies Condition(C), then the problem

(4.1.2) is solvable i.e., there exists & € K such that for any y € K

F(@&y) +(T(@),y — %) ¢ —(C\ {0}).



CHAPTER V

CONCLUSION

The following results are all main theorems of this thesis:

1. Let C be a nonempty closed convex subset of a real Hilbert space H ;

T : C' — C be L-Lipschitz pseudo-contraction and F be a bifunction of C' x ' into
R satisfying (A1) — (A4) with F := F(T)NEP(F) # @. Let zg € H. For C; = C
and z; = P, (o), define a sequence {w,} of C' by (3.1.5). Assume the sequence
{an}, {8.} and {r,} be such that

(1)0<a<a,1Sb<ﬁf<1forallneN,

(2) 0 < B, < 1for all n € N with lim,_,c 8, = 0,

(3) 7» > 0 for all n € N with liminf, .., 7, > 0.

Then {@,} converges strongly to Px(zq).

2. Let A: H — H be L-Lipschitz monotone mapping and F be a bi-
function of €' x C into R satisfying (A1) — (A4) which A=1(0) N EP(F) # @. Let
Tg € H. For C; = C and %, = Pg, (%), define a sequence {z,,} of C by (3.1.21).
Assime 0 <a<a, <b< L—-lF'z' <lforalln €N, {8} and {r,} be as in Theorem

3.1.3. Then {x,} converges strongly to Pa-1oynepr)(@o).

3. Let C' be a nonempty closed convex subset of a real Hilbert space H,
T : C — C be an L-Lipschitz pseudo-contraction. Let © be a bifunction from
C' x C into R satisfying (A1) — (44) , ¢ : C' — R be a lower semicontinuous and
convex function, A : ¢ — E* be a continuous and monotone mapping such that
1:= F(T)NGMEP (0,A,¢) # 0. Let 2y € H. For C, = C and z; = P, (o),
define a sequence {,} of C by (3.2.6). Assume the sequence {a,}, {f,} and {rn}
be such that

D0<a<an<b< gy <lforallneN,

(2)0<f, <1lforalneN,
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(3) 7o > 0 for all » € N with liminf,_,c7,, > 0. Then {z.} converges

strongly to Pa(wg).

4. Let C be a nonempty closed convex subset of a real Hilbert space H,
T : C — C be an L-Lipschitz pseudo-contraction. Let © be a bifunction from
C' x C into R satisfying (A1) — (A4), such that Q := F(T) N EP(©) # @. Let
w9 € H. For €y = C and ; = P, (o), define a sequence {z,} of C by (3.2.17).
Assume the sequence {a,}, {fa} and {r,} are as in Theorem 3.2.5. Then {z,}

converges strongly to Pn(xzy).

5. Let C, H, ©, A and ¢ be as in Theorem 3.2.5 and let B : H — H be an
L-Lipschitz monotone mapping such that @ = B-Y(0)NGMEP (0, A, ¢) # @. Let
wy € H. For C1 = C and 2, = Pg, (@), define a sequence {z,} of C' by (3:1.21).
Assume 0 <a<a,<b< L_}Q <1foralln €N, {4,} and {r,} be as in Theorem

3.2.5. Then {z,} converges strongly to Pq(z).

6. Let £ be a reflexive, strictly convex and smooth Banach space such
that £ and E* have the property (/). Assume that C' is a nonempty closed
convex subset of I, T': C' — C is closed and G-quasi-strict pseudo-contraction and
f:E— RU{+oo} is a proper, convex and lower semicontinuous mapping. Define
a sequence {z,} of C' by (3.3.9), where x € [0,1). Then {z,} converges strongly

to H{?(T) (@p).

7. Let E be a reflexive, strictly convex and smooth Banach space such that
E and E* have the property (K). Assume that C' is a nonempty closed convex
subset of E, T' : C' — (' is closed and G-quasi-strict pseudo-contraction(where
f() = 1l-I?). Define a sequence {z,} of C by (3.3.20), where x € [0,1). Then

{zn} converges strongly to Hﬂ;'(';) (o).

8. Let K be a nonempty closed convex subset of a Hausdorff topological
vector space X, Y a Hausdorff topological vector space and C a closed convex

pointed cone in Y with intC # 0. Let f : K x K - Y, 7: KxK — Y,
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T:K— L(X,Y)and D : X — L(X,Y) be four mappings satisfy the following
conditions:

1. f and 7 are C-monotone;

2. f(z,z) =0, and 7(z,z) =0 for all z € K

3. for any fixed z,y € K;t € [0,1] — f(ly+ (1 —t)z,y) €Y and t € [0,1] —

7(ty + (1 — t)z,y) € Y are upper semicontinuous with respect to C at ¢t = 0;

4. for any fixed z € K, f(z,),7(z,:) : K — Y are C-convex, lower semicontin-

uous with respect to C' on K

D and T are upper semicontinuous with respect to C' with nonempty closed

(a4

values;

6. there exists a family {C}, Z; }:cs satisfying conditions (7) and (4) of Definition
2.2.12 and the following condition: For each i € I, there exists k € I such
that

{ze K: f(y,x) — T,y — z) + 7(y,2) — (y — x, Dx — Dz) ¢ intC, Vy € Cy}
C Z;.

Then, there exists a point & € K such that
J@&,y) +(T(&),y—&) + 7(2,y) + (y — x, Dz — Dz) ¢ —intC; Vy € K.
9. Let K,C,{(C;,Z:)}ie1, f, 7, T and D satisfy all the assumptions of

Theorem 4.1.1. In addition, if C satisfies Condition(C'), then the problem (4.1.4)

is solvable i.e., there exists & € K such that for any y € K

F@&y) +(T(&),y — 7) + 7(&,y) + (y — &, DF — Dz) ¢ —(C'\ {0}).






REFERENCES

(1] E. Blum, W. Oettli. (1994). From optimization and variational inequilities
to equilibrium problem. Math. Student., 63(1), 123-145.

[2] F. Flores-Bazan. (2003). Existence theory for finite-dimensional pseudo
monotone equilibrium problems. Acta Appl. Math., 77, 249-297.

[3] N. Hadjisavvas, S. Komlési, S. Schaible. (2005). Handbook of Generalized
Convexity and Generalized Monotonicity.
Germany: Springer-Verlag Berlin Heidelberg New York.

[4] N. Hadjisavvas, S. Schaible. (1998). From scalar to vector equilibrium problems
in the quasimonotone case. J. Optim. Theory Appl., 96, 297-309.

[5] P.L. Combettes, S.A. Hirstoaga. (2005). Equilibrium programming in Hilbert
spaces. J. Nonlinear Convex Anal., 6, 117-136.

[6] A. Moudafi. (2000). Viscosity approximation methods for fixed-point
problems. J. Math. Anal. Appl., 241, 46-55.

[7] A. Tada, W. Takahashi. (2007). Strong convergence theorem for an equilibrium
problem and a nonexpansive mapping. J. Optim. Theory. Appl.,
133, 359-370.

[8] S. Takahashi, W. Takahashi. (2007). Viscosity approximationmethods for equili-
briumproblems and fixed point problems in Hilbert spaces. J.Math.
Anal. Appl., 331, 506-515.

[9] W.R. Mann. (1953). Mean value methods in iteration. Proc. Amer. Math.
Soc., 4, 506-510.

[10] C. Byrne. (2004). A unified treatment of some iterative algorithms in signal
processing and image reconstruction. Inverse Problems., 20,
103-120.

[11] S. Reich. (1979). Weak convergence theorems for nonexpansive mappings in

Banach spaces. J. Math. Anal. Appl., 67, 274-276.



[12] K.K. Tan, H.K. Xu. (1993). Approximating fixed points of nonexpansive
mapping by the Ishikawa iteration process. J. Math. Anal. Appl.,
178, 301-308.

[13] R. Wittmann. (1992). Approximation of fixed points of nonexpansive
mappings. Arch. Math., 58, 486-491.

[14] H.K. Xu. (2002). Iterative algorithmns for nonlinear operators. J. London
Math. Soc., 66, 240-256.

[15] L.C. Zeng. (1998). A note on approximating fixed points of nonexpansive
mapping by the Ishikawa iterative processes. J. Math. Anal. Appl.,
226, 245-250.

[16] A. Genel, J. Lindenstrass. (1975). An example concerning fixed points. Israel
J. Math., 22, 81-86.

[17] G. Marino and H.K. Xu. (2007). Weak and strong convergence theorems for
strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl.,
329, 336-346.

[18] O. Scherzer. (1991). Convergence criteria of iterative methods based on
Landweber iteration for solving nonlinear problems, J. Math. Anal.
Appl., 194, 911-933.

[19] F.E. Browder, W.V. Petryshyn. (1967). Construction of fixed points of
nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl., 20,
197-228.

[20] K. Nakajo and W. Takahashi. (2003). Strong convergence theorems for
nonexpansive mappings and nonexpansive semigroups. J. Math. Anal.
Appl., 279, 372-379.

[21] M.O. Osilike, Y. Shehu. (2009). Explicit averaging cyclic algorithm for
common fixed points of asymptotically strictly pseudocontractive maps.

Appl. Math. Comput., 213, 548-553.



[22] S. Plubtieng, K. Ungchittrakool. (2007). Strong convergence of modified
Ishikawa iteration for two asymptotically nonexpansive mappings
and semigroups. Nonlinear Anal., 67, 2306-2315.

[23] X.L. Qin, H.Y. Zhou, S.M. Kang. (2009). Strong convergence of Mann type
implicit iterative process for demi-continuous pseudo-contractions.

J. Appl. Math. Comput., 29, 217-228.

[24] X.L. Qin, Y.J. Cho, S.M. Kang, M.J. Shang. (2009). A hybrid iterative scheme
for asymptotically k-strict pseudo-contractions in Hilbert spaces.
Nonlinear Anal., 70, 1902-1911.

[25] B.S. Thakur. (2007). Convergence of strictly asymptotically
pseudo-contractions. Thai J. Math., 5, 41-52.

[26] H.Y. Zhou. (2008). Convergence theorems of fixed points for Lipschitz
pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 343,
546-556.

[27] O. Scherzer. (1991). Convergence criteria of iterative methods based on
Landweber iteration for solving nonlinear problems. J. Math. Anal.
Appl., 194, 911-933.

[28] W. Takahashi, K. Zembayashi. (2008). Strong convergence theorem by a
new hybrid method for equilibrium problems and relatively
nonexpansive mappings. Retrieved September 2, 2013,
form http://www.jourlib.org /paper/2907139

[29] W. Takahashi, K. Zembayashi. (2009). Strong and weak convergence theorems
for equilibrium problems and relatively nonexpansive mappings in
Banach spaces. Nonlinear Anal., 70, 45-57.

[30] P. Kumam, N. Petrot, R. Wangkeeree. (2010). A hybrid iterative scheme
for equilibrium problems and fixed point problems of asymptotically
k-strict pseudo-contractions. J. Comput. Appl. Math., 233(8),
2013-2026.



[31] P. Kumam, K. Wattanawitoon. (2009). Convergence theorems of a hybrid
algorithm for equilibrium problems. Nonlinear Analysis: Hybrid
Systems., 3, 386-394.

[32] X.L. Qin, H.Y. Zhou, S.M. Kang, (2009). Convergence theorems of common
elements for equilibrium problems and fixed point problems in
Banach spaces. J. Comput. Appl. Math., 225(1), 20-30.

[33] S. Plubtieng, K. Ungchittrakool. (2010). Approximation of common fixed
points for a countable family of relatively nonexpansive mappings in
a Banach space and applications. Nonlinear Anal., 72(6),

2896-2908.

[34] K. Ungchittrakool. (2010). A strong convergence theorem for a
common fixed point of two sequences of strictly pseudo
contractive mappings in Hilbert spaces and applications.
Retrieved September 2, 2014, form http://dx.doi.org/10.1155/2010/876819

[35] Ya.l. Alber. (1994). Generalized projection operators in Banach spaces:
properties and applications, in: Proceedings of the Israel Seminar, Ariel,
Israel, in: Funct. Differential Equation., 1, 1-21.

[36] Ya.I. Alber. (1996). Metric and generalized projection operators in Banach
spaces: properties and applications, in: A.G. Kartsatos (Ed.).

In Theory and Applications of Nonlinear Operator of Accretive
and Monotone Type. New York: Marcel Dekker.

[37] X. Li. (2005). The generalized projection operator on reflexive Banach spaces
and its application. J. Math. Anal. Appl., 306, 377-388.

[38] K.Q. Wu, N.J. Huang. (2006). The generalised f-projection operator with an
application. Bull. Aust. Math. Soc., 73, 307-317.



[39] K.Q. Wu, N.J. Huang. (2007). Properties of the generalized f-projection
operator and its applications in Banach spaces. Comput. Math.
Appl., 54, 399-406.

[40] K.Q. Wu, N.J. Huang. (2009). The generalized J-projection operator and
set-valued variational inequalities in Banach spaces. Nonlinear Anal.
TMA., 71, 2481-2490.

[41] J.H. Fan, X. Liu, J.L. Ti. (2009). Iterative schemes for approximating solutions
of generalized variational inequalities in Banach spaces. Nonlinear
Anal. TMA., 70, 3997-4007.

[42] K. Ungchittrakool. (2012). An iterative shrinking projection method
for solving fixed point problems of closed and ¢-quasi-strict
pseudo-contractions along with generalized mixed equilibrium
problems in Banach spaces. Retrieved August 21, 2014,
from http://dx.doi.org/10.1155/2012/536283

[43] S. Saewan, P. Kanjanasamranwong, P. Kumam, Y. J. Cho. (2013). The
modified Mann type iterative algorithm for a countable family
of totally quasi-¢-asymptotically nonexpansive mappings by
hybrid generalized f-projection method. Retrieved September 25,
2014,
from http:// www.fixedpointtheoryandapplications.com/content /2013 /1/63

[44] S. Saewan, P. Kumam. (2013). A generalized f-projection method for
countable families of weak relatively nonexpansive mappings and the
system of generalized Ky Fan inequalities. J. Global Optim., 56(2),
623-645.

[45] C. Jaiboon, P. Kumam. (2010). Strong convergence theorems for solving
equilibrium problems and fixed point problems of ¢-strict
pseudo-contraction mappings by two hybrid projection methods.

J. Comput. Appl. Math., 234, 722-732.



[46] T. Jitpeera, P. Kumam. (2011). The shrinking projection method for
common solutions of generalized mixed equilibrium problems
and fixed point problems for strictly pseudocontractive
mappings. Retrieved June 12, 2014,
from http://dei:10.1155/2011/840319

[47] P. Katchang, P. Kumam. (2012). Modified Mann iterative algorithms by
hybrid projection methods for nonexpansive semigroups and mixed
equilibrium problems. J. Appl. Anal., 18(2), 259-273.

[48] W. Kumam, C. Jaiboon, P. Kumam, A. Singta. (2010). A shrinking
projection method for generalized mixed equilibrium problems,
variational inclusion problems and a finite family of
quasi-nonexpansive mappings. Retrieved June 12, 2014,
from http://www.journalofinequalitiesandapplications.com/.../1/458247

[49] W. Kumam, P. Junlouchai, P. Kumam. (2011). Generalized systems of
variational inequalities and projection methods for
inverse-strongly monotone mappings. Retrieved September 2, 2014,
from http://dx.doi.org/10.1155/2011/976505

[50] N. Petrot, K. Wattanawitoon, P. Kumam. (2010). A hybrid projection method
for generalized mixed equilibrium problems and fixed point problems
in Banach spaces. Nonlinear Anal.: Hybrid Systems., 4, 631-643.

[61] P. Phuangphoo, P. Kumam. (2013). Two block hybrid projection method for
Solving a Common Solution for A System of Generalized Equilibrium
Problems and Fixed Point Problems for two countable families.
Optim. Lett., 7(8), 1745-1763.

[62] S. Saewan, P. Kumam. (2011). A modified hybrid projection method for
solving generalized mixed equilibrium problems and fixed .point

problems in Banach spaces. Comput. Math. Appl., 62, 1723-1735.



[53] S. Saewan, P. Kumam. (2012). A strong convergence theorem concerning a,
hybrid projection method for finding common fixed points of a
countable family of relatively quasi-nonexpansive mappings.

J. Nonlinear Convex Anal., 13(2), 313-330.

[54] S. Saewan, P. Kumam. (2013). Computational of generalized
projection method for maximal monotone operator and a
countable family of relatively quasi-nonexpansive mappings.
Retrieved August 11, 2014,
from http://dx.doi.org/10.1080/331934.2013.824444

[55] S. Saewan, P. Kumam. (2011). The shrinking projection method for
solving generalized equilibrium problem and common fixed points
for asymptotically quasi-¢-nonexpansive mappings. Retrieved
September 2, 2014, from http://link.springer.com/article/10.1186

[56] S. Saewan, P. Kumam, K. Wattanawitoon. (2010). Convergence theorem
based on a new hybrid projection method for finding a common
solution of generalized equilibrium and variational inequality
problems in Banach spaces. Retrieved September 12, 2014,
from http://dx.doi.org/10.1155/2010/734126

[57] C. Watchararuangwit, P. Phuangphoo, P. Kumam. (2012). A hybrid
projection method for solving a common solution of a system
of equilibrium problems and fixed point problems for
asymptotically strict pseudo-contractions in the intermediate
sense in Hilbert spaces. Retrieved September 13, 2014,
from http://link.springer.com/article/10.1186

[58] K. Wattanawitoon, P. Kumam. (2011). Strong convergence theorems of a new
hybrid projection method for finite family of two hemi-relatively
nonexpansive mappings in a Banach space. Banach Center Publ.,

92, 379-390.



[59] M. Rahaman, R. Ahmad. (2014). Weak and strong mixed vector
equilibrium problems on non-conpact domain. Retrieved
September 2, 2014, from http://dx.doi.org/10.1016/j.joems.2014.06.007

[60] E. (1978). Introductory functional analysis with applications.
Singapore: John Wiley & Sons.

[61] S. Kamimura, W. Takahashi. (2002). Strong convergence of a proximal-type
algorithm in a Banach space. SIAM J. Optim., 13, 938-945.

[62] S. Reich. (1996). A weak convergence theorem for the alternating method with
Bregman distance. in: A.G. Kartsatos (Ed.). In Theory and Applica
tions of Nonlinear Operators of Accretive and Monotone
Type. New York: Marcel Dekker.

[63] W. Takahashi, K. Zembayashi. (2009). Strong and weak convergence
theorems for equilibrium Gproblems and relatively nonexpansive
mappings in Banach spaces. Nonlinear Anal., 70, 45-57.

[64] S. Zhang. (2009). Generalized mixed equilibrium problem in Banach spaces.
Appiled Mathematics and English Edition, 30, 1105-1112.

[65] Takahashi, W. (2000). Nonlinear Functional Analysis. Yokohama:
Yokohama-Publishers.

[66] Goebel, K. and Kirk, W.A. (1972). A fixed point theorem for asymptotically
nonexpansive mappings. Proc. Amer. Math. Soc., 35, 171-174.

[67] W. Takahashi. (2000). Nonlinear Functional Analysis.

Japan: Yokohama Publishers.

[68] S. Reich. (1992). Review of Geometry of Banach spaces, Duality Mappings

and Nonlinear Problems by loana Cioranescu, Kluwer Academic

Publishers, Dordrecht, 1990. Bull. Amer. Math. Soc., 26, 367-370.



[69] I. Cioranescu. (1990). Geometry of Banach spaces, Duality Mappings
and Nonlinear Problem. Dordrecht: Kluwer.

[70] C. Matinez-Yanes, H.K. Xu. (2006). Strong convergence of the CQ method
for fixed point process. Nonlinear Anal., 64, 2400-2411.

[71] S. Matsushita, W. Takahashi. (2005). A strong convergence theorems for rela-
tively nonexpansive mappings in a Banach space. J. Approx. Theory.,
134, 257-266.

[72] Takahashi, W. (2009). Introduction to Nonlinear and Convex Analysis,
Japan: Yokohama publishers.

[73] K. Deimling. (1985). Nonlinear Functional Analysis.

Germany: Springer-Verlag Berlin Heidelberg New York Tokyo.

[74] X. Li, N. Huang, D. O’Regan. (2010). Strong convergence theorems for
relatively nonexpansive mappings in Banach spaces with applications.
Comput. Math. Appl., 60, 1322-1331.

[75] A. Jarernsuk, K. Ungchittrakool. (2012). Strong convergence by a hybrid
algorithm for solving equilibrium problem and fixed point problem of a
Lipschitz pseudo-contraction in Hilbert spaces. Thai J. Math., 10(1),
181-194.

[76] Q.B. Zhang, C.Z. Cheng. (2008). Strong convergence theorem for a, family
of Lipschitz pseudocontractive mappings in a Hilbert space. Math.
Comput. Modelling, 48, 480-485.

[77] Petrot, N. (2010). Some existence theorems for nonconvex variational
inequalities problem. Retrieved September 11, 2014,
from http://doi:10.1155/2010/472760

[78] Cegielski, A. (2012). Iterative methods for fixed point problems in

Hilbert spaces. New York: Springer.



[79] Ceng, L-C., Huang, S. and Yao, J-C. (2010). Existence theorems for
generalized vector variational inequalities with a variable ordering
relation. J. Glob. Optim., 46, 521-535.

[80] N.X. Tan, P.N. Tinh. (1998). On the existence of equilibrium points of
vector function. Numer., Funct. Anal. Optimiz., 19(1-2),
141-156.

[81]G.Y. Chen. (1992). Existence of solutions for a vector variational inequality:
an extension of the a-Stampacchia theorem. J. Optimiz. Theory
Appl., 74(3), 445-456.

[82] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano. (2005). A generalized KKMF
J. Math. Anal. Appl., 309(2), 583-590.

[83] Y. Yao, Y-C. Liou, G. Marino. (2009). A hybrid algorithm for
pseudo-contractive mappings. Nonlinear Anal., 71, 4997-5002.

[84] C.E. Chidume, S.A. Mutangadura. (2001). An example on the Mann iteration
method for Lipschitz pseudocontractions. Proc. Amer. Math. Soc.,
129(8), 2359-2363.

[85] Y.-C. Tang, J.-G. Peng, L.-W. Liu. (2011). Strong convergence theorem for
pseudo-contractive mappings in Hilbert spaces. Nonlinear Anal.,
74(2), 380-385.

[86] K. Nakajo, W. Takahashi. (2003). Strong convergence theorems for
nonexpansive mappings and nonexpansive semigroups. J. Math.
Anal. Appl., 279, 372-379.

[87] W. Takahashi, Y. Takeuchi, R. Kubota. (2008). Strong convergence theorems
by hybrid methods for families of nonexpansive mappings in Hilbert
spaces. J. Math. Anal. Appl., 341, 276-286.

[88] H. Zhou, E. Gao. (2010). An iterative method of fixed points for closed and
quasi-strict pseudocontractions in Banach spaces. J. Appl. Math.

Comput., 33, 227-237.



[89] F. Giannessi. 2000. Vector Variational Inequalities and Vector
Equilibria. Dordrecht: Kluwer Academic Publishers.

[90] G.M. Lee, D.S. Kim, B.S. Lee. (1996). On non-cooperative vector equilibrium.
India. J. Pure Appl. Math., 27, 735-739.

[91] M. Bianchi, N. Hadjisavvas, S. Schaible. (1997). Vector equilibrium problems
with generalized monotone bifunctions. J. Optimiz. Theory Appl.,
92, 527-542.

[92] F. Flores-Bazan, F. Flores-Bazan. (2003). Vector equilibrium problems under
asymptotic analysis. J. Global Optimiz., 26(2), 141-166.

[93] J. Fu. (1997). Simultaneous vector variational inequalities and vector implicit

complementarity problems. J. Optimiz. Theory Appl., 93, 141-151.



	Title 
	Abstract 
	Contents
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	References 

