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ABSTRACT

In this thesis, we introduce a concept of generalized Geraghty contractions
in complete partial b-metric spaces. The existence of fixed point theorems for such
mappings is proven omitting some condition of ¥ € U that is subadditive. We also
prove the fixed point theorem for generalized Geraghty contractions in complete
partially ordered partial b-metric spaces using our main result. Moreover, the ex-
ample is presented for supporting our main result.

Furthermore, we introduce a notion of generalized contractions in the set-
ting of partial rectangular metric spaces. The existence of fixed point theorems
for generalized contractions with triangular a-orbital admissible mappings with re-
spect to 17 in the complete partial rectangular metric spaces is proven. Moreover,
we also give the example for supporting our main result.

Moreover, the fixed point theorems and unicue common fixed point theo-



rems for generalized contractions with triangular f -a-admissible mappings on Bran-
ciari metric spaces are proven omitting some conditions of ¥ € ¥, using ¥y the set
of all nondecresing and continuous functions. We prove the unique common fixed
point theorem for gencralized contractions in the setting of partially ordered Bran-
ciari metric spaces using our main result. Moreover, we also present the example

that supports our main result.
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CHAPTER I

INTRODUCTION

The notion of metric spaces has an important role and applications poten-
tial in various branches which Frechet introduced this notion in 1906. In a large
class of studying the classical eoncept of a metric space has been generalized in
different directions by partly changing the conditions of the metric. In 2000, Bran-
ciari [1] introduced a class of generalized (rectangular) metric spaces by replacing
triangular inequality by similar one which involves four or more points instead of
three. In 2014, Shukla [2, 3] generalized both the concepts of b-metric spaces and
partial metric spaces by introducing the partial b-metric spaces and the auther
introduced a partial rectangular metric space as a gencralization of the concept of
a rectangular metric space and extension of the concept of a partial metric space.

On the other hand, the fixed point theorems is an important tool in anal-
ysis. It plays an important role for proving the existence and uniqueness of the
solutions to various mathematical model, computer optimization theory, engineer-
ing sciences, ect. One of the most important results in fixed point theory is the
Banach contraction principle introduced by Banach [4]. There were many authors
have studied and proved the results for fixed point theory by generalizing the Ba-
nach contraction principle in several direetions (see [5, 6, 7, 8, 9] and references
contained therein).

In this rescarch, we begin with studying the fixed point theorems in vari-
ous directions as following:

One of the interesting result is Geraghty’s theorem given by Geraghty [G].
In 2013, Cho ct al. [5] defined the concept of a-Geraghty contractive type map-
pings in the setting of metric spaces. In 2014, Popescu [9] generalized a-Geraghty
contractions in complete metric spaces under the new conditions concerning with

triangular a-orbital admissible mappings. On the other hand, Karapinar (8] in-



vestigated the existence and uniqueness of a fixed point of a generalization of a-
-Geraghty contractive type mappings under the new conditions concerning with
triangular a-admissible mappings. In 2015, Sastry [10] proved fixed point theorems
for generalized Geraghty contractive type mappings in complete partial b-metric
spaces by considering partial b-metric as in definition defined in Shukla [2].

Another interesting results were given by Jleli et al. [13] introduced a
new type of contractive mappings and established a new fixed point theorem for
such mappings on the setting of generalized metric spaces. Later, the authors es-
tablished a new fixed point theorem in the sctting of Branciari metric spaces and
obtained result is an extension of the recent fixed point theorem established in Jleli
et al. [14]. In 2016, Arshad et al. [20], extended the the results introduced by Jleli
et al. [13, 14] by using the concept of triangular a-orbital admissible mappings
obtained in [9].

This thesis is organized into 6 chapters as follows. Chapter [ is an intro-
duction. Chapter II concerns with some well-known definitions and some useful
results that will be used in our main results of this thesis.

In Chapter I1I, we introduce a coneept of generalized Geraghty contrac-
tions in complete partial b-metric spaces using altering distance functions. The
existence of fixed point theorems for such mappings is proven. We also prove the
fixed point theorem for generalized Geraghty contractions in complete partially
ordered partial b-metric spaces using our main result. Moreover, the example is
presented for supporting our main result.

In Chapter 1V, the fixed point theorems and unique common fixed point
theorems for generalized contractions with triangular f-a-admissible mappings on
Branciari metric spaces are proven omitting some conditions of ¥ € ¥, using W,
the set of all nondecresing and continuous functions. We prove the unique common
fixed point theorem for generalized contractions in the setting of partially ordered
Branciari metric spaces using our main result. Moreover, we also present the ex-

ample that supports our main result.



In Chapter V, we introduce a notion of generalized contractions in the
setting of partial rectangular metric spaces. The existence of fixed point theorems
for generalized contractions with triangular a-orbital admissible mappings with re-
spect to 17 in the complete partial rectangular metric spaces is proven. Morcover,
we also give the example for supporting our main result.

In Chapter VI, the conclusion of this thesis is presented.



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results
that will be used in the later chapter.
Throughout this thesis, we let R stand for the set of all real numbers and

N the set of all natural numbers.

2.1 Fixed point theorems for Geraghty contractions in partial b-metric

spaces

For the sake of convenience, we will recall the Geraghty’s Theorem, intro-

duced by Geraghty [6].

Definition 2.1.1. Let S denote the class of the functions £ : [0, +00) — [0,1)

satisfying the following condition:

lim A(t,) =1 implics litm, 14 #F 0.

n—oo n—oc
In 1973, Geraghty [6] gencralized the Banach’s contraction principle as fol-
lows.

Theorem 2.1.2. [6] Let (X, d) be a complete metric space and f : X — X be a

mapping. Assume that there exists 3 € S such that for all v,y € X,

d(fz, fy) < pld(x, y))d(x,y).

Then f has a unique fived point z € X and for any choice of the initial point
xo € X, the sequence {x,} defined by x, = fax,—1 for each n > 1 converges to the

point z.

On the other hand, Samet et al. [15] introduced the notion of a-admissible

mappings as follows.
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Definition 2.1.3. [15] Let f : X — X be a mapping and a : X x X — [0, +00)

be a function. We say that f is a-admissible if for all z,y € X,

a(z,y) > 1 implies afz, fy) > 1.

Recently, Karapinar [8] introduced the concept of a-1p-Geraghty contraction
type mappings on complete metric spaces. Also, [8] defined the family U of all
functions 1 : [0, +c0) — [0, +00) satisfying the following conditions:

1) ¢ is nondecreasing;

(

(2) ¥ is subadditive, that is (s +t) < ¥(s) + ¥(¢);
(

(4

)
)

3) ¥ is continuous;
)

¥(t) = 0if and only if t = 0.

Definition 2.1.4. [8] Let (X, d) be a metric space and a : X x X — [0,+00)
be a function. A mapping f : X — X is said to be a generalized a-y-Geraghty

contraction if there exist # € S and ¥ € ¥’ such that for all x,y € X
a(z, y)(d(fr, fy) < BO(M(z, y))P(M (2, ),
where
M(z,y) = mas{p(ry) (e, F2), oy, f)}-

Theorem 2.1.5. [8] Let (X,d) be a complete metric space, a : X x X — [0,00)
be a function and f : X — X be a mapping. Suppose that there exists § € S and

) € W such that for all z,y € X
a(z, y)p(d(fx, fy)) < BO(M(z,y)))p(M(z,y)),
where
M (z,y) = max{p(z,y), p(z, fz),p(y. Jy)}.

Assume that the following conditions hold:

(i) [ is a triangular a-admissible mapping;



(ii) there exists x1 € X such that a(xy, fr1) 2 1;
(iii) [ is a continuous mapping.

Then f has a fized point in X.

In 2013, Shukla [2] unified partial metrics and b-metric spaces by introducing

the concept of partial b-metric spaces as follows.

Definition 2.1.6. [2] Let X be a nonempty set and s > 1 be given a real number.
A function p : X x X — R* is a partial b-metric if the following conditions are
satisfied for all @,y,z € X :

(pl) x =y if and only if p(z, z) = p(z, y) = p(y, y);

(p2) plz,z) < p(z,y);

(p3) p(x,y) = py, );

(pd) plx,y) < slp(z, 2) + p(z, y)] — p(z 2).
The pair (X, p) is called a partial b-metrie space. The number s > 1 is called the

coefficient of (X, p).

In the following definition, Mustafa [16] modilied the definition of partial

b-metric spaces defined by Shukla [2] as follows.
Definition 2.1.7. [16] Let X be a nonempty set and s > 1 be given a real number.
A function p : X x X — [0, +c0) is a partial b-metric if the following conditions
are satisfied for all z,y,z € X :

(pl) @ = y if and only if p(x, x) = p(z, y) = p(y, ¥);

(v2) p(e, ) < pla,y);

(03) p(z,y) = p(y, ©);

(04) () < slp, ) +p(2,9) = p(z, 2] + (152) 0(,2) +ply,9)).
The pair (X, p) is called a partial b-metric space. The number s > 1 is called the

coefficient of (X, p).

In 2014, Popescu [9], introduced the concept of a-orbital admissible as fol-

lows.



Definition 2.1.8. [9] Let f : X — X be a mapping and a : X x X — [0, +0c0)
be a function. Then [ is said to be a-orbital admissible if 2 € X, a(z, fz) = 1

implies that o fz, f2x) > 1.

Proposition 2.1.9. [16] Every partial b-metric p defines a b-metric dy, where

d,(x,y) = 2p(z,y) — plz,z) — ply, v),
forall z,y € X.

Remark 2.1.10. The class of partial b-metric space (X, d,) is effectively larger
than the class of partial metric space, since a partial metric space is a special case
of a partial b-metric space (X, d,) when s = 1. Also, the class of partial b-metric
space (X, d,) is cffectively larger than the class of b-metric space, since a b-metric
space is a special case of a partial b-metric space (X, d,) when the self distance

dy(z,z) = Q.

Definition 2.1.11. [16] Let (X, p) be a partial b-metric space. Then

(i) a sequence {x,} in X converges to a point # € X if

gy Plrray= A\l

1n—0ec0

(ii) a sequence {z,} in X is called a Gauchy scquence iL73n p(x,, T.) cxists
n,m-—0C
(and is finite);
(iii) a partial b-metric space (X, p) is said to be a complete if every Cauchy

sequence {7} in X converges to a point z € X such that
n (=] p

i Bk )= ]}E&])(;I:,,,;E) = p(x, ).

n,m—oo

In 2015, Sastry [11] proved the fixed point theorems for generalized Geraghty
contractive type mappings in complete partial b-metric spaces by considering par-

tial b-metric spaces defined by Shukla [2].

Definition 2.1.12. [10] Let (X,p) be a partial b-metric space with s > 1 and

f: X — X be a mapping. We say that f is a generalized Geraghty contraction



mapping, if there exists 3 € S such that for all z,y € X,

sp(fa, fy) < B(M(z, y))M(z, Y),

where

M (z,y) = max{p(x,y), p(z, [2),p(y, [y), %[P(-‘L‘; fy) +p(fz,9)]}-

Theorem 2.1.13. [10] Let (X, p) be a complete partial b-metric space with s > 1,
a: X x X — [0,00) be a function and f : X — X be a mapping. Suppose that

there exists 3 € S such that for adl x,y € X,

alx. fz)aly, fy)sp([x, fy) < B(M(x,y))M(z,y),

where

M (x,y) = max{p(z,y), plz, fz), p(y, fy) 919 [p(z, fy) +p(fz, )]}

Assume that the following conditions hold:

(i) f is a-admissible;

(ii) there exisls xo € X such that a(zo, fro) = 1;
(iii) if {x,} is a sequence in- X such that o(x,, fx,) > 1 for alln € NU {0} and
{z,} converges to x, then alx, fx) = 1.

Then [ has a fived point in X.

Theorem 2.1.14. [10] Let (X, <,p) be a complete partially ordered partial b-metric
space with s > 1 and f : X — X be a nondecreasing mapping. Suppose that there

exist B € S such that for all comparable z,y € X,
sp(fa, fy) < B(M (z,y)) M (2, y),
where
M (z,y) = max{p(z, y), p(z, [z), p(y, [v), 51;[1)(-"6, Jy) +p(fz,y)]}

Assume that the following condilions hold:

(i) there exists xg € X such that xy < fxo;



(it) if {xn} is a nondecreasing sequence that converges to x, then x, < x for all
n € N.

Then f has a fized point in X.

The following lemma shows the relationship between the concepts of Cauchy

sequence and completeness in (X, p) and (X, d,).

Lemma 2.1.15. [16]

(1) A sequence {x,} is a Cauchy sequence i @ partial b-metric space (X, p) if and
only if it is a b-Cauchy sequence in the b-metric space (X,d,).

(2) A partial b-metric space (X,p) is complete if and only if the b-metric space

X,d,) is b-complete. Moreover, lim dp(x,x,) =01 and only i
E ! 7}

n—co

lim p(z,z,) = lim p(@n, ) = p(@, 2).

n—o0 1n,m-—oc

The following important lemma is nseful in proving our main results.

Lemma 2.1.16. [16] Let (X, p) be a partial b-metric space with the coefficient s > 1
and suppose that {x,} and {y,} are convergent o x and y, respectively. Then we
have

1 ! !
— &) — “p(x, ) — ply,y) < liminf p(a,, y,) < limsup Dy Un)
s s

s n—oo

< spla,a)+ $2py, y) + s°pla, y).

In particular, if p(x,y) = 0, then we have lim p(xn, yn) = 0. Moreover, for each
n—oo

z € X, we have
1 .. :
“p(x, z) — p(z, ©) < liminf p(a,, z) < limsup p(z,, 2)
S 00 n—oeo
< sp(z, z) + sp(z, ).

In particular, if p(z,x) =0, then we have

il
—p(z,2) <liminf p(z,, z) < lim sup p(z,, 2) < sp(z, 2).
s

e n—oo
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Lemma 2.1.17. [11] Let (X,p) be a partial b-metric space. Then the following
hold.

(1) If p(x,y) =0 then x = y.

(2) If x # y then p(x,y) = p(y,z) > 0.

In 2016, Chuadchawna [17] introduced the concept of a-orbital admissible

mappings with respect to 5 as follows.

Definition 2.1.18. [17] Let f : X — X be a mapping and a,n: X x X' — [0, c0)
be functions. Then f is said to be a-orbital admissible with respect to 7 if

a(x, fz) = n(z, fx) implies af fz, f2x) > n(fx, f2x).

Remark 2.1.19. If we suppose that 5(z,y) = 1 for all z,y € X, then Definition

2.1.18 reduces to Definition 2.1.8.

Let ¥ denote the family of all functions t : [0,+00) — [0, +oo) satisfying
the following:

(1) ¥ is nondecreasing;

(2) t is continuous;

(3) ¥(t) =0 if and only if ¢t = 0.

In this paper, we introduce a concept of generalized Geraghty contractions
in complete partial b-metric spaces. The existence of fixed point theorems for such
mappings is proven omitting some condition of ¢ € U’ that is subadditive. We also
prove the fixed point theorem for generalized Geraghty contractions in complete
partially ordered partial b-metric spaces using our main result.  Morcover, the

example is presented for supporting our main result.
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2.2 Generalized contractions with triangular a-orbital admissible map-

pings on Branciari metric spaces

In 2000, Branciari [1] introduced the concept of Branciari metric spaces as

follows.

Definition 2.2.1. [1] Let X be a nonempty set. We say that a mapping d :
X x X — R is a Branciari metric on X if d satisfies the following;:
(d1) 0 < d(z,y), for all z,y € X;

(d

) (:

2) d(x,y) = 0 if and only if x = y;
(d3) d(z,y) =

)

d(y, ), for all x,y € X;

(d4) d(z,y) < d(z,w) + d(w, z) +d(z,y), for all ,y € X and for all distinct
points w, z € X\{z, y}.
If d is a Branciari metric, then (X, d) is called a Branciari metric space or a regtan-
gular metric space (or for short BMS). By the definition, we see that a Branciari

metric space is a generalization of a metric space.

Definition 2.2.2. Let (X, d) be a BMS, {x,} be a sequence in X, and x € X. We
say that

(i) {xn} is convergent to x if d(z,,x) — 0 asn — oo and denoted by z, —
as n — 0o.

(ii) {x,} is a Cauchy sequence if d(z,, Xm) — 0 as n,m — oo.

(ii) (X,d) is a complete BMS if every Cauchy sequence in X converges to

some element in X .

Lemma 2.2.3. [18] Let (X, d) be « BMS and {x,} be a Cauchy sequence in (X, d)
such that d(a,,x) — 0 as n — oo for some x € X. Then d(z,,y) — d(z,y) as

n — oo for all y € X. In particular, {z,} does not converge to y if v # y.

Lemma 2.2.4. [12] Let (X, d) be o BMS, {x,} be a Cauchy sequence in (X, d) and
x,y € X. Suppose that there exists a positive integer N such that

(i) xp = Ty for alln,m > N;
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(it) x, and x are distinct points in X for alln > N;
(iii) x, and y are distinct points in X for alln > N;
(iv) lim d(z,,2) = lim d(x,,y).

n—oeo n—oo

Then we have x = y.

Shukla [2] introduced a concept of the partial rectangunlar metric spaces as

the following:

Definition 2.2.5. [2] Let X be a nonempty set. We say that a mapping p :
X x X — R is a partial rectangular metric on X if p satisfies the following:

(p1) p(z,y) > 0, for all z,y € X;

(p2) = =y if and only if p(z,y) = p(x,x) = p(y,y), for all x,y € X;

(p3) plz,z) < p(z,y), for all 2,y € X;

(p4) p(z,y) = p(y, ), for all z,y € X;

(p5) ple,y) < plz,w) + p(w, z) + p(z,y) — plw, w) — p(z,2), for all z,y € X
and for all distinet points w, z € X\{z, y}.
If p is a partial rectangular metric on X, then a pair (X,p) is called a partial

rectangular metric space.

Remark 2.2.6. [2] In a partial rectangular metric space (X,p), if v,y € X and

p(z,y) = 0, then @ =y but the converse may not be true.

Remark 2.2.7. [2] It is clear that every rectangular metric space is a partial
rectangular metric space with zero self-distance. However, the converse of this fact

need not hold.

Proposition 2.2.8. [2] For each partial rectangular metric space (X, p), the pair

(X,d,) is rectangular metric space where
dp(z,y) = 2p(x,y) — p(x, z) — p(y, ¥),

for all z,y € X.
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Definition 2.2.9. [2] Let (X, p) be a partial rectangular metric space, {x,} be a
sequence in X and z € X. Then,

(i) the sequence {x,} is said to converges to v € X if 11121;) p(x,, ) = pla, x);

(ii) the sequence {x, } is said to be a Cauchy sequence in (X,p)if . 71?111_1'.10o (L Tm)
exists and is finite;

(iii) ()X,p) is said to be a complete partial rectangular metric space if for

every Cauchy sequence {z,} in X, there exists z € X such that

lim  p(zn 8= Az i) = p(d.1%).

n,m-—oc n—oo
Lemma 2.2.10. [2] Let (X, p) be a partial rectangular metric space and let {xn} be
a sequence in X. Then lim d,(x,, ) = 0if end only if lim p(x,,2) = lim Pl )=
n—oeo n—20 n—od
ple;).
Lemma 2.2.11. [2] Let (X.p) be a partial rectangular metric space and let {z,}
be a sequence in X . Then the sequence {a,} is a Cauchy sequence in (X,p) if and
only if it is @ Cauchy sequence in (X,d,).
Lemma 2.2.12. [2] A partial rectangular metric space (X, p) is complete if and

only if a rectangular metric space (X,d,) s complete.

In 2012, Samet et al. [15] introduced the notion of a-admissible mappings
as follows.

Definition 2.2.13. [15] Let T : X — X be a mapping and a : X x X — [0, 00)

be a function. We say that 7" is a-admissible if for all z,y € X,

a(z,y) = 1 implies a(T'z, Ty) > 1.

Karapinar et al. [8] defined the concept of triangular a-admissible mappings.

Definition 2.2.14. [8] Let T : X — X be a mapping and a : X x X — [0,00) be
a function. We say that 7" is a triangular a-admissible mapping if:
(T1) T is a-admissible;

(T2) for all z,y,z € X, a(z,2) > 1 and a(z,y) > 1 imply that a(z,y) > 1.



Later, Popescu et al. [9] introduced the notions of a-orbital admissible,

triangular a-orbital admissible and a-orbital attractive mappings as follows.

Definition 2.2.15. [9] Let T: X — X be a mapping and o : X x X — [0,00) be

a function. Then 7 is said to be a-orbital admissible if for all x € X,
oz, Tx) > 1 implies a(T'z, T?z) > 1.

Definition 2.2.16. [9] Let 7 : X — X bc a mapping and a : X x X — [0,00) be
a function. Then T is said to be triangular a-orbital admissible if:
(T3) T is a-orbital admissible;

(T4) for all #,y € X, a(z,y) > 1 and a(y,Ty) > 1 imply that alz,Ty) 2 1.

Definition 2.2.17. [9] Let T': X — X be a mapping and a: X x X — [0,00) he

a function. Then T is said to be a-orbital attractive if for all € X,
a(x, Ta) > 1 implies a(w,y) = Lor a(y,Tz) > 1, for all ye€ X.

Lemma 2.2.18. [9] Let T : X — X and a: X x X = [0,00). Suppose that T is a
triangular a-orbital admissible mapping and assume that there exists ¥, € X such
that o(xq, Tay) > 1. Define a sequence {z,} by any=Twmy for alln € N. Then

a(xp, ) 2> 1 for al m,n e N withn <m.

Denote by ¥, the set of all functions ¢ : (0,00) — (1,00) satisfying the
following conditions:
(1) % is nondecreasing;;

(2) for each sequence {t,} C (0, 00),

lim ¥(t,) = 1 if and only if lim ¢, =0;

n—oo n—eo

(3) there exist r € (0,1) and { € (0, co] such that ]tiua "f’(%)_l =],

Li and Jiang [19] introduced W, the set of all functions 1 : (0, 00) — (1, 00)
which is nondecreasing and continuous. They also gave some examples illustrating

the relationship between ¥, and W, as follows:
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Example 2.2.19. [19] Let f(t) = ¢'® for ¢ > 0. Then f € ¥y but f ¢ ¥, since

tef

limy_g &5 = 0 for each r € (0,1).

Example 2.2.20. [19] Let g(t) = €' for ¢t > 0, where a > 0. If a € (0,1), then

g €U, NWy Ifa=1,then g € Uy but g ¢ ¥, since limy_p 91—;—1 = 0 for each
r € (0,1). If a > 1, then g € ¥y but g ¢ ¥, since lim; g %,T—l = 0 for each
r € (0,1).

Remark 2.2.21. From Example 2.2.19 and Example 2.2.20, we can conclude that

U, ¢ ¥, and ¥, NW, £ &, Moreover, it is clear that if ¢ € ¥, and ¢ is continuous,
i

then o & Wy,
Jleli et al. [14] established the following theorem by adding the continuity
to a function ¥ € ¥y on Branciari metric spaces.

Theorem 2.2.22. [14] Let (X,d) be a complete BMS and T : X — X be a map-
ping. Suppose that there exist 1 € Uy that is continuous and X € (0,1) such that

forall z,y € X,
d(Tz,Ty) # 0 implies P(d(Tx, Ty)) < [W(R(z,y)],
where
R(z,y) = max{d(x,y), d(z, L), d(y, Ty)}-

Then T has a fized point z in X and {T"x} converges to z.

Arshad et al. [20] extended the results proved by Jleli et al. [13] and [14]
by using the concept of triangular a-orbital admissible mappings obtained in [9]

by adding the continuity to a function ¥ € ;.

Theorem 2.2.23. [20] Let (X,d) be a complete BMS, T : X — X be a mapping
and a: X x X — [0,00) be a function. Suppose that the following conditions hold:

(1) there exist ¥ € ¥y and X € (0,1) such that for all z,y € X,

d(Tz, Ty) # 0 implies o(x, y)U(d(Tx, Ty)) < [W(R(x,y))],
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where

1+ d(z,y)

(2) there exists &) € X such that a(xy,Tw1) > 1 and a(xy, T?x1) > 1;

R(z,y) = max{d(z,y), d(x, Tz),d(y, Ty), ¥

(3) T is a triangular «-orbital admissible mapping;
(4) T is continuous.

Then T has a fived point z in X and {T"x,} econverges to z.

Theorem 2.2.24. [20] Let (X, d) be a complete BMS, T : X — X be a mapping
and o : X x X — [0,00) be @ function. Suppose that the following conditions hold:

(1) there exist 1 € Wy and X € (0,1) such that for all x,y € X,
d(Tx,Ty) # 0 implies afz, y)o(d(Tz, Ty)) < [W(R(x, )]

where

d(z, T2)d(y, Ty).
1+ d(z,y) '

R(z,y) = max{d(z,y),d(z,Tx),d(y, Ty),

(2) there exists &y € X such that a(xy, Tx,) = 1 and aley,T2x) = 1;

(3) T is a triangular a-orbital admissible mapping;

(4) if {T"x\} is a sequence in X such that o(T"z,, T"* 'ay) = 1 for alln € N and
2, — € X asn — oo, then there exists a subsequence {T"Way} of {T"x1} such
that o(T"Wzy, x) > 1 for all k € N;

(5) ¥ is continuous.

Then T has a fived point z in X and {T"x1} converges to z.

Theorem 2.2.25. [20] Let (X, d) be a complete BIM.S’, T:X — X be a mapping

and a: X x X — [0,00) be a function. Suppose that the following conditions hold:

(1) there exist » € Uy and X € (0,1) such that for all z,y € X,
d(Tx, Ty) # 0 implies a(z, y)b(d(Tz, Ty)) < [Y(R(z,y))],

where

d(z, Tx)d(y, Ty)
1+ d(x,y)

R(z,y) = max{d(z,y), d(z,Tx), d(y, Ty), };
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(2) there exists v, € X such that a(xy, Tx1) > 1 and a(z, T?z,) > 1;
(3) T is an a-orbital admissible mapping;

(4) T is an a-orbital attractive mapping;

(5) ¥ is continuous.

Then T has unique fived point z in X and {T"x1} converges lo z.
g

In 2016, Chuadchawna [17] introduced the notion of triangular a-orbital
admissible mappings with respeet to  and proved the lemma which will be used

for proving our main results.

Definition 2.2.26. [17) Let T': X — X be a mapping and a,7 : X x X — [0, 00)
be functions. Then 7T is said to be a-orbital admissible with respect to 7 if for all
TEX,

oz, Tz) > n(z, Tx) implies (T2, T?z) > n(Tz.T?x).

Definition 2.2.27. [17] Let T : X — X be a mapping and a,7: X x X — [0, 00)
be functions. Then T is said to be triangular a-orbital adinissible with respect to
n if

(T1) T is a-orbital adimissible with respect to #;

(T2) for all x,y € X, a(z,y) > n(z,y) and a(y,Ty) = n(y,Ty) imply
a(z, Ty) = n(z, Ty).

Remark 2.2.28. If we suppose that n(az,y) = 1 for all 2,y € X, then Defini-
tion 2.2.26 and Definition 2.2.27 reduces to Definition 2.2.15 and Definition 2.2.16,

respectively.

Lemma 2.2.29. [17] Let T : X — X be a triangular a-orbital admissible map-
ping with respect to 1. Assume that there exists ©y € X such that a(xy, Txy) >
n(z1,Tx). Define a sequence {x,} by xpy1 = Ty, Then we have (T, Trm) =

)y, Tm) for all myn € N with n < m.

Definition 2.2.30. Let 7' : X — X be a mapping and a,n : X x X — [0,00)

be functions. Then 7 is said to be a-orbital attractive with respect to 7 if for all
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T e X,
a(z, Ta) > n(x, Tx) implies a(z,y) > n(z,y) or a(y,Tx) > n(y, Tv)
for all y € X.

Definition 2.2.31. Let T, f : X — X. [f w = Ta = fa for some x € X, then x is
called a coincidence point of 7' and f, and w is called a point of coincidence of T

and f.

Definition 2.2.32. Let T, f : X — X. The pair {7, f} is said to be weakly

compatible if T fx = fTx whenever Tx = fx for some z € X.

Proposition 2.2.33. [2] Let T, f : X — X and {T, f} is weakly compatible. If
T and f have a unique point of concidence w = Tx = fz, then w is the unique

common fized point of T and f.

Tn this thesis, we introduce a notion of generalized contractions in the set-
ting of partial rectangular metric spaces. The existence of fixed point theorems
for gencralized contractions with triangular a-orbital adinissible mappings with re-
spect to 7 in the complete partial rectangular metric spaces is proven. Moreover,
we also give the example for supporting our main result. And the fixed point the-
orems and unique common fixed point theorcms for generalized contractions with
triangular f-a-admissible mappings on Branciari metric spaces are proven omit-
ting some conditions of ¢ € W, using ¥, the set of all nondecresing and continuous
functions. We prove the unique common fixed point theorem for generalized con-
tractions in the setting of partially ordered Branciari metric spaces using our main

result. Moreover, we also present the example that supports our main result.



CHAPTER III

FIXED POINT THEOREMS FOR
GENERALIZED GERAGHTY CONTRACTIONS

IN COMPLETE PARTTAL b-METRIC SPACES

In this chapter, the existence of fixed point theorems for generalized Ger-
aghty contractions is proven. We also prove the fixed point theorem for generalized
Geraghty contractions in complete partially ordered partial b-mefric spaces using

our main result. Moreover, the example is presented for supporting our main result.

3.1 The fixed point theorems in complete partial b-metric spaces

We now prove the existence of fixed point theorems for generalized Geraghty

contractions using altering distance functions in complete partial b-metric spaces.

Theorem 3.1.1. Let (X, p) be a complete partial b-metric space with s > 1 and
let a,n: X x X = [0,00) be functions. Let f: X — X be a mapping. Suppose
that there exist B €.S and ¥ € V such that for all v,y € X,

afx, fx) > nlz, fz) and oy, fy) 2 0ly, fy) imply that

P(sp(fz, fy)) < B (M (2,y)))Pp(M (2, y)), (3.1.1)
where

M(z,y) = max{p(z,y), p(=, fz), p(y, [y), %L’o(ﬂr, fy) +p(fa,y)]}-

Assume that
(i) f is a-orbital admissible with respect to n;
(ii) there exists xg € X such that a(zg, fze) > 1(o, fxo);

(iii) if {x,} is a sequence in X such that a(x,, fr,) = n(x,, fz,) for alln € NU{0}
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and {x,} converges to x, then a(z, fz) > n(x, fz).

Then f has a fizved point in X.

Proof. By condition (ii), there exists xp € X such that a(zg, fzo) = n(zo, f2o).
Define the sequence {z,} in X such that z, = fz,_1, for all n € N. Since f is an

a-orbital admissible mapping with respect to 1, we obtain that
(T, Tng1) = N(Tps@®urr), for alln € NU{0}. (3:1.9)

If z,, = z,,4, for some n. € NU {0}, then we have z, = 2,41 = fz, and so z, is a
fixed point of f. Now, we may assume that z,, # x,4, for all n € N. By Lemma

2.1.17, we have p(xn, Tnye1) > 0. By (3.1.1) and (3.1.2), for each n € N U {0}, we

have

'lﬁi"(SP(-Enﬂ ’ :l:ri+2)) e 'lrf:)((S'])(fII‘n, f'{[771+1))
S i({;"(J[(LH =1"r1.-1’-1))) tii](ﬂ[(‘rn ) l‘nﬁ‘rl)) (313)

<3 'lﬁ')(ﬂ"[("-":n: ;i.’,,+1)).

where

A[('l-‘n ) -I'NT‘I)

= [)(‘I‘ ) .i‘.‘I" +1 I l)(‘/t' :E 1
— 1max {IU Uy ol n—H 1”( Un, fbn) P ‘bl fél'n—l-l)- 2 = )')‘:’ i < ) }
— p( z +9) PR +[ , T +1
max {D ? nsy Tn H P(:En: Lnt1 ): p(:l"n—i-la 113,1_;_2) s T 95 ( " i ) }
nax P(iL'n i 2 +1 + P\T 1, +2)
< 1 {p Lm ri+1 p(q ny T‘?H—l) p(ln-{-—l Ln+2) St ) ( n  —h

(1—s)
4s

& e p( X Toe ) P(Tusis Tned) F

+ (p(l'm 37:1) %+ 2])(33,1+1, 3—7n+l) 7 p(ﬂ;n—l—Z: 3:71—0—2))}

If max{p(zy, Tni1)s P(Tni1s Tas2)} = p(Tri1, Touga), then by (3.1.3) we have
’%”J(Sl’(ﬂ?raﬂq -Tn+2)) < ’lr//‘(l\’f(l’n, :Bn+1)) S w(f)(mn{—la $n+2))-

Since ¥ is nondecreasing, we have sp(2,11, Tny2) < P(Tnt1, Tny2), which is a con-

tradiction. Hence max{p(x,, Tni1), P(Tni1, Tuga)} = P(Tn; Tugr). By (3.1.3), we
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obtain that
‘¢(S})($,l+1, Tpyz)) < Y(M (2, Tpq1)) < V(p(Tn, Engi))-

Since ¥ is nondecreasing, we have p(@, 1, Tui2) < SP(Tns1, Toy2) < P(Tn, Tug1)-
Hence the sequence {p(x,,, €,41)} is strictly decreasing and bounded below. There-

fore it converges to some r > 0, that is

m p(Zn, Thg1) =g

n—oo

Suppose that r > 0. By (3.1.3), we have

tﬁj(lj(‘vrz-klu -]:u+2)) S ?,}(trf/’(f\f(-l‘rz- Tntl )))Es{"(ﬂ[(‘l:n- Ir(—i—l))

< B (M (Zn, Tne1) )Y (P(@0ns Tns1))-

Therefore

Mol(x, . Tt
P(D(Tn 11, Tot2)) < B(M(2n, Tnr1))) < 1.
Y(p(zn, Tny1))

Letting n — oo, we have

lim BW(M (2, @ny1))) =1

n—oo

Since 4 € S, we have lim (M (z,; @,y1)) =0 and so

n—oco

Y(r) = lim P(ple,; 2utr)) = 0. (3.1.4)

n—co
Hence r = 0. Next, we will prove that {z,} is a Cauchy sequence in (X, p) which
is equivalent to show that {z,} is a b-Cauchy sequence in (X,d,). Suppose that
{x,} is not a b-Cauchy sequence in (X,d,). Then there exists € > 0 such that, for
k > 0, there exist ng > my > k for which we can find two subsequences {@n, } and

{wm, } of {z,} such that ny is the smallest index for which,
dp(:rmk: 3:111\.) = £,
and

Al B i) € B
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Then we have

£ S d}}(‘q"n!k 1 -'L'n;_.) S Sdp(“rnlk! :El'lk—l) + Sdp(:v”k,l, ;L‘Hk)
< s + 3dp(Tn—1, Tny)- (3.1.5)

Letting the lower limit for (3.1.5) as k — co, we have

e<s li}ﬂ inf d,, (T, Tup=1) < SHMSUP @iy, Tny—1) < SE.
:—00 B e

This implies that
(3.1.6)

< lim inf dp (T, Ty —1) < limsup dy(Tm,, Tn, 1) < E

k—co k—00

tn | M

Similarly, from (3.1.5) and (3.1.6), we have

£ B lisupil, (B, , Tt os-5€-
k—o0

By using the triangular inequality, we deduce that

(3.1.7)

dp(l'nu;.Ll ) 'Tuk) S Sdp(-rm;ﬂtl- -'i-‘m;‘.) + -.S’([p(;'l‘m“ -'"'m‘.)

Letting the upper limit for (3.1.7) as k — oo, we get

. 2
lim sup dp(Tmg 41, Tnyp) < 5°€.
k—20

Using triangular inequality again, this yields
(g;mk—}—la :L‘nkﬁl) S Sdp(mm;.+ia mmk) + Sdp(ztm;‘.a ﬂ:uk—l)

d,

% 5l (00T, ) 88 (3.1.8)

Letting the upper limit for (318) as k — oo, we have

Tim 80p G (Bimp1s Bra-i) < 86
k—oo

By Proposition 2.1.9, we get that

2 sup (T s T —1) = L sup dal T s T3 )-
k—co k—oo



23

Hence,
€ A : £
— < liminf p(@m,, Tnp—1) < lHmsup p(am,, Tne-1) < 5 (3.1.9)
2s k—o0 Esed 2
Similarly, we can derive
: s
lim sup p(@m,, Tn,) < Y (3.1.10)
k—oo
€ , 526
— < lim sup p(@nets Tny) <, (3.1.11)
SE
lim sup p(Tag 41, Lag—1) < — (3.1.12)
k—oo : 2

Since [ is a-orbital admissible with respect to 1 and using (3.1.2). By using (3.1.1),

we have
Lf"(sp(-“mk—kl 3 <1:r1;:)) = UJ(-S'P(JCJ:mk: f:EIlk—l))

L BYM (Z Ty 1)) YUM (T 111, > T 192 (3.1.13)

< Y(M (2, Tp—1))s
where
M (&5 By ~1) = MAX {p(-rm,\.- o) B, S S ), WLZH, S 1)

p(mmke .f-'l-;nk -l) " 'p(f:l:m;\.a :Eu;_.—l) }
2s

— max {P(-Tmm TNr2t ) PUE e ) DTy —1, Ty )y

P(Zonigy Ty ) TP ORI T n—1) }
25 '

Letting the upper limit as & — oo in the above inequality using (3.1.4), (3.1.10)

and (3.1.12), we get that

limsup M (2, , Tn,—1) = Mmax { lim sup p(2 ., Tng—1), HMSUP (LT, Ty 1),
k—o0 k—noo k—o0

limn sUpy_, .o P(Zomsi, s Tz, )
2s

lim sup p(@n, -1, Ty ),
k—oo
g lim supj_, oo P(Tmpt1> Tnj—1)
2s

£ &

< max {a —
22
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By letting the upper limit in (3.1.13) as k — oo we have
v (3%) < ﬁ(’l,b(lilkll sup M(;r:,,,h_,;1:,,k_,)))'1,/)(1i1n sup M(Zmy, Tng—1))
F—r 00 — 00

< B(yw(limsup M (x,,,, 3:,,#\_,1)))1’;’;(—2—)

k—oo

]

0
< B (limsup M (2, Tnp-1))) < L.
3_/)( ) k—o0

This implies that

B21M

()
v 4 < B (lim sup M (2, Tug=1))) < L
”(z) ko

Thus we have

Blp(limsup M (&, Tng—1))) = 1.

k—co

Since 3 € S, we get that

Y(limsup M{@my; Tnp—1)) = 0-

k—oo

Therefore

lim sup M (2., Tny—1) = 0.
k—oo

which is a contradiction with (3.1.9). So the sequence {x,} is a Cauchy sequence
in the b-metric space (X, d,). Since (X,p) is complete, then (X, d,) is a complete

b-metric space. It follows from the completeness that there exists z € X such that

lim dp(xn, z) = 0.

n—oo

Since

2p(xn, 2) = dp(Tn, 2) + P(Tn, Tn) + (2, 2)

S dp(i:na Z) i) 'P(J'Un- Ty +1) + p(‘?:ru Z)‘



we obtain that
])(xrz: Z) S dp(ﬁ:m Z) ¥ P(fﬂm -Tn+1)-
Letting the limit as n — oo, we get that
lim p(z,,z) =0.
n—eo
By Lemma 2.1.15, we have
0 = lim p(?n,/.") =" lim p(zn,z,) = lim p(z, 2);
n—oo n,m—oec n-—0c0
By condition (iii), we have a(z, fz) = n(z, fz). This implies that

P(sp(fn, 2)) < B(M (25, 2))) V(M (2, 2)), (3.1.14)

where

&n: f:) 5 p(f"l:n: Z) }
25
) P( fz)+1)($n+1sz)}

28

M &N, 2 maX YDy, 2), p(Zn, f2n), 22, f2)4

< max $p(an, 2);p(Tn, Tnii), Pl f2),;

= max {p % o2 3 Trroner) LY, X2
%

sp(n, 2) + Sp( ) + P(Tpis2) } (3.1.15)
25
Letting the upper limit as n — oo in above inequality, we get that
limsup M(z,, z) < p(z, fz). (3.1.16)

n—oc
From (3.1.14) and using Lemma 2.1.16, then letting the upper limit as n. — oo, we

obtain that

Y(p(z 1)) = Y50z 1)

< Y(sliminf p(a,s1, f2))

n—oo

< Y(slimsup p(zns1, 7))

n—2o00
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< B(y(limsup M(z,, z)))y(limsup M (2, z))

< B (limsup M (z,, 2)))¢(p(z, f2)).

This implies that,

lim B(y(limsup M(z,,2))) = 1.

R n—n0

Therefore

Y(limsup M (zy,,2)) = 0.
Thus we have

lim sup M(z,, 2) =0. (3:1.17)

n—oc

Using Lemma 2.1.16 and (3.1:17), we get that

p(z,fz) =
T 95 UTiy T2
. R/ liminfl( fz)
S n—oo s
(xy, f2) + p(z,, 2)

A
< lim inf :
n—00 2s

< lim inf M (z,,, z)

n-—o0

< limsup M(z,,,2)

< plz;f z)-
This implies that p(z, fz) = 0. Since p(fz, fz) < sp(fz,z) + sp(z, fz), we have
p(fz, fz) = 0. Therefore p(z, z) = p(z, fz) = p(fz, fz) which implies that z = fz.

Hence z is a fixed point of f. ]

Next, we now present a numerical example to support Theorem 3.1.1.

Example 3.1.2. Let X = [0,00) and p : X x X — [0,00) defined by p(z,y) =
2 —y|? + 3 for all z,y € X. Clearly, (X, p) is a partial b-metric space with s = 2.

Define the mapping f: X — X by

if0<x <1,

|

fr=

x il z>1.
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Then [ is nondecreasing. Define a,n: X x X — [0,00) by

3 if z,ye0,1];
a(z,y) =
0  otherwise,

and

2 if x,y € [0,1];
n(z,y) =
1 otherwise.

Define functions 1 : [0,00) — [0,00) and A3 : [0,00) — [0,1) by %(t) = 5 and

EDY i te0,1);
B(t) = [
t it > L

We check that all conditions in Theorem 3.1.1 hold. Let a(z, fz) > n(xz, fz) and

aly, fy) = n(y, fy). Therefore a,y, fx, fy € [0,1]. This implies that

h i . 2(Z.5) ; 1 i
b(splfz, fy) = w@pE, 1) = 252 —og ~ 42 4 3 =1a - yI? +3,

and

M(z,y) = max{p(z,y),p(z, fz), p(y, fy), p(z, 1Y) :;p(y, f:l:l}

= max{2|z —y|* + 3, 2w — i)|2 +3,2ly = g|2 + 3,

o — YR+ ly = 513
=

}

= 9z — Y|P3

Without loss of generality, we may assume that y < 2. This implies that

Blsp(f, f9)) = ({5, )

=*|-"6*y|2+3
25 505

=422

= B (5))¥(5)

< BH(M (e, )0 (M(x, ).
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We will prove the following;:
(i) f is a-orbital admissible with respect to 1 ;
(ii) there exists xg € X such that a(zo, fzo) > n(xo, f20) ;
(iii) if {z,} is a sequence in X such that a(z,, Tni1) 2 (@, Tny1) for all n € NU{0}

and {x,} converges to z, then a(z, fz) > n(z, fz).

Proof. (i) Let a(x, fz) > n(x, fz). Then we have z, fr € [0,1] and so, oz =
f(fx) € [0,1]. Thus a(fx, f2x) > n(fz, f*). Thercfore f is a-orbital admissible

with respect to 1.

(i) Letting 79 = 1 € X, we have fao = f1 = é So a2, fxo) = a(l, f1) =
a(l,3)=3>2=n(1, 5) = (1, f1) = n(xo, fxo).

(iii) Let {x,} be a sequence in X such that a(Zn, Tny1) = N(Tn, Tnpa) for
all n € NU {0} and z, — 2 as n — co. Then {z,} C [0,1] for all n € NU {0}
and so # € [0,1]. By the definition of f we have fx € [0,1], which we have
ae(x, f2)RA (L, fx).
Hence all assumptions in Theorem 3.1.1 are satisfied and thus f has a fixed point.

O

3.2 The fixed point theorems in partially ordered partial b-metric

spaces

We next prove the fixed point theorem in complete partially ordered partial

b-metric spaces using Theorem 3.1.1.

Theorem 3.2.1. Let (X, =<, p) be a complete partially ordered partial b-metric space
with s > 1. Let f: X — X be a nondecreasing mapping. Suppose that there exvist

3 €S and W € U such that for ell comparable v,y € X,

'z,/:(Sp(f:L’, fy)) S ,13(!,/)(11’[(’1), y)))d}(ﬂ/[(l‘, y))v (321)
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where
M(x,y) = max{p(z,y), p(z, fx), p(y, [y), %[P(fﬂ, fy) +p(fay)lt. (3.22)

Assume that

(i) there exists xp € X such that xy = fxo;

(i) if {x,} is a nondecreasing sequence that converges to x such that x, = fx, for
all n € NU {0}, then v = fa.

Then f has a fized point z in X.

Proof. Define mappings e, 77 : X x X — [0,00) by

1 if x<Sr
a(z,y) =
0  otherwise,

and

1 i\ & 2
n(z,y) =
2 otherwise.

For cach & € X such that a(z, fz) > n(z, fz), by definitions of a and 73, we
have = < fx. Sinee f is nondeecrcasing, we have fx = f(fz) = [?r. Thus
a(fz, f2x) > n(fa, f2a). Therefore f is a-orbital admissible with respect to 7. By
(ii), we have a(xo, fxo) = 1(zg, fTo) for some xg € X. Let {z,} be a sequence in
X such that a(z,, Tns1) > n(Tn, Tny), for all n € NU {0} and z,, — @ as n — oo.
By definitions of a and 7, we have z, = ,41, for all n € N. Thus {z,} is a
nondecreasing. By (i), we have 2 < fz. By the definitions of o and 7, we obtain
that a(z, fr) > n(x, fr). Thus all assumptions in Theorem 3.1.1 are satisfied.

Hence f has a fixed point in X. O

In Theorem 3.1.1 and Theorem 3.2.1, if we put n(z,y) = 1 and &(t) = (,

then we obtain the following result proved by Sastry [10].
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Corollary 3.2.2. [10] Let (X,p) be a complete partial b-metric space with s > 1
and let a2 X x X — [0,00) be a function. Let f: X — X be a mapping. Suppose

that there ezists 3 € S such that for allx,y € X,

a(z, fx)a(y, fy)sp(fx, fy) < B(M (z, y))_M (z,y),
where

M (z,y) = max{p(z,y), plx, f<), p(y, fy), 218[;)(:1:, fy) + p(fz,y)]}

Assume that

(i) [ is a-orbital admissible;

(ii) there exists xo € X such that a(zg, fzo) 2 1;

(iii) if {xn} is a sequence in X such that a(x,, fv,) > 1 for alln € NU {0} and
{zn} converges to x, then a(x, fz) > L

Then f has a fized point in X.

Corollary 3.2.3. [10] Let (X, <,p) be a complete partially ordered partial b-metric
space with s > 1. Let f : X — X be a nondecreasing mapping. Suppose that there

exists B € S such that for all comparable x,y € X,
sp(fa, fy) < 3(M(z,y)) M(z,y),

where

M (z,y) = max{p(z, y), p(z, fx),p(y, fy), Ql—s[p(rc, fy) +p(fz, y)]}-

Assume that

(i) there exists xg € X such that xg = fxo;

(i) if {z,} is a nondecreasing sequence that converges to x such that x, = fa, for
alln € NU {0}, then v = fx.

Then [ has a fived point z in X.



CHAPTER IV

FIXED POINT THEOREMS FOR GENERALIZED
CONTRACTIONS WITH TRIANGULAR a-ORBITAL

ADMISSIBLE MAPPING ON BRANCIARI METRIC SPACES

In this chapter, the fixed point theorems and unigue common fixed point
theorems for generalized contractions with triangular f-e-admissible mappings on
Branciari metric spaces are proven omitting some conditions of ¢ € W, using
W, the set of all nondecresing and continuous functions. We prove the unique
common fixed point theorem for generalized contractions in the setting of partially
ordered Branciari metric spaces using our main result. Moreover, we also present

the example that supports our main result.

4.1 The fixed point theorems

We now prove the existence of fixed point theorems for triangular a-orbital
admissible mappings omitting some conditions of ¥ € Wy using W, the set of all

nondecreasing and eontinunous functions on (0, c0) to (1, 00).

Theorem 4.1.1. Let (X,d) be a complete BMS, T : X —» X anda: X X X —
[0, 00). Suppose that the following conditions hold:

(i) there exist v € Wy and A € (0,1) such that for all T,y € X,

(T, Ty) # 0 implies az, y)(d(Tz, Ty)) < [P(R(z. )", (4.1.1)
where

R(x,y) = max{d(z,y),d(z,Tx),d(y, Ty)};

(ii) there exists x1 € X such that a(xy, Txy) > 1;

(iii) T is a triangular a-orbital admissible mapping;
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(iv) T is continuous,

Then T has a fived point.

Proof. Let #, € X such that a(xy,Tx) > 1. Define the iterative sequence {2}

such that
Tpe1 = T, foralln e N.

If 2,, = Zno1 for some ny € Ny then a,,, is a fixed point 7. We now suppose that
Xp 7 any for all n € No By condition (i), we have a(x;,Tz;) > 1. Using Lemma

2.2.18, we obtain that
o(Zys Tpy1) =1 foralln € N (4.1.2)
From (4.1.1) and (4.1.2), for all n € N, we have

Wd(zpixnn)) = W(d(T2nl1,TT,))
<P (W, 1, o0 A ( Tz 1, TER)) (4.1.3)

% ['{?J(R(rn—l ) In))]/\'
where

Rz 1. 2) = T {d(;er,,,l‘ i (gt D1 )¢ d(.-r,“T.r,,)}
= max {rl(.a:u_l s e Ln ), d(Tn, :zrnH)}

= max{d(Tn_1,ZTn), ATn; Tns1)}-
If R(x,_1,2n) = d(Tn, Tny1), then by (4.1.3) we obtain that
W(d(zy, Trg1)) < [-z,l)(d(;zr,l,;z:nﬂ))]’\ < Y(d(zp, Tus1)),
which is a contradiction. Hence R(z,_1,2,) = d(zn_1, ¥,). Using (4.1.3), we have

(AT, 1)) < [W(d(@n1,22))* < B(d(@n-1,T0))-
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Since 7 is nondecreasing, we have d(x,, vn11) < d(xn_1,2,). Hence the sequence
{d(xn, Tnt1)} is decreasing. Hence {d(z,,Tp41)} converges to a nonnegative real

mumber. Thus there exists r > 0 such that lim d(z,,2,41) =7 and
oo

n—

Ay Tnii) 2 7 (4.1.4)

We will prove that » = 0. Suppose that 7 > 0. Since ¥ is nondecreasing and by

using (4.1.3) and (4.1.4), we obtain that
1 < (r) < Y(d(z,, Tni1)) < [W(d(z_1, z))] < 0 < [(d(z0, 21))]"", (4.1.5)

for all n € N. Letting n — oo in this inequality, we get that (r) = 1, which
contradicts the assumption that w(¢) > 1 for each t > 0. Consequently, we have

r =0 and therefore

lim d(z;,Zn+1) = 0. (4.1.6)
n—oo
Suppose that there exist n,p € N such that ; = Zy4p-  We proye that p = 1.

Assume that p > 1. Using (4.1.1) and (4.1.2), we obtain that

O(d(@ns Tng1)) = P @ntps Tagpsr)
L ] R O e b
e (T p=1s Trepp) WU T 1, Fa®)) (4.1.7)

< [ B(znipE Tn-i—p))]:\'-
where

R(Znip-1, Tngp) = MAX {d(l?mrpq, Zotp)s A@nip—1, TTngp-1), ATnip, T.’E,,er)}
= max {d(-’l:nﬂ;fla ‘Tn-hu): d(:L‘TPFP*I} ﬂ:ri—l—p)a d(£n+pa -T11+p+-1)}

— nax {(f(.’lfn_ﬂ,,l, Bostp) s T na g :1:,1+p+1)}.

If R(Zpaps Tnipt1) = A(@ntp, Tngps1), then from (4.1.7) we obtain that

'd)(d(mm -’En—}—l)) = 'Lb(d(ilfner! -17r1+p+1)) it [w(d(fgn‘}-ps 1‘n+p+l))]’\ < ¢)(([(43rz+p:37rt+p+l))a
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which is a contradiction. Hence R(Z,yp, Tnipi1) = A(@nip-1, Tnsp). By (4.1.7), we

obtain that

‘l.i’(d(-fn, In+l)) = I/J(d(-”Cner, -rn+p+1)) S [w(d(:l"n+p—ls-En+p))]’\ = w(d(:Enerflu $n+p))'

Since 1 is nondecreasing, we have d(x,, Tpa1) < d(Tnip—1, Tntp). By using (4.1.1),

we get that

"-f'(d(-‘]—‘nerflz -‘?—‘nrlp)) S a(:l'rIJ.-p ) -Tn+p71) (.j'(d(T-Tn—',-p—‘Z- Y‘-’-'n i pfl).)

< ['ﬂb(R(-vnﬂ)—%ilfn+pfl))]’\: (4'1'8)

where

R(;l?n+p—2a -l"n+p*l)

= TNax {d(:rnﬂ,,g} Tt D) At Rt e —2 )y d(En=8 T;r,l+ﬁ_1}

Il

max {d(:rnﬂ,,z,. Erntp i (Tnih—2, Entp AN Znsp1, .z:”ﬂ,)}
= max {d(:r_',,ﬂ),g: Xn+b21) AZdip—1, The-N }

If R(xnip-2, Tatp-1) = d(@nyp—1, Tngp), then by (4.1.8) we obtain that
V({1 TETEN S [qf;((f(:t,,ﬂ,,,h.‘l‘,erp))]'\ < Yl {dew=, 2, 8),

which is a contradiction. Hence R(@nip—2, Logp—1) = A&y p-2,@nip-1). By (4.1.8),

we have
(;)(([(.’I'”er,l, l-‘rrer)) S [‘lﬂ'((f(:l,'”_”),g,.’1‘,,+P,1))]'\ < C)(d(-rn—}—p—'.?wl"n erfl))-

Since ¢ is nondecreasing, we have d(@p4p—1, Tnip) < d(Tnip—2, Tnyp-1). By contin-

uing this process, we obtain the following inequality

d‘(mn,mn—l—l) < d(-fl"n—kpfl: :En-ﬂ)) < (1(4Erz+])—2\-'17r1+pﬁl) <...< d(wna -'I:n+1)1

which is a contradiction and hence p = 1. We deduce that 7" has a fixed point. We
can assume that @, # @, for n # m. We now prove that {d(x,, z,42)} is bounded.

Since {d(,, Tn+1)} is bounded, there exists M > 0 such that

d(zp, Tni1) < M for all n € N.
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If d(xy, ®py2) > M for all n € N, then from

Bl%s— 15 Tga) = max {(E(:J:,hl,:::,ﬂrl),d(:r;n_l, 1Bl d(:v,,H,T;z:,,H)}
= max {rl(;n,,,l, Tni1)s d(Tn-1, Tn), d(Tpt1, ;1:,1+2)}
=d(x, 1. %u11),

and Lemma 2.2.18, we obtain that
P(d(Zny Tnyo) )™ MU T el TR 19
e\ onn ) U (d(Tz, 2wl
< [B(R(wn1, @)
= [Y(d(@nzy, T )]
= G EFMWNR)

This implies that {d(x,, z,42)} is decreasing. Therefore {d(x,, %, 2)} is bounded.

If d(,, xpea) < M for some n € N, then from
R(%,, r,42) = max {d(."rr,,,.rnﬂ), d(zn, Txy), d(x, 12, T;l.‘”+2)}
=T {d.(:t:n, Bt 3T T 11, H 0 J?,,_H;)}.
and Lemma 2.2.18, we obtain that
Y(d(2ny1, Tns)) =W T2n, TTny2))
< oy, Tos2)Wd(T 2, TTry2))

hb(R(:Em :En+2))]A
< [pOP

VAN

< Y(M),

we obtain that d(z, 1, 2,4+3) < M. This implies that {d(x,, T,42)} is bounded. We

next prove that lim d(z,,¥,42) = 0. Suppose that lim d(z,,2,42) # 0. So there

n—3¥

exists a subsequence {1, } of {x,} such that

Alim d(y, , Tn,+2) = a for some a > 0.
S
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Using (4.1.1) and Lemma 2.2.18, we have

'{rb(d(xnk>$?t;‘.+2)) = ‘ljj(d(T-Tm,.—la T:l:n;ﬁrl))
< (@15 Ty 4 1) A(T Ty —1, Ty 41))

S [d)(R(:r’Hkﬁlx-'L'rl.g.+1))]A3
where
1{-(37111,.—1: "l:nknl-l) = max {d(i‘nkﬁh -'17;1;..%-1).\ d(-l"nk—l ’ T-'L‘nk#l)'; d(-'rn;‘.-kl ) lwmnk+l}
= max {(l(.’?,.‘,u.,] 3 -ruk-i—l)a (1(.1?,“:,1, -Tm\.)a (l(xnqulu 11:111;-{—2)}-

Letting k — co in the above inequality, we obtain that

Y(a) = lim P(d(z,,, o)) < !‘lim [WO(R (@, 1, Tny 1)) = [0()] < ¥(a),

k—co 20

which is a contradiction. Therefore

lim d(x,,Tn+2) =0. (4.1.9)

n—od

We now prove that {a,} is a Cauchy sequence. Suppose that {x,} is not a Cauchy
sequence. Then there exist & > 0 and two subsequences {,,, } and {p, } of {x}

such that 7 is the smallest index with ny > my > k for which

A P T} = 65 (4.1.10)
and

ATy Tnp—1) < €. (4.1.11)

By applying the rectangular inequality and using (4.1.10) and (4.1.11), we obtain

that

&5 d(:l?mk, Q:n;,-)
l d’(:l:m.k y xn;.—l) -+ (l(il:nkfla lrn;\.—'.!) =+ d-(-’l:nkus mnk)

<e+d(zn 1, Tn—2) + A(Tny—2,Tn,)-
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Letting k — oo in the above inequality, using (4.1.6) and (4.1.9), we get that

P—

Lim %y s Eng) =6 (4.1.12)
For each k € N, we have

R(2y,, T, ) = max {d(:vnk, Eins )y W&y s T )s (T T:Bmk)}

= max {d’(r,lk, Sl 1 ), (Timy » Tong b1 )}
By using (4.1.6) and (4.1.12), we obtain that

lim R(#Y, vadl = &, (4.1.13)

k—co

By (4.1.12) and (4.1.13), there exists a positive integer ko such that
(T, 415 Tmpr1) >0 and  R(@pn,, Tm,) >0, forall k=
By Lemma 2.2.18 and using (4.1.1), we get that

W(d(wn a1 -’f-'nu_-H)) = P(d(T %, Tm, )
= Wd(Txm,, Tz,,))
L o @ S L iy T, ))
< [P (R@ms 20, )

= [w(R(:L‘,,k,.rmk))]‘\_

for all nj. > my > k > ko. Letting & — oo in this inequality, by (4.1.12), (4.1.13)

and the continuity of v, we obtain that

0(e) = Jim Y(d(ng i, Bmerr)) < i (DR, e )] = BT < ),

k—oo
which is a contradiction. Therefore {x,} is a Cauchy sequence in X. Since X is a
complete BMS, it follows that {z,} converges to x € X. Since 1" is continuous, we
have

z = lim %4 = lm Tz, =Tz

n—oo n—oec

Therefore x is a fixed point of 7T'. O



We now replace the continuity of 7' in Theorem 4.1.1 by some appropriate

conditions to obtain the following theorem.

Theorem 4.1.2. Let (X,d) be a complete BMS, T : X — X and a: AxX—
[0, c0). Suppose that the following conditions hold :

(i) there exist ¥ € Wy and X € (0,1) such that for all z,y € X,

d(Tx, Ty) # 0 implies afe, y)P(d(Tz, Ty)) < [ (R(z, y)]*, (4.1.14)
where

R(z,y) = max{d(z,y), d(z, Tx),d(y. Ty)};

(ii) there exists v1 € X such that o1, Tar) = 1;

(iii) T is a triengular o=orbital admissible mapping;

(iv) if {x,} is a sequence in X such that Ty, Tuyr) > 1 foralln and 2, — z € X
as n — oo, then there exists a subsequence {xy, } of {&n} such that ogf...z) =1
for all k € N.

Then T has a fized point.
Proof. As in the proof of Theorem 4.1.1, we can construct the sequence {z,}in X
such that

Tpy1 = T, for all Mgt

oz, xpyr) > 1 for all n € N and lim, 00 ¥, = 2. By (iv), there exists a subse-
quence {z,, } of {z,} such that a(z,,,z) > 1 for all k£ € N. We can suppose that

x,, 7 Ta. Applying inequality (4.1.14), we obtain that

W(d(Tan,, Tx)) < afTn,, 2)O(d(Tn,, Ta))

< [W(R(zy,, ‘B))]’\
where

R(x,,,) = max {d.(:cnk ) M T )i E; T:L‘)}
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=Mmex {d(.’l‘”k ), d(T, Topr1), d(z, T2) }
Taking the limit as & — oo and since 1 is continuous, we obtain that
ngfélo Bl 2] =diz; T

We will prove that 2 = Ta. Suppose that 2 # Tx. Therefore

d(z, Tz) < d(z, 2T Loopm 1,80 Lok AT digs).
It follows that

d(z, ) & Alingo Wz, Tx).
Since v is continunous and nondecreasing, we obtain that

P(d(z, Tz)) < "11_1,120 Y(d(zn,, Tx)) < [(d(z, T2)))* < ¥(d(z,Tx)),

which is a contradiction. Thus z = T2 and hence z is a fixed point of T. Ol

We now present some examples that supporting our main result.
Example 4.1.3. Let X = {0,1,2,3}. Defined: X x X — [0,00) as follows:

d(z,z) = 0 for allLz-€ X,

d(0,2) = d(2,0) = d(0,3) = d(3,0) = d(2,3) = d(3,2) = 2,
d(0,1) = d(1,0) = d(1,2) = d(2,1) = 4,

d(1,3) =d(3,1) =1, and

d(z,y) = |* — y|, otherwise.

Therefore (X, d) is complete BMS but (X, d) is not a metric space because it lacks

the triangular property as the following:

d(1,2) =4 > 1+2=d(1,3) +d(3,2).



Let T': X — X be the mapping defined by

1 iz
3 itz=2

T =

Let a: X x X — [0,00) be given by

1 ifz,ye X\{2}
oz, y) =4
3 otherwisc.
Define a function % : (0, 00) — (1,00) by 1(t) = e'. By Example 2.2.20, we obtain

that ¢ € ¥, but ¥ ¢ ;. We next illustrate that all conditions in Theorem 4.1.2
hold. Taking z; = 1, we have o(1,71) = a(1,1) = 1 > 1. We next prove that T is
a-orbital admissible. Let z € X such that a(z,Tx) > 1. Therefore z, Tv € X\{2}

and then = € {0,1,3}. By the definition of a, we obtain that

a(T0,770) ="e(1yl) X 1,

a(T'1,721) =a(l, 'l

a(T3,17%3) = a(1,1) > 1.
It follows that T is a-orbital admissible. Let x,y € X such that a(z,y) > 1 and
afy, Ty) > 1. By the definition of a, we have z,y, Ty € X\{2}. This yiclds

a(0,1) = 1 and (L, 7'1) > 1 imply a(0,71) > 1,

a(0,3) > 1 and a(3,73) > 1 imply a(0,73) > 1,
a(1,3) > 1 and «(3,73) > 1 imply o(1,73) > 1,
a(1,0) > L and «(0,70) > 1 imply «(1,7T0) > 1,
«(3,0) > 1 and «(0,70) > 1 imply «(3,70) > 1,
a(3,1) > 1 and a(1,7'1) > 1 imply o(3,71) > 1.

This implies that 7' is triangular a-orbital admissible. Let {x,} be a sequence such

that a(x,, tpy1) > 1 for all n € N and @, — z as n — oo, By the definition of a,



for each n € N, we get that z, € X\{2} = {0,1,3}. We obtain that x € {0,1,3}.
Thus we have a(z,, ) > 1 for each n € N. We next prove that (4.1.14) holds. Let
x,y € X be such that d(Ta, Ty) # 0. So we consider the following cases:
e x=2and y€{0,1,3} or
e y=2and z € {0,1, 3}.
We divide the proof into three cases as follows:
(1) If (2, y) € {(0,2),(2,0)}, then
R(0,2) = max {(1(07 2),d(0,1),d(2, 3)}
= max {2,4, 2}
= 44
This implies that
Y(d(T0,T2)) = w(d(1,3)) = (1) = ' < [ = [(A)°? < [(R(0,2))]>*.
Therefore

a(0,2)¢:(d(T0,T2)) = %-z;;(d(To.T‘z)) < Y(d(T0,T2)) < [(R(0,2))]%%.
Since d(x,y) = d(y, x) for all z,y € X, we also obtain that
a(2,0)¢(d(12,70)) < [(R(2,0))]°.
(2) If (x,9) € {(2,1),(1,2)}, then
R(2,1) = max {(1(2, 1),d(2,3),4(1, 1)}
= max {1, P 0}
= 2.

This implies that

Y(d(T2,T1)) = p(d(3,1)) = (1) = e < [e%°7 = [(2)]*7 < [W(R(2,1))]*".
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Therefore
(2, DP(d(T2.T1)) = SY(d(T2,T1) < $(d(T2 TD) < [HERE D).
Since d(z,y) = d(y, ) for all 2,y € X, we also obtain that
a(1,2)p(d(T1,T2)) < [¢(R(1,2)))"".
(3) If (z,9) € {(2,3), (3,2)}, then

R(2,3) = max {d(‘z, 3),d(2,3),d(3, 1)}

= max {2, 2 1}

=|£.
This implies that
Hd(T2,T3)) = b(d(3, 1)) = $(1) = & < [FP7 = [T < R(RE2, .
Therefore
a(2,3)(d(1T2,T3)) = 2*¢'((!(T2. T3)) < (d(T2,73)) < R(R(2,3)))*".
Since d(z,y) = d(y, z) for all x,y € X, we also obtain that
(3, 2)9(d(T3,12)) < [(R(3,2)))""
It follows that if z,y € X and d(Tz,Ty) # 0, then
oz, y)(d(Ta, Ty)) < [b(R(z, y))*

Hence all assumptions in Theorem 4.1.2 are satisfied and thus 7" has a fixed point

which is z = 1.

4.2 The unique common fixed point theorems

We now introduce the notion of triangular f-a-admissible mappings and prove a

key lemma that will be used for proving our results.
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Definition 4.2.1. Let 7, f : X — X and a : X x X — [0,c0). Then T is said to
be a triangular f-a-admissible mapping if
(i) T is an f-a-admissible mapping;

(i) for all z,y € X,a(fz, fy) > 1 and o[y, Ty) > 1 imply «(fz,Ty) > 1.

Lemma 4.2.2. Let T, f: X — X and o : X x X — [0, c0). Suppose that T : X —
X is a triangular [-a-admissible mapping and assume that there evists vy € X such
that o(fx1, Tzy) > 1. Define a sequence {fan} by fan = Tz, for alln € N.

Then o fz,, frm) =1 for all m,n € N with n < m.

Proof. Since T is a triangular f-a-admissible mapping and a(fz),Tx) =2 1, we

have a(f&, fas) = Tz, Tay) > 1. By continuing this process, we obtain that
a(fxy, fng) > 1 for all n € N

Suppose that a(fz,, fo,) > 1. We will prove that af fan, ftmsr) = 1 where
n < m. Since T is triangular f-a-admissible and a(fvm, fTmi1) = 1, we obtain

that a(f2. [P >\ Hence o fz,, fzn) = 1 for all m,n e Nwith n <m. [J

Theorem 4.2.3. Let (X, d) be a BMS and T, f + X — X be such that TX C fX
where one of these two subsets of X being complete. Assume that a @ X x X —
[0,00) and suppose that the following conditions hold:

(i) there exist € Wy and X €(0,1) such that for all v,y € X,

d(Tz, Ty) # 0 implies o fx, fy)(d(Tz, Ty)) < [h(R(z, y))]*, (4.2.1)
where

R(z,y) = max{d(fzx, fy),d(fz,Tx),d(fy,Ty)};

(ii) there exists x; € X such that o(fxy, Twy) > 1;
(iii) T is a triangular f-c-admissible mapping;
(iv) T is continuous with respect lo f;

(v) either o fu, fv) > 1 or a(fv, fu) > 1 whenever fu=Tu and fv="Tv.
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Then T and f have a unique point of coincidence. Moreover, if the pair {T, [} is

weakly compatible, then T' and f have a unique common fized point.

Proof. Let x, € X such that a(fz;, Tx;) 2 1. Define the iterative sequences {z.}

and {y,} in X by
W = [Huqi = Ty Toralln e N

Moreover, we assume that if Tz, = 9, = Ym = Ly, for some n # m, then we choose
Tppl = Ty, this can be done since T'X C fX. It follows that y,41 = Ymsr- If
Yno = Yno+1 for some ng € N, then y, 41 is a point of coincidence of T' and f.
Consequently, we can suppose that y,, # ¥4 for all n. € N. By condition (ii), we

have af fx;, Tx;) > 1. Using Lemma 4.2.2, we obtain that
afan, fany) =1 forall neN. (4.2.2)
From (4.2.1) and (4.2.2), for all n € N, we have

(A Yny 1)) = U(d(T,, T&ny1))

q(fﬂ‘ns f-'rn-i-l)"y/"(d(T-T-n3 Tff;n-{—l)) (423)

VAN

A

= [d)([{(rnr :rn—i-l))]/\’
where

R(xp, Thy1) = max {(l(f.tr“, P T T T Pl (l(f;l‘nH.T._rnH)}
= max {d(yrrfla yu)a d(yn—l ) yn): d'(yn ] yn+1)}

= max{d(yn—1, Yn), d(Yn, yn+1)}-
If R(xp, Zns1) = d(Yns Ynt1), then by (4.2.3) we obtain that
P(d(Yns Yni1)) < [y Y1) < (Y, Yni1)),
which is a contradiction. Hence R(zpn, Tnt1) = d(Yn-1,Yx). Using (4.2.3), we have

T/)(ff-(‘ym yn+1)) S [ip(d(ynfl: yn))]l\ < "l!)(d'(ynfls yn))-



Since 1 is nondecreasing, we have d(yn, yn+1) < d(yn—1,¥yn). Hence the sequence
{d(4n, yns1)} is decreasing. Hence {d(y,,yns1)} converges to a nonnegative real

number. Thus there exists » > 0 such that lim d(y,, Ynt1) =7 and
n—oo
Ad(Yn, Yny1) > v forall n € N. (4.2.4)

We will prove that » = 0. Suppose that r > 0. Since v is nondecreasing and by

using (4.2.3) and (4.2.4), we obtain that

1< d"(?') < U)(([(yizzyr!+l)) < [W(d(yn—-layn))]l\ =\ = {w(d(yll;.tfl))]’\”: (4'2'5)

for all n € N. Letting n — oo in this inequality, we get that ¥(r) = 1 which
contradicts the assumption that ¥(t) > 1 for each ¢ > 0. Consequently, we have

r = (0 and therefore

lim d(Yn, Yni1) = 0. (4.2.6)

n—oo
Suppose that there exist n,p € N such that y, = yny,. We prove that p = 1.

Assume that p > 1. By using (4.2.1), we obtain that

Y(dYns Ynr1)) = U(A(Yntps Ynipi1))
L‘J(([(T.?'”_H,-; Tirn 1 JJ+1))
Q (f-’r'rarl P f-Tr:-!-p'-:-l )I;IE(EI(T:UH Fps T;T“-HJ-H )) (427)

< [f_f,’(R(J'”+p- -?‘rl-u'—p-i-l))],\’

[

where

R(-'En+p: -Tn—{—p-{-l)
= max {d(fﬂ:n+ps fmrt+p-{-k): d(fmn+p1 Tivn+p); d(f-®n+p+l ) Tﬂ:n+p+l)}
= max {d(yrr—ﬁr—l: yn+p)s d(yner#I: yn+p)a d(yn.-{-p: yr1+11+1)}

= max {d(yn+p—la yrz+p): d(yn—i-pa yn+p+1) }

If R{Znyps Trepii)= Q(nips Pnrpsi), then ffom (4.2.7) we obtain that

w(d(ym yn—f—l)) - 'z/"(d(ynﬂ): yn+p+1)) S [w(d(yll+pﬁ yn+p+l))]'\ < '¢((l(.yrz+pa yn-{—p-&-l))*
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which is a contradiction. Hence R(Zpip, Tutps1) = A(Ynsp—1, Unsp)- By (4.2.7), we

obtain that

z,b(d(y,“ yn+1)) = w(d(yn-kp: yn+p+l)) < ['w(d(yrH»p*l: yner))]A < 'lr’f"(d(yn-i-p—layn—}-p))-

Since % is nondecreasing, we have d(y,, Yny1) < d(Ynip-1, Yntp). Next, by using

(4.2.1), we get that

l}f"(d(yn—o—p—h yn—i—p)) é O-(flrn+pfla f-l"ner)w((!(T-I'n-i-p—l-, :l]«'l‘n+p))

< ['lr’,’(R(f'"ner*l-"-'rzﬂl))]/\- (4.2.8)

where

R(-T:Hr,nfl 3 3"H+P)

= Inax {d(.f‘rn{p‘ -1, f-’rn+p): d(firn}—p I T-I-'u-l—,u—l)w f[‘(.fi’n+p; TI?!—H))}

|

max {d(yn-ﬂi- -2) yn+p71): d(ym;: 2y ,Un+;:—1): d(yn+p—l‘ yn-}-;:)}

— max {d(ynr{—pf‘l; yn+p71): d(yn-f-p—l 3 yn-l—p) }
If R(Znip—1s Tutp) = A(Yntp—15 Yntp), then by (4.2.8) we obtain that
?s‘f"(d(!]n—{—p—h yn-i—p)) S ['Iﬁ(([(ynﬂjfl- ynf%—p))]‘\ g “,f"(d(yn+p—l~ yn+p))-.

which is a contradiction. Hence R(Z,1p_1,Tn+p) = AYnip—2, Ynip-1).- By (4.2.8),

we have

"y’b(d(ynerflu yn+p)) £ [w(d(yn+p—2: yn+p—1))],\ < ‘?f)(d('ywpfz, yn+p—1))-

Since 9 is nondecreasing, we have d(Ynyp-1, Ynip) < A(Yntp—2; Yntp-1). By contin-

uing this process, we obtain the following inequality

(1'-(2};:.1 ynJrl) < d(yn—i-p—l:yn—!—p) < d‘(yn-i-p—% ynerfl) <...< (i(yn: yn-{-l)a

which is a contradiction and hence p = 1. We deduce that 7" and f have a point

of coincidence. We can assume that y, # v, for n # m. We now prove that



{d(Yn, Yns2)} is bounded. Since {d(yn,yns1)} is bounded, there exists M > 0 such
that
AW, Yur1) < M for all n € N.

If d(Yn, Yur2) > M for all n € N, then from
R(‘Tn ) TJH—‘!) = max {d'(fxn: fmﬂ—!—Q)! d(fmn: Tfl:n): d(ffb‘m-z- Tﬂ:n+‘2}

= max {d‘l(yu—lz yrz+1)- d(yn—l s ’yu), d(yn+l= .Un+2)}

= d(yn—l,‘ yr?+1 )"

and Lemma 4.2.2, we obtain that

W(d(Yn, Yns2)) = V(d(TTn, Tpi2))
a'(.fﬂ:n: f.’lfn.{.g)’l,[‘(d(Tﬂf,,, TInJrQ))

e [-g/)(R(;T.‘,,, 11:1|+2))F

IA

= [-Q’)((l(y;z—l-.yxr+l))]/\

.t w(dj(ynfl- Yn+1 ))

This implies that {d(y,; yns2)} is decreasing. Therefore {d(y,, Yni2)} is bounded.

If d(y,., Yni2) < M for some n € N, then from

R(Zy 41, Tnis) = TOLE {d(f.tf,lﬂ, St d( T, o i, 11 ), d(fTry3, T:L‘“Jrg}

= max {d(yn; yn-a-:z), d(yns y,.+1), (I(.UJ)-+-‘.2: .UJH—'J)}‘

and Lemma 4.2.2, we obtain that

B, Ynss)) = BT 011, Tnss))
< a(fTnrt, fonss BT a1, T0ar3))
< [B(R@ns1, Tars)

< (M)

< PY(M),



It follows that d(yny1, Ynss) < M. This implies that {d(yn, Ya+2)} is bounded. We
next prove that lim d(y,,yn+2) = 0. Suppose that lim d(y,, y.42) # 0. So there

exists a subsequence {y,, } of {y,} such that
Llim A(Yny » Yny+2) = @ for some a > 0.
-

Using (4.2.1), we have

(AW, s Yngr2)) = V(AT 20y, T 2))
L alf Tns Frn,+2)0(d(Ton,, TXn+3))

< O(R(Znps Tmpr2))s
where
R(.’Em 1By, i-‘Z) = 1max {f[(.flﬂ'ru 3 f'vmﬂ-?)’ d(fm”#‘ Ti"”” ) d(f‘T”“'—i_zl' Tl’l':za,—a—?)}
— max {(l(_lj,”\—l- yl(i‘—‘f‘l)f d(‘yrigflf y”k )‘ (l(ynk-i'l- .yhi\“‘z)}.

Letting k& — oo in the above inequality, we obtain that

b(a) = T (g s +2)) < i (R, 22D = (@) < i(a),

C 00

which is a contradietion. Therefore

lim d(Yu, Yui2) = 0. (4.2.9)

n—oo

We now prove that {y,} is a Cauchy sequence. Suppose that {y,} is not a Cauchy
sequence. Then there exist ¢ > 0 and two subsequences {y,, } and {ym, } of {y.}

such that n is the smallest index with ny. > my > k for which
A(Yme> Yn) = €, (4.2.10)
and

A Yy s Yrp—1) < €. (4.2.11)



By applying the rectangular inequality and using (4.2.10) and (4.2.11), we obtain

that

g% d(ymkaynk)
% d(ymk ] ynk—l) & d(yr!k—l’ y“k*z) + d(y”k_g’ ym-)

<&+ dYn, 1, Yny—2) + AYny—2,Yn,)-

Letting k — oo in the above inequality and using (4.2.6), we get that

S d(yun, Y) = €. (4.2.12)
For each k € N, we have

R(#.4, &a\) 5 max {d(f:tr,w e e i), (T T.‘r,,lk)}

= max {d(ynm, Y1)y A(Yny -1, Yy )s (Ymp—1, ;f/;,],;)}-

By using (4.2.6) and (4.2.12), we obtain that

A]molg Rttt 5 & (4.2.13)
By (4.2.12) and (4.2.13), there exists a positive integer ky such that

A(Yny s Ymy) > 0 and  R(Tnyy T, ) > 0, forall & > k.

By Lemma 4.2.2 and using (4.2.1), we get

YA Yomy,)) = DT Ty, T, ))
= P(d(T Ty, TTny))
€ @l B T8 WU T2y T ))
< [W(R(Timgr Ty )]
= (DR T
for all ng > my > k > ko. Letting k — oo in this inequality, by (4.2.12) and (4.2.13)

and the continuity of ¥, we obtain that

'trf)(E) = I.lll}:}o 'l,i’)(d(ynp yam.)) S kh_l,]:o[w(R(mn-‘""E””"))]’\ = [I,D(E)]’\ < ‘lb(E),



o0

which is a contradiction. Therefore {y,} is a Cauchy sequence in X. Assume that

FX is a complete BMS. It follows that {y,} converges to z € fX. Thus there exists

x € X such that fxr € fX and lim y, = fz. Therefore lim fx,; = fz. Since T
n—eoo n—os

is continuous with respect to f, we have
fz=lim fap,o= lim Tany; =Ta.
n—eo n—oo

Therefore z is a coincidence point of T and f. In the case of completencss of TX,
we obtain that {y,} converges to z ¢ TX C fX.

We now prove that the point of eoincidence of T' and f is unique. Suppose that u
and v are two coincidence points of 7 and f. Therefore Tu = fu and Tv = fv. We
will show that fu = fv. Suppose that fu# fv. By (v), we have a(fu, fv) > 1 or

af fv, fu) > 1. Suppose that o fu, fv) > 1. By condition (4.2.1), we obtain that
Yd(fu. o)) = (AT, Tv)) < ol fu, fo)Pld(Tu, Tv)) < [Y(R(w ),
where
R(u, v) = max{d(fu, fv),d(fu,Tu),d(fv,Tv)}
= d(fu, fuv).
This implies that

Y(d(fu, fv)) < [l fo))* < ¢(d(fu, f0)),

which is a contradiction. Thus fu = fv. This implies that 7" and j have a unique
point of coincidence. Since the pair {7, f} is weakly compatible and by Proposition

2.2.33, we have that 7" and f have a unique common fixed point. L]

Theorem 4.2.4. Let (X,d) be a BMS and T, f : X — X be such that TX C fX
where one of these two subsets of X being complete. Suppose that o+ X X X —
[0,00) and the following conditions hold :

(i) there exist 1 € Wy and X € (0,1) such that for all z,y € X,

d(Tz,Ty) #0 implies a(fx, fy)-(d(Tx,Ty)) < [W(R(z,y)]*,  (4.2.14)



where
R(z,y) = max{d(fz, fy). d(fx,Tx),d(fy, Ty)};

(ii) there exists x; € X such that o fx,,Ta1) > 1;

(iti) T is a triangular f-o-admissible mapping;

(iv) if {x,} is a sequence in X such that a(zp, Tny1) =1 foraln endz, —x € X
as n — oo, then there exists a subsequence {x, } of {x,} such that (T, 2 1
forall k € N;

(v) either o fu, fv) > 1 ora(fv, fu) > 1 whenever fu=Tu and fv=Tv.

Then T' and f have a unique point of coincidence. Moreover, if the pair {T, f} is

weakly compatible, then T and f have a unique common fived point.

Proof. As in the proof of Theorem 4.2.3, we can construct the sequences {xn} and

{y,} in X such that
y. 82 fairrs Tgp, Worall neN,

a(fz,, fangr) = 1 for all n € N and lim, e o= fud-Bydiv),fhere exists a
subsequence {fx,, } of {fan} such that a(fu,,, fz) = 1 for all k € N. We can

suppose that fz,, # Ta. Applying nequality (4.2.14), we obtain that

W(d(Txn,, T2)) < o frnp fr)p(d(T,,, Ta))

< [Y(R(@ny, )],
where

R(xp,,x) = max {a’.(f;vnk, o) il s Taw ) AT, T’L)}

= max {d(ym___l, F), A Ung—15 Yns )s AL f, T’L)}

Taking the limit as k — oo and since 1 is continuous, we obtain that

lim R(y,,,z) =d(fz,Tz).

k—oco
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We will prove that fo = Tx. Suppose that faz # Tx. Therefore
d(fz, Tx) < d(fx, Yo, 1) + dWup—1,Yn,) + d(Ty,, T2).
It follows that

d(fz,Tz) < lim d(T'zy,, Tx).

k—oo

Since 1) is continuous and nondecreasing, we obtain that

p(d(fz, Tx)) < lim D(d(Tay,,Tx)) < w(d(fz, Tz))]* < ¥(d(fx,Tx)),

k=00
which is a contradiction. Thus fz = Tw. Let z = fax = T2. Hence z is a point of
coincidence for 7" and f. As in the proof of Theorem 4.2.3, we obtain that T" and
f have a unique point of coincidence. Since the pair {7, f} is weakly compatible
and by Proposition 2.2.33, then we have that 7" and f have a unique common fixed

point. ]

Let X be a nonempty set. If (X,d) is a BMS and (X, <) is a partially
ordered set, then (X, d, %) is called a partially ordered BMS. We say that x,y € X
are comparable if + < y or y <X 2. Let (X, <) be a partially ordered set and
T,f: X — X. A mapping T is called an f-nondecreasing mapping if Tz = Ty

whenever fz = fy forall z,y € X.
Using Theorem 4.2.4, we obtain the following theorem in the sctting of
partially ordered BMS spaces.

Theorem 4.2.5. Let (X, d, =) be a partially ordered BMS and let T' and f be self-
mappings on X such that TX C fX. Assume that (fX,d) is a complete BMS.
Suppose that the following conditions hold :

(i) there exist 1 € Wy and X € (0,1) such that for all x,y € X with fo X fy,
d(Tx,Ty) # 0 implies $(d(Tx, Ty)) < [W(R(z,y))]", (4.2.15)
where

R(x,y) = max{d(fz, fy),d(fz, Tx),d(fy,Ty)};



(ii) T is f-nondecreasing,

(iii) there exists x1 € X such that fz, 2 Tay;

(iv) if {x,} is a sequence in X such that x, =z, for alln and v, — v € X as
n — oo, then there exists a subsequence {x,,} of {xn} such that x,, < x for all
keN;

(v) fu and fv are comparable whenever fu=Tu and fv =Tv.

Then T and [ have a unique point of coincidence. Moreover, if the pair {T, f} is

weakly compatible, then T and [ have a unique common fized point.

Proof. Define a mapping a : X x X — [0,00) such that

1 ifz,ye X and z 2 v,
a(z,y) =
0 otherwise.

We first show that 7T is f-a-admissible. Let 2,y € X such that a(fz, fy) > 1.
Therefore fr < fy. Since T is f-nondecreasing, we have Tz = Ty and then
a(Tx, Ty) > 1. We next prove that 7" is a triangular f-a-admissible. Let z,y € X
such that a(fz, fy) = 1 and a(fy, Ty) > 1. Then we have fx = fy and fy 2 Ty.
This implies that fz < Ty. So a(fx,Ty) > 1. Therefore T is a triangular f-
c-admissible mapping. Since there exists z; € X such that fx;, < Tz, we have
affxy,Tx;) > 1. Let {#,} be a sequence in X such that a(z,,z,1) > 1 for all
n € N and z,, — = as n — oc. By definition of e, we have z,, < 2,4, for alln € N.
By (iv), there exists a subsequence {z,, } of {«,} such that x,, = a forall k e N
and hence a(z,,,x) > 1 for all k € N . Let u,v € X such that fu = Tu and
fv = Twv. Since fu and fv are comparable, then we have fu <X fv or fv X fu.
This implies that o fu, fv) > 1 or o fv, fu) = 1. Finally, we prove that 4.2.4
holds. Let z,y € X and d(Tz,Ty) # 0. If o fz, fy) = 1, then fx < fy and then
4.2.4 holds. If a(fxz, fy) = 0, then 4.2.4 holds. It follows that all assumptions of

Theorem 4.2.4 hold. By Theorem 4.2.4, we obtain that 7" and f have a unique

common fixed point. L



CHAPTER V

GENERALIZED CONTRACTIONS WITH TRIANGULAR
a-ORBITAL ADMISSIBLE MAPPINGS WITH RESPECT

TO n ON PARTIAT, RECTANGULAR METRIC SPACES

In this chapter, we introduce a notion of generalized contractions in the
setting of partial rectangular metric spaces. The existence of fixed point theorems
for generalized contractions with triangular a-orbital admissible mappings with
respect to 7in the complete partial rectangular metric spaces is proven. Noreover,

we also give the example for supporting our main result.

5.1 The fixed point theorems

We now prove the following lemma needed in proving our result. The idea

comes from [18] but the proof is slightly different.

Lemma 5.1.1. Let (X.p) be a partial rectangular metric space and {x.} be a

sequence in (X, p) such that p(x,,x) — p(z, ) as n — oo for some z € X,

p(z,z) = 0 and lim p(@,,2a41) = 0. Then p(zq,y) — plr,y) as n — o0 for all
n—od

yeX.

Proof. Suppose that @ # y. If », = y for arbitrarily large n, then oly, &) =
p(z,z) = p(y,y). Therefore x = y. Assume that y # x, for all n € N. We also
suppose that x, # = for infinitely many n. Otherwise, the result is complete. [t
follows that we may assume that x, # v, # ¢ and &, # ¥, #y for all m,n € N

with m #£ n. By the partial rectangular inequality, we have

p('y, 'L) < ]3(’,1}-, l‘,,) + 1)(-73111 117:1—%—1) <t ])(36,,4_1, 7’) - p(-’l"n: 3711) = p(17r1+11 mwi-l)

S P(ya il:n) + 'P(-Tm irn-i-l) + P(‘J?n+l: 1)



o
(&g}

and

p(y, xn) < ply, x) + p(z, Tnp1) + P(Tnr1s 2n) — P2, 2) — P(Tny1, 1)

S P(y, ’E) + p(:t:, -Tr1+1) + p(l‘n—i—l: "En)-

Since lim p(z,,z,41) = 0 and taking the limit as n — oo In the above inequalities,

n—oeo

we have

limsup p(y, z,) < p(y, ) < liminf p(y, z,).
n—>0c

n—oc

Hence the proof is complete. O

Theorem 5.1.2. Let (X,p) be a complete partial rectangular metric space, T :
X — X be a mapping and let a,np: X x X — [0,00) be functions. Suppose that
the following conditions hold :

(1) there exist 8 € Uy, and A € (0,1) such that for all x,y € X,
p(Tx, Ty) >0 and o(z,y) = n(x,y) imply 6(p(1T'z,Ty)) < [0(R(x, )], (5.1.1)
where

a To)ply, T
R(z,y) B yax {p(.v, y), ple,Tx), ply, T'y), B(l 1)y, Ty) ) ;

A p(x,y)

(2) there exists x1 € X such that a(zy, Tad) Srat,, Latls

(3) T is a triangular a-orbital admissible mapping with respect to 1);

(4) if {T"x1} 1s a sequence in X such that (1w, T wy) = n(T" @, Trg) for
alln € N and T"x, — x € X asn — oo, then there exists a subsequence {T"®) gy}
of {T"x,} such that o(T"Wzy,2) > n(T"Way,x) for all k € N;

(5) @ is continuous;

(6) if = is a periodic point T, then a(z,Tz) = n(z, Tz).

Then T has a fized point.

Proof. By (2), there exists #; € X such that a(xy, Ta1) = n(z1, Ta1). Define the

sequence {x,} in X by z, = Tx,, = T"z, for all n € N. By Lemma 2.2.29, we
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obtain that
(T xy, T ay) > (T 2y, T 'ay) for all n € N. (5.1.2)

It Tmay = Ty for some n € N, then 7"xy is a fixed point of 7". Thus we suppose
that T"x, # T" 2, for all n € N. That is p(T"ay, T ay) > 0. Applying (5.1.1),

for each n € N, we have

O(p(T"xy, T ) = 0(p(T(T" " 21), T(T" 1))

< [O(R(T 2y, T, (5.1.3)
where

R(T" 'y, T"a1)

=max {p(T”_l;rl, T”.z:l),p(T”*lxl,T(T”_l:zrl)).p(T”J?l._T(T”.rl)).

ﬂT”"] af, T V(T x4, T 41 )) }
1 4+p(T Vo, Ree)

= Bk {/J(T"fl.‘?rl, T2:1) p(T" 1 2 T, ), p(T 1y 7118.),

p(T" T )p(T 2y, TR }
Y- p % Ee K e)

= max{p(T" 'x,, T"a1), p(T" 1, . i 1o

It R(T" 1y, T" W=D %, T )y 07175, | WEThEVE
O(p(T"zy, T2y < [0(p(T"), T 2)))

This implies that
W[0(p(T 2wy, T" 1)) < ANIn[0(p(T" 21, T 21))],

which is a contradiction with A € (0,1). This implies that R(T" 'xy, T"%;) =

p(T"'ay, T"z;) for all n € N. From (5.1.3), we obtain that
O(p(T"zy, T 'zy)) < [O(p(T" &y, T"2,)))* for alln € N.
This implies that

9(])(T";L‘1,Tn+lﬂ?1)) < [G(IJ(T”’I:CI,T":z:l))]‘\ et [6’(-1)(’1’"_21:;,1"”’1:1:1))]’\2



< - < [0(p(ar, Tr))]™
It follows that
1<0(p(T "z, T"ay)) < [0(p(z1, Txy))]Y for all n € N. (5.1.4)
Taking the limit as n — oo in the above inequality, we obtain that
”121;3 O(p(Txy, T"HE =1, (5.1.5)
Since 0 € ¥, we have
Jllj_{lr}ofj(T".l'l. Fsvr,) = 0. (5.1.6)

From 0 € W, there exist r € (0,1) and £ € (0, co] such that

O(IJ(THII. T“Jrl.l"l)) —1 -

lim - =
nooo ( [p(Tnay, T
Assume that { < oco. Let B = % > 0. It follows that there exists ng € N such that

O(p(Trxy, T ) — 1 /

[p(T”;cl,T’tﬂ,rl)]r B for all n.Z np.

VAN

This implies that

O(p(Thxy, Ty ) ) =1, _ |
: = lANR = B ol T
[]J(T”:t'l,T”“:J:l)]" - iy "

Thus we have
n[p(T"xy, T" )" < An[0(p(T" a1, T"'4y)) — 1] for all n > ny,

where A = %. Assume that ¢ = co. Let B > 0 be an arbitrary positive number. It

follows that there exists ng € N such that

O(p(T"zx1, TV ay)) — 1

> B f ¥ cll n > ng.
p(Tray, Tr+ia)r or all n > ny

This implies that

n[p(T"z, T"Hxy)|" < An[0(p(T"z,, T" ' 2y)) — 1] for all n > ny,



where A = % From the above two cases, there exist A > 0 and ng € N such that
n[p(T "z, T 2))]” < An[f)(p(T":z:l,T"“Jrl)) —1] for all n > ny.
Using (5.1.4), we have
n[p(T w1, T 2y)]” < An([0(p(21, Ta))M — 1) for all n > ng. (5.1.7)
Taking the limit as n — oo in the above inequality, we get that

lim nfp(T"zy, T" " aq)]" = 0.

n—eo

This implies that there exists n; € N such that
’ n i+l 1
p(T"x, T a) < s for all n > n;. (5.1.8)
n

We now prove that T has a periodic point. Suppose that 7' does not have periodic
points. Thus T"z; # T™a, for all n,m € N such that n # m. Using Lemma 4.2.5

and (5.1.1), we get that

O(p(T ey, T 2y)) = Q(p(T(T" '), T(T"2)))

< (BTt 27 )Y
where

R(Tn——-l:rl: TH_HZEL)

= max {p(T”_I;I:h T ay), p(T" ey, T(T" an)), p(T7 2y, T e,

g PO el ey, T lay ) }
l + j,)("'rn—lﬂ_fI , Y‘n+11.1)

= max {'p(T"*l:rI T ay), p(T7 ey, T ay), p(T™ 2y, T 2y),

])(T"ilﬂ,‘l, T“IL‘l)p(T"JrlIEl, T”+2.’l'[) }
1+ I)(Tn—lxh Tri+1$1)

= max{p(T" 'z, T 21), p(T" 2y, T"x1), p(T"H 2y, T 21) ).

Thus we have

O(p(T"xy, T 22y))



< [O(max{p(T" 'y, T 2 3,0 e, TPl T T Pa) P
It follows that

O(p(T™x1, T"224)) (5.1.9)
S[Dlax{g(‘p(Tnil.’El,Tn_Hﬂ,‘l)), (p(Tn 111,T”T1)) 9(])(T"+1 Ta:+2 ))}1)\

Let I be the set of n € N such that

iU, = M 1\{‘9(}) Tn 1 Tn {—1 )) ])(T” l Tn tl)) 9(1)(7“)1 + i Tn }2 ))}

(p(Tn l Tn—i—] ))
If |I]| < oo, then there exists N € N such that, for every n =2 N,

max{O(p(T™ wy, T 1)), 0(p(T" 21, T 1)), O (p(T" ey JReTER )}

= max{O0p(T" 'z, T"x1)), 0 (p(T" wy, T 22y)) }.
From (5.1.9), we obtain that

1 < O(p(Thzy, T *x1))

< [max{@(p(T" a1, T"ay)). 0( (@], 7" 24,)) 2= for all n > N.

Taking the limit as n — co in the above inequality and using (5.1.5), we get that

lim O(p(T"z;, T ?x,)) = 1.

n—eo

If |/| = oo, then we can find a subsequence of {u,}, denoted by {u,}, such that

Uy = O(p(T" 'y, T 2y)) for large n. From (5.1.9), we have

1 < B(IJ(T":EI,T"+2;E1)) < [0(p(T" Loy, T 2y )])‘ < [B(p(T"* 2y i’"r‘:L'l))])‘2

< < [B(p(an, TPan))™,
for large n. Taking the limit as n — co in the above inequality, we obtain that

lim O(p(T"xy, T" 2y)) = L. (5.1.10)

n—oo
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Then in all cases, we obtain that (5.1.10) holds. By using (5.1.10) and # € ¥, we

get that
lim p(T":z:l,T””ml) =00
n—oco
As an analogous proof as above, from @ € Wy, there exists ny € N such that

for all n > n,. (5.1.11)

1
p(Txy, T 2)) < T

Let M = max{nj,n»}. We consider the following two cases.

Case 1: Ifm > 2 is odd, then m = 2L+ 1 for some L > 1. Using (5.1.8),

for all n > M, we get that
p(TF#, A" #1)
< p(TPay, T )+p(fn+l TP ) (T Ry, TR )
P, T ) — p(TH 20y T )

< p(T¥zy, T %) o (T AT ) X 0 P T T W)

<plTic PN a) rp(Ta), T ey ) +p(TY 3y LRST))
b\ (B3, T D p(THxy, TP IS8 (TP o 1)
— RO TN

< DT, P ) (T, T %00+ 7y T )

i p(T’” 3, Tﬂi 4" ) ok [)(T"_H Tn I‘ZI+1 )

SP(T Tn-}l )_I_p(Tn-l-l Tn+2 )+ _i_p(TrH—ZL Tu+2[+1 1)
1 1 1

ol 8 B, o e 5.1.12
(n+ 1)V e (n+2L)\Vr ( )

+

Case 2: If m > 2 is cven, then m = 2L for some L > 2. Using (5.1.8) and

(5.1.11), for all n > M, we get that

}J(rjmml, rlnner -Tl)
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< p(T"xy, T"22y) + p(T" 220, T B ay) + p(T" By, T ay)
— p(T" Py, T ay) — p(T" oy, T i)
< p(T"xy, T 22y) + p(T" 2y, Ty + p(T"Fay, T,
< p(T"xy, T 221) + p(T" 22y, T"ay) + p(T" 2y, T 2y)
4 p(T" ey, T02,) + p(T 00y, THay) — p(T™ ey, T )
— p(TH+U rj n-}—; ‘[)
< p(T"zy, T30 Ap(T™ o T ) P 0y B )

er(Tn M fan ) 3 ])(T” +5 r .TQI'.t‘1)

S p(Tn Tn—)—u ) er(.[ n+2 Tr1+d ) Ak P(TJHLQL—‘lJ:h Tn+21,£1)

1 1 i}
414 1 £ e 4 y 5.1.13
y 15 - (n +2)/r - (n +2L = 1)Ur ( )
S l‘l/r'

From Case 1 and Case 2, we have
) < 1 2 1 + % 1
= ntrl (n 4+ DU (n+2L)1r

p(T"xy, T "y for all m > M. (5.1.14)

3 M, 2 | . o b AGd 1 ‘ = - -
Since the series > . 7 is convergent (since &> 1) and (5.1.14), we have

| TSSO s =

n,m—0co
This implies that {77z} is a Cauchy sequence in (X,p). By Lemma 2.2.11, we
have {T"x,} is a Cauchy sequence in (X, d,). Since (X, p) is complete, then (X, d,)
is complete. This implies that there exists z € X such that lim d,(T"xy,2) = 0.

n—oo

Using Lemma 2.2.10, we have lim p(T"x,z) = lim p(T"xy, T"x,) = p(z,2). By

n—oo n—0o0

applying Proposition 2.2.8, we obtain that
2p(T"xy, 2) = dp(T" 21, 2) + p(T" 21, T" 1) + p(2, 2)
< dp(T"w1, 2) + p(T" 2y, T ) + p(T"xy, 2).

Therefore p(T"x1, 2) < dy(T" 2y, z)+p(T"xy, T ay) for all n € N. Taking the limit

as n — oo, we obtain that p(z,z) = lim p(T"x,,z) = 0. We now suppose that
n—oQ
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p(2,Tz) > 0. By condition (4), there exists a subsequence {T"")a;} of {721} such
that a(T" W2y, 2) > n(T"®ay, 2) for all k € N. Since T"xy # T"'xy for alln,m € N
with m # n, without loss of generality, we can assume that T +ly £ Tz, And

applying the condition (5.1.1), we obtain that

O(p(T" M2y, T2)) = 0(p(T(T" V1), T2))

< [Q(R(TH(R};EI, z))}’\,
where

R(T" Mg, z) = max {])(T”(Mtt‘l, 2), p(T"®zy, T(T" W), ple, Tz),

p(r"* Y1, T(T”(k).ltl))p(z,TZ)}
BT I e i

= max {];(T“ 2y, 2), p(T" Wy, T O 20, p(2,T2),

] (T'! T” I] ]}( -‘r::)}
1{+ ]J(T“(" T1, %)

Thus we have

O(p(T M ey, Te)) < {()(nmx {}J(T"‘k)xl, L pEP N, TN ),

e T i f)}ﬂA
14 p(T2®) g, 2) '

I)(Z1TZ):
(5.1.15)

Taking the limit as & — oo in (5.1.15), using the continuity of # and Lemma 5.1.1,

we obtain that

0(p(z,T2)) < [0(p(z,T2))* < 6(p(2,Tz)),

which is a contradiction. Thus we obtain that p(z,7z) = 0. By Remark 2.2.6, we
have T’z = z, which contradicts to the assumption that T does not have a periodic
point. Thus T has a periodic point, say z of period ¢. Suppose that the set of fixed
points of T" is empty. Then we have ¢ > 1 and p(z,T'z) > 0. By using (5.1.1) and

condition (6), we get that

0(p(2,T2)) = 0(p(T2, T*'2)) < [0(p(z, T2) < 0(p(2,T=)),
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which is a contradiction. This implies that the set of fixed points of 7" is non-empty.

Hence T has at least one fixed point. O

Example 5.1.3. Let X = {0,1,2,3,4,5} and define p : X x X — [0, +o00) such

that
z if =,
plr,y) =4 *5¢ if a,y€{0,1,2}, v #y;
”%‘2” otherwise.

Then (X,p) is a complete partial rectangular metric space. Since, for all x € X
and z > 0, then we have p(x,z) = x > 0. Therefore (X,p) is not a rectangular
metric space.

Define a mapping 7' : X — X by
TO=T1=T4=0T2=T3=2, and TH = 4.

Let a,7: X x X — [0,400) be functions defined by

1 if @,y e {0,1,2,3};
oz Y=
0  otherwise.
>, iRk € {One2rdds
ke, i) =
1  otherwise.
Also define ¥ : (0,00) — (1,00) by ¥(t) = Vi We next illustrate that all

conditions in Theorem 5.1.2 hold. Taking 2; = 1, we have a(1,T1) = a(1,0) =
1> 3 =n(1,0) = n(1,71). Next, we prove that 7" is a-orbital admissible with
respect to . Let a(x, Tx) > n(z, Tz). Thus z, Tx € {0,1,2,3}. By the definitions

of a,7, we obtain that

o(T0,720) = a(0,0) = 1 > = = »(0,0) = n(1'0,770),

a(T1,T?1) = a(0,0) = 1 > -~ =n(0,0) = n(T1,T*1),

a(T2,7T%2) = a(2,2) = 1 > = =n(2,2) = n(T2,T?2),

M= B = N



o(T3,T23) = a(2,2) =1 >

1
2 5 = n(2,2) = n(T3,T23).

It follows that T is a-orbital admissible with respect to 7. Let a(z,y) = n(2,y)

and a(y, Ty) > n(y, Ty). By definitions of a, 7, we have x,y, Ty € {0,1,2,3}. This

yields

a(0,0) > n(0,0) and «(0,T0) > n(0,T0) imply «(0,70) > »(0,T0),

a(0,1) > (0, 1) and a(1,71) > 5(1, T1) imply «(0,7'1) = 1(0,T1),
a(0,2) > 5(0,2) and «(2,T2) > n(2,72) imply a(0,72) > n(0,7T2),
a(0,3) > n(0,3) and «(3,T3) > n(3,T3) imply a(0,73) > »(0,T3),
a(1,0) > n(1,0) and a(0,T0) > 5(0,T0) imply o(1,70) > n(1,70),
a(1,1) > n(1,1) and (1, T1) > 7(1,T1) imply a(1,71) = 5(1,T1),
a(1,2) > n(1,2) and a(2,T2) > n(2,72) imply a(1,72) > 5(1,T2),
a(l,3) > n(1,3) and «(3,73) > 5(3,73) imply a(1,73) = n(1,73),
a(2,0) = 1(2,0) and a(0,70) > 5(0,70) imply «(2,70) > 1(2,70),
a(2,1) > n(2,1) and (1, T1) > (1, T1) imply (2, T1) > n(2,T1),
a(2,2) = 1(2,2) and a(2,72) > n(2,T2) imply «(2,72) > n(2,T2),
a(2,3) > n(2,3) and o3, 73) > n(3,73) imply o(2,73) > n(2,7T3),
a(3,0) > 7(3,0) and «(0,70) > 5(0,70) imply a(3,70) > n(3,70),
a(3,1) > n(3,1) and a(1,T1) > 5(1,T1) imply a(3,T1) > n(3,T1),
a(3,2) > n(3,2) and a(2,72) > n(2,72) imply «(3,72) > (3,72),

(3,3) = n(3,3) and a(3,T3) > n(3,T3) imply a(3,73) > n(3,73).

This implies that 7" is triangular a-orbital admissible with respect to . Afterward,

let {T™x;} be a sequence such that (T, T zy) > (T2, T ay) for all

n € N and T"z; — z as n — co. By the definitions of a, 7 for each n € N, we get

Tz, € {0,1,2,3}. We obtain that z € {0,1,2,3}. Thus we have a(1"zy,x) >



n(T"z,,x) for each n € N.  Let x,y € X be such that p(Tz,Ty) > 0. We could
observe that if z,y € {0,1,4}, then Tz = Ty = 0. This implies that p(T'z,Ty) = 0.
So we consider the following cases:

e z€{0,1,4} and y € {2,3} or

e v €{0,1,4} and y =5 or

e v ={2,3} andiy =5.
Ifx=4dandy€ {2,3} orz € {0,1,4} and y =5 or x = {2,3} and y = 5, then we

have a(z,y) # n(z,y). We divide the proof into four cases as follows:

(1) If (z,y) € {(0,2),(2,0)}, then

(0, U)p(Q.E)}

R(0,2) = max {p(@, 2),p(0,0), p(2,2), T+ p(0.2)

= max {l, 0,2, 0}
=
This implies that
Y(p(T0,T2)) = (p(0,2)) = »(1) = " < [V = (27 < [(R(0,2))°™
Therefore
Y(p(T0,72)) < [W(R(0,2))"™.
Since p(z,y) = p(y, @) for all z,y € X, we also obtain that
Y(p(12,70)) < [Y(R(2,0)™".

(2) If (z,y) € {(1,2),(2,1)}, then

p(1,0)p(2,2) }

R(1,2) = max {p(L 2),p(1,0),p(2,2), =57 5 5

9
= AR 2,1,2,7}
nlﬂ)&{ 3



66

=,
This implics that
$(p(T1,T2)) = ¥(p(0,2)) = ¥(1) = e < [T = W™ < R
Therefore
p(p(T1,T2)) < [Y(RA2)]°".
Since p(x,y) = p(y, z) for all z,y € X, we also obtain that
P(p(T2,T1)) < [b(R(2, 1))

(3) If (x,y) € {(0,3),(3,0)}, then

)P(3; 2)}

R(0,3) = um\{p(U 3),p(0,0), (3, 2), g— »(0,3)

9
= max {fl, 0, 2> 0}

This implics that
VI V205 91105 0.5
B(TO, T3)) = P(p(0,2)) = (1) =/ < V3P = DI < (RO, 3
Therefore
b(p(T0,T3)) < [W(R(0,3))]°°.
Since p(x,y) = p(y,z) for all 2,y € X, we also obtain that
D(p(T'3,T0)) < [1h(R(3,0))].

(4) If (@, y) € {(1,3),(3,1)}, then

R(1,3) = max {p(1,8), 001,006, 2), 2=

9 9 9
=maxq—, 1 }

' 9l 1q
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This implies that
POTLT3) = p(p(0,9) = #(1) = e < VI = W)™ < [W(ROLH).
Therefore
Y(p(T1,T3)) < [W(R(1,3)))°.
Since p(x,y) = p(y, «) for all =,y € X, we also obtain that
(p(T38,T1)) < [(R(3, 1),

It follows that if z, y € X, p(Txz, Ty) > 0and a(z, y) = n(z,y), Then ¥(p(Tz, Ty)) <
[%(R(z,y))]*. Hence all assumptions in Theorem 5.1.2 are satisfied and thus T has

a fixed point which are # = 0 and @ = 2.

Theorem 5.1.4. Let (X,p) be a complete partial rectangular metric space, T' :
X — X be a mapping and let a,n . X x X — [0,00) be functions. Suppose that
the following conditions hold :

(1) there exist 0 € Wy and X € (0,1) such that for allz,y € X,
p(Tz, Ty) > 0 and oz, y) = n(z,y) imply O(p(Tx, Ty)) < [O(R(x,y))]*, (5.1.16)

where

pla, Tz)p(y, T'y) }
1+ p(z,y)

(2) there exists 1 € X such that o(xy,Txi) > n(z, Ter) and a(x,, T?z) >

R(z,y) = max {p(ﬂ:, y), p(, Tx), ply, Ty),

n(xy, T%xy);

(3) T is an a-orbital admissible mapping with respect to n);
(4) T is an «-orbital attractive mapping with respect to n);
(5) 0 is continuous;

(6) if z is a periodic point of T, then a(z,Tz) = n(z,Tz).

Then T has a fized point.
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Proof. By (2), there exists x; € X such that a(xy, Tzy) > n(xy, T'z,) and a(2, T?x,) >
n(x1, T?z1). Define the iterative sequence {x,} in X such that x, = Tz, = T"2;
for all n € N. Since T is an a-orbital admissible mapping with respect to 7, we

obtain that

a(xy, Txy) > n(x, Tx,) implies a(Txy, T?x,) > n(Tay, T?2)

and

oz, T?xy) = 1z, T?ay) implies a(Prr, T°21).2 p(Txy, T3xy).

By continuing this process, we get that

(T xy, TP 2y) > (T "z, T" ;) forallneN (5.1.17)
and
o Ty, T 2ay) > n(T e, T"xy) for all n.€ N. (5.1.18)

If T"x, = T"*'a, for some n € N, then 7"z is a fixed point of T Thus we suppose
that T"zy & Trtz, forall n € N. That is p(T" 1, T 1zy) > 0. Applying the

condition (5.1.16) and (5.1.17), for each n € N, we obtain that

O(p(T7xy, T 1)) = O(p(L (T 1), T(T"21)))

< (BRI ey, T ap))P, (5.1.19)
where

R(T" 'z, T"x1)

= max {])(T”_l.’cl, T2, p(T™ 2y, (1T an)), p(T" 2y, T(T" 1)),

p(T" Yoy, T(T" ay))p(T 2y, T(T"21)) }
14 p(T"1zy, T"21)

= max {p(T"’lml, T%:), p(T"_lml, T"xy), p(T" 2y, T,

p(Tm oy, Ty )p(T" 21, T lg;) }
1 + p(Frixi, T"2q)

= max{p(T" 'y, T"x1), p(T"x1, T )}



If R(T" oy, TMa) = p(T"xy, T" ). By using (5.1.19), we get that
O(p(T" 2, T ay)) < [O(p(T" 21, T" )]
This implies that

1]][9(})(T"11,Tn+1.’!:1))] < Xn[f(p(T" 21, T e,
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which is a contradiction with A € (0,1). It follows that R(T* 1y, Th%) =

p(T" txy, T"xy) for all n € N. From (5.1.19), we obtain that
O(p(T" @, T ay)) < 0(p(T" 2, T"2,)))* forall n e N.

Therefore

O(p(T”‘tr],T”'*'ll‘l)) < [O(p(T”*l:t:l,T”;ul))])‘ < [9(})(T”_2.lrl,T’“l:t‘l))]’\2

VA

s < [, TR )
It follows that

1 < O(p(Thay, T M) < [0(p(x1, Tx1))]Y forall n € N.
Taking the limit as n — oo, we obtain that

lim O(p(T"zy, TRz = It

n—oco

Since ¢ € Wy, we have

lim p(T"z, T" ') = 0.

From 6 € ¥, there exist r € (0,1) and £ € (0, o] such that

‘ s n+1.,. e
lim O(p(T"xy, T ay)) — 1

=L
n—o0 [p(TH.’L‘l 3 T"+1J171 )]’

(5.1.20)

(5.1.21)

Assume that ¢ < co. Let B = é > (0. It follows that there exists ng € N such that

O(p(T "z, T Hay)) — 1

[p(T”ﬂ:l,T”“:El)]" —{| < B forall n > ng.
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This implies that

9(p(Tr::L,l’ Tn+1‘,l,_1)) =1

>(—B=B foralln2>n.
[P(TnfEl,T"Hﬁ)]" = or all n = ny

Thus we have
n[p(T"ay, T a))]" < Anf(p(T 2y, T" 1)) — 1] for all n > ng,

where A = %. Assume that ¢ = co. Let B > 0 be an arbitrary positive number. It

follows that there exists ng € N such that

o Tn+1:7 .
O(p(T"y, - 11)}‘_1 > B for all n > nyg.
(I, LR

This implies that
nfp(T"zy, T a1)]" < An[0(p(1™2:, T 'wy)) — 1] for all n > ng,
where A = % From the above two cases, there exist A > 0 and ng € N such that
n[p(T "z, T"ay)]” < An[0(p(T"xy, T '2y)) = 1] for all n > ny.
By using (5.1.20), we get that
np(Tay, T ) < An((0(p(ar, Tx))) —~ 1) for all n > ny. (5.1.22)
Taking the limit as n — oo in the inequality (5.1.22), we obtain that
lim nfp(Tx, T ay)]" = 0.
n—oo
This implies that there exists n; € N such that

1
p(T"21, T zy) < I for all n > n;. (5.1.23)
n?

We now prove that 7" has a periodic point. Suppose that 7' does not have periodic
points. Thus T"x; # T for all n,m € N such that n # m. Using condition

(5.1.16) and (5.1.18), we get that

O(p(1" 2y, T 22y)) = O(p(T (1" 21), T(1" 1))
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% [g(R(TJJ 1 Tn+1 T ))]
where

R(Tn I r] n+l )

= AKX {p T oy, T ay), p(T" Ly, T(T" ), p(T iy, T(T  ay)),

]_)(i’ n— llll, T(lm I.L ))]?(T ”+1.El, T(IvflJrl‘l:l)) }
1 + p(Tr P 0,

— max {[)(lm ds Tn+l ) ]J(T" l Tn ) ])(TH—O—I TnJr_ i )

p(Tn 1 21, T 1)1)(111144 Tn+2 ) }
1+I)(Tr1 111 n+111)

- 1113\{])('1 n— 1 Tnil ) ])(T” l Tn ) (1u+1 T,H-_ ) )}

Thus we have
0T 23, T"+2)
< [P(max{p(T" iy, T ), p(T™ Sy D), ™ ey, T2y )P
It follows that
O(p(T7%1, T Py))
< [max{@(p(T" oy, T 20), 0p(T" a1, Ty), O(p(T"F wy, T Ha0))}.
(5.1.24)

Let I be the set of n € N such that

= masc{ (T a0, T 1)), O(p(T" 1, T01), 0T 0, 1 1)

= O(p(T" tay, T 'ay)).
If || < oo, then there exists N € N such that, for every n > N,

max{8(p(T" 'y, T"21)), 0(p(T" 21, T" 1)), O(p(T" 2y, T 1)) }

= max{0(p(T"  z, T"x1)), 0(p(T" 2, T" 1))}
From (5.1.24), we obtain that

1 < 8(p(T" %1, T x1))
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< [max{8(p(T" 'z, T"x1)), 0(p(T" 2y , T2 )} foralln > N.

Taking the limit as n — oo in the above inequality and using (5.1.21), we obtain

that

lim O(p(T"x,, T" 1)) = 1.

n—oo
If |I] = oo, then we can find a subsequence of {u,}, denoted by {u, }, such that
Uy = O(p(T" 'y, T ay)) for large n. From (5.1.24), we have

1< 0@, T 21)) < 0Ty, T @) < OG22, T )

< e < [0(p(ay, T220)))Y,
for large n. Taking the limit as n — oo in the above inequality, we obtain that

lim O(p(T"xy, T"2,)) = 1. (5.1.25)

n—oo

Then in all cases, (5.1.25) holds. By using (5.1.25) and # € ¥y, we get that
LN (T ™58, T8 Krp) 0.
n-—oo

As an analogous proof as above. Since 8 € I, there exists ny € N such that

. |
p(T 1, T H M =7, for all n > n,. (5.1.26)

Let h = max{n;,ny}. We consider the following two cascs.

Case 1: If m > 2 is odd, then m = 2L + 1 for some L > 1. Using (5.1.23),

for all n > h, we obtain that

p(T"xy, T " 2y)

< p(Thzy, T @) + p(T 2, T e 1) + (T2, TrH2EH )
— p(T™ g, T ) — p(T7 2y, Ty

< p(T"a1, T 2y) + p(T™ g, T2 (T2, T2 )

S p(Tn Tn ’rl ) o+ p(Tn +-1 Tn+2 ) + p(Tn+2 T Tn+i )
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+ p(TnJr:S. n+l T ) g p(TnJrl T11+2L+1 ) (Tn+=5 Tr? }5 )
p(Tn+4 Tn+4 € 1)
(T"'L Tn—i—l ) —f-p(T"Jrl’L T"+2’L )+p(T11+2L Tn+3 )

+p(Trl+3 1‘!:1+11 ) i p(Tn+4 Tn+2L+1,Ll)

Z ])(T” Tn—l] ) +IJ(T11+1 Tn+'7 - ) i _I_p(Tn}.’H T:1+2!+1 1)
1 1 hy

=l (a4 1)U iy (n+2L)Yr

= 4
g Z jl/?"

i=n

Case 2: If m > 2 is even, then m = 2L for some L > 2. Using (5.1.23) and

(5.1.26), for all n. > h, we get that

(T, T ™)

< P(Ts TE27) o LT, T 1)+ p(T 2, T2
= (T 2, T 2, — p(T" Py, T" 1)

< p(T%; , TP e DI TP} hn, T W R (PP NTT 2 )

< P T ot p(T™ 2, TSy ) o+ p(T™ 51, T )
b (T T ) o, TP ) — e, T )
— p(T™ 5z, T* °xy)

< p(T 2y, T 2ay) + p(T" 2y, T"Bay) + p(T Py, T )

+ p(T" Mz, T z)) + p(T" Pz, T wy)

< })(Tnll, Tn+2 Ll) A p(Tn-JrZ Tn+3 ) e +p(Tn+2L 1 Tn-}—zL )
e o g
=l (nt2)Yr (n + 2L)Yr

S il/r'

i=n
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From Case 1 and Case 2, we obtain that

1 1 1
bt e for all n > h. (5.1.27)

' Tn(,? Tn,+m: . <
I)( Ty, Ll) (11 + 2L)1/,

— gir H (n+1)

: oriog 5 R 1 o o : 1 i g
Since the series ).~ 7/ is convergent (since * > 1) and (5.1.27), we have

lim (1w, T ) = 0.

n,m-—0co

This implies that {7z} is a Cauchy sequence in (X,p). By Lemma 2.2.11, we
have {T"z,} is a Cauchy sequence in (X, d,). Since (X, p) is complete, then (X, dp)
is complete. This implies that there exists z € X such that lim d,(T"x,,z) = 0.

n—oo

Using Lemma 2.2.10, we have lim p(T"x;,z) = lim p(Tz1,T"xy) = p(2,2). By

n—eo n—oo

applying Proposition 2.2.8, we obtain that

(T ay, z) = dp(T 1, 2) + p(T @1, T"01) + plz, 2)

< dp(T" 2y, A p(T e, T ay) + p(T" ey, 2).

Therefore p(T"z1, 2) < -dp(T"21, 2) + p(T"21, T" Hlg1) for all n € N. Taking the
limit as n — oo, we obtain that p(z,z) = lim p(T"x;,z) = 0. We now prove that
n—oeo

z =Tz Suppose that z # T'z. Since T is a-orbital attractive with respect to 5, we

obtain that for all n € N,
a(T"wy, 2) alEr T, e)-ef 0k, T iz, LA, ).

We divide the proof in two cases as follows.
(1) There exists an infinite subset .J of N such that a(T*" gy, 2) > n(T"®ay, 2)
for every k € J.
(2) There exists an infinite subset L of N such that a(z, Tk ) > gz, TMH )
for every k € L.
For the case (1), since T"x; # T™a; for all n,m € N with n # m, without loss
of the generality, we can assume that TR+l £ 2 for all k € J. Applying the

condition (5.1.16), we get that

O(p(T" ) H1z), T2)) = O(p(T (1M zy),Tz))



< BRI W2y, 2)],
where

R(T"Wzx,, 2) = max {]J(T"(k):vl, z),p(T"”‘)ml,T(T"(k):cl)),-p(z, Tx),

p(T“”"):Bl, T(T”("):cl))p(z, Tz) }
14+ p(T®) gy, 2)

= max {p(T”“").’rl, z),p(T"(k);vhT”“")“.Tl ), p(z,Tz),

1+ p(Tr®zy, 2) '

Then we have

O(p@* Wtz T2)) < [0(1nax {p(T"“"):n], 2),plT™ Pz, T3, p(2, T'2),
p(T :

"('t"):lfl. T'l(k)+li171)]J(Zﬁ 112) })] ]
L ])(T'I(k}l?"lw %) -

Taking the limit as k — oo in the above equality, using the continuity of # and

Lemma 5.1.1, we obtain that
0(p(z, T2)) < [0(p(z,T2))) < 0(p(2,T%)),

which is a contradiction. For the case (2), the proof is similar. Therefore z =T,
which is a contradiction with the assumption that 7' does not have a periodic point.
Thus 7' has a periodie point, say z of period ¢. Suppose that the set of fixed points
of T is empty, Then we have ¢ > 1 and p(z,7z) > 0. Applying (5.1.16) and

condition (6), we get that
0(p(z, Tz)) = O(p(T2, T 2)) < [0(p(2, TN < 8(p(z, T2)),
which is a contradiction. Thus the set of fixed points of 7" is non-empty. Hence T

has at least one fixed point. O

Since a rectangular metric space is a partial rectangular metric space, we
immediately obtain the following results by applying Theorem 5.1.2 and Theorem

5.1.4.
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Corollary 5.1.5. [20] Let (X,d) be a complete rectangular metric space, T:X—
X be a mapping and o : X x X — [0,00) be a function. Suppose thal the following
conditions hold :

(1) there exist 0 € Wy and X € (0,1) such that for all z,y € X,
d(Tz,Ty) # 0 implies a(z,y)0(d(Tx,Ty)) < [0(R(z, )],
where

)

d(z, Tz)d(y, Ty) }
1+ d(z,y)

R(z,y) = max {d(.r. y),d(z, Tz),d(y, Ty),
(2) there exists x) € X such that alxy, Trey) = 1,
(3) T is a triangular a-orbital admissible mapping;
(4) if {T"x\} is a sequence in X such that a(Tmzy, T z,) > 1 foralln € N and
Tz, — © € X as n. — oo, then there exists a subsequence {T"® )} of {T"x,}
such that o(T™®zy, x) > 1 for all k € N;

(5) 0 is continuous.

Then T has a fized point z in X and {T"x1} converges to z.

Corollary 5.1.6. [20] Let (X, d) be a complete rectangular metric space, T : X —
X be a mapping and o : X x X —[0,00) be a function. Suppose thal the following
conditions hold :

(1) there exist 0 € Uy and \ € (0,1) such that for all z,y € X,
d(Txz, Ty) # 0 implies a(x,y)0(d(Tz, Ty)) < [0(R(z, e

where

R(z,y) = max {d(.v, y), d(z, Tz),d(y. Ty), d(:z;l, :T;Ei(‘)yjﬂy) }
(2) there exists ©; € X such that oy, Te) 2 1 and a(z, T?x,) > 1;
(3) T is an a-orbital admissible mapping;
(4) T is an a-orbital attractive mapping;

(5) 0 is continuous.

Then T has a fized point z in X and {T"x1} converges to z.



CHAPTER VI

CONCLUSION

The following results are all results of this thesis:

6.1 Fixed point theorems for generalized Geraghty contractions in

complete partial b-metric spaces

Theorem 6.1.1. Let (X, p) be a complete partiol b-metric space with s > 1 and
let a,n: X x X —[0,00) be functions. Let [ : X — X be a mapping. Suppose
that there exist B € S and ¥ € ¥ such that for all z,y € X, a(z, 58 > n(z, fz)

and oy, fy) = n(y, fy) imply that
b(sp(fz, fy)) < Bp(M(x, y))Y(M(z,y)),

where

M(z,y) = max{p(z,y), p(z, fz), p(y, fy), 51 [p(e, fy) + p(fx, y)]}-

s

Assume that

(i) f is a-orbital admissible with vespect to n;

(1) there exists xg € X such that o(xo, fxo) = n(we, fro)s

(iii) if {x,} is a sequence in X such that a(xn, foi) =2, fz,) foralln € Nu{0}
and {x,} converges to x, then a(x, fz) > n(z, fz).

Then f has a fived point in X.

Theorem 6.1.2. Let (X, <, p) be a complete partially ordered partial b-metric space
with s > 1. Let f : X — X be a nondecreasing mapping. Suppose that there evist

3 €S andy € ¥ such that for all comparable x,y € X,

P(sp(fz, fy) < B (M (x,9)))p(M(z,y)),

where

M(z,y) = max{p(z,y), p(z, [2), p(y, [y), élg[p(ﬂa Fy) +p(fz, )]}
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Assume that

(i) there exists g € X such that zg 2 fxo;

(ir) if {x,} is a nondecreasing sequence that converges to x such that x, X fz, for
alln € NU {0}, then z = fz.

Then f has a fized point z in X.

In Theorem 6.1.1 and Theorem 6.1.2, if we put n(z,y) = 1 and #%(t) = ¢,

then we obtain the following result proved by Sastry [10].

Corollary 6.1.3. [10] Let (X,p) be a complete partial b-metric space with 8 > 1
and let o : X x X — [0,00) be a function. Let f: X — X be a mapping. Suppose

that there exists 3 € S such that for all x,y € X,
alz, fe)aly, fy)sp(fa, fy) < B(M (v, y))M(x,y).
where
M(x,y) = max{p(x,y), p(z, f),p(y; fy), "Q-l; (p(z, fy) + p(Ja,y)]}-

Assume that

(i) f is a-orbital admissible;

(ii) there exists xg € X such that a(o, Liaye];

(iti) if {x.} is a scquence in X such that ca(xy, fx,) = 1 for alln € NU {0} and
{x,} converges to x, then a(z, fz) = 1.

Then f has a fized point in X.

Corollary 6.1.4. [10] Let (X, <,p) be a complete partially ordered partial b-metric
space with s > 1. Let f : X — X be a nondecreasing mapping. Suppose that there

exists 3 € S such that for all comparable x,y € X,
sp(f, fy) < B(M(z,9))M(x, ),
where

M(x,y) = max{p(z,y), p(z, fz),p(y, [¥), ;S[p(rv, Jy) +p(fx.y)]}-
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Assume that

(i) there exists xg € X such that xg = fzo;

(ii) if {x,} is a nondecreasing sequence that converges to x such that x, X fz, for
alln e NU {0}, then x X fx.

Then f has a fized point z in X.

6.2 Fixed point theorems for generalized contractions with triangular

a-orbital admissible mappings on Branciari metric spaces

Theorem 6.2.1. Let (X,d) be a complete BMS, T : X = X and o : X x X —
[0, 00). Suppose that the following conditions hold:

(i) there exist 1 € Wy and A € (0, 1) such that for all z,y € X,
ATz, Ty) # 0 implies a(z, y)b(d(Tz, Ty)) < [W(R(z,y))),
where
R(z,y) = max{d(z, y).d(z,T2),d(y, Ty)};

(i) there exists x1 € X such that a(xy, Txy) = 1;
(#11) T is a triangular a-orbital admassible mapping;
(iv) T is continuous;

Then T has a fived point.

Theorem 6.2.2. Let (X,d) be a complete BMS, T : X — X and a: X x X —
[0,00). Suppose that the following conditions hold :
(i) there exist 1 € WUy and A € (0,1) such that for all z,y € X,

d(Tz, Ty) # 0 implies a(z,y) - (d(Tx, Ty)) < W(R(x,y))]",
where

R(z,y) = max{d(z,y),d(z, Tx),d(y, Ty)};
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(ii) there exists x1 € X such that o(ay,Te1) = 1;

(iii) T is a triangular a-orbital admissible mapping;

(iv) if {x,} is a sequence in X such that a(z,,xny1) > 1 foraln andz, — x € X
as n — oo, then there exists a subsequence {xy, } of {an} such that a(wn,,x) > 1
for all k € N.

Then T has a fized poind.

Theorem 6.2.3. Let (X,d) be @ BMS and T, f : X — X be such that TX C fX
where one of these two subsets of X being complete. Assume that a : X x X —
[0,00) and suppose that the following conditions hold:

(i) there exist & € Wy and X € (0,1) such that for all z,y € X,
d(Tw, Ty) # 0 implies o(f, fy) - w(d(Tx,Ty)) < (bR )]
where
R(x,y) = max{d(fx, [y),d(fe,Tx),d(fy,Ty)};

(ii) there exists ¥1 € X such that o fz,Tx) 2 1;

(i) T is a triangular f-c-admissible mapping;

(iv) T is continuous with respect to [;

(v) either o fu, fv) > 1 or a(fv, fu) > 1 whenever fu = Tu find fv=Tv.

Then T and f have a unique point of coincidence. Moreover, if the pair {T, f} is

weakly compatible, then T and [ have a unique common fized point.

Theorem 6.2.4. Let (X,d) be a BMS and T, f : X — X be such that TX C fX
where one of these two subsets of X being complete. Suppose that o : XxX—
[0, c0) and the following conditions hold :

(i) there exist 1 € Wy and A € (0,1) such that for all z,y € X,
d(Tz, Ty) #0 implies o(fx, fy)- v(d(Te,Ty)) < [V(R(z, ),
where

R(z,y) = max{d(fz, fy),d(fz,Tx), d(fy,Ty)}:
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(ii) there exists vy € X such that o(fx,,Tx1) > 1;

(iii) T is a triangular f-o-admissible mapping,

(iv) if {x,} is a sequence in X such that oz, x,41) 2 1 foralln and x, — 2 € X
as n — oo, then there exists a subsequence {xy, } of {x,} such that a(z,, x) > 1
for all k € N;

(v) either o(fu, fv) > 1 or a(fv, fu) > 1 whenever fu=Tu and fv ="Tv.

Then T and f have a unique point of coincidence. Moreover, if the pair {T, f} is

weakly compatible, then T' and f have a unigue common fizved point.

Using Theorem 6.2.4, we obtain the following theorem in the setting of

partially ordered BMS spaces.

Theorem 6.2.5. Let (X,d, X) be a partially ordered BMS and let T and [ be self-
mappings on X such that TX C fX. Assume that (fX,d) is a complete BMS.
Suppose that the following conditions hold :

(i) there exist ¥ € Uy and X € (0,1) such that for all z,y € X with fx < fy,
(T, Py) 0 implics (d(Ta, Ty)) < [o(R(;9)),
where
R(z,y) = max{d(fa, fy), d(fz, T5), d(Fy, Ty)};

(ii) T 1s f-nondecreasing;

(iii) there exists xy € X such that fay = Taxy;

(iv) if {x,} is a sequence in X such that x, X x,4, for alln and v, — v € X as
n — oo, then there exists a subsequence {x,, } of {x,} such that x,, = x for all
ke N;

(v) fu and fv are comparable whenever fu = Tu and fv ="Tv.

Then T and f have a unique point of coincidence. Moreover, if the pair {T\ f} is

weakly compatible, then T and f have a unique common fived point.
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6.3 Generalized contractions with triangular a-orbital admissible map-

pings with respect to 7 on partial rectangular metric spaces

Theorem 6.3.1. Let (X,p) be a complete partial rectangular metric space, T :
X — X be a mapping and let a,n: X x X — [0,00) be functions. Suppose that
the following conditions hold :

(1) there exist § € W, and X € (0, 1) such that for all z,y € X,
p(Tx,Ty) > 0 and o(z,y) = n(z,y) imply 0(p(Tv,Ty)) < [B(R(x, y))],

where

x, Tx)ply, T
R(ay) =\inax, {p(.x‘, y),plz, Tx), ply, Ty), w y_)}
1+ p(z,y)

(2) there eaists v1 € X such that a(v, Tay) = n(ay, Txy);

(3) T is a triangular a-orbital admissible mapping with respect to n;

(4) if {T"x1} is a sequence in X such that aT"xy, T ay) > p(Th,, T xy) for
alln € N and T"wy, — x € X asn = oo, then there exists a subsequence {T"®z,}
of {T"x,} such that o(T™®xy, ) > n(T" Wy, ) for all k € N;

(5) 6 is continuous,

(6) if = is a periodic point T, then a(z,Tz) > y(z,Tz).

Then T has a fized point.

Theorem 6.3.2. Let (X,p) be a complete partial rectangular metric space, T :
X — X be a mapping and o, X x X — [0,00) be functions. Suppose that the
following conditions hold :

(1) there exist 8 € Wy and X € (0,1) such that for all v,y € X,
p(Tz,Ty) >0 and o(zx,y) > nlx,y) imply 0(p(Tx,Ty)) < [O(R(z, )],

where

pla, Tx)ply, Ty) }

R(x,: =1nax{ o, 7); plz, T'z), ply, Ty),
(2,y) p(@,y), p(x, Tx), p(y, Ty) T 3z, )
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(2) there exists ©; € X such that a(w, Tzy) > n(z, Txy) and oz, T?ey) >
n(xy, T?4);

(3) T is an «-orbital admissible mapping with respect to n;

(4) T is an a-orbital attractive mapping with respect to n;

(5) 0 is continuous;

(6) if z is a periodic point of T, then a(z,Tz) = n(z,Tz).

Then T has a fized point.

Since a rectangular metric space is a partial rectangular metric space, we
immediately obtain the following results by applying Theorem 6.3.1 and Theorem

6.3.2:

Corollary 6.3.3. [20] Lel (X,d) be a complele reclangular metric space, T:X >
X be a mapping and a: X x X — [0,00) be a function. Suppose that the following
conditions hold :

(1) there exist 6 € Wy and X € (0, 1) such that for all z, y € X,
AT, Ty) £ 0 implies a(x,y)0(d(Te, Ty)) < [B(R(x, v))),

where

d(x, Tz)d(y, T'y) }
1+ d(z,y) "

R(x,y) = max {d(.x:i y), d(z, Tz),d(y. Ly),
(2) there exists ©1 € X such that alxy, Tzi) > 1;
(8) T is a triangular a-orbital admissible mapping;
(4) if {T"a1} is a sequence in X such that a(Trxy, T"ay) > 1 for alln € N and
T, — @ € X as n — oo, then there exists a subsequence {T"®) 2} of {TMa1}
such that a(T™™ay,z) > 1 for all k € N;
(5) 0 is continuous.
(6) if z is a periodic point of T, then a(z,Tz) = n(z, Tz).

Then T has a fized point.
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Corollary 6.3.4. [20] Let (X,d) be a complete rectangular metric space, T: X —
X be a mapping and a : X x X — [0,00) be a function. Suppose that the following
conditions hold :

(1) there exist @ € Uy and X € (0,1) such that for all x,y € X,
d(Txz, Ty) # 0 implies afax,y)0(d(Tz, Ty)) < [O(R(z, )],
where

d(z, Ta)d(y, Ty) } ,
1+ d(z, y) '

R(z,y) = max {d(r,y),d(;r: i - WO )8
(2) there exists 11 € X such that a(xy,Tzy) > 1 and (T(.l‘l}Tg.”l'l) Ol ;
(8) T is an «-orbital admissible mapping;
(4) T is an a-orbital attractive mapping;
(5) 0 is continuous.
(6) if z is a periodic point of T, then a(z,1z) > 1z, Tz).
Then T has a fized point.
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