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ABSTRACT

In this thesis, we establish the following results. Firstly, we prove fixed
point-theorems for generalized multi-valued - mappings satisfying some inequalities
in metric spaces. Moreover, we present some examples to illustrate and support
our results. Secondly, we introduce generalized metric spaces and prove basic prop-
erties in such spaces. Moreover, we prove fixed point theorems for the generalized
Banach contraction, generalized Kannan mapping and present some examples as a
satisfying the theorems in such spaces. Finally, we prove fixed point theorems for
generalized nonexpansive mappings and approximate a fixed point for such map-
pings in hyperbolic spaces. Furthermore, we prove some properties of the set of

fixed point for generalized nonexpansive mappings in hyperbolic spaces.
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CHAPTER I

INTRODUCTION

In mathematics, a fixed point theorem is a result saying that a self-mapping
T on a nonempty set X, will have at least one fixed point (a point z for which
Tz = z), under some conditions on T that can be stated in general terms [1].
Moreover, fixed point theory have useful to science, technology and the daily life
of humans as well as academic progress. When the science problem is converted
to the image of Mathematical Model which describes in the form of equations, an
inequalities or operators and the question that follows is

(1) such equations, an inequalities or operators are solution or not.

—— (2) how to find those solution.

The education of fixed point theory is divided by two main story. Firstly,
mathematicians study existence theorems which is to solve the problem (1). Sec-

ondly, they study convergence theorems which is to solve the problem (2).

The Banach fixed point theorem is an important tool in the theory of metric
spaces, it guarantees the existence and uniqueness of fixed points of certain self
maps of metric spaces, and provides a constructive method to find those fixed
points was introduced by Banach (2] in 1922, Important, the study of fixed point
theory started from such theorem as follows: Let T be a self-mapping on metric
spaces X. Then T is called a contraction mapping if there exists r € [0,1) such

that
d(Tz,Ty) < rd(z,y), forallz,ye X.

In 1969, Kannan [3] extended the concept of Banach [2] and obtained the
same conclusion as in Banach’s Theorem but with different sufficient conditions as

follows: Let T be a self-mapping on a metric space X. Then T is called a Kannan



mapping if there exists r € [0, 1) such that
d(Tz,Ty) < rd(z,Tz) +rd(y,Ty), foralz,yeX.

In 1969, Nadler [4] combined the ideas of set-valued mapping and proved
some fixed point theorems about multi-valued contraction mappings which ex-
tended the concept of Banach [2] as theorem follows: Let 7' be a mapping from X

into the family of all nonempty closed bounded subsets of a metric space X. Define
H(A, B) = max{sup d(a, B),supd(b, A)},
a€A beB

for A, B € CB(X) := {C|C is a nonempty closed and bounded subset of X }, where
d(z, B) = infyep d(z,y). A mapping T is said to be a multi-valued contraction if

there exists 7 € [0,1) such that
H(Tz,Ty) <rd(z,y), forallzyelX.

In 1972, Bianchini [5] introduced generalized Kannan mapping which gen-
eralized the concept of Kannan [3] as follows: Let T" be a self-mapping on a metric
space X. Then T is called a generalized Kannan mapping if there exists r € [0,1)

such that
d(Tz, Ty) < rmax{d(z, Tz),d(y,Ty)}, forall z,y € X.

The same year, Taylor [6] proved fixed point theorems for nonexpansive
mappings which extended the concept of Banach [2] as follows: Let T be a self-

mapping on a metric space X. Then T is called a nonexpansive mapping if
d(Tz,Ty) < d(z,y), forallz,yeX.

In 1973, Hardy and Rogers [7] introduced condition as follow: Let T' be a

self-mapping on a metric space X. Then there exists 7; > 0, (¢ =1,2,3,4,5) such



that
d(Tz, Ty) < rd(z,y) + rad(z, Tz) + rad(y, Ty) + rad(z, Ty) + rsd(y, T'z),

where X¢_;7; < 1, for all z,y € X, which generalized the concept of Banach [2] and
Kannan [3].

In 1974, Ciric (8] introduced the following condition which extended the
results of Bianchini [5] and Hardy, Rogers [7] as follows: Let T be a self-mapping

on a metric space X. Then there exists r € [0, 1) such that

d(Tz,Ty) < rmax{d(z,y),d(z,Tz),d(y, Ty),d(z,Ty),d(y, Tz)}, for all z,y € X.

Moreover, if X is complete and at least one of above conditions holds, then T has

a unique fixed point (see [2, 3, 4, 5, 6, 7, 8]).

In 2001, Rhoades [9] introduced weakly contractive mappings and proved
some fixed point theorems for such mappings which generalized the concept of
Banach (2] as follows: A mapping T : X — X is said to be a weakly contractive if

for all z,y € X,

where ¢ : [0,00) — [0,00) is a continuous and nondecreasing function such that

¢(t)=0if and only if t = 0.

In 2003, Kirk, et al. [10] introduced cyclic contraction mappings and proved
some fixed point theorems for such mappings which generalized the concept of
Banach (2] as follows: Let A and B be nonempty subsets of a metric space X and
let T: AUB — AUB. Then T is called a cyclic map iff T(A) € B and T'(B) C A.

A cyclic map T is said to be a cyclic contraction if there exists r € [0, 1) such that

d(Tz,Ty) <rd(z,y), forallz € Aand y € B.



Next, Bhaskar and Lakshmikantham [11] established a fixed point theorem
for mixed monotone mappings in partially ordered metric spaces in 2006, as follows:
A mapping T': X x X — X is called a coupled contraction mapping if there exists
r € [0,1) such that

d(T(z,y), T(u,v)) < Lld(z,u) + d(z,u)], for all z,y,u,v € X.

In 2008, Suzuki [12] introduced condition C and proved some fixed point
theorems for such mappings as follows: Let T be a self-mapping on complete metric

spaces X. Then T is said to satisfy condition C if
5d(z,Tz) < d(z,y) implies d(T'x, Ty) < d(z,y), forallz,ye€ X.

It is obvious that every nonexpansive mapping satisfies condition C, but the con-

verse is not true.

The same year, Kikkawa and Suzuki [13] extended the concept of annan
[3] by used condition C as theorem follows: Let T be a self-mapping on complete
metric space (X,d) and let ¢ be a non-increasing function from [0, 1) into (3,1]

defined by

%)

p(r) =
1 1 = 1
we W opsT<g

for all @ € [0,3) and put r = 2= € |0,1), such that

1-a
o(r)d(z, Tz) < d(z,y) implies d(T'z, Ty) < ad(z, T'z) +ad(y, Ty), for all z,y € X.

In 2008, Kikkawa and Suzuki [13] introduced the result which of was a gen-
eralization of the result of Nadler [4] as theorem follows: Let (X, d) be a complete

metric space and let T’ be a mapping from X into the family of all nonempty closed



bounded subsets of a metric space X. Define a strictly decreasing function 7 from

[0,1) into (3,1] by 9(r) = ;%= and assume that there exists € [0, 1) such that
n(r)d(z, Tz) < d(z,y) implies H(Tz,Ty) < rd(z,y), for all z,y € X.

In 2010, Karapinar and Erhan [14] proved some fixed point theorems for
Kannan type cyclic contraction mappings which generalized the concept of Kannan
[3] as follows: A cyclic map T': AUB — AU B is called a Kannan type cyclic

contraction if there exists r € [0, 3) such that
d(Tz,Ty) < rld(z,Tz) + d(y,Ty)), for all z € A and y € B.

In 2011, Karapinar and Tas [15] stated some new definitions which are

modifications of condition C, as follows: Let T' be a self-mapping on a metric space

X.

(2) A mapping T is said to satisfy condition KSC if

%d(a:, Tz) < d(z,y) implies d(Tz, Ty) < 3[d(z, Tz) + d(y, Ty)], for each z,y € K.
(i1) A mapping T is said to satisfy condition C'SC if

2d(z, Tz) < d(z,y) implies d(Tz, Ty) < 2ld(y, Tz) + d(z, Ty)),for each z,y € K.
(#i2) A mapping T is said to satisfy condilion SKC' if
3d(z, Tz) < d(z,y) implies d(Tz, Ty) < N(z,y), for each z,y € K,

where N(z,y) = max{d(z,y), }[d(z, Tz) + d(y, Ty)), }|d(y, T'z) + d(z, T)]}

(iv) A mapping T is said to satisfy condition SCC if

3d(z,Tz) < d(z,y) implies d(T'z, Ty) < M(z,y), for each 2,y € K,



where M(z,y) = max{d(z,y), d(z, Tz),d(y, Ty), d(y, Tx), d(z, Ty)}. Moreover, it
is clear, every condition C satisfies condition SCC, but the converse is not true as

follows: Define a self-mapping T on [0, 3] by

0, if =#3,

2, if x=3.

T =

Then T does not satisfy condition C, but T satisfies condition SCC ( see [15]).

In 2011, Damjanovié and Dorié [16] generalized result of Kikkawa [13] and
Kannan [3] as theorem follows: Let (X,d) be a complete metric space and let T
be a mapping from X into the family of all nonempty closed bounded subsets of a

metric space X. Define a non-increasing function ¢ from [0, 1) into (0, 1] by

- T |
- if 05r%YE,
o(r) =
1—7, of BL<r«i,
such that

o(r)d(z,Tz) < d(z,y) implies H(Tz, Ty) < rmax{d(z,Tz),d(y,Ty)},

for all z,y € X.

In 2012, Dhompongsa [17] introduced condition C}, and E, and proved some
fixed point theorems for such condition as follows: Let T" be a self-mapping on a

subset K of a metric space X and g > 1. T is said to satisfy condition E,, if

d(z,Ty) < pd(z,Tz) +d(z,y), forallz,ye K.

Moreover, T is said to satisfy condition E, whenever 7" satisfies the condition £,
for some g > 1. Therefore, if T satisfies by one of the conditions SKC, KSC, SCC

and CSC, then T satisfies condition E, for p = 5. Let T" be a self-mapping on



a subset K of a metric space X and A € (0,1). A mapping T is said to satisfy

condition C) if
M(z, Tz) < d(z,y) implies d(T'z, Ty) < d(z,y), for all z,y € K.

In 2013, Zoto [18] introduced d-cyclic-¢-contraction mappings and proved
some fixed point theorems which generalized the concept of Banach [2] as follows:
A cyclic map T : AU B — AU B is said to be a d-cyclic-¢-contraction ifp € ®

such that
d(Tz,Ty) < ¢(d(z,y)), forallz € A, y € B,

where ® the family of nondecreasing functions: ¢ : [0,00) — [0,00) such that

®  #"(t) < oo for each t > 0, where n is the n-th iterate of ¢.

In 2014, Ghoncheh and Razani [19] introduced the following definition and
recall some other conditions which generalize the Suzuki and study fixed point for
some generalized nonexpansive mappings as follow: Let X be a metric space and K

be a subset of X. A mapping T : K — K is said to be fundamentally nonezpansive
if

d(T?z,Ty) < d(Tz,y), forall z,y € K.

Moreover, every mapping which satisfies condition C is fundamentally nonexpan-
sive (see Lermma 3 in [19]), but the converse is not true as follow: Suppose X =

{(0,0),(0, 1), (1,1), (1,2)}. Define

d((z1, 1), (%2, ¥2)) = max{|zr — 22|, |1 — 92}

Define T on X by T(0,0) = (1,2), T(0,1) = (0,0), T(1,1) = (1,1), T(1,2) =
(0,1). Then T is fundamentally nonexpansive, but 7' is not condition C. ( see [19]).



Next, we discusses the development of spaces. Conceptions of quasi-metric
spaces and b-metric spaces were introduced by Wilson [20] and Bakhtin [21] in
1931, 1963 and 1989 as a generalization of metric spaces, respectively. Later, in
2000, Hitzler and Seda [22] introduced dislocated metric space as a generalization
of metric space, Zeyada, Hassan and Ahmad [23] introduced the concept of dislo-
cated quasi-metric space as a generalization the result of Hitzler, Seda and Wilson.
Finally in many other generalized b-metric space, such as, quasi b-metric space
[24], b-metric-like space [25], and quasi b-metric-like space [26] as follows: Let X
be a nonempty set. Suppose that the mapping d : X x X — [0,00) such that
constant b > 1 satisfies the following conditions:

(d1) d(z,z) =0, for all z € X;

(d3) d(z,y) = d(y,x) = 0 implies & = y, for all x,y € X;

(d3) d(z,y) = d(y,z), for all'z, y € X;

(ds) d(z,y) < bld(z, ) + (2,9)), for all z,y,z € X.

If d satisfies the conditions (d;) — (d4), then d is called a b-metric space on X,
if d satisfies the conditions (d;), (d2) and (d4), then d is called a b-quast metric
on X. Next, if d satisfies the conditions (dz), (d3) and (d4), then d is called a b-
dislocated metric on X, if d satisfies the conditions (ds) and (d4) then d is called a
b-dislocated quasi metric on X. Moreover, b-Metric spaces, b-Quasi metric spaces,
b-Dislocated metric spaces and b-Dislocated quasi metric spaces are called meiric
spaces, quasi melric spaces, dislocated metric spaces and Dislocated quasi metric

spaces with b = 1, respectively ( see [20, 21, 22, 23, 24, 25, 26]).

On the other hand, Banach Contraction Principle gave the result for an ap-
proximation of fixed point as follows: Let zq be an arbitrary but fixed element in X.
Define a sequence of iterates {z,} in X by 41 = Ty, foralln =0,1,2,.... Then
{a,} converges to a fixed point of T. Now, fixed point iteration processes for ap-
proximating fixed point of nonexpansive mappings have been studied many math-

ematicians such as Krasnoselskij’s iteration [27], Halpern’s iteration [28], Mann’s



iteration [29]. Further, The convergence theorems are studied the development
of fixed point iteration processes, it is studied the development of spaces such
as Hilbert spaces, Banach spaces, Hyperbolic spaces and others for conditions of

mappings above (see: [12, 15, 19])

The purpose of this research is to establish the following results. Firstly, we
prove fixed point theorems for generalized multi-valued mappings satisfying some
inequalities in metric spaces. Moreover, we present some examples to illustrate and
support our results. Secondly, we introduce generalized metric spaces and prove
basic properties in such spaces. Other than, we prove fixed point theorems for the
generalized Banach contraction, generalized Kannan mapping and present some
examples as a satisfying the theorems in such spaces. Finally, we prove fixed point
theorems for generalized nonexpansive mappings and approximate a fixed point for
such mappings in hyperbolic spaces. Furthermore, we prove some properties of the

set of fixed points for generalized nonexpansive mappings in hyperbolic spaces.

This thesis is divided into 6 chapters. Chapter 1 is an introduction to the
origin and significance of the research problems. Chapter 2 we present the basic
definitions, examples and results concerning that will be applied in our main re-
sults of this research. Chapter 3, Chapter 4 and Chapter 5 are the main results of
of this research. Precisely, in Section 3.1 we introduce some nonlinear mappings
and prove fixed point theorems for generalized multi-valued mappings satisfying
some inequalities in metric spaces. In Section 3.2, we introduce the notions of
type multi-valued-coupled contraction, multi-valued-coupled Kannan mapping and
prove coupled fixed point theorems on metric spaces. Next, in Section 4.1, we
establish dislocated quasi-b-metric spaces and prove basic properties of dislocated
quasi-b-metric spaces. Moreover, we present some examples to illustrate and sup-
port our results. In Section 4.2, we introduce the notions of type dgb-cyclic-Banach
contraction, dgb-cyclic-Kannan mapping, type dgb-cyclic-weak Banach contrac-

tion and dgb-cyclic- contraction. Moreover, we derive the existence of fixed point
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theorems on dislocated quasi-b-metric spaces and present some examples to illus-
trate and support our results. Next, in Section 5.1, we prove some properties
of a fundamentally nonexpansive self-mapping on a nonempty subset of a hyper-
bolic space and prove convergence and A-convergence theorems of the generalized
Krasnoselskij-type iterative process to approximate a fixed point for fundamentally
nonexpansive operators in a hyperbolic space. In Section 5.2, we prove fixed point
theorems for some generalized nonexpansive self-mappings on a nonempty subset of
a hyperbolic space and approximate a fixed point for such mappings in a hyperbolie

space. Chapter 6 is the conclusion of this research.



CHAPTER 1I

PRELIMINARIES

The aim of this chapter is to introduce the some basic definitions, notations
and some results that will be used in the later chapter. Throughout this thesis, we
let N, R and C stand for the set of all natural numbers, the set of all real numbers

and complex numbers, respectively.

2.1 Metric Spaces and some properties

In this section, we discuss various forms of metric spaces and generalized

meftric spaces.

Definition 2.1.1. ([30]) Let X be a nonempty set. Suppose that the mapping™
d: X x X - [0, 00) satisfies the following conditions:

(d1) d(z,y) =0if and only if z = y for all 2,y € X

(d2) d(z,y) = d(y, z) for all z,y € X;

(d3) d(z,y) < d(z,2)+d(z,y) for all z,y,z € X.
Then d is called a metric on X. The value of metric d at (z,y) is called distance

between z and ¥, and the pair (X, d) is then called a metric space.

Ezample 2.1.2. ([31]) Let X = C and defined d(z,y) = | — y| for z,y € C. Then

d is a metric on C. The d is often called the usual metric.

Ezample 2.1.3. ([31]) Let X be any nonempty set. For any z,y € X, define

0 if z=uy,
1 2f =£y.

d(z,y) =

Then d is a metric on X. The metric d is called discrete metric and the space (X, d)

is is called diserete metric space.
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Ezample 2.1.4. ([31]) Let X = R", the set of ordered n—tuples of real numbers.
For any z = (%1, %2, ...2,) € X and y = (Y1, Y2, ..-¥n) € X, we define
(a) di(z,y) = E?=1 ls —wsl;

(b) da(z,y) = Oor, (i — %:)?)7; (called usual metric)
(©) dolz,9) = (Tl —w)?)?, P2 1;
(d) doo(f'?; 3)') — ma.xlg,—gﬂﬂ:lr,- = yil}- (Ca]led max metric)

It is easy to verify that dy, da, d,, and d,, are metrics on X.

Definition 2.1.5. ([30]) Let (X, d) be a metric space. For any r > 0 and an ele-
ment, z € X, we defined

B, (%) := {y € X|d(Z,y) < r}, the open ball with center Z and radius ;

B,[z] := {y € X|d(Z,y) <r}, the closed ball with center Z and radius r;

8B, (z) := {y € X|d(Z,y) = r}, the boundary of ball with center Z and radius 7.

Definition 2.1.6. ([30]) Let {z,} be a sequence in a metric space X. A sequence
{z,} converges toz & X if
lim d(zy,,z) =0.

n—oo
In this case z is called a lim:t point of {z,} and we write z,, — = or lim,_,oo Tn = .

A sequence which is not convergent is said to be divergent.

More preciously, a sequence {z,} In a metric space X converges to a point
z € X if the sequence {d(zn,z)} of real numbers converges to 0 as n — oco.
Every convergent sequence in a metric space has a unique limit point. If {z,,}
is a subsequence of a sequence {z,} in a metric space X, with z, — =z, then
Ty — % S0, Ty — x if and only if, for any subsequence {z,, } of {z,}, there exists

a subsequence {@,, } of {xn,} which z,, — =, (see [31]).

Definition 2.1.7. (|31]) Let (X, d) be a metric space and let K be a subset of X.
The set K is bounded if there exists T € X, M > 0 such that d(z,z) < M for all
ek,
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Remark 2.1.8. ([31]) Let {z,} be a sequence in a metric space (X, d). A sequence
{z,} is called a bounded if there exists Z € X, M > 0 such that d(z,,z) < M for
alln € N.

In a metric space, every convergent sequence is bounded. (see [31])

Definition 2.1.9. ([31]) Let (X, d) be a metric space and let K be a subset of X.
The set K is called closed if every convergent sequence of points of K has its limit

in X.

Definition 2.1.10. ([31]) Let {x,} be a sequence in a metric space (X,d). A

sequcncé {z,} is called a Cauchy sequence if

lim\\d(%n; Tm) =.0.

n,m—00

Every convergent sequence in a metric space X is a Cauchy sequence, and

every Cauchy sequence is bounded (see [31]).

Definition 2.1.11. ([31]) Let {z,} be a sequence in a metric space (X, d). A metric

space (X, d) is complete if every Cauchy sequence in X is converges.

Let Y be a subspace of a complete metric space X. Then Y is complete if

and only if Y is closed (see [31]).

Definition 2.1.12. ([31]) Let (X, d) be a metric space and let K be a subset of

X. Then K is compact if and only if K is bounded and closed.

Definition 2.1.13. ([31]) Let (X, dy) and (Y, d2) be a metric spaces and let f be a
mapping of X into Y. Then for 2o € X, f continuous at g if, for any € > 0 there

exists & > 0 such that

d(z,mp) < & = d(f(z), f(z0)) < c
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Definition 2.1.14. ([31]) Let (X, d;) and (Y, d2) be metric spaces and let f be a
mapping of X into Y. Then f uniformly continuous on X if, for all z,y € X, any

€ > 0 there exists § > 0 such that

d(z,y) < =d(f(z), f(¥)) <e

Definition 2.1.15. Let (X, d) be metric spaces. A function T : X — X is said to

be a contraction mapping if then
d(Tz,Ty) < ad(z,y) for all z,y € X, where 0 <a < 1.

We see that a contraction mapping is continuous.

Let (X, d) be a metric space. We denote by CB(X) the family of all non-

empty closed bounded subsets of X. Let H(-,-) be the Hausdorff metric, i.e.,
H (A, B) = max{sup d(a, B),supd(A,b)},
a€A beB
for A, B € CB(X), where
z, B) = inf d(z,y).
d(z,B) = inf d(z,)

Definition 2.1.16. ([32]) Let (X,d) be a metric space. A function T : X —

CB(X) is said to be a multi-valued contraction mapping if then
H(Tz,Ty) < ad(z,y) forall z,y € X, where 0 <o < 1.

We see that a multi-valued contraction mapping is continuous.

Definition 2.1.17. (|20, 22, 23]) Let X be a nonempty set. Suppose that the
mapping d: X x X — [0,00) satisfies the following conditions:

(ma) d(z,z) =0, for all x € X;

(my) d(z,y) = d(y,z) = 0 implies x = y, for all z,y € X;

(m3) d(z,y) = d(y, ), for all z,y € X;

(my) d(z,y) < d(z,z) + d(z,y), for all z,y,z € X.
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The pair (X, d) is called a metric space. If d satisfies the conditions (m;), (mz) and
(m4) then, d is called a quasi metric on X. If d satisfies the conditions (mz), (ma)
and (m4), then d is called a dislocated metric on X. If d satisfies the conditions

(m2) , (m4), then d is called a dislocated quasi melric on X.

It is evident that every metric on X is a dislocated metric on X, but the

converse is not necessarily true as is clear from the following example.

Ezample 2.1.18. (Example of Dislocated Metrie Spaces [33]) Let X = [0,00) and
define the distance function d: X x X — [0,00) by

d(z,y) = max{z,y},
for all z,y € X.

Next, we see that every metric on X is a quasi metric on X, but the converse

is not true.

Example 2.1.19. (Example of Quasi Metric Spaces [34]) Let X = [0,00) and d :
X x X — [0; 00) be defined by

1 Yaf_ao i
d(z,y) =
O fo x X0

Then (X, d) is a quasi metric space.

Furthermore, {from the following example one can say that a dislocated quasi

metric on X needs not be a dislocated metric on X.

Ezample 2.1.20. (Example of Dislocated Quasi Metric Spaces [33]) Let X = [0, 1]
and define the distance function d : X x X — [0, 00) by

d(z,y) = |z — y| + |z,

for all z,y € X.
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Definition 2.1.21. ([24, 25, 26]) Let X be a nonempty set. Suppose that the
mapping d : X X X — [0,00) such that constant b > 1 satisfies the following
conditions:

(b1) d(z,z) =0 forall z € X;

(b9) d(z,y) = d(y,x) = 0 implies z = y for all z,y € X;

(b3) d(z,y) = d(y,z) for all z,y € X;

(by) d(z,y) < bld(z, z) + (z,9)], for all z,y, z € X.
The pair (X, d) is then called a b-metric space. If d satisfies the conditions (by),
(b)) and (bs), then X, d is called a quasi b-metric on X, and if d satisfies the

conditions (by), (b3) and (bs), then d is called a dislocated b-metric on X.

Ezample 2.1.22. (Example of b-Metric Spaces [35]) The set of real numbers together
with the functional
Ua,) = o~ yP

for all z,y € R, is a b-metric space with constant b = 2. Also, we obtain that d is
not a metric on X.

Ezample 2.1.23. (Example of b-Metric Spaces [36]) The set [,(R) with 0 <p <1,
where L,(R) = {{z.} C R : |a,| < oo}, together with the functional d : I,(R) x
LR) — R,

d(z,y) = (Z Ui~
n=1

for each z = {z,},¥ = {yn} € L,(R), is a b-metric space with coefficient b = 9 > 1.

Ezample 2.1.24. (Example of Dislocated b-Metric Spaces [25]) Let X = [0, c0).
Define the function d : X x X — [0,00) by d(z,y) = (z + y)? or d(z,y) =
(max{z + y})2. Then (X,d) is a dislocated b-metric space with constant b = 2.

Clearly, (X, d) is not a b-metric or dislocated metric space.

Ezample 2.1.25. (Example of Quasi b-Metric Spaces [34]) Let X = Q be equipped
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with d: X x X — [0,1) defined by

1 if v>uy,
d(z,y) =
(y—=)P if a<y.

Then (X, d) is a quasi b-metric space but not a quasi metric space.

2.2 Hyperbolic Spaces and some properties

In this section, we discuss various forms of hyperbolic spaces. Throughout
this thesis, we work in the setting of hyperbolic spaces introduced by Kohlenbach
137].

———Pefinition 2.2.1: ([37]) A hyperbolic space is a metric space (X, d) with a mapping————
W : X2 x [0,1] = X satisfying the following conditions.
6 dlnW(z,9,0)) < (1 - )d(u,2) + ad(u,y);
(i) d(W(2,y,0),W(z,y,0)) = |la — Bld(z,y);
(i) W(z,y,a)=W(y,z,1 - a);
() dW(z,z, a), W(y,w,a)) < (1 —a)d(z,y) + ad(z, w).
for all z,y,z,we X and ,8 €[0,1].

Ezample 2.2.2. Let X be a real Banach space (see [38]). Define the function d :
X?% - [0,00) by

Az, y) = llz —
as a metric on X. We see that (X,d) is a hyperbolic space with the mapping
W : X2 x[0,1] — X defined by W(z,y,a) = (1 — @)z + ay, VY(z,y) € X* and
a € (0, 1].

Definition 2.2.3. ([37]) Let X be a hyperbolic space with a mapping W : X? x
[0,1] — X. A nonempty subset KX C X is said to be convez if W(z,y,a) € K for

all z,y € K and « € [0,1]. A hyperbolic space is said to be strictly convez if for
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any 7 > 0, and « € (0,1] such that for all u,z,y € X,
d(W(z,y,0),u) <7,

provided d(z,u) < r and d(y,u) < 7. A hyperbolic space is said to be uniformly
convez if for any 7 > 0 and € € (0,2], there exists a € (0, 1] such that for all
15y € X,

A (w3, 5),w) < (1= 8

provided d(w, u) <, d(y,w) <r and d(z,y) > er. A map 7 : (0,00) x (0, 2] — (0,1]
which provides such § = (7, €) for given r > 0 and € € (0, 2], is known as a modulus
of uniform convexity of X. 7 is said to be monotone, if it decreases with r (for a

fixed ¢), i.e., Ve > 0, Vr; > 19 > 0 [5(r2, €) < (11, 6)].

Definition 2.2.4. ([37]) Let {z,} be a bounded sequence in a hyperbolic space
(X,d). For z € X, we define a continuous functional 7(-,z,) : X — [0,00) by

r(z,T,) = limsup d(z, x,).

n—oo

The asymptotic radius 7({z,.}) of {z,} is given by
Uzt s It (eT,) s ¢'e XY.

The asymptotic center Ag({z,}) of a bounded sequence {z,} with respect to K C

X is the set
Ax({zn)) = {z € X : r(z,2,) <r(y,z.), Vye K}

This implies that the asymptotic center is the set of minimizer of the functional
r(-, x,) in K. If the asymptotic center is taken with respect to X, then it is simply
denoted by A({z,})- It is known that uniformly convex Banach spaces and CAT(0)
spaces enjoy the property that bounded sequences have unique asymptotic centers

with respect to closed convex subsets.

Definition 2.2.5. A sequence {z,} in X is said to A-converge to z € X if = is the

unique asymptotic centers of {u,} for every subsequence {u,} of {z,}. In this case,
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we write A-lim,,_,o, Z, = = and call z the A-limit of {z,}. Moreover, if =, — =z,

then A-lim,_,o =, = « (see [37, 39]).

Lemma 2.2.6. ([39)) Let (X, d, W) be a complete uniformly convez hyperbolic space
with monotone modulus of uniform convezity . Then every bounded sequence {z,}

in X has a unigque asymplotic center in X.

Lemma 2.2.7. ([39]) Let (X,d, W) be a uniformly convex hyperbolic space with
monotone modulus of uniform convezity 9. Let € € X and {a,} be a sequence in

[a,b] for some a,b € (0,1). If {=,} and {y,} are sequences in X such that

lim sup d(zn; ) < ¢, limsupd(ya, ) < ¢ and limsup d(W (zn, yn, an), T) = ¢,
n—oo n—eo n—o0

for some ¢ > 0. Then lim,_,, d(z,,y,) = 0.

Lemma 2.2.8. ([19]) Let {z,} and {y,} be bounded sequences in a hyperbolic
space (X, d, W) such that xny1 = W (Yn, Zn, @) and d(yn, Yns1) < d(Tn; Tnya) for all
n € N, where o € (0,1). Then lim,, o, d(2p, yn) = 0.

Remark 2.2.9. ([40]) Let K be a nonempty subset of a metric space X, and
T : K — K. I T is a fundamentally nonexpansive mapping and F(T) # @, then T

is quasi-nonexpansive.

Lemma 2.2.10. ([19]) Let K be a nonempty subset of metric space X. If T : K —

K is a fundamentally nonecpansive mapping, then
d(z,Ty) < 3d(z,Tz) + d(z,y) (2.2.1)
for all z,y € K.

Lemma 2.2.11. ([19]) Let K be a nonempty subset of metric space X. If T : K —
K satisfies condition SCC, then

d(z, Ty) < 3d(z,Tz) + d(z,y) (2.2.2)

forallz,y € K.
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Remark 2.2.12. Lemma 2.2.11 holds if one replaces condition SCC by the condi-
tion C.

Lemma 2.2.13. ([19]) Let T' be a mapping on a closed subset K of a metric space
X and T satisfies condition SKC, then

d(z,Ty) < 5d(z, T'z) + d(z,y) (2.2.8)
forallz,y € K.

Remark 2.2.14. ([19]) Lemma 2.2.13 holds if one replaces condition SKC by one
of the conditions KSC, SCC, and CSC.

Lemma 2.2.15. ([41]) Let K be a nonempty closed convez subset of a uniformly
convex hyperbolic space and {z,} a bounded sequence in K such that A({z,}) = {y}
and r({z.}) = . If {ym} is another sequence in I such that im,_,co 7(Ym, {&n}) =

¢, then lim, o Y = ¥.

2.3 Classical Fixed Point Theorems
We will consider both real vector spaces and complex vector spaces.

Definition 2.3.1. (31, 37]) Let (X, d) be a metric space and let K be a nonempty
subset of X. A point z € X is said to be a fized point of T provided x = T'z. We

will denote the fixed point sct of a mapping T by
F(T) =1 Ts — x}.

Theorem 2.3.2. ([2]) (Banach Fized Point Theorem) Let T' be a self-mapping
on complete metric spaces X. If T salisfies contraction mapping (i.e., there exists
r € [0,1) such that d(Ta-:, Ty) < rd(z,y) for allz,y € X), then T has a unique
fized point.

Theorem 2.3.3. ([3]) Let T be a self-mapping on a complete metric space X. If
T satisfies Kannan mapping (i.e., there exists v € [0,3) such that d(Tz,Ty) <
rd(z, Tz) + rd(y,Ty), for allz,y € X), then T has a unique fized point.
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Theorem 2.3.4. ([5]) Let T' be a self-mapping on a complete metric space X.
If T satisfies generalized Kannan mapping (i.e., there exists v € [0,1) such that
d(Tx, Ty) < rmax{d(z,Tz),d(y,Ty)}, for allz,y € X), then T has a unique
fized point.

Theorem 2.3.5. ([7]) Let T' be a self-mapping on a complete metric space X. If
there exists 13,> 0 (i = 1,2,3,4,5) such that

d(Tz, Ty) < rid(z,y) + rad(z, Tx) + rad(y, Ty) + rad(z, Ty) + rsd(y, Tw),
where XP_r; < 1, for all z,;y € X, then T has a unique fived point.

Theorem 2.3.6. ([8]) Let T be a self-mapping on a complete metric space X. If
there exists r € [0,1) d(T'z, Ty) < r max{d(z,y), d(z, Tx), d(y, Ty), d(z, Ty), d(y, Tx)},

forall z,y € X, then T' has a unigue fized point.

Definition 2.3.7. ([32]) Let T be a multi-valued mapping on a metric space X. A

point z € X is said to be a fized point of T provided x € T.

Theorem 2.3.8. ([4]) Let (X, d) be a complete metric space and let T' be a mapping
from X into CB(X). Assume that there ezists r € (0,1) such thet H(Tz,Ty) <

rd(z,y), for all x,y € X. Then there exists z € X such that z € Tz.

Example 2.3.9. ([32]) Let I = [0,1] denote the unit interval of real mumbers(with

the usual metric) and let f : I — I be given by

faj=4 ¥ 2 (2.3.1)

Define I :— I — 27 by f(z) = {0} U{fz} for each « € I. We observe that:
(1) F is a multi-valued contraction mapping,

(2) the set of fixed point of F is {0, }.
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Theorem 2.3.10. ([9]) Let T be a self-mapping on a complete metric space X. If T
satisfies weakly contractive (i.e., if for all z,y € X, d(T'z, Ty) < d(z,y)—¢(d(z,y)),
where ¢ : [0,00) — [0,00) is a continuous and nondecreasing function such that

#(t) =0 if and only ift =0), then T has e unique fized point.

Definition 2.3.11. ([11]) Let (X, <) be a partially ordered set and F' : X x X — X.
The mapping is said to has the mixed monotone property if F(z1,11) =< F(z2, y2)

for all z, x2, 1, y2 € Xwith 2, < 22 and 12 < ;.

Theorem 2.3.12. ([11]) Let T : X x X — X be a continuous mapping with the
mized monotone property on a metric space X. Assume that there ezists a r € [0,1)

with
d(T(z,y), T(w,v)) < %[d(m, w) + d(z, )], (2.3.2)

or all x X u, y =X v. If there exist o, yo € X such that o X T(zo,y) and
T(yo, ©o) = Yo, Then T has a coupled fired point in X, (i.e., there exist z,y € X
such that T(z,y) = = and T(y, z) = y.) Moreover, we call a mappingT : X x X —
X is continuous provided that T(x,,y,) — T(x,y) whenever z, — z and y, — v,

where x,Y, Tp, Y, € X, for alln € N.

Theorem 2.3.13. ([13]) Let T be a mapping on a complete metric space (X, d)

and let © be a non-increasing function from [0,1) into (3,1] defined by

1, if 0<r< L,

p(r) = V2

- 1 1
T 'Lf ﬁ§r<§

Let a € [0,3) and put v = 1% € [0,1). Suppose that

w(r)d(z, Tz) < d(z,y) implies d(Tz, Ty) < ad(z,Tz) + ad(y, Ty),

for all z,y € X. Then T has a unique fired point z and lim,,_,, T"x = z holds for

every x € X.
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Theorem 2.3.14. ([13]) Let (X,d) be a complete metric space and let T be a
mapping from X into CB(X). Define a strictly decreasing function n from [0,1)

onto (3,1] by 1(r) = = and assume that there exists r € [0,1) such that

n(r)d(z,Tz) < d(z,y) implies H(Tz,Ty) < rd(z,y),

for all z,y € X. Then there ezists z € X such thal z € Tz.

Definition 2.3.15. ([14]) Let A and B be nonempty subsets of a metric space X,

and let 7: AUB — AU B be a mapping. A mapping 7' is called a cyclic map if
T(A) C B and T(B) C A.

Theorem 2.3.16. ([14]) Let (X, d) be a complete metric space and let T be a cyclic
mapping from AU B into AU B. If T satisfies Kannan type cyclic contraction (i.e.,
there ezists v € [0,3) such that d(Tx,Ty) < rld(z,Tx) + d(y, Ty)}, for all z € A

and y € B.), then T has a unique fized point.

Theorem 2.3.17. ([16]) Define a non-increasing function ¢ from [0,1) into (0,1]

by

; V/5-1
1 i‘.f OST'<—2—,

o(r) =
1—7, if L‘Zﬂgr<1.

Let (X, d) be a complete metric space and let T be a mapping from X into CB(X).

Assume that
o(r)d(a, Tz) < d(z,y) implies H(T,Ty) < rmax{d(z, Tx), d(y, Ty)},

for all z,y € X. Then there exists z € X such that z € Tz.

Theorem 2.3.18. ([18]) Let (X, d) be a complete melric space and let T be a cyclic

mapping from AU B into AU B. If T salisfies d-cyclic-¢-contraction (i.e., if p € @
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such that d(Tz,Ty) < ¢(d(z,y)), for all x € A, y € B, where ® the family of
non-decreasing functions: ¢ : [0,00) — [0,00) such that Y o, ¢™(t) < co for each

t > 0, where n is the n-th iterate of @), then T has a unique fized point.



CHAPTER III

FIXED POINT THEOREMS IN METRIC SPACES

3.1 Fixed Point Theorems for Generalized Multivalued Mappings in

Metric Spaces

In this section, we prove fixed point theorems for generalized multi-valued
mappings satisfying some inequalities in metric spaces. These results improve those

of Damjanovié¢ and Dorié [16]; see [42] more details.

Theorem 3.1.1. Define a non-increasing function @ from [0, 3) into (0,1] by

o N
.} V(_ 1?
o(r) = N

1—2r ¢ +5-1 o
if \/§+1ST<2‘

I-r

Let (X,d) be a complete metric space and let T' be a mapping from X into CB(X)

such that Tz is compact for all x € X. Suppose that there exists v € [0, 3) such that
¢(r)d(z, Tz) < d(z,y) implies H(Tz,Ty) < rM(z,y) (3.1:1)

where M(z,y) = max{d(z,y), d(z, Tz),d(y,Ty),d(z,Ty), d(y, Tx)}, for all z,y €
X. Then there exists z € X such that z € Tz

Proof. Let r; be a real number such that 0 < r <73 < % Let uy € X and uy € Ty

be arbitrary. Since uy € Tw, then d(ug, Tug) < H(Twy, Tu2) and
o(r)d(ur, Twy) < d(uy, Tug) < d(uy, uz).
Thus from the assumption (3.1.1), we obtain that
d(ug, Tuy) < H(Twy, Tuz) < 7 M (s, uz)

where M(uy, 1) = max{d(w,, ua), d(aty, Tatr), d(uz, T'uy), d(uy, Tug), d(uz, Twa) }-

‘We consider

d(uy, Tug) < rmax{d(uy,us), d(u, Tuy), d(ug, Tuz), d(u, Tus), d(ug, Tw )}
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= rmax{d(u, u2), d(u1, Tuz)}.
If max{d(u,us), d(u1,Tus)} = d(u1, T'uz), then

d(ﬂz, T’Lt.g) S 'I'd(‘uq, T’UQ)
< rd(ur, up) + rd(ug, Tug)
S0
(g, Tug) < (IL)d(ul,ug).
N
If max{d(u1, ug), d(u1, Tus)} = d(u1, uz), then
d(us, Tus) < rd(ur,u2) < ('i-—"r—“)d(’ll,l,’lf,g).
ey
We obtain that,
d(’ltg,TUg) S (%)d(uhug).
=

So, there exists ug € Tup such that d(us,us) < (32:)d(ur, ue). Thus, we can

construct a sequence {u,} in X such that up41 € T'up, and

7
d(uny 1, Ung2) < (1 )d(tr, Upp1)-

-7

Hence, by induction,

d(ttn, Unss) < ( ) d(w, un).

1'—'1'1

Let n,m € N with m > n > n(e), using the triangular inequality, we have:

d(um: uu) < d(um: um—l) + d(um—lr um—2) g i o d(un+11 “n)

2 ( )”‘ Yd(uy, ug) + “*d(wr, u) + ... + (—)“d(‘ul, us)
?1.2)
< Z(—l_—,,,l)“ Yd(ur, up) < 00. (3.1.2)

Thus, d(um,u,) — 0 as n,m — oco. Hence we conclude that {u,} is a Cauchy

sequence. Since X is complete, there is some point z € X such that

lim u, = 2.

n—oo
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Now, we will show that d(z,Tz) < rd(z,Tz) for all x € X \ {2}. Let z € X \ {2}.
Since u, — z, there exists ng € N such that d(z,u,) < 3d(z,z) for all n > ny.

Then, we have

(r)d(un, Tun) < d(un, Tuy)

IA

d(tn, Uns1)

< Utz i)
< (Gyd(z, )

L a0~ %d(z, 2)

< d(z,7) — d(z,u)

< ez e (3.1.3)
Then from (3.1.1), we have
H(Tuy, Tx) < 7 max{d(un, T), d(un, Tuy), d(z, Tx), d(ity, Tx), d(z, Tu,)}-
Since g1 € Ty, then d(upyr, Tz) < H(Tuy,, T'x), so that
d(uns1,Tz) < rmax{d(un, z), d(un, tns1), d(@, Tz), d(un, T2), A, vn11)}
for all n > ng. Letting n — oo, we obtain that
d(z, Tz) < rmax{d(z, z),d(z,Tz),d(z, Tx)}.
It follows that
d(z,Tz) < (T%)d(m, Tx) (3.1.4)

for all z € X \ {z}. Next, we show that z € T'z. Suppose that z is not an element
in Tz.

Case; 0 <7 < 5{2—;; Let @ € Tz. Then a # z and so by (3.1.4), we have

T
1—7

d(z,Ta) <( )d(a, Ta).
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On the other hand, since y(r)d(z, T%) = d(z,Tz) < d(z, a), from (3.1.1) we have

H(Tz, Ta) < rmax{d(z,a),d(2,T%),d(a, Ta),d(z, Ta),d(a,Tz)}.
So,

d(a,Ta) < H(T'z,Ta) < rmax{d(z,a),d(z,Tz),d(z,Ta)}. (3.1.5)
Tt implies that

d(aTd) < rinsx{d(z, &), d(%.T2), d(z Ta)}.

Since d(z,a) < d(z,Tz) + d(Tz,a) = d(z,Tz), we have

d(a, Ta) < (%)d(z,Tz). (3.1.6)
Using, (3.1.4)-(3.1.6), we have

d(z,Tz) < d(z,Ta)+ H(Ta,Tz)

T

<(

Yd(a, Ta) + r max{d(z, a), d(z,Tz), d(z, Ta)}

1—r7r
T

< (

Yd(a, T'e) + r max{d(z, a), d(2,Tz), (1—?_1—)(1!(0., Ta)}

= E r

" d(a, Ta) + r max{d(z, a), d(z, TZ)}

4 (

1—7

< (ﬁ)d(a, Ta) + rd(z, Tz)

T

< (=" d(a ) 4 (2, T)
it (1 i T)2d(z, Tz) + (1 i T)d(z, Tz)
< (=) + N T)

< [K* + K)d(z, Tz),

where k = ;=-. Since r < ‘fg;}, we have k% + k < 1 and so, d(z2,Tz) < d(z,T%),

which is a contradiction: Thus z € T'z.

Case i1; ﬁ;i <r< % Let z € X.
If 2 = 2, then H(Tz,Tz) < rmax{d(z, z), d(z,Tz),d(z,Tz),d(z,Tz),d(z,Tz)}

holds. If & # z, then for all n € N, there exists y, € T'z such that

d(z,92) < d(z,Tz) + (%)d(a:, o,
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‘We consider

d(zx, Tz) < d(z,yn)
< d(z,z) +d(z,yn)
< d(s,2) + d(z, Tz) + (%)d(m, 2)

< d(@, %)+ (—)d(z, Ta) + (%)d(m,z).

Thus, (12)d(z, Tz) < (14 1)d(z, z). Take n —» co, we obtain that

11__2:)(1(3;, Tz) < d(z, 2).

(

By using (3.1.1), this implies that

H(T=z,Tz) < rmax{d(z, ), d(z,Tz),d(z,Tz),d(z, Tz),d(2,Tz)}.

Hence, as uyy1 € T'uy, it follows that with z = wu,,, this yields

d(z,Tz) = lim d(uy41,T'2)

o/ lita \H(Buy, T'z)

< lim rmax{d(un, 2), d(un, Tws), d(z, T2), d(tn, Tz), d(2, Tun) }
< lim 7 max{d(u,, 2), d(un, ns1), d(z, T2), d(tn, T2), d(z, Upn41) }
< rd(3ls).
Therefore, (1 — 7)d(z,T'z) < 0, which implies d(z, Tz) = 0. Since T'z is closed, we

have z € Tz. This completes the proof. O

Ezample 3.1.2. Let X = [0,00) be endowed with the usual metric d. Define T :

X — CB(X) by
[0,27], PEEL<,
T(x) =4 [0,%], lez<y, (3.1.7)

[0,l0g(z)], 1< =.
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Proof. We show that 7T satisfies (3.1.1). Let z,y € X. We divide the proof by cases.

Case i: Suppose that 2,y € [0,31]. Thus, if 2? <y, then
1 2
P(Sd(e, T2) = [o = 2% > e — 3] = d(a ).
But, if 22 > 7, then
1 2
P(5)da, T2) = [z ~ o] < [~ vl = da,1)

and

2 2

H(TF =

)
!
<

1

IA

|(22)* — (29)°]

| — 2|

IA

IA
L e B RN SN BTN |

53
|

L]

N

max{|z — yl, |z — 27|, ly — ¥*|, | — o?|, Iy — 47|}

max{d(z,y), d(z, Tz), d(y, Ty), d(z, Ty), d(y, Tz)}

=rM(z,y),
where 7 = ;. Hence T satisfies (3.1.1).
Case #: Suppose that =,y € (3,1). Thus, if £ <y, then
1 x
o(g)dz, Tz) = |z — 3l 2 |z — y| = d(z,y).
But, if § > y, then
1. T
w(3)d(z,Te) = lo — 5] < | —y| = d(z,9)

and

(3.1.8)
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1 T v Y T
= gm?ﬂ{kﬂ =g o= §|: ly — g]» |z — §|) ly — §|}

= 5 max{d(z,), d(@, Te), d(y, T4), d(@, Ty), d(y, T)}
=rM(z,y), (3.1.9)
where r = 3. Hence T satisfies (3.1.1).
Case #ii: Suppose that z,y € [1, 00]. Thus, if log(z) < y, then
p(3)d(x Tw) = 1~ log(a)] > I — g} = d(z,)
But, if log(z) > v, then
P(3)d(x, T) = | ~log(@)] < Jo = 31 = (@)
and

H(T=,Ty) = |log(z) — log(y)|

= %(3 log(z) — 3log(y))
1
< zlo= log(v)|
= smax{(z o — log(o)l, Iy = log)l, ¢ — log(w), Iy ~ log(@))
= max{d(z, ), d(s, T0), dy, To), e, Ty), dly, o)
=M (2 (3.1.10)

where r = 3. Hence T satisfies (3.1.1).

Case sv: Suppose that = € [0,3] and y € (3,1). Then 2% < & < y. Thus,
@(3)d(z, Tz) = |z — 2?| > |z — y| = d(=,y). Hence T satisfies (3.1.1).

Case v: Suppose that z € (3,1). and y € [0, 1]. So © > y. Thus, if T 50
then
1 T
p(Fd(z, Te) = | - 3] 2 |o —y| = d(z,y).

But, if § >y, then

1 z
tp(g)d(.'li,T.’L‘) = fp= §| <lz—y|l =d(z,y)
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and

H(T=,Ty) = l% -9

|z — 39|

IA

IA
— | | =~

|z — 4|

maox{j — gl o= Shly — 17 1o ~ bl = 31}
=7 max{d(z,y), d(z, Tz), d(y, Ty), d(z,Ty), d(y, Tx)}

= rM(z,y), (3.1.11)
where r = 3. Hence T satisfies (3.1.1].
Case vi: Suppose that z € [0,3] and y € [1, 00).

PRl o) = |5 =2 < e =yl =d(z) S

H(Tz, Ty) = |z* —log(y)|

— 2{30% — 3log(y)] = 5[3108(0) ~ 30

< %max{ly —log(y)], ly — #?[}

~ L mas{le — gl lo — 2%y~ LoB@)l, o~ log ()} Iy — a”1

= L max{d(,), (@, =), dlo, T4), Az, T), (0, )

= rM(z,y), (3.1.12)

where 7 = 1. Hence T satisfies (3.1.1).
Case vii: Suppose that z € [1,00] and y € [0, 3. Thus, if log(z) < g, then
1
Pz Ta) = o = log(@)] 2 |e — ] = d(o-v).
But, if log(z) > v, then

P(S)i(a, ) = fo — logla) < |z 31 = d(w,0)
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and
H(Tx,Ty) = |log() — 97|
= 4 l1log(z) — 477
< o -
= 3 mals — gl Jo ~ log(@)lly — v | — 57} Iy — (=)}
— 2 ma{d(s, ), d(s, o), d(y, T), o, Ty), d(y, To)}

= rM(z,y), (3.1.13)
where 7 = ;. Hence T satisfies (3.1.1).
Case vidi: Suppose that & € (3,1) and y € [1, o).
1 T

S, Ta) = o~ 21 < o=yl = dlo)
and

z

H(Tz,Ty) = |3 —log(y)l

i
= =|z — 3log(y)| = §I310g(y) ~ |

4 h
< = max{|y = log(y)|, |y — gl}

o — o] = Cal =

= - max{lz — yl, [z — 3y = log(®)l, Iz —Log(w)l, Iy — 51}
= 5 max{d(z,v), d(@, Ta), s To)sdls, Ty), d(y, 7<)
= rM(z,y), (3.1.14)
where r = 3. Hence T satisfies (3.1.1).
Case iz: Suppose that z € [1,00] and y € (3,1). Thus, if log(z) < y, then
o(3)dl, Ta) = |& — log(@)| = |« =yl = (e, ).
But, if log(z) > y, then |

ga(—:];;)d(:z, Tz) = |z —log(z) < |v — 9] = d(,9)
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and
H(Tz,Ty) = |log(a) - 5|

= Z3log(z) ]
< 1|:t; -9
=3l Yy
= % max{la — yhls—log(@)l [y — X le — LIy ~ og(a)]}

— Lmac{d(s,), d(z T2 dy, To), d(@, To), d(v, 7))

= rM(z,y), (3.1.15)

where 7 = % Thus we see that T satisfies condition (3.1.1) and satisfies all con-
ditions in theorem 3.1.1. So, there exists z € X such that z € Tz Moreover,

0 € T(0). O

Theorem 3.1.3. Define a non-increasing function ¢ from [0,3) into (0,1] by

; : V51

‘ 1 ifi 0:<7 < U
p(r) = e

1-5r 5-1 L1

1_2:: Z_f 4+2\/5S? <3

Let (X, d) be a complete metric space and let T be a mapping from X into CB(X)

such that Tz is compact for allz € X. Suppose that there exists v € [0, 2) such that

o(r)d(z, Tz) < d(z,y) implies H(T'z,Ty) < S(z,y) (3.1.16)
where S(z,y) = rd(z,y) + rd(z, Tz) + rd(y, Ty) + rd(z, Ty) + rd(y, Tz) for all
x,y € X. Then there ezists z € X such that z € T'z.
Proof. Let 7 be a real number such that 0 <7 <7 < 1. Let uy € X and uy € Ty
be arbitrary. Since up € T'uy, then d(ua, Tug) < H(Tuy, Tuz) and

w(r)d(uy, Tur) < d(uy, Tuy) < d(w, uz).

Thus, from the assumption (3.1.16), we obtain that

d(uz,T‘ng) S H(Tﬂl,Tug) S S(ul,ug)
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where S(uy, ug) = rd(uy, uz)+rd(u1, Tur) +7d(usg, Tuz) +rd(ur, Tus) +rd(uz, Tw).

Consider,

d(ug, Tug) < rd(us,ug) + rd(ur, Tw) + rd(uz, Tuz) + rd(uy, Tuz) + rd(ug, Tuy)

< 3rd(wy, uz) + 2rd(ug, Tug).

So,

3
d(uy, Tus) < (1 __Tzr)d(’lh:ﬂfz)-

So, there exists uz € Tuy such that d(ug,uz) < (1 - )d(u1,u2). Thus, we can

construct a sequence {u,} in X such that u,41 € Tu,, and

R

e ;7‘1 )d(“n: un-l—l) :

d(tn 1, Una2) <

Hence, by induction,

3’1"1
1-—

d(umun+1) h ( )n 1d(ul?u2)

Then by the triangle inequality, we have

=\, 3r
Zd 'Un;un+l) = Z( - )n_ld 'U-l,’l.tz) < 0.

Hence we conclude that {u,} is a Cauchy sequence. Since X is complete, there is
a point z € X such that

lim u, = z.
n—co

Now, we will show that d(z,T'z) < (

o z) for all z € X\ {2}.

Let z € X \ {2}. Since u, — z, there exists ng € N such that d(z,u,) < 3d(z, )
for all n > ny.

By using (3.1.3), we gét
@(r)d(un, Tun) < d(z,u,).
Then from (3.1.16), we have

H(Tun, Tx) < r[d(un, ©) + d(ttn, Tn) + d(z, T%) + d(un, T) + d(z, Tuy)].
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Since upy1 € Ttn, then d(uni1, Tz) < H(Tup, Tx), so that
d(un-i-lva) S T[d(un: fB) + d(un) u‘n—i-l) L d.(SE,T:B) + d('u'm T:I:) ¥ d(fB, un-l-l)]
for all n > ng. Letting n — oo, we obtain that

d(z, Tz) < r[2d(z, z) + d(z, Tx) + d(z, Tx))

< r3d(z, x) +r2d(z, T'z).

It follows that

3r

d(z,Tz) < (1 ¥ -

Yd(z, Tz), Yz e X\ {z}. (3.1.17)

Next, we show that z € Tz. Suppose that z is not an element in T'z.

Casei; 0<r< % Let a € Tz. Then a # z and so by (3.1.17), we have

d(z,Ta) < ( 3"2

g Yd(a,Ta).

o

On the other hand, since @(r)d(z, T7) = d(z,Tz) < d(z, @), from (3.1.16) we have
I(Tz, Ta) < rld(z,a) + d(z,Tz) + d(a,Ta) + d(z,Ta) + d(a,Tz)].

So,

d(a,Ta) < H(Tz,Ta) < r[2d(z, a) + d(a, Ta) + d(z,Ta)]

< r[3d(z, a) + 2d(a, Ta)). (3.1.18)

Since d(z,a) < d(z,Tz) + d(Tz,a) = d(z,T%), we have

3r
1-—-2r

d(a,Ta) < ( Yd(z,Tz).

Using (3.1.16)-(3.1.18), we have
d(z,Tz) < d(z,Ta) + H(Ta,T%)

<( 3r
1-—2r
<(

)d(a, Ta) + S(a, z)

3r
1-—2r

)d(a, Ta) + r[d(z, a) + d(z,Tz) + d(a, Ta) + d(z, Ta) + d(a, Tz)]
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<( 3r
- —=2r

of Ir
—1-2r

< (K + k)d(2, Tz),

)d(a,Ta) + 3rd(z,a)

Y2d(z, T7) + (i%)d(z,Tz)

where k = 2. Since 0 < 7 < Vo1 e have 0 < K2+ k < 1 and so, d(z,Tz) <

d(z, Tz), which is a contradiction. Thus z € T'z.

4‘:_52?5 <7 <iletz € X Ita =z then HT%,Tz) < rld(z,2) +

d(z, Tx) + d(z, Tz) + d(z, Tz) + d(z, Tz)] holds. If © # 2, then for all n € N, there

Case i1,

exists y, € Tz such that
1
d(z,yp) < d(z,Tz) + (;)d(m, Y.
We consider

d(z,Tz) < d(z,yn)
< d(z,z) + d(z,yn)
< d(z, 2)+d(z,Tx) + (%)d(:ﬁ, z)

< d(z,z)+ (I—%M(t, )t (%)d(m, Z)

Thus, (1=x)d(z, Tz) < (1+ 1)d(z, z). Take n — 0o, we obtain that

=K
z,Tr) < dlz,z).
(1 = 2T)d(‘v,T‘L) < d(z, 2)

By using (3.1.16), this implies that H(Tz,Tz) < S(z, 2),
where S(z, z) = r[d(z, 2) + d(z, Tx) + d(z,Tz) + d(z, Tz) + d(z,Tx)).
Hence, as up41 € Ty, it follows that with & = uy, this yields
d(z,Tz) = lim d(uny1,T2)
< lim H(Tu,,Tz)

< lim 7[d(up, 2) + d(ttn, Tn) + d(z, Tz) + d(un, Tz) + d(z, Tuy)]

< lim [rd(un, 2) + 7d(ty, tn1) + 7d(2, T2) + rd(un, Tz) + rd(2, Uns1)]

n—00
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< (2r)d(z, T'z). (3.1.19)

Using (3.1.19), we have (1 — 2r)d(z, Tz) < 0, which implies d(z, T'z) = 0.

Since Tz is closed, we have z € Tz. This completes the proof. O

Ezample 3.1.4. Let X = [0,1] with the metric d(z,y) = Izlf;ﬂl for all 2,y € X.
Define T': X — CB(X) by

T(w) = [0,57).

Proof. We show that T satisfies (3.1.16). Let z,y € X. Thus, if z* < y, then

1 |z — 27| |z — 9l
=)d(z,Tz) = b =d(z.y).
But, if z? > y, then
LS /P 0% P . N k| R
and
[z — ¢
f.{ T.'T e T - W S
(T, Ty) PR
=, o7 Sty
622 — 2|+ 1
_ 1, =y |2* — | |22 — | 2l2* — |
o6 R\ ST TR + VA P 1 |27 — o +1
|22 — 97| )
¥ e
1, |z—y p— ly —°| |z — 9
6 le—yl+1 Joe—a?+1 |y—p*+1 |Je—y+1
|y_$2| }
ly — 2| +1

1
gld(@,y) + d(e, Tz) + d(y, Ty) + d(z, Ty) + d(y, Tz)}
1
= 68(3;, y), (3.1.20)
where 7 = ;. Thus we see that T satisfies condition (3.1.16) and satisfies all as-

sumptions theorem 3.1.3. So, there exists z € X such that z € Tz Moreover,

0 € T(0). O
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Theorem 3.1.5. Define a non-increasing function ¢ from [0,1) into (0,1] by

1 if 0<r< ¥l
o(r) =
1—r if Blcrel

Let (X,d) be a complete metric space and let T' be a mapping from X into CB(X)
such thet Tz is compact for all © € X. Assume that there ezisis a € [(],%) such
that

p(r)d(z, Tz) < d(z,y) implies H(Tz,Ty) < aM(z,y) (3.1.21)

where M (z,y) = max{d(z, y), d(z, ), d(y, Ty), d(z, Ty), d(y, Ta)},
for all z,y € X, and r = 2. Then there exists z € X such that z € Tz.

1-a’

Proof. Let a; be a real number such that 0 < o < a; < % Let w; € X and

up € Ty be arbitrary. Since us € Tuy, then d(ug, Tug) < H(Tu1, T'us) and
o(r)d(ur, Tuy) < d(uy, Twy) < d(ug,us).

Thus, from the assumption (3.1.21), we obtain that
d(ug, Tuz) < H(Tu1, Tus) < aM (u1, us),

where M (uy, uz) = maz{d(wu1, w2), d(u, Tuyr), d(ug, Tuy), d(wy, T'uy), d(uz, Truy)}.

Consider,

d(ug, Tus) < amax{d(uy,uz), d(u1, Tw1), d(uz, Tuy), d(ug, Tus), d(ug, Ty )}

= amax{d(u, ug), d(w1, Tuz) }.
If max{d(w, ua), d(u1, Tuz)} = d(uq, Tup), then

d{uy, Tug) < ad(ug, Tug)

< ad(u, uz) + ad(us, Tuy)
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and then
e
d(ua, Tuz) < (;——)d(w1, uz) = rd(w1, up),

T o
where 7 = 2.

So, there exists uz € Tug such that d(uz, u3) < rid(uy,ug), where r = 1% Thus,

we can construct a sequence {u,} in X such that u,,; € Tu, and

d(“ni—l: 1‘!n+2) < Tld(“m “'n+1)-

Hence, by induction
d(tup, Upy) < (7‘1)"_1d(u1, Up).

Then by the triangle inequality, we have

o0 o0

D (g, wny1) < ()" A, u) < oo

n=1 n=1
Hence we conclude that {u,} is a Cauchy sequence. Since X is complete, there is
some point z € X such that

lim u, = z.
n—oo

Now, we will show that d(z, T'z) < rd(z,Tz) for all z € X \ {z}.
Let z € X \ {z}.
Since u, — z, there exists np € N such that d(z, u,) < (3)d(z,z) for all n > ny.

By using form (3.1.3), we get
()1t Titn) < d(z, 0).
Then from (3.1.21), we have
H(Tu,,T,) < amax{d(u,, z), d(un, Tuy), d(z, Tz), d(u,, Tx), d(z, Tu,) }-
Since up1 € Tuy, then d(unyr, Tx) < H(Tuy,T:), so that
d(tne1, T2) < @ max{d(un, @), d(tn, tnsr), d(, T), d(utn, T3), d(, wns1)}

for all n > ng. Letting n — o0, we obtain
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d(z,Tz) < amax{d(z,z),d(z,Tz),d(z,Tz)}.

We obtain that

d(2,Tz) < (l—f&)d(x,:rm) = rd(z,Tz), Vo e X\ {z}. (3.1.22)
Next, to show that z € T'z. Suppose that z is not an element in T'z.

Casei; 0 <7 < % Let @ € Tz. Then a # z and so by (3.1.22), we have
d(z,Ta) < rd(a,Ta).

On the other hand, since ¢(r)d(z,Tz) = d(z,Tz) < d(z,a), from (3.1.21) we have

H(Tz,Ta) < amax{d(z,a),d(z,Tz),d(a,Te),d(z,Ta),d(e, Tz)}.
So,

d(a,Ta) < H(Tz,Ta) < amax{d(z,a),d(2,Tz),d(z,Ta)}. (3.1.23)
It implich that

d(a, Ta) < amax{d(z,a),d(z,Tz2),d(z,Ta)}.

Since d(z,a) < d(z,Tz) + d(Tz,a) = d(z,Tz), we have

d(a,Ta) < rd(z,Tz). (3.1.24)
Using (2.20), (2.21), (2.22) and (2.23), we have

d(2,Tz) < d(z,Ta) + H(Ta,Tz)
< rd(a, Ta) + amax{d(z, a),d(z, Tz), d(z, Ta)}
< rd(a, Ta) + amax{d(z,a), d(z Tz), rd(a, Ta)}
< rd(a, Ta) + amax{d(z,a),d(z, Tz)}

< rd(e,Ta) + ad(z,Tz)
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< (1)2d(z,T2) + rd(z,Tz)
< (P +1)d(z,Tz),

where 7 = 2. Since r < -‘/—_5’531, we have 72 + 7 < 1 and so d(z,T2) < d(z,T%),

1-o”

which is contradiction. Thus z € T'z.

Case 11; ﬁ;—lgr< 1. Let z. € X.
If © = 2z, then H(Tz,Tz) < amax{d(z,2),d(x,Tz),d(z,Tz),d(z,Tz),d(z,Tz)}
holds. If z # z, then for all n € N, there exists y,, € T’z such that

dlz,5) < Az, Tz) + (%)d(ﬂ:, 2).
We consider.
d(z, Tz) < d(z,y,)
< d(z,z) + d(2,yn)
% dig A dil TR (%)d(:c, 2)
i 7 Wl T (%)d(z,z).
Thus, (1 —r)d(z, Tx) < (1 + 3)d(z, z). Take n — oo, we obtain that
(1= r)d(z, Tx) < d(z, 2).

By using (3.1.21), implies H(T'z, T'z) < amax{d(z, z),d(z, Tx), d(2,Tz), d(z, Tz), d(z, Tz)}.

Hence, as u,41 € Tu,, it follows that with © = u,, this yields
d(z,Tz) = 1!21;10 d(upy1, Tz)
< ,}Lnolo H(Tu,,Tz)
< nh_‘nolo a_max{d(um z), d(up, Tuy), d(2,Tz), d(un, T2), d(z, Tu,) }
< r}l_’nolo amax{d(u,, z), d(un, Un+1), d(2,T2), d(tn, T'2), d(2, Uny1) }

< ad(z, Tz).

Therefore, (1 — a)d(z,Tz) < 0, which implies d(z,7'z) = 0. Since T’z is

closed, we have z € T'z. This completes the proof. O
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Corollary 3.1.6. Let (X,d) be a complete meiric space and let T' be a mapping
from X into CB(X) such that Tz is compact for all x € X, with the function ¢ is
defined as Theorem 3.1.5. Assume that there exists o € [0, %) such that

o(r)d(z,Tz) < d(z,y) implies H(Tz,Ty) < S(z,y)

where S(z,y) = ad(z,y) + ad(z, Tz) + ad(y, Ty) + ad(z, Ty) + ad(y, Tz) for all

z,y € X, and r = 5. Then there exists z € X such that z € T'z.

Theorem 3.1.7. Define a non-increasing function ¢ from [0,1) into (0,1] by

N if 0<r <3,
o(r) =
Lfr, if-S<pict

Let (X, d) be a complete metric-space and-let-"T be a-mapping from X-inte CB(X)
such that Tz is compact for all x € X. Assume that there exists a € |0, %) such

that
p(r)d(z, Tx) < d(z,y) implies H(Tz,Ty) < S(=,v) (3.1.25)

where S(z,y) = ad(z,y) + ad(z, Tz) + ad(y, T'y) + ad(z, Ty) + ad(y, Tz) for all

Ja
1—2a”

z,y € X, andr = Then there exists z € X such that 2 € T'z.

Proof. Let a; be a real number such that 0 < o < @ < % Let w; € X and
ug € T'uy be arbitrary. Since up € Tuy, then d(ug, Tuz) < H(Twuy, T'up) and
o(r)d(w1, T'u1) < d(ur, Tup) < d(ur, uz).
Thus, from the asszmlj?tion (3.1.25), we obtain that
d(ug, Tup) < H(Tuy, Tup) < S(u1,uz)

where S(u1, u2) = ad(uy, ug)+ad(uy, Tup)Fad(ug, Tug)+ad(uy, Tug)+ad(ug, Tuy).

Consider,

d(uz, Tus) < ad(w, u2) + ad(wy, Twy) + ad(ug, Tup) + ad(ur, Tus) + ad(us, Tuy)
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< 3ad(uy, up) + 2ad(uz, T'ua).

Then,
R’
d(ug, Tus) < ( Vd(wy, up) = rd(uy, us),
1—2ca
where r = IE—‘Q’Q

So, there exists uz € T'uy such that d(us, u3) < md(u, uz), where r; = 1—3%: Thus,

we can construct a sequence {u,} in X such that u,4, € T'u, and

A(tng1, Uny2) < 1A (Un, Unyr).

By induction, we obtain that

d(tp, Upg1) < (1) d(us, ug).

" Then by the triangle inequality, we have

Zd(umfunﬂ) < Z('rl)"‘ld(ul,ug) < 00.
n=1

n=1,
Hence we conclude that {u,} is a Cauchy sequence. Since X is complete, there is
some point z € X such that

litn =, &3 2%

n—oo0

Now, we will show that d(z, Tz) < rd(z, Tx) for all z € X \ {z}.
Let © € X \ {z}.
Since u, — z, there exists np € N such that d(z,u,) < (3)d(z,z) for all n > ng.

By using form (3.1.3), we get that
@(r)d(wn, Tun) < d(z, un).
Then from (3.1.1), we imve
H(Tu,,T,) < ald(u,, z) + d(up, Tu,) + d(z, Tz) + d(u,, Tz) + d(z, Tuy,)).
Since 1,41 € Tuy,, then d(upg1,Tx) < H(Tun, T.), so that

d(tnt1,Tz) < ald(in, ) + d(tn, uns1) + d(z, Tz) + d(up, Tz) + d(z, Uns1)]
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for all n > ny. Letting n — co, we obtain that

d(z,Tz) < af2d(z,z) + d(z, Tx) + d(z, Tz))

< a3d(z,z) + a2d(z, Tx).

It follows that

3o

d(z,Tz) < (1 o

Yd(@ITz)="rd{x;Ts), ¥me X \ {2}. (3.1.26)

Next, we show that z € Tz. Suppose that z is not an element in Tz.

Casei; 0<7r < % Let a € Tz. Then a # z and so by (3.1.26), we have
d(z,Ta) < rd(a,Ta).
On the other hand, since p(r)d(z, Tz) = d(z,Tz) < d(z, a), from (3.1.25) we have
- H(Tz,Ta) < a[d(z,a) + d(z,Tz) + d(a, Ta) + d(z,Ta) + d(a, Tz)].

So,

d(a,Ta) < H(Tz,Ta) < a[2d(z,a) + d(a, T'a) + d(z,Ta))

< of3d(z, a) + 2d(a, T'a)). (3.1.27)

Since d(z,a) < d(z, Tz) + d(T'z, a) = d(2,T%z), we have

Ja
1 -2«

d(a,Ta) < ( W hz) = rdlz, Tz). (3.1.28)

Using, (3.1.25)-(3.1.28), we have

d(z,Tz) < d(z, Ta) + H(Ta,Tz)
< rd(a,Ta)+ S(a, z)
< rd(a,Ta) + ald(z,a) + d(z,Tz) + d(a, Ta) + d(z,Ta) + d(a, Tz)]
< (r + 2a)d(a, Ta) + 3ad(z, a)
< (r + 20)rd(z, Tz) + 3ad(z, Tz)

< (r+7r)rd(z,Tz) +rd(2,Tz)
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< (2r% + 1)d(2, T%).

Since 0 < r < %, we have 0 < 2r% +7 < 1 and so, d(z,Tz) < d(z,T'z), a contradic-

tion. Thus z € Tz.

Case 1i; % <r<lletzeX.
If z = z, then H(Tz,Tz) < ald(z,z)+ d(z,Tz) + d(2,Tz) + d(z, Tz) + d(z, Tz)]
holds. If z # z, then for all n € N, there exists y, € T’z such that
d(z,y,) < d(z,Tx) + (%)d(z, T
We consider.
d(z, Tz) < d(z, yn)
< d(g,2) +d(2,yn)
< d(=, 2) + d(z, Tx) + (%)d(:ﬁ;, 2)
< d@;2) ¥ 7d(@, Th) + (%)d(m, 3.
Thus, (1 —r)d(z,Ts) < (1 + +)d(z, 2). Take n — co, we obtain that
(1 — r)d(z,Tz) < d(z, 2).
By using (3.1.25), implies H(Tz, Tz) < S(z, z),
where S(z, z) = ald(z, z) + d(z, Tz) + d(z,Tz) + d(z, Tz) + d(z, Tz)).
Hence, as 1,41 € Tu,. It follows that with = u,, this yields
d(z,17z) = '}l_.ugo d(uni1,1'2)
< r}gl;) H(Tu,,Tz)
< nhﬂn;lo ald(u,, 2) + d(un, Tup) + d(z,T2z) + d(un, T2) + d(z, T'un))
< '}Ln;o [ad(1n, 2) + ad(un, wnsr) + ad(z, Tz) + ad(uy, Tz) + ad(z, 1))
< (2a)d(z,Tz). (3.1.29)
Therefore, (1 —2a)d(z, Tz) < 0, which implies d(z,Tz) = 0. Since T'z is closed, we

have z € T'z. This completes the proof. (]
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3.2 Coupled Fixed Point Theorems for Multivalued Mappings in
Metric Spaces

In this section, we introduce the notions of type multi-valued-coupled
contraction mappings and multi-valued-coupled Kannan mappings and prove cou-
pled fixed point theorems on metric spaces. Moreover, we present some exam-
ples to illustrate and support our results. Let (X, d) be a metric spaces. A map
T : X x X — CB(X) has a property coupled fixed point in X, if there exist
z,y € X such that z € T(z,y) and y € T(y,z). Moreover, we call a mapping T
is continuous provided that T(z,,y,) — T(z,y) whenever z, — = and y,, — y,
where z,9, 2,9, € X, for n = 1,2,3,... . The family of all nonempty compact
subset of X, denoted by 2%.

Definition 3.2.1. Let (X, d) bea metric space and let {A,} C2%. Then A, = 4
if and only if H(A,, A) — 0, where A € 2%,

Definition 3.2.2. Let (X, d) be a metric space. A map T': X x X — 2% is said
to be a multi-valued-coupled contraction mapping of X if and only if there exists

k € [0,1) such that
k
H(T(z,9), T(u,v)) < E[d(m,‘u) + d(y, v)], (3.2.1)
for all z,y,u,v € X.

Lemma 3.2.3. Let (X, d) be a metric space and let T : X x X — 2% be a multi-
valued-coupled contraction mapping with constant k € [0,1). Then T is continuous

on X.

Proof. Suppose that z,, — = and y, — y. Since
k
H{T(%5:9:), T(x9) < E[d(mn, z) + d(yn,y)] — 0 (3.2.2)

as n — co. Hence T'(z,, y,) — T'(z,y). Therefore T is continuous on X. O
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Theorem 3.2.4. Let (X, d) be a complete metric space and let T : X x X — 2% be
a multi-valued-coupled contraction mapping with constant k € [0,1). Suppose that
To,y0 € X. If there exist z1,71 € X such that 1 € T(xo, %) and 11 € T(yo, o),
then T has coupled fized points in X.

Proof. Let zg,70 € X. Choose z; € T (2o, %0) and y1 € T'(yo, %o). Since T(zo, yo), T (Yo, To) €
CB(X) and =, € T(zo,%), 11 € T'(yo,%0), there are points z» € T'(z1,¥1) and

y2 € T'(y1, ;) such that

d(zy,22) < H(T(z0, y0), T(1,y1)) (3.2.3)
and

d(y1, ¥2) < H(T(yo, %0), T'(y1, 21))- (3.2.4)

Since T'(z1,11), T'(y1,%1) € CB(X) and z; € T(z1,%1), y2 € T(3,21), there are

points z3 € T'(x2, y2) and y3 € T'(y2, T2) such that

d(we, x3) < H(T(z1,1), T(w2, y2)) (3.2.5)
and

d(y2,y3) < H(T (1, 21), T (y2, %2))- (3.2.6)

Continuing in this previous producers, we obtain sequences {z;}2; and {y;}{2; of

points of X such that z;y) € T'(2;, %), ¥it1 € T'(u;, z;) and

d(zy, Ti1) < H(T(z3i-1, Y1), T (w5, 1)), (3.2.7)

d(yi, yir1) < H(T(yi—1,%i-1), T (s, 7:)) (3.2.8)
for all 2 > 1, respectively. We consider

d(zi, zip) < H(T(zi—1, ¥i-1), T(%:, ui))

k k
< Ed(:ﬁiﬁ], $i) + Ed(yifi:yi)
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k
< —H(T(zi—2, ¥i-2), T(Zi-1, ¥i-1)) + EH (T(yi-2, Tiz2), T (Yiz1, Ti-1))

0|

2 k2
< Ed(mi——%mi—l) + ?d($i~2,$f—1)

S %[d(ﬂig, :L‘l) -+ d(ﬂ:l, ﬂfg)] (329)

for all 2 > 1. Similarly,

i

(i(’y,‘, y!'.u,.l) = %[d(.’ﬂ'[}, :L‘l) =N d(.’El, :L‘g))] (3210)

Take 7 — 00 in (3.2.9) and (3.2.10), we get d(z;, Tiy1) — 0 and d(y;, ¥i+1) — 0.

Let n,m € N with m > n, using the triangular inequality, we conclude that

d(:cng; .'E") S d(xrnj xm—l) i d(ﬂ:m—lp -Tm—2) L d(l‘n+1: -Tn)

< H(T($U1—1)1T($rrl—2)) o H(T(E‘m_g),T(.Tm_3)) ot H(T(mﬂ)JT(a"ﬂﬁl))

m—1 kmf‘z

< [d(o, 21) + d(z1, 0)] + 5 [d(%0, z1) + d(z1, T0)] + -
n—1
- 7 [d(zo, 1) + d(z1, 20)]

n—1
< 3 1+ &+ +E™ "+ )d(ze, 71) + d(z1, 20)]

knﬁl
N\ [d(z0, 1) + d(1,w)] — 0 (3.2.11)

as n — oo. Similarly, d(y,,y.) — 0. Thus {z,} and {y,} are Cauchy sequences.
Since X is complete, we have z,, — = and 4, — . By the continuity of T, it follows
that T'(zn, ) — T(z,y) and T'(yn, zn) — T'(y,x). Since z, € T(Zn-1,Yn—1) and
Yn € T(Yn—1,Zn—1) for all n, we get x € T(z,y) and y € T'(y,z). That is, T has

coupled a fixed point. O

Exzample 3.2.5. Let X =R. Defined: X x X — R by

d(z,y) = |z —yl,

for every z,y € R and T : X x X — 2% be defined by T(z,y) = [5"—"133—”1, 5133‘3{3’1]

for all z,y € X. Indeed, we see that d is a complete metric on X. Next, we will
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show that T satisfies (3.2.1). Let z,y,u,v € X. If £ > y and u > v, then

AT (,9), T(w,v) = (5, 31 (5, 5) = max{lz — 31,15 - 51

< Sllo—ul+ by~ = S(dla) + o). (3:212)

If 2 > y and u < v, then

53] =max{lZ= 2l 13- 2

< %(lx —u|+ |y —v]) = g(d(a:, u)+d(y,v).  (3.2.13)

. oy x
d(T(’L,y),T('U.,’U)) - d([§> g]i[

If z <y and u > v, then

AT,y T(w,v)) = (5, 3, 15, 5) = max{lZ = 51,15 — 510
< %[]'1: —uf+ |y —v|] = %(d(’r,, u) + d(y, v))- (3.2.14)

If z <y and u < v, then

A(T (), T(w,v) = d([5, 51,5, 51) = max{13 = oh 15 = 51}
< %Hw —u|+ |y —v|] = g(d(m, w) + d(y,v)), (3.2.15)

where k = 2 < 1. By Theorem 3.2.4, we obtain that (0,0) € 7(0, 0).

Definition 3.2.6. Let (X, d) be a metric space. A map T : X x X — 2% is said to
be a mulli-valued-coupled Kannan mapping of X if and only if there exists r € [0, %)

such that
H(T(z,y), T(u,v)) <7ld(z,T(z,y)) + d(u, T(u,v))], (3.2.16)
for all z,y,u,v € X.

Theorem 3.2.7. Let (X,d) be a complete metric space, and T : X x X — 2%
be a mulli-valued-coupled Kannan mapping with constant k € [0,1). Suppose that
zo, Yo € X. If there exist x;,y1 € X such that z; € T(zo,%0) and y1 € T (3o, 20),
then T' has coupled fized points in X.
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Proof. Let 2o, y0 € X. Choose 21 € T(zo,y0) and y1 € T(yo, %) Since T'(x, o), P lais, m) € .
CB(X) and z; € T(zp,%), 11 € T(v0,%0), there are points x5 € T(z1,71) and
ya € T(y1, 1) such that

d(zy, z2) < H(T (2o, %0), T(z1, 1)) < rd(zo, T(20,%0)) + rd(z1, T(w1,11))

< rd(zg, 21) + rd(z1, T2) (3.2.17)
and
d(y1, y2) < H(T(yo, %0)s T (1, 1)) < rd(yo, T(yo, %0)) + rd(wr, T(y1, %1))
< rd(y0, 1) + rd(y1, ya)- (3.2.18)
So,
dziaz) £ iq_d("b‘ow’ﬂl)a d(y1y92) < 1ird(y“*3’1)' (3.2.19)

Since T'(x1,91), T(y1,z1) € CB(X) and z2 € T(z1,71), v2 € T(y1,21), there are

points z3 € T'(x3, y2) and y3 € T'(yz, z2) such that

d(z2, z3) < H(T(21,31), T(22, y2)) < rd(z1, T(z1,91)) + rd(z2, T(z2, y2))

< rd(zy, z3) + rd(xg, ©3) (3.2.20)
and
d(y2, y3) < H(T'(y1, 21), T (Y2, %2)) < rd(y1, (1, %1)) + 7d(y2, T(y2, v2))
< rd(y1, y2) + rd(y2, va)- {3.2.21)
Thus
dlan z3) < prdlon ), dyvs) < T dn v2). (3.2.22)

Continuing in this previous producers, we obtain sequences {z;}%2; and {y;}$2, of

points of X such that x4y € T(zi, ¥:), ¥is1 € T(y:, ;) and

d(zi, zig1) < éd(xs_l,zi), (3.2.23)
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r

Ay, yir1) < 1= Td(yi—h Yi) (3.2.24)

for all 2 > 1, respectively. We note that

d(a:,-, $£+1) = 1—i;d($,~~1, :r:;)

T
% (_—1 = ?,)gd(ﬂ‘?i—z, Ti—1)

<
'"(1—7'

)3(,!(3;‘.73) Ti-2)

< (L) d(wo, 1) (3.2.25)
1—r
for all ¢ > 1. Similarly,

T

d(yi, yis1) < (1 = ?_)id(i?fl,fb‘o)- (3.2.26)

Take i — 0o in (3.2.25) and (3.2.26), we get d(z;, zip1) — 0 and d(yi, yiy1) — 0.

Let n,m € N with m > n > n(¢), using the triangular inequality, we obtain that

d(ﬂ;m; ﬂ;n) S d(.’.l:m, :Em,—l) + d(ﬂ:m—la $m—2) + o P d(mn+1; Tp

- (1 i ?.)m — 1d(zo, 1) + (I{”’;)m — 2d(o, 1) + ..

T

1+ (1 — ?_)71. ~ 1d($0,$1)
.n—1
< (Lt B+ R ld( 0, 31) + o, 50)
kn-—l
=5 —n% [d(z0, z1) + d(z1,%0)] — 0 (3.2.27)

as n. — oo. Similarly, d(y,, yn) — 0. Thus {z,} and {y,} are Cauchy sequences.
Since X is complete, we have that {z,} and {y,} converges to some z;,z € X,
respectively. Next, we will show that d(z,T (21, 22)) = 0 and d(z,T(22,21)) = 0.

Consider

d(zl, T(Z], 22)) < d(zl; -Tn) + d("l"m T(le 22))
< d(z1,zn) + H(T(2p-1,¥n-1), T(21, 22))

% d{zy, %) + vd(25 2, T(#n, ¥u-a)) +v8(2:, (%, %))
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< d(z1,%p) + rd(Tn-1,2n) + 7d(21, T (21, 22)). (3.2.28)
It follows that,

d(Zl, T(Zl, 22)) S d(zl, SB,-,) + d(En, T(Z], 22))

1
< ——d(n,7,) + id(a;n_l,zn) -0 (3.2.29)

as n — oo. Next, consider

d(z2, T(22,21)) < d(22,Yn) + d(n, T'(22, 21))
S (l(Zg, yﬂ) + H(T(yn—h "L'n—l), T(Zg, zl))
< d(2z2,¥n) + rd(Yn-1, T(Yn-1, Tu_1)) + rd(z2, T (22, 21))

< d(z2,Yn) + 7d(Un—1, Yn) + 7d(22, T (22, 21)). (3.2.30)

We get,

d(zth(z‘b Zl)) s, d(z‘21 'yu) + d(yn,T(Zz, Z]))

i | "
% 1™ ?,d(zzayn) + 1—1;d(yn—l>yn) ~el) (3.2.31)

as n — oo. Hence z; € T'(z, 72) and z3 € T(22,21). Therefore T" has a coupled fixed

points. O

Ezample 3.2.8. Let X = [0, 00). Define a function d: X x X — [0,00) by

d(z,y) = | —9l,

for every z,y € R and T : X x X — 2% defined by T(z,y) = [0, M‘“f—y}] for all
z,y € X. Indeed, we see that d is a complete metric on X. Next, we will show that

T satisfies (3.2.1). Let z,y,u,v € X. If £ > y and u > v, then

d(T(z,9), T(w, ) = d(0, 51,10, 7)) = 17 = 5

<SP =5

T [
=2+ -3
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= r[d(z, T(z,y)) + d(u, T(u,v))]. (3.2.32)
If x>y and u < v, then

d(T(w, ), T(w,v) = d(f0, 5}, [0, 1) = |5 — 1

<2021+ = 50

< o= 1 15 = ul) = vld(z, T(w,9)) + d(u, Tla, ).

+15 =)

(3.2.33)
If z < y and w > v, then
4 e U1 10, 2y A
d(T(~": y),T(’H,,’U)) - d([{), 4]: [0! 4]) [at I4 4|
<0 -ul+ 2D < 508 —al + 15D
o =r[d(z, T(z,y)) + d(u, T(u,v))]. (3.2.34)
If z < y and u < v, then
Y Uy ¥V
d(T(:I:, '9‘); T(“’a ’U)) = d(m? EJ: [01 ZD = 'E - Z,
< 08—+ 15 =0l < 02—l 1 )
= rld(z, T(z,y)) + d(u, T (u,v))], (3.2.35)

where k = % < 1. By Theorem 3.2.4, it follows that (0,0) € 7'(0,0).




CHAPTER IV

FIXED POINT THEOREMS IN DISLOCATED

QUASI-B-METRIC SPACES

4.1 Basic Properties of Dislocated Quasi-b-Metric Spaces

In this section, we establish dislocated quasi-b-metric spaces and prove
basic properties of dislocated quasi-b-metric spaces. Moreover, we give examples
as a satisfying the such spaces. Every dislocated quasi-b-metric space X can be
considered as a topological space on which the topology is introduced by taking,
for any z € X, the collection {B.(z)|r > 0} as a base of the neighbourhood

_filter of the point z. Here the ball B,(z) is defined by the equality B.(z) = {y €

X| max{d(z,y),d(y,z)} < r}; see [43] for more details.

Definition 4.1.1. Let X be a nonempty set. Suppose that the mapping

d: X x X — [0,00) such that constant s > 1 satisfies the following conditions:
(dl) d(z,y) = d(y,z) = 0 implies x = y for all z,y € X
(d2) d(z,y) < sld(z,2) +d(z,y)], forall z,y,z € X.

The pair (X,d) is then called a dislocated quasi b-metric space (or simply dgb-

metric). The number s is called to be the coefficient of d.

Remark 4.1.2. It is obvious that b-metric spaces, quasi b-metric space and b-

metric-like spaces is dislocated quasi b-metric space but conversely is not true.
Ezample 4.1.3. Let X =R and let

x|l |yl
o) = oot 1, 0]
(z,9) =z —yl*+ i .

where n,m € N\ {1} with n # m. Then (X, d) is a dislocated quasi b-metric space

with the coeflicient s = 2.

Proof. Let x,y,z € X. Suppose that d(z,y) = 0.
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Then

|z — y|2 ||

B 1
n m

It implies that |z — y|? =0 and so, z = y.

Next, consider

-+
n

d(z,y) =z —y* + lel | Wl
m

< (o -+ le—ghte Dy U

T
S|1L‘—»"3|2Jr2|a:~z|-|z—y|+|z—'r|2-i—|——|+M
n e

| | | |zl v

o ot + 2 — o)+ 2 4 2y B

< sld(z, 2) +d(z,9)],

where s = 2.

Then (X, d) is a dislocated quasi b-metric space with the coefficient s =
2, but since d(1,1) # 0, we have (X,b) is not a quasi b-metric space and since
d(1,2) # d(2,1), we have (X,b) is not a b-metric-like space. And, (X, b) is not a

dislocated quasi-metric space because

1 R/ S TN
J(= . R [ 2 el T WY
A5 RN 5
1 1 1

~ 16 o0 4m
324 B 3 ~ 4
5184  6n 12m
J180 5 7
5184  6n 12m

1t 1 1 1 1
SR it v s

36 2n Im | 144 im
a3 2 Il | I I 1 2 HE
d(z 3) d(3 4)

where n,m > 42. (]
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Ezample 4.1.4. ([44]) Let X =0,1,2, and let

2 z=9=0(,

1

2 z=0, =1,
d(z,y) = <

2 z=19=0,

% otherwnse.

Then (X, d) is a dislocated quasi b-metric space with the coefficient s = 2, but since
d(1,1) # 0, we have (X, b) is not a quasi b-metric space and since d(1,2) # d(2,1),
we have (X,b) is not a b-metric-like space. It is obvious that (X,b) is not a

dislocated quasi-metric space.

Example 4.1.5. Let X =R and let
d(z,y) = |o =y 4+ 3o} + 2Jy}*.

Then (X,d) is a dislocated quasi b-metric space with the coefficient s = 2, but
since d(0, 1) # d(1,0), we have (X, b) is not a b-metric-like space, since d(1, 1) # 0,
we have (X, b) is not a quasi b-metric space. It is obvious that (X,b) is not a

dislocated quasi-metric space.

Ezample 4.1.6. Let X =R and let
d(z,y) = |22 — y|* + |22 + y|*.

Then (X,d) is a dislocated quasi b-metric space with the coeflicient s = 2, but
since d(1,1) # 0, we have (X, b) is not a quasi b-metric space. It is obvious that

(X,d) is not a dislocated quasi-metric space.

We will introduce dgb-convergent sequence, dgb-Cauchy sequence and com-

plete of spaces according to Zoto, Kumari and Hoxha [18].

Definition 4.1.7. Let (X, d) be a dgb-metric space.

(1) A sequence {z,} in X, converges ( for short, dgb-converges ) to z € X
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if

lim d(z,,z) = lim d(z,2,) =0.

n—oeo n—o0
In this case « is called a limit point ( for short, dgb-limit point ) of {x,} and we
write z, — z. 7

(2) A sequence {z,,} in X, is call Cauchy ( for short, dab-Cauchy ) if
ligpileren At Pl = s co (P, ) = 0.

(3) A dgb-metric space (X, d) is complete if every dqb-Cauchy sequence in

it is dgb-convergent in X.

Definition 4.1.8. ([45]) Let X be a topological space. Then X is said to be
__Housdorff topological space if for any distinct points z,y € X, there exists two

open sets K; and Ky such that = € Kj, and y € K and K; N Ky = ).

Proposition 4.1.9. Every dgb-metric space is a Hausdorff topological space.

Proof. Let z and y be two distinct points in X. Then d(z,y) > 0 and d(y, z) > 0.

Choose § = %. Then, we have

Bs(z) = {z € X|max{d(z, z), d(z,z)} <4}

and
Bs(y) = {z € X|max{d(y, ), d(z,y)} <4}

such that = € B;s(z) and y € Bs(y).
To show that Bs(z) N Bs(y) = ¥, suppose that Bs(xz) N Bs(y) # 0. Then, there
exists z € Bs(z) N Bs(y). We have

d(z,y) < sd(z, z) + sd(z,y)
< smax{d(z, 2),d(z, )} + s max{d(y, 2, d(z )}

< 56+ 86
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= d(z,y)
So, d(z,y) < d(z,y) which is a contradiction. Therefore Bs(z) N Bs(y) = 0. O

Proposition 4.1.10. BEvery dgb-convergent sequence in a dgb-metric space (X, d)
is a dgb-Cauchy sequence.

Proof. Suppose that {z,} is dgb-convergent. Then there exists z € X such that
T, — T, that is

Yirh diry, ) = 0 ="Tm d(Bezw

n—oo

Consider, for any n,m € N,
il < sdiaartEsltine,, ).
Taking n, m — oo we obtain

dimy K™, . ) =0

n,m—oo
Similarly,
lim (%, %:) =

n,m—oo0

Therefore {z,} is dgb-Cauchy. O

Definition 4.1.11. A subset K of a dgb-metrie space (X, d) is bounded if there
exists Z, M € (0, 00) such that max{d(z, z),d(z,z)} < M for all z € K.

Proposition 4.1.12. Every dgb-convergent sequence in a dgb-metric space (X, d)

is a bounded sequence.

Proof. Suppose that {z,} is dgb-convergent. Then there exists x € X such that
z, — x, that is

lim d(z,,z)=0= lim d(z,xz,).
Let € = 1. Then there exists ng € N such that d(z,,z) < 1 and d(z,z,) < 1, for all

n > ng. Choose

K = max{d(z,, z), d(z2, T), ..., d(Tny—1, ), d(z, T1), d(, T2), ..., (2, Tny-1), 1}
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Thus, max{d(z,,z),d(z,z,)} < K, for all » € N, and so {z,} is a bounded
sequence. O
Proposition 4.1.13. Every dgb-Cauchy sequence in a dgb-metric space (X, d) is

a bounded sequence.

Proof. Suppose that {z,} is dgb-Cauchy. Then
L2 0T = O VA e

Let € = 1. Then there exists no € N such that d(z,, ) < 1 and d(zm, z,) < 1 for

all n, m > ny. Let p be any point in the space, and let
k = max d(z;, p).
i<m

The maximum exists, since {z; : i < m} is a finite set. If n < m, then d(zn,p) L k.
If n > m, then d(&,,p) < d(Tn, Em) + d(&m, ) < 14k for all n € N. Therefore

{z,} is a bounded scquence. O
For the subsequence of dqb-convergent sequence, we have the following im-
portant results:
Proposition 4.1.14. Every subsequence of dgb-convergent sequence in a dgb-metric
space (X, d) is a dgb-convergeni sequence.
For the subsequence of dgb-Cauchy sequence, we have the following impor-

tant results:

Proposition 4.1.15. -Every subsequence of dgb-Cauchy sequence in a dgb-metric

space (X, d) is a dqb-Cauchy sequence.

Proposition 4.1.16. Let {z,} be sequence in a dgb-metric space (X,d). Ifz, = =

and x, — 1y, then x = y.
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Proof. Suppose that z, — « and z, — y. Then

lim d(z,,x) = lim d(z,,) = lim d(z,,y) = lim d(y,z,) = 0.

n—o0

Consider,

0 < d(z,y) < sd(z,z,) + sd(zn,y)

and

0 < d(y,z) < sd(y, zn) + sd(zn, z).

Taking limit as n, m — 0o we obtain

d(z,y) = d(y,z) = 0.

Therefore z = y. 0

For the dgb-convergent sequence of dgb-metric space, we have the following

important results:

Proposition 4.1.17. Let {z,} be a sequence in a dgb-metric space (X,d). Then

z, — x if and only if d(z,,z) — 0 end d(z,z,) = 0.

Now, we begin with introducing the property of a continuous functions.

Definition 4.1.18. Suppose that (X, dx) and (Y, dy) are dislocated quasi b-metric
spaces, K C X ,f: K — Y and p € K. Then f is continuous at p iff for all ¢ > 0
there exists § > 0 such that max{dy(fz, fp),dy(fp, fz)} < ¢ for all x € K, when

max{dx(a:, p)) dx (ps IE)} <.

Theorem 4.1.19. Let (X,dx) and (X,dy) be dislocated quasi b-meiric spaces,
KcX,f:K—Y andpe K. Then f is continuous at p if and only if for every

dgb-converges sequence {z,} in X, lim,_, [z, = fz.

Proof. Suppose that f is continuous at p and {z,} converges to p.

Let € > 0. Then there exists § > 0 such that max{dy(fz, fp),dy(fp, fz)} <€,
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when max{dx(z,p),dx(p,x)} <, for all z € K. Since {z,} converges to p, there
exists N € N such that max{dx(z,,p),dy(p,z.)} < 9, for all n > N. Since f is
continuous at p, we have max{dy (fzn, fp), dy(fp, fzn)} <, for all n > N. Hence

lim,, fay = fz.
Conversely, let z € X and assume in the contrary that
de > 0 V0 > 0: max{dx(x,p),dx(p,z)} <d, max{dy(fz, fp),dv(fp, fx)} = e

Applying these successively for all & = ¢, we find a sequence {xx} such that

max{dx (zx, p), dx(p, 2x)} < 1 and max{dy (fzx, fp),dy(fp, fzx)} = €. Thus
iy
By assumption, we have
kljm fzr = fp.
Hence, there exists a kg such that for all k > kg, max{dy (fz, fp), dy(fp, for)} <¢

which is a contradiction. 1

Definition 4.1.20. Suppose that (X, dx) and (Y, dy) are dislocated quasi-b-metric
spaces, K € X ,f : K — Y and p € K. Then f is continuous on K iff f is

continuous at p for all p € K.

4.2 Fixed Point Theorems for Cyclic Contractions and Cyclic Weakly

Contractions in Dislocated Quasi-b-Metric Spaces

In this section, we introduce the notions of type dgb-cyclic-Banach con-
traction, dgb-cyclic-IKKannan mapping, type dgb-cyclic-weak Banach contraction
and dgb-cyclic- contraction. Moreover, we prove fixed point theorems for some
nonlinear mappings and give examples which satisfy the theorems in such spaces;

see [43, 46] for more details.

Now, we begin with introducing the concept of a dgb-cyclic-Banach con-

traction.
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Definition 4.2.1. Let A and B be nonempty subsets of a dislocated quasi-b-metric
spaces (X, d), with constant s € [1,00). A cyclicmap T : AUB — AU B is said

to be a dgb-cyclic-Banach contraction and if there exists k € [0, 1) such that
d(T=, Ty) < kd(z,y), (4.2.1)
forall z € A, y € B and sk < 1.

Theorem 4.2.2. Let A and B be nonempty subsets of a complete dislocated quasi-
b-metric space (X,d). Let T be a cyclic mapping. If T satisfies the condition a
dgb-cyclic-Banach contraction with constent k € [0,1), then T' has a unique fized
point in AN B.

Proof. Let = € A, and using contractive condition of theorem, we have

ATz, Tz) = d(T(T), Tx)

< kd(Tz, ),
and
d(Tz,T*z) = d(Tz, T(T=))
< kd(z, Tz).
So,
d(T%z, Tz) < ke, (4.2.2)
and
d(Tz, T?*z) < ka, (4.2.3)

where o = max{d(T'z, z), d(z, Tz)}.
By using (4.2.2) and (4.2.2), we have d(T3z,T%z) < k%c, and d(T?%z, T3z) < k2o
For all n € N, we get

AT, T™%) < ¥ e,



~ Similarly, let n,m € N with m > n, by using the triangular inequality, we have,
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and

d(T"z,T""'z) < k"a.

Let n,m € N with m > n, by using the triangular inequality, we have,

d(T72, Tz} < s [Tz TRyt 5™ 1T g, T 25 + ... 4 (T g, T%)
< (MR o gmonlgme?  gmens2pmed 4y el | opn)
<K TR R L+ BT B e
= (k") (m —n+ Da

< (K" ),

for some £ > m —n + 1. Take n — oo, we get d(T™z, T"z) — 0.

d(T"z, T™z) = (K*")¢a.

Take n — oo, we get d(T"z,T™z) — 0. Thus {T"z} is a Cauchy sequence.

Since X is complete, we have {1z} converges to some z € X.

We note, that {T?"z} is a sequence in A and {T?" 'z} is a sequence in B in a way
that both sequences tend to the same limit z. Since A and B are closed, we have

z€ AN B, and then AN B # @.

Now, we will show that Tz = 2.

By using (4.2.1), we consider

d(T"z, Tz) = d(T(T" z), Tz)
< kd(T™ 'z, 2)

< d(T* ', 2),
Taking limit as n — co in the above inequality, we have

d(z,Tz) < kd(z,Tz) < d(z,T=z).
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And so, d(z,Tz) = kd(z,Tz), where 0 < k < 1. This implies that d(z,Tz) = 0.
Similarly considering from (4.2.1), we get
d(T'z, T%x) = d(Tz, T(T™ 1))
< kd(z, T" 'x)

< d(z, T" 'a).
Taking limit as n — co in the above inequality, we have
d(Tz, z) < kd(T'z, z) < d(Tz, z).

And so, d(T'z, z) = kd(Tz, z), where 0 < k < 1. This implies that d(Tz, z) = 0.
Hence d(z,Tz) = d(T'z, z) = 0, which implies that Tz = z that is z is a fixed point
of T.

Finally, to prove the uniqueness of fixed point, let 2* € X be another fixed

point of T". Thus T'z* = z*. Then, we have

B 2N A TN kd(z, 2*). (4.2.4)
On the other hand,

d(z",z) =WRz", L kd(ZT12T. (4.2.5)

By (4.2.4) and (4.2.5), we obtain that d(z,2*) = d(z*, z) = 0, which implies that

z* = z. Therefore z is a unique fixed point of T. The proof is complete.. O

Ezample 4.2.3. Let X = [-1,1] and T : AUB — AU B defined by Tz = =-.

Suppose that A = [—1,0] and B = [0, 1]. Define the function d : X2 — [0,00) by

lz] vl

d(z,y) = |z -y + — + =
(@y)=le—yl"+ 35+ 13

We see that d is a dislocated quasi-b-metric on X.

Now, let £ € A. Then —1 <2 <0.50,0< F < % Thus, Tz € B.

On the other hand, let z € B. Then 0 < z < 1. So, %1 < 2 £ 0. Thus, Tz € A.
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Hence the map T is cyclic on X, because T'(4) C B and T(B) C A.

Next, we consider

d(Tz,Ty) = |Tz — Ty|* + 3|T'z| + 2|Ty|
1, —=z

=Y, Lz 1y
_15 5|+10|5|+11|5

1 , 1 1
—2—51‘—3}[ +‘5—0|5‘J|+5—5|yl
1 1 1

< —[lz =92+ —|z| + —
< glle =g+ glal + 37 lyl]

< kd(z,y),

for 1 < k < 1. Thus T satisfies dgb-cyclic-Banach contraction of Theorem 4.2.2

and 0 is the unique fixed point of 7.

ping.

Next, we begin with introducing the concept of a dgb-cyclic-Kannan map-

Definition 4.2.4. Let A and B be nonempty subsets of a dislocated quasi-b-metric

space (X, d), with constant s > 1. A cyclicmap T : AUB — AU B is called a

dgb-cyclic-Kannan mapping if there exists r € [0, %) such that

forallz € A, y € B and sr <

d(Tz, Ty) < v(d(z, Tz) + d(z, Ty))- (4.2.6)

1
=

Theorem 4.2.5. Let A and B be nonempty subsets of a complete dislocated quasi-

b-metric space (X, d). Let T be a cyclic mapping that satisfies the condition a dgb-

cyclic-Kannan mapping Then, T' has o unique fived point in AN B.

Proof. Let x € A, and using contractive condition of theorem, we have

S0,

d(Tz,T*z) = d(T'z, T(Tz))

< rd(z, Tz) + rd(T=z, T*z),

d(T2z, Tz) < lLd(Ta:,a,-). (4.2.7)
—
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And from (4.2.7),

d(T?z,Tz) = d(T(Tz), Tz)
< rd(Tz, T?z) + rd(z, Tz)

< —i{—;d(T:c, z) + rd(z, Tx)

g d(Tz, 2)b i d(z, Tx)
-7 1—7r
= . —[d(Tw, ) + d(z, To)},
S0,
d(Tz, T*s) < %ﬁ, (4.2.8)

where 8 = d(Tz,x) + d(z, Tx). By using (4.2.7) and (4.2.8), we have
AT, T%) < ()%,
A

and
-

d(T?z, T?z) < (1 )?B.

— 7

For all n € N, we get that
T AT z) 1 (7T )8,
|
and

(]'.(THSC, Tn+1$) —<— (1 I_ T)nﬁ.

Let n,m € N with m > n, by using the triangular inequality, we have,
d(Tm."C,’Im:E) < Sm_nd(Tm:B,Tm_lfc) + Sm—n—ld(Tm-—lmiTmme) + ... Sd(Tn+l:B,'1ﬂl:B)
S (Sm—nkmAl + Sm—n—-lkm—2 + Sm—n—2km_3 e San+1 +Skn)ﬁ
T r
< n—1 % n—1
< (( Pl ()

= (=) m =+ 1)p

T

e e 1 e L

l1—r l1—17
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L n—1
<(g=)"ép
for some £ > m —n + 1. Take n — oo, we get d(T™z,T"z) — 0.
Similarly, let n,m € N with m > n, by using the triangular inequality, we
have,
-

d(T"z,T™z) < (;—)"7'€P.

Take n — o0, we get d(T"z, T™z) — 0. Thus {T™x} is a Caunchy sequence. Since
X is complete, we have {T"&} converges to some z € X.

We note that {T?"z} is a sequence in A and {T?*"'z} is a sequence in B in a way
that both sequences tend to same limit z.

Since A and B are closed, we have z € AN B, and then AN B # @.

Now, we will show that Tz = z.

By using (4.2.6), consider

d(T"z, T2) = d(T(T" 'z),Tz)

< rd(T™ ', T z) + rd(z, Tz).
Taking limit as » — co in above inequality, we have
d(z,Tz) <rd(z2,Tz)

Since 0 < r < 3, we have d(z,Tz) = 0.

Similarly considering from (4.2.6), we get

(T, T%) =d{T2,T(T" %))

< rd(2,T2) + rd(T" =z, T"z).
Taking limit as n — oo in the above inequality, we have
d(Tz,2) <rd(2,Tz)

Since d(z,Tz) = 0, we have d(z,Tz) = 0.
Hence d(z,Tz) = d(Tz,z) = 0, and then Tz = z and z is a fixed point of T.
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Finally, we prove the uniqueness of fixed point. Let z* € X be another fixed
point of T. Thus T'z* = z*. Then, we have d(z, z) = d(z*, z*) = 0, by assumption.

we get, that

d(z2") =d(Te,T7)
< rd(z,T2) +rd(z*, T2")
= rd(z, z) #rd(z*,Z")

=2 (4.2.9)
On the other hand, we have

d(z*,z) = d(T'z*,Tz)
<rd(z*,Tz") + rd(z,Tz)
= rd(2%,257 1d(z, 2)

0. (4.2.10)

By (4.2.9) and (4.2.10), we obtain that d(z, 2*) = d(2*,2) = 0, and so z* = z

Therefore z is a unique fixed point of T'. This proof is completes. O

Ezample 4.2.6. Let X = [-1,1] and T : X — X defined by Tz = =*. Suppose
that A =[—1,0} and B = [0, 1]. Define the function d : X* — [0, 00) by

d(z,y) = |z — y|* + 3| +2]yl.

We see that d is a dislocated quasi-b-metric on X.

Now, let € A. Then —1 <z <0. So, 0 < 2% < 2. Thus, Tz € B.

On the other hand, let z € B. Then 0 < z < 1. So, '71 £=F < 0. Thus, Tz € A.
Hence the map T is cyclic on X, because T'(A) C B and T(B) C A.

Next, we consider

d(Txz, Ty) = |Tx — Ty|® + 3|Tz| + 2|Ty|
T Y T ~y
— {a=—s e = — 2___
== + 8] +2]
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1 5 - B
"*;@h?—?ﬂ +:;|-T|‘|‘§|y|

< 5+ 19D2 + 2l + 2

2 2 3 2

o Ay S O 4

< el + gl + Slal + Zlyl
2 64 23 64 23

£ —(I—|3* +—]: —ly?+=

< gl + SHlall + gl + =l

64

2 64 o 23 2, 23
= o5 (g1 + el + g lul” + = viD)
= 2l ol + 3ol + 2zal) + [l + 2yl + 3yl + 211D

2
o5 (= Tl -+ 3la] + 2\Tal] + [ly = Tyl* + 3Jy| + 2|Tyl))

= r(d(z,Tz) + d(y, Ty)),
for 2—23- Efr = % Thus T satisﬁes dgb-cyclic-Banach contraction of Theorem 4.2.5

and 0 is the unique fixed point of 7T
Furthermore, we begin with proving a fixed point theorems for dgb-cyclic-
weak contractions.

Definition 4.2.7. Let A and B be nonempty closed subsets of a dislocated quasi-b-
metric spaces (X, d). A cycliemap T : AUB — AUB is said to be a dgb-cyclic-weak
contraction if, for all z € A, y € B such that

sd(Tz, Ty) < d(z,y) — P(d(z,y)), (4.2.11)

where 9 : [0,00) — [0,00) is a continuous and nondecreasing function such that

¥(t) = 0 if and only if £ = 0.

Lemma 4.2.8. Let (X,dx) and (Y,dy) be dislocated quasi-b-metric spaces, A and
B be nonempty closed subsets of a dislocated quasi-b-metric spaces (X,d). If T is

a dqb-cyclic-weak contraction, then T is continuous.

Proof. Let € > 0, all z,p € AU B. Suppose that max{dx(z,p),dc(p,z)} < 6.

Choose € = i:. Since T is a dgb-cyclic-weak contraction, we have

Sd(T"Bv Tp) S d(a': p) - ¢(d($) p))
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< d(z,p) < 4d
and
sd(Tp,Tz) < d(p,z) — P(d(p, z))
<d(p,z) <.

So, d(T'z, Tp) < € and d(Tp,Tx) < €. Thus T is continuous at p, and hence T is

continuous on AU B. O

Now, we present a fixed point theorem related to dgb-cyclic-weak contrac-

tions.

Theorem 4.2.9. Let A and B be nonempty subsets of a complete dislocated quasi-

b-meiric space (X, d). Let T be a dgb-cyclic-weak conlraction. Then, T has a unique

fized point in AN B.

Proof. Let x € A be fixed. Using contractive condition in assumptions, we have
d(?z,Tz) < sd(T*z,Tx)
=Lz} Tx)

< d(Tz,z) — P(d(Tz, x)),

[N (4.2.12)
and
d(Tz, T?) < sd(Tx, Tx)
= sd(T, T(T'z))
< d(z, Tz) — P((z, 1)),
< d(z, Tx). (4.2.13)
So,

d(T?s, T%z) < d(T?x, Tx) — ¢¥(d(T?z, Tz)), (4.2.14)
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and

d(T*z, T%z) < d(Txz, T%x) — Y(d(T=, T?x)). (4.2.15)
For all n € N, we get

d(T™ 2, P* 1) < d(P™ 2, T) — P(d(T™ 2, T"c)) (4.2.16)
and

(T, T"2g) < d(T"z, T" &) — P(d(T"z, T ). (4.2.17)

Set <, = d(T™"'z, T"z) and 7, = d(T"z, T""'z).
By inequalies (4.2.16) and (4.2.17), we get

B 15 T 'd)(gn) < G (4.218)
and
Tni1 S Tn — 1:[)(7_11) S Tn- (42‘19)

Thus {,} and {7} are decreasing sequences of non-negative real numbers, and
hence possess a lim, 006 = ¢ = 0 and lim,, o7 = 7 > 0. Suppose that ¢ >
0. Since 1 is nondecreasing, ¥(s,) > ¥(s) > 0. By inequality (4.2.18), we have
Sut1 < Sn — (s). Thus cyim < Sm — N9P(s), a contradiction for N large enough.
Therefore ¢ = 0. Similarly, we have 7 = 0. Next, we prove that the sequence {T"z}
is Cauchy. Suppose that {7z} is not a Cauchy sequence, then there exist € > 0 and
subsequence {T™*z} and {T™z} with my > n; > n such that d(T™z, T"*z) > €

and d(T™ 'z, T™z) < e. Now, we consider

sd(T™z, T™ ) < d(T™ 2, T 'z) — p(d(T™ 'z, T™ 'z)) (4.2.20)

< d(T™ 'z, T 'x) (4.2.21)
which implies that

se < d(T™ 'z, T ). (4.2.22)
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Take limit inferior in (4.2.22) as k — oo, we get
¢s < lim inf d(T™ g, T™ 'z). (4.2.23)
We have

d(T’“"_l x, 1 z)<s d(T""‘_l z, T™z) + sd(T™*z, Tk~ z)

< se+sd(T™x, T z). (4.2.24)
Take limit superior in (4.2.24) as k — oo, we get

lim sup d(T™ 'z, T 'z) < se. (4.2.25)

k—oo

By (4.2.23) and (4.2.25), we get

Jim . s A Sl A (4.2.26)

Letting %k — oo in (4.2.20), by property of 9 and (4.2.26), we get
se < se — 1P(se) < se (4.2.27)

which is a contradiction. Hence {T™2} is a dgb-Cauchy sequence. Since (X,d)
is complete, we have {T™z} converges to some z € X. We note, that {7z} is
a sequence in A and {T?* 'z} is a sequence in B in a way that both sequences
tend to same limit z. Since A and B are closed, we have 2 € AN B, and hence
AN B # @. The continuity of T implies that the limit is a fixed point. Finally,
to prove the uniqueness of fixed point, let z* € X be another fixed point of T.

Therefore T'z* = 2*.

Then, we have

d(z,2*) = d(Tz,Tz") < sd(Tz,Tz") < d(z,2") — ¥(d(z,27)) < d(z,7).
(4.2.28)
On the other hand,
d(z*,2) = d(Tz*,Tz) < sd(Tz*,Tz) < d(2*,z) —¥(d(z,2")) < d(2", 2).
(4.2.29)
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By (4.2.32) and (4.2.29), we obtain that d(z, z*) = d(z*, z) = 0, this implies that

z* = z. Therefore z is a unique fixed point of T. This completes the proof. DO

Example 4.2.10. Let X = [~1,1) and T': AUB — AU B be defined by Tz = 5%,
and 9(t) = Z. Suppose that A = [-1,0] and B = [0,1]. Define the function

d: X?* - [0,00) by
-l
10 11-

We see that d is a dislocated quasi-b-metric on X (see Example 4.1.3).

d(@,9) = o — yl* +

Let € A. Then —1 <2 < 0. So, 0 < 5% < 3. Thus, Tz € B. On the other hand,
let x € B. Then 0 < z < 1. So, —_§l < F <0. Thus, Tz.€ A
Hence the map T is cyclic on X, because T(A) € B and T(B) C A.

Next, we consider

1 1
2d(Tz, Ty) = 2(|Tx = Tyl2 & —ITfL‘I +71T9)

e 14
:2 _— e
(| 3 | %+ 11| 3 )
19 300 : 100
%(ml % 3 Yhik 1470| 2| H 539|y|)

— 2 —_— e —_—
X ,O(I% ul” + Olll i 11Iyl)
1 1 1
TN 3 b o € A a\wa TS 4
= o =P+ ol + il =l — o + 1glel + o)
= d(z,y) — ¥(d(2,9))-
Thus T satisfies dgb-cyelic-weak contraction of Theorem 4.2.9 and 0 is the unique

fixed point of T

Definition 4.2.11. Let A and B be nonempty subsets of a dislocated quasi-b-
metric spaces (X, d), with constant s > 1. A cyclicmap T : AUB — AUB is said

to be a dgb-cyclic-¢-contraction if there exists k € [0,1) such that
sd(Tz, Ty) < ¢(d(z,y)), (4.2.30)

for all z € A, y € B, where ® is the family of non-decreasing functions: ¢ :
[0,00) — [0, 00) such that ) >, ¢"(£) < oo and ¢(t) < () for each ¢ > 0, where n

is the n-th iterate of ¢.
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Theorem 4.2.12. Let A and B be nonempty closed subsets of a complete dislocated
quasi-b-metric space (X,d). Let T be a a dgb-cyclic-¢-contraction. Then, T" has a
unique fized point in AN B.

Proof. Let z € A, then using contractive condition of theorem, we have
sd(T?z, Tx) = sd(T(Tx), Tx)
< $(d(Tz, x)),
and
sd(Tx, T?x) = sd(Tx, T(Tx))
< ¢(d(=z, T=)).
Inductively, we have for all n € N, we get
Srld(Tn—}-lI] T"fﬂ) S (f)n(d(T:E, iB)),

and

s*d(T"z, T z) < ¢™(d(z, Tx)).

Let € > 0 be fixed and n(¢) € N, such that
Tisne@"(d(Tz,2)) <,

and

Enz,,(ﬁ)d’n(d(m‘, T:L)) < €.

Let n,m € N with m > n > n(¢), using the triangular inequality, we have:

d(T™z, T"z) < s™ d(T™z, T™ 'z) + s™ " d(T™ ', T™ 25) + ... + sd(T" 'z, T"z)
< sV (T2, T™ '2) + 5™ 2d(T™ 2, T™ %2) + ... + s™d(T" Mz, T"x)
< ¢ N (d(Tw, ) + "2 (d(Ts, ) + ¢ (d(Tz, %)) + ... + ¢"(d(Tz,))
= B¢k (d(z, Tx))
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< Busn¢"(d(z,Tz)) <e.
Similarly, we obtain that
d(T"z,T"z) < €.

Thus {T"z} is a Cauchy sequence. Since(X,d) is complete, we have {T"z} con-
verges to some z € X. We note that {T?"z} is a sequence in A and {T?* 'z} is
a sequence in B in a way that both sequences tend to same limit z. Since A and
B are closed, we have z € AN B, and then AN B # . Now, we will show that
Tz = z. By using (4.2.30), consider

d(z,T2) < sd(z, T*z) + sd(T*"z, Tz)

< sd(z, T*x) + d(T*" 'z, 2).

Taking limit as n — oo in above inequality, we have
d(z,Tz) = 0.
Similarly considering from (4.2.30), we get that

d(Tz, 2) < sd(Tz, T™x) + sd(T*"z, 2)

< d(z; T 2a) + sd(Tz, 2);
Taking limit as n — co in above inequality, we have
d(Tz,z) =0.

Hence d(z,Tz) = d(Tz,z) = 0, this implies that Tz = z that is z is a fixed point
of T. Finally, to prove the uniqueness of fixed point, let z* € X be another fixed

point of T such that T'z* = z*. Then, we have

d(z*,2) < sd(Tz*,T"z) + sd(T"z, Tz) < ¢(d(T=", T"z)) + ¢(d(T"x,T2)),
(4.2.31)
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and on the other hand,

d(z,2*) < 8d(Tz, T"z) + sd(T"z, T2*) < $(d(Tz, T"x)) + $(d(T"x, Tz")).
(4.2.32)

Letting n — oo, we obtain that d(z, 2*) = d(2*, z) = 0, this implies that 2* = 2.

Therefore z is a unique fixed point of T". This completes the proof. O

Ezample 4.2.13. Let X = [—1,1} and T: AU B — AU B be defined by Tz = 3Z.
Suppose that A =[—1,0] and B = [0, 1]. Defined the function d: X? — [0, c0) by

lz| | |y
dwg) =le -yt + 2 W

We see that d is a dislocated quasi-b-metric on X, where s = 2. Let & € A. Then
—1 <Br| <" Sof 0 £ Zp< :,,1- Thus, Tw € B. On the other hand, let 2 € B. Then
0<z<1 8o, 5 <3E<0. Thus, Tz € A

Hence the map T is cyclic on X, because T(A) C B and T'(B) C A.

Next, we consider

sd(Tz, Ty) = 2d(Tz, Ty)

1 1
LI (1T T £ L P A ST
2(| T +1OIT'LI+11| y|)

= | W N 1 —
:2 B e — —_— —— ) —
“5 5|+10|5 +11'5|)
2,3 2 N 3
- e )

2 5 5
< —(|lz — = —=13 e
< 2z — ol + Sslol + v
2 g 1 1
—§(|$—yi +E|$l+ﬁ[3}|)

= 9(d(,9)),

where the function ¢ € @ is ¢(t) = 2. Clearly, 0 is the unique fixed point of T.

The following corollary can be taken as a particular case of theorem 4.2.12
if we take ¢(t) = kt for all ¢ > 0 and some k € [0, 1). That is the dgb-cyclic-Banach

contraction, in the setting of dislocated quasi-b-metric spaces.
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Corollary 4.2.14. Let A and B be nonempty closed subsets of a complete dislocated
quasi-b-metric space (X,d), with constant s > 1. Let T be a dgb-cyclic-Banach

contraction; that is, if there exists k € [0,1) such that
d(Tz,Ty) < kd(z,y). (4.2.33)

forallz € A, y € B and sk < 1. Then T has a unique fized point in AN B.



CHAPTER V

FIXED POINT THEOREMS IN HYPERBOLIC SPACES

5.1 Fixed Point Theorems for Fundamentally Nonexpansive Mappings
in Hyperbolic Spaces

In this section, we prove some properties of the fixed point set of funda-
mentally nonexpansive mappings and derive the existence of fixed point theorems
as follows results of Salahifard, et al. [47] in hyperbolic spaces. Moreover, we
prove convergence and A-convergence theorems of the generalized Krasnoselskij-
type iterative process to approximate a fixed point for fundamentally nonexpansive
operators in a hyperbolic space and show that if the hyperbolic space that satisfies
the A-Opial condition, then the fixed points set of such a mapping with the convex

range is nonempty; see [48] for more details.

Lemma 5.1.1. Let K be a nonemply bounded closed convex subset of a strictly

convex complete hyperbolic space X. Let T : K — K be fundamentally nonecpansive

and F(T) # 0, then F(T) is A-closed and convez.

Proof. Suppose that {,} is a sequence in #(T") which A-converges to some y € K.
We show that y € F(T'). Since

d(zn, Ty) = d(T?z,, Ty) < d(Tz,,,y) = d(z0,y),

we have

limsup d(z,, Ty) < limsup d(z,,y).

n—00 n—oeo

Thus Ty = y. Hence F(T) is closed.
Next, we will show that F(T) is convex, let z,y € F(T) and « € [0, 1]. Then,

d(z,Tz) = d(T?x,Tz) < d(Tz, z) = d(z, 2)

and

d(y,Tz) = d(T?y,Tz) < d(Ty,z) = d(y, z)
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For z = W(z,y, a), we have

d(z,y) < d(z,T7) + d(Tz,v)
< d(z,z) + d(z,y)
= d(z, W (z,9,0)) + d(W (3,3, 2),3)
< (1 - a)d(z,2) + ad(z,y) + (1 — @)d(z,y) + ad(y,y)

Thus d(z,Tz) = d(z,2) and d(Tz,y) = d(z,vy), because if d(z,Tz) < d(z,z) or
d(Tz,y) < d(zy), then it contradiction to d(z,y) < d(z,y). Therefore Tz =
W(z,y, B) for some S € |0, 1] But, Hence

(1 — B)d(z,y) =d(z,Tz) = d(z,z) = (1 — a)d(z,y)

(1 - Bd(a,5) = dy, T2) = d(y, ) = (1 - a)d(zr)
Therefor Tz = z, and then W(z,y,a) € F(T). Hence F(T) is convex.
O

Lemma 5.1.2. Let K be a nonemply bounded closed subset of a complete uniformly
convez hyperbolic space X with monotone modulus of uniform convezity 7, and let
{z.} be a sequence in K. If T : K - K is fundamentally nonezpansive, and

lim, ., d(z,, T'z,) = 0, then F(T) is nonemply.

Proof. By Lemma 2.2.6, the asymptotic center of any bounded sequence in K,
particularly, the asymptotic center of approximate fixed point sequence for T' is in
K. Let A({z,}) = {y}, we want to show that y is a fixed point of 7. By Lemma
2.2.10, we get )

dizy, Ty) < 3d(%n, Tx,) -d{Zn, ¥),

hence

limsup d(z,, Ty) < limsupd(z,,y).

n—oo n—oo

By the uniqueness of the asymptotic center Ty = y. O
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Theorem 5.1.3. Let K be a nonemply bounded closed strictly convex subset of
complete uniformly convex hyperbolic space X with monotone modulus of uniform
convezity 1, and let {z,} be a sequence in K. If T : K — K is fundamentally
nonexpansive and lim,_,., d(zn, T2,) = 0, then F(T) is nonempty, A-closed and

COTWER.

Proof. By Lemma 5.1.1 and 5.1.2, we get F'(T') is nonempty A-closed and convex.
O

Definition 5.1.4. Let K be a nonempty subset of a metric space X and let T be
a self-mapping of K. A sequence {z,} in K is called an epprozimate fived point

sequence for T if lim,,_, o d(zp, Tzn) = 0.

Lemma 5.1.5. Let T be a fundamentally nonexpansive self-mapping on a nonempty
subset K of a complete hyperbolic space X, and let T(K) be bounded and convez.
Define a sequence {Tx,} in T(K) by z1 € K and Taxpyy = W(T?zp, T, ) for
alln € N, where a € (0,1). Then {T'x,} is an approzimate fived point sequence for
¥,

Proof. For any n € N, we have
d{ TSt B S Prme, Ta2)
because T is fundamentally nonexpansive. By Lemma 2.2.8, we have
lim d(Tz,, T*z,) = 0.
n—oo
Hence {T'z,} is an approximate fixed point sequence for 7". O

Proposition 5.1.6. Let T : K — K be a fundamentally nonexpansive mapping,
where I is a nonempty subsel of a complete hyperbolic space X. Then F(T) is
closed. Moreover, if X is strictly convez, and K or T(K) is convez, then F(T) is

also conver.
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Proof. We first show that F'(T) is closed. Suppose that F(T) is not closed. Then
there is an element z € cl(F(T)) but = & F(T). Set r = @. Since z € cl(F(T)),
we have B(z,7) N I°(T) is nonempty. Let u € B(z,) N F(T). Then d(z,u) < 7
and Tu = v hold. By Remark 2.2.9, we get that

d(z, Tx) < d(z,u) + d(u, Tz) < d(z,w) + d(u,z) < 2r = ?_‘?_(ﬂz;i’f), (5.1.2)

which is a contradiction. Thus #(T’) is closed. Assume that X is strictly convex.
To show that F(T) is convex. Let A € (0,1) and z,y € F(T) with = # y. By

definition of hyperbolic spaces, we have

d(z,y) < d(z, T(W(z,y,N))) + d(T(W(z,9,N)),y)
<d(z,W(z,y,N) +dW(z,y,7),9)
< (1 — Nd(z, z) + Ad(z,y) + (1 — N)d(z, y) + Ad(y, y)

. (51.3)

so d(z, T(W(z,9,)\)) + d(T(W(z,y,0),y) = dz,W(z,y,A)) + dW(z,y,),y)-

Thus dlat, T(W (3, V) = d(z, W (2,3, X)) and d(TW (@,3,0)),3) = dW (2,3, 1),
because if d(z, T(W (2, v, \))) < d(z, W (z, y, \)) or d(T(W (2,9, X)), v) < d(W(z,3,1),9),
then it contradiction to d(z,y) < d(z,y). Therefore T(W(z,y, a)) = W(z,y,a)
W(z,y, ) € F(T). Hence F(T) is convex. 0

Proposition 5.1.7. Let K be a nonempty subset of a uniformly convex hyperbolic

space X, and let T be a fundamentally nonezpansive self-mapping from K onto K.

If T(K) is bounded and closed, then F(T) is nonempty.

Proof. Define a sequence {Tz,} in T(K) by x; € K and Tzpyq = W(T T, Py, 12)
forn=1,2,3,.... By L('amma 2.2.6, the asymptotic center of any bounded sequence
in T'(K), particularly, the asymptotic center of approximate fixed point sequence
for T is in K. Let A({T=z,}) = {y}. Then there exists € X such that Tz = y, we

want to show that y is a fixed point of T. We consider

d(Txy, T?z) < 3d(TTn, T?x,) + d(Tx0, Tx),
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hence

lim sup d(Tz,, T?z) < limsup d(T'z,, T'z).

n—00 n—oo

By the uniqueness of the asymptotic center T2z = T'z. So, y is a fixed point of T.
Therefore F(T) is nonempty. O

By Proposition 5.1.6 and 5.1.7, we obtain the desired result.

Theorem 5.1.8. Let K be a nonempty subset of a uniformly convex hyperbolic
space X, and let T' be a fundamenlally nonexpansive self-mapping of K and onto.
If T(K) is bounded and closed, then F(T') is nonempty and closed. Moreover, if K

or T(K) is convez, then F'(T') is also convex.

Ezample 5.1.9. Let X be a linear space over the field R. Define the function d :

X?* — [0,00) by o

d(z,y) = ||z — 9|

such that || - || : X — [0,00) be a uniformly convex Banach space. Let K be a
nonempty bounded closed convex subset of a Banach space. We see that d is a

hyperbolic space on X, where
W(z,y,a) = (1 —a)z + ay.

Define T : K — K by T'(z) = 7. Then T is fundamentally nonexpansive. By

previous theorem, we get F'(T) # @, then F(T) is closed and convex.

Theorem 5.1.10. Let K be a nonempty compact subset complete hyperbolic space
of X. Assume that T : K — K is fundamentally nonexpansive and T(K) is convez.

Then {Tz,} in T(K) defined by z, € K and
Txy = W(T?x,, Tz, o) (5.1.4)

forn=1,23, .., where « € (0, 1), converges to a fized point of T.
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Proof. Since K is compact, there exists a subsequence {T'z,, } of {T'z,} such that
limy 00 Ty, = z for some z € K. By (5.1.4), we have limy_,, T?z,,, = z. Since T
is fundamentally nonexpansive, we have d(T?z,,, Tz) < d(T%y,, z) for k =1,2,3...
. This implies that limy_,o T%%,, = Tz, hence z is a fixed point of 7. On the other

hand, we have

(i(Tﬂ:n.H ; z) = d(LV(Tzﬁ:n) Ty, Q)JTZ)
S ad(T2$m TZ) 5 (1 — a)‘d(T-T:u Z)

< d(Tzn, 2) (5.1.5)

for all n € N. It follows that the sequence {d(T'z,, 2)} is bounded and decreasing,

hence it is convergent. Since lim,,_,o T'zn, — 2, we have lim,,_, Tz, = z. O

By definition of weak compac in a Banach space, we introduce A-compact

in a hyperbolic space.

Definition 5.1.11. Let K be a nonempty subset of a hyperbolic space X. Then K
is said to be A-compact if for each sequence {z,} in I, there exists a subsequence

{2n,} of {x,} which A-converges to an element in K.

By definition of Opial condition [49] in a Banach space, we introduce A-

Opial condition in a hyperbolic space.

Definition 5.1.12. Let X be a complete hyperbolic space. Then X is said to
satisfy the A-Opial condition if whenever a sequence {z,} in X A-converges to
z € X, then

* limsup d(z,, ) < limsup d(z,,y)

n—eo n—eco

holds for all y € X with = # y. Morcover, for any uniformly convex complete

hyperbolic space has the A-Opial condition.

Theorem 5.1.13. Let K be a nonempty A-compact subset of a complete hyperbolic
space X with the A-Opial condition. Assume that T : K — K is a fundamentally
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nonezpansive mapping and T(K) is conver. Then {Tz,} in T(K) defined by z, €
K and
Txpyr = W(T?z,, Tx,, )

forn=1,2,3,..., where @ € (0,1), A-converges to a fized point of T.

Proof. Since K is A—compact, there is a subsequence {T'z,, } of {T'z,} such that
Alim,, 00 T2y, = z € K. We next show that z is a fixed point of T Suppose
that Tz # z. By Lemma 2.2.10, we obtain that d(Tz,,,Tz) < 3d(Tza,, T?zy,) +
d(T,,, z) for n = 1,2,3, ... . The above inequality implies that

limsup d(Tzn,, Tz) < limsup d(Tx,, , 2),

k—oco k—o0

which is a contradiction the A-Opial condition. Hence Tz = z. Next, we will show
that A-lim,, o Tz, = 2z € K. Suppose, on-the contrary. So, there is a subsequence
sequence {T@y,;} of {T'z,} such that A-lim; ., Ty, = y with z # y. Similarly, one
can show that y is a fixed fixed of T. Consider

lim d(Tz,,2) =limsup d(Tz,,, z)

n—oo E—s

< limsup d(TTny, ¥)

k—co

= limsup d(Tzn;, )

j—oo

< limsup d(Twp;,; 2)

§—00
= lim d(Tz,, 2), (5.1.6)
which is a contradiction. Therefore, A-lim,,_o, T'z,, = =. O

Theorem 5.1.14. Let K be a nonempty A-compact subset of a uniformly convex
complete hyperbolic space X. Assume that T : K — K s fundamentally nonez-
pansive mapping, and T(K) is convez. Then {T'z,} in T(K) defined by x, € K
and

Txny1 = W(T?x,, Tz, )

forn=1,2,3,..., where o € (0,1), A-converges to e fized point of T.
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Proof. Since K is A-compact, there is a subsequence {T'z,, } of {Tz,} such that
Adim,_, T2, = z € K. We next show that z is a fixed point of 7" Suppose that
Tz # z. Using Lemma 2.2.10, we obtain d(Tz,,, Tz) < 3d(T'Tpn,, T?2n, ) + d(Th,, 2)
for n =1,2,3,... . The above inequality implies

limsup d(Tz,,, Tz) < limsupd(Tz,,, 2).

k—o0 k—oo0

By the uniqueness of the asymptotic center, T'z = z. Next, we will show that
A-lim, o, T, = z € K. Suppose, for a contradiction, that there is a subsequence
sequence {T@y,} of {T'z,} such that A-lim;_,o, T;m; = y with z # y. Similarly, one

can show that y is a fixed fixed of T". Consider

lim d(T'zp,z) = limsup d(T'z,, , 2)

n—o0 k—co

<limsupd(Tz,,,y)

k—oco

= limsup d(T'Tm;,y)

g—oo

< limsup d(T%y;, 2)

j—00
=Ny Rz, , 2), (531.7)
n—0C0
which is a contradiction. Therefore, A-lim,, o T2, = 2. (|

5.2 Fixed Point Theorems for Generalized Nonexpansive Mappings in

Hyperbolic Spaces

In this section, we prove fixed point theorems for generalized nonexpansive
mappings and approximate a fixed point for such mappings in hyperbolic spaces.
Furthermore, we prove- some properties of a generalized nonexpansive mapping in

hyperbolic spaces.

Proposition 5.2.1. Let K be a nonempty and convez subset of a strictly convex
hyperbolic space X. If T : K — K satisfies condition C, then F(T) is closed and

convew.
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Proof. Suppose that {z,} is a sequence in F(T) which converges to some z € K.
We will show that z € F(T) By Remark 2.2.12, we get that

dlza, T2) £ 3d(2n, TEn) + A2y, %), (5.2.1)
50
limsup d(z,, T'z) < limsup 3d(zn, T'z,) + limsup d(z,, ). (5.2.2)

Since {z,} C F(T), we have limsup,, _,, d(z,, Tz) < limsup,_,, d(z,, 7). By the
uniqueness of the limit point implies Tz = z, and then F(T') is closed. Next, we

will show that F(T) is convex. Let z,y € F(T), and a € (0,1). We get that

d(z,y) < d(z, T(W(z,y,a))) + d(T(W(z,y,2)),y)
< d(g": W((?I, Y, CB)) + d(W(“Ba Y, Oz), y)

< d(z,y). (5.2.3)
‘We consider

d(x, T(W(z,y, @) < 3d(z,Tz) + d(z, W(z,y, o))

< d(z, W(z,y,e)) (5.2.4)
and

d(y, T(W (z,y, a))) < 3d(y, T'y) + d(y, W (z,, @))

< d(y, W(z,9,0)), (5.2.5)

we obtain that

d(z, T(W (2,3, ))) = d(z, W (z,3,0)) and d(T(W(z,9,0)),9) = d(W(z,9,),3),
because if d(z, T(W (=, ;;;, a))) < d(z, W(z,y,a)) or d(T(W(z,y,a)),y) < d(W(z,y,a),y),
then which is contradiction to d(z,y) < d(z,y). Since K is strictly convex, we have

T(W(z,y,a)) = W(z,y, ), so W(z,y,a) € F(T). Therefore I'(T) is convex. U

Theorem 5.2.2. Let K be a nonemply closed and conver subsel of a complete

uniformly convez hyperbolic space X, with monotone modulus of uniform convezity
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7. Suppose that {z,} is a sequence in K, with d(z,,Txz,) — 0, and T : K — K
satisfies condition C. If A({z,}) = {z}, then z is a fized point of T. Moreover,
F(T) is closed and convez.

Proof. Assume that there exists the approximate fixed point sequence {z,}. By
Lemma, 2.2.6, the asymptotic center of any bounded sequence is in K has a unique

asymptotic center in K. Let A({z,}) = {z}. We will show that © = T'z. We writes
d(zy, Tz) < 3d(zniLm,) Ld(z,, T), (5.2.6)
by Remark 2.2.12. So,

lim sup d(z,,Tz) < limsup 3d(z,, T'z,) + limsup d(z,, T)

n—co n—eo n—oo

= = limsupd(z,, z)- (5:2:7)

n—00

The uniqueness of the asymptotic center implies Tz = z. Moreover, F(T') closed

and convex, by the proof in Proposition 5.2.1. O

Theorem 5.2.3. Let K be a nonemply closed and convex subset of a complete
uniformly convex hyperbolic space X, with monotone meodulus of uniform convezity

n. If T : K — K satisfies condition C, then F(T') is nonempty closed and convez.

Proof. Suppose that {z,} is a sequence in K defined by z; € K and
Tpy1 = W(Tzp, @, @) for all n € N, where a € [%, 1). By the assumption, we have

1
id(g—:mTfnn) & ad(mrn T:r'n) = d(xm $n+1)

for z; € K. Thus,
d(Tmn) Tmn+1) = d(mm mn+l)-

So, by Lemma 2.2.8, we obtain that

d(zy, Tx,) — 0.
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By Lemma 2.2.6, we let A({z,}) = {z}. So,
d(z,, Tz) < 3d(zy, Tx,) + d(zy, T). (5.2.8)
by Remark 2.2.12. Thus,

lim sup d(z,, Tx) < limsup 3d(z,, Tz,) + limsup d(z,, z)

n—eo n—co n—co

= lim sup d(x,, T)- (5.2.9)

n—oo

The uniqueness of the asymptotic center implies Tz = . Moreover, F(T') closed

and convex, by the proof in Proposition 5.2.1. O

If we replace the property of a bounded set by bounded sequence, we have

corollarys as follows:

Corollary 5.2.4. Let K be a nonempty closed and conver subset of a complete
uniformly convex hyperbolic space X, with monotone modulus of uniform convexity
7. Suppose that {z,} is a bounded sequence in K with d(z,,Tz,) = 0. If T': K —
K satisfies condition C and A({z,}) = {z}, then z is a fized point of T. Moreover,
F(T) is closed and convez.

Corollary 5.2.5. Let K be a nonempty closed and convex subset of a complete
uniformly convex hyperbolic space X, with monotone modulus of uniform convexity

7. If T : K — K salisfies condition C, then F(T) is nonemply closed and convez.

Proposition 5.2.6. Let K be a nonempty and convex subset of a strictly convex
hyperbolic space X. Suppose that T : K — K satisfies by one of the conditions
SKC, KSC, SCC and €5C. Then F(T) is closed and convez.

Proof. Suppose that {z,} C F(T) which converges to some z € K. We show that
a € F(T) By Lemma 2.2.13, we get that

d(z,, Tx) < 5d(z,, Tz,) + d(z)0, T), (5.2.10)
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and so

lim sup d(z,, Tz) < limsup 5d(z,, T'z,) + limsup d(z,, x). (5.2.11)

n—o0 n—00 n—00

Thus, limsup,,_, d(z,, Tz) < limsup,_,., d(zs, ). The uniqueness of the limit
point of K, implies Tz = z. Therefore F(T) is closed. Now, we will show that
F(T) is convex. Let z,y € F(T) and a € [0,1], we get

d(z, T(W(z,y, @))) < 5d(z, Tz) + d(z, W(z,y,))

< d(z, W(z,y, a)) (5.2.12)
and

d(y, T(W(z,y,0))) < 5d(y, Ty) + dy, W (z,y, a))

<Ay, Wiz, v, ). (5.2:13)
‘We consider

d(z,y) < d(z, T(W(z,y, a))) + d(T(W(z,y,a)),y)
< d(z,W(z,y, @) + dW(z,y, o),y)

< d(z,y). (5.2.14)

Hence, d(z, T(W (3,3, ))) = d(z W (2, 3, 0)) and d(T(W (2,9, o)), ) = d(W (2,1, ), ),
because if d(z, T(W (z, y, a))) < d(z, W(z,y, ) or d(T(W (z,y, a)),y) < d(W(z,y,a),y),
then which is contradiction to d(z,y) < d(z,y). Since K is strictly convex, we have
T(W(z,y,a)) = W(z,y,a), and so W(z,y,a) € F(T). Therefore F(T) is con-

vex. O

Theorem 5.2.7. Let .}( be a nonempty closed and convex subset of a complete
uniformly convez hyperbolic space X, with monotone modulus of uniform convewity
7. Suppose that {z,} is a sequence in K with d(z,,Tz,) — 0, and T : K — K
satisfies by one of the conditions SKC, KSC, SCC and CSC. If A({z,}) = {z},

then z is a fized point of T. Moreover, I'(T) is closed and convez.
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Proof. By Lemma 2.2.6, the asymptotic center of any bounded sequence is in K.
Let A({z.}) = {z}. We show that z is a fixed point of 7. By Lemma 2.2.13, we

get
dle., Tn) < 5d{ma; Ts) + dln, z). (5.2.15)
Thus,

limsup d(z,, Tx) < limsup 5d(z,,, T'x,) + limsup d(z,, )

n—oo n—0c0 n—co

= lim sup d(z, ®) (5.2.16)

n—oo
The uniqueness of the asymptotic center implies T’z = x. Morcover, F(T') is closed

and convex, by the proof in Proposition 5.2.6. O

If we replace the property of a bounded set by bounded sequence, we have

corollary as follows:

Corollary 5.2.8. Let K be a nonemply closed and convez subsel of a complete
uniformly convez hyperbolic space X, with monotone modulus of uniform convezity
7. Suppose that {z,} is a bounded sequence in K with d(z,,Tx,) — 0, andT : K —
K satisfies by one of the conditions SKC, KSC, SCC and CSC. If A({z.}) = {=},

then z is a fived point of T. Moreover, F(T) is closed and convez.

Corollary 5.2.9. Let K be a nonempty closed and conver subset of a complete
uniformly convex hyperbolic space X, with monotone modulus of uniform convezity
7. Suppose that {z,} ts a sequence in K wilh d(xy, Txy) — 0, and T : K — K
satisfies conditions E,. If A({z,}) = {z}, then = is a fized point of T. Moreover,

F(T) is closed and convez.

Corollary 5.2.10. Let K be a nonempty closed and convex subset of a complete
uniformly convex hyperbolic space X, with monotone modulus of uniform convezity
n. Suppose that {x,} is a sequence in K with d(z,,Tz,) — 0, and T : K — K
satisfies conditions Cy. If A({z,}) = {z}, then  is a fized point of T. Moreover,

F(T) is closed and convez.
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Definition 5.2.11. Let The {z,} be a bounded sequence in a hyperbolic space
X. A selfmap T on a nonempty subset K of X, is said to be a nonincreasing-

asymptotic-mapping for a sequence {z,}, if
dlz; Twn) < d{w5);

where Ax({z.}) = {z}.

Theorem 5.2.12. Let K be a nonempty closed convex subset of a complete uni-
formly convex hyperbolic space X with monotone modulus of uniform convexity 7.
LetT;: K —» K and S; : K — K, i=1,2 salisfies the condition SKC. Assume
that F := (\\52 F(T3) N F(S;) # 0, for arbitrarily chosen x; € K, such that {z,} is
defined as follows

Tnyl = I'V(Slﬂ,‘n, len: an):

Un = W(S'QIL‘H, Tgfb’n,ﬂn),Vﬂ. A1 (5217)

where {a,} and {B3,} satisfy the following condition:

(2) Suppese thet T; and S;, i = 1,2 are nonincreasing-asymptotic-mapping for a
sequence {Tp}.

(i2) Suppose that T; and S;, ©=1,2 are conlinuous on K.

(&) d(z, Tiy) < d(Siz, Tiy) for all z,y € K andi=1,2

Then the sequence {z,} defined by (5.2.17) A-converges to a common fized point
in F.

Proof. Stepl: we prove that lim,,_,, d(z,,p) exists for each p € I. Let p € F.
Since T;: and S;, @ = 1,2, are SKC condition type, 3d(z,, Syp) < Spd(x,,p) and

%d(mmsz) < d(z,,p), we consider

d(ymp) = d(I’V(S2$m Tozp, ﬁn);p)
< (1 - ﬁn)d(SZQ—:m P) + 6nd(T2wu:p)

= (1 — ﬁn)d(s}tm S2p) -+ ﬁnd(T2$n: T2P)
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& (1 — P mpefilsg), S ts) ARV Henigl L o(Ep)

2 ' 9 }
e ey e =) + 1) AUBt) + AT )
— (1= o) max{d(an, ), X Tn) dxn,D) + d(Ear. ),y
+ B masc{d(zn, ), d(Tzftzn, o) , d(Town, p) J; d(Top, :L-n)}
= (1 — f,) max{d(wn, p), d(S2n,p) 42' d(S2p, -’L'n)}
+ B max{d(zn, p), d(T5n, p) ;r d(Top, Tn) )

= (1 Fi /Bn)d(fvm P) A+ ﬁnd(:fmp)

= d(zn, ). (5.2.18)
By (5.2.18), 1d(2n, S1p) < d(%n, p) and 3d(yn,p) < T1d(yn, p), We get that

d(mn+1:p) — d(LV(Sl.’Cm len: an)ap)
(1= an)d(slﬂ;mp) + and(lemp)

— (1 g a::)d(Slmrz: Slp) + O’nd(lemTlp)

S (1 7% O-’n) Iﬂﬂ'{(l(mn:p)a d(blmm a’ﬂ)2+ d(blp) p) ’ d(blm"?p) ;d(slp, :E“)}
d(Tyyn, yn) + d(T1p,p) A(T1Ysn, (T1p, yn
+ o, max{d(yn, P), Tymy ); Tip p), (Tiym:7) er Tip.y )}
d(Sl‘T"l :E") d’(Si:Clhp) 4 (i(p, 3:11)
2 ; 2 }
(lem yn) d(lem P) + (I(Tl'p: yn)
2 d 9 }
= (1 - ) max{d(z,, p), AL AP 2]y
d(lem p) + d(Tlp: yn)}
2

= (1— a,) max{d(za,p),

d
+ Opn max{d(yn, P):

+ a, max{d(yn, p),
< (1 _.an)d(xmp) = and(ymp)
< d(n,p)- (5.2.19)

So, lim,, s, d(z,,p) exists for each p € F

Step2: We will show that limp e d(2a, Tizy) = 0 = lim, d(zy, Sits), i =1,2.
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Suppose that lim,_,o, d(z,,p) = ¢ > 0. If ¢= 0, then
nh_r’glo d(z,, Tixn) =0 = r}1_1,1010 iz, Sigy); 1=1, 4
Next, we consider ¢ > 0. By (5.2.18), we obtain that
d(yn, p) < d(zn,p) (5.2.20)
Taking limsup in (5.2.20), we get that
lim sup d(ya, p) < c. (5.2.21)

n—oco

Since d(y,, Tip) £ d(y., p), it follows that

d (Tl Un, p) = d(Tl Yn, Tlp)

(lem yn) ok d(TlpJ p) d(rrlym p) =7 d(T1p> yn,)}
2 ’ 2
d(T ny Yn dT?m +d(p, Yn
= max{d(yn, p), ( 1y2 2 ): (Tiy p)2 .y )}
d(len:p) M- d(Tlpa yn)}
2

< d(Yn, p)- (5.2.22)

d
S ma‘x{d(y'rh p))

N nla-x{d(ym p):

Since d(zy, S1p) < d(z,,p), we have

d(S1Zp, p) = d(Sizn, S1p)
d(SIIm mn) A d(Slpa p) (E(Slxn)p) + d(Slpa :Bu)}

< max{d(zn,p),

= max{d(zn, p), d(Slﬂ;n, -'13n)2’ d(Slrcn,p); d(p, ;L-n)} :
= max{d(z,, p), d(S51En, P) '; d(51p,s fbn)}
% o). (5.2.23)
Thus,
lim sup d(T1yn,p) < ¢, limsupd(Siz,,p) < c (5.2.24)

n—oeo n—oo

It is easy to prove that

lim sup d(W (S1%n, Ti¥n, @), p) = limsup d(,41,p) = c.

n—oo n—co



By Lemma 2.2.7, we obtain that
n:!l—»ngo d(S1%n, Tiyn) = 0.

On the other hand, we can also prove that
r}llI(;lod(Sg.Tn,Tg.’En) =i},

By hypothesis, we get
nh_{loio d{zdh Fyalr< JP}OIO d(S1%n, Tiyn) =0

and

lim d(z,,Thx,) < lim d(Sez,, Thz,) = 0.

d(ym T‘Z:En) - d(W(SZan: T2-'l:n)) T23:n)

g d(Sg.l‘n,TgiEn)
d(yn: 821771) = d(W(S%Tm TQ:Bn)z '5'2$n)
S d(TZ-T:nJ 823:11)
By (5.2.26), (5.2.28) and (5.2.30), we obtain that
Az, ¥n) < d(zn, Tozy) + d(Top, Sax,) + d(Sezy, yn) — 0

as n — 0.

Since
d(zn, Taxs) € d(zn; yn) + vy, Toxn)
and

d(Im 325511) g d(:l:m yn) + d(ym SZ-'Eu);
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(5.2.25)

(5.2.26)

(5.2.27)

(5.2.28)

(5.2.29)

(5.2.30)

(5.2.31)

(5.2.32)

(5.2.33)
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we have

r}l’ngo i, Tw,) =0 = Jlim d(zn, Sazy)- (5.2.34)
So,

d(z,, S12,) < d(zn, Tywn) + d(Tiyn, S1z,) — 0 (5.2.35)

as n — oQ.

Consider

d(zn, Zny1) < d(zn, W(S120, T1Yn, )
< (1 — an)d(zn, S1zn) + and(za, Tiyn)
< (1 = n)d(@n, Taya) + (1 — n)d(Tiyn, S120) + nd(zn, Tiya) — 0
(5.2.36)

as n — oO.

Therefore,

d(@n, Titn) < d(@n, Tuy1) + d(@ns1, Tren)
< d(Tn, Tny1) + (1 — an)d(S1n, Tizn) + end(Tiyn, T12,) — 0

(5.2.37)

as n — 0o.

Hence lim,, o, d(Zn, Tizy) = 0= limp—eo d(Zn, Si%n), i=1,2.

Step3: Next, we will show that the sequence {z,} A-converges to a common fixed

point of F. We have lim,_,q, ¢(z,, p) exist. So, {d(z,,p)} is bounded. By Lemma

2.2.6, we obtain that {z,} has a unique asymptotic center, say A({z.}) = {z}.

Let {u,} C {z,} with Ax({u.}) = {u}. It follows that d(uy,, T;u,) — 0 as n — oo.

Now, we show that E F(T;). Define a sequence {z,} in K by z; = T/u. So, we

consider
Az, un) < AT, T un) + AT, 777 uy) + ot d(Tt, u,)

j
= d(TVu, T uy) + Zd(ﬂj‘um TFuy,). (5.2.38)

k=1
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Since d(Tiu,, Tiw,) < d(Tiun, un),

d(’l‘?um Tiun) < mﬂ{d(ﬂun, uﬂ)’ d(j?um j-'i'u-n)2+ d(T,-'um u,,) ’
A(Ttny tn) + AT, Titn)

2

d(inizu‘n: ﬂuﬂ) + d(T;'H“, ’u.n)}
2

< d(Tiup, tn)- (5.2.39)

= max{d(Tiun, u,),

Since d(Tuy, T?up) < d(T?u,, Tu,),

(Tt Tt) + (TP T
2 H

d(ﬂaum Ti?un) E max{d(j?'lln, T"tln),
d(j—;’?)u'n) Tiu'n) + d(Tizun, 2:—2?[,1) }

2 .
d’]"3 TnT? ¢! dTQ "'T}n
= max{d(T/un, Ttn), i, T u );r (T3 un, Tiu )}

< d(Tup, Twy). (5.2.403

Thus, d(Tfu,l,T}j_lu,,) < d(']}j—l'u\mTj*zun) g d(ﬂj_gtzn,Tj“E'tzn) W STy, 1)-
Likewise,

1(Tu, d(Tiu,, u,
d(Tiu, Tivy,) < max{d(u,u,), d(Tiw, ) + d(Tittn, tn)

2 b
d(Tyw, w,) + d(Ta,, w)
2 }’
by (z). If
max{d(u, u,), dtila +2d(Ti“n, 'u-n)1 s —; =i U)}
_ d(Tiu, w) + d(Tiun, un) (5.2.41)
2 3 AR
then
AT, (T,
d(Tiu, Tiuy,) < (T, ) +2 (Tt )

< d(ﬂu, 21s'un) + d(‘Tiun; un) .3 d(un;u) ¥ (I(Tiu‘n: un)
= 9 )

and so



d(Tyu, Tiup) < 2d(Tiun, un) + d(itn, ).

If

AT, u) + d(Toup, w,) d(Tiw,u,) + d(Tiu,, w)
2 ’ 2

}

max{d(u, u,),

_ d(Twu,uy,) + d(Tiun, u)
= 3 1

then

Tiu, un) + d(Tiuy,
d('ﬂ-u,ﬂun)gd( U, U )—;—r( Uy, W)

3 d(Tiu, Tiuy )+ d(Tityy uy) + d(Titg, uyn) + d(a,, w)
— 2 )

and so

d(Tiu, Tiuyn) < 2d(Titn, us) + d(un, w).
Thus,
d(Tiu, Tyu,) < 2d(Tiuy, w,) + d(tun, w).

Next,

; i T2 Ti n
d(T?u, T?u,) < max{d(Tu, Tiu,), d(T7u, Tiu) +2d( 2y, Titt )1
d(Tiu, Tiwa) + d(’_l’,?u,,,,{z}u)}

2

by (4). 1t
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(5.2.42)

(5.2.43)

(5.2.44)

(5.2.45)

max{d(Tiu, Tiuy,), 4

(T, Tw) + d(TPuy, Tiuy,)
- 5 :

2 2

T2u, Tyw) + d(T g, Tiwy) d(T?u, Tiw,) + d(TPuy, Tiu)

}

(5.2.46)



99

then

2u, T; d(T?u,, Tiu
d({l’fu’q?un) < d(T?u, Tyu) +2 (T un, Tiun)

o (TP, TPun) + A(TPun, Tytn) + (T, Tow) + (TP, Tiun)
= 2 3

thus

(T, TPup) < d(Tow, Tiug) + 2d(Titta, T

< 2d(Tan, u,) + d(un, w)

d(Titn, un) + d(T2y, Tiuy,)
2

+ 2 max{d(u,, Tit,) +
d(Tiun, Tyun) + d(THt, tn
A0, Tit) + (T, )
.
< 2d(Tytn, wi) + d(un, u)

d(Tittn, Un) + d(T i, Tty
+ 5 }

< 2d(Tyun, un) + d(ty, v) + 2d(up, Tiu,)

+ 2max{d(u,, Tiu,)

< 2%d(Tyun, up) + d(up, u). (5.2.47)
If
: 2T‘1 dT'znTin dT2 )Eﬂ +dT2 n:’I,i
max{ﬂf(Tm,Ti’uu),d(’]11 b u) +2 ( JR )7 ( L ) 2 ( A H)}
2 ! 2 .
B d(Tfu, Tiuy,) + d(T; u,,,ﬂu)’ (5.2.48)

2

then

d(T?u, T?u,) < (TP, Tiun) + d(Tun, Tiu)
1 i M) = 2

< d(T?u, T?u,) + d(T2un, Tiw,) + d(TPu,, Tiw,) + d(Tiv,, Tiv)
—_— 2 )

thus

d(T?u, T?uy,) < 2d(TPuy, Tiw,) + d(Tiu,, Tiu)
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< 2d(T}up, Tiwy) + d(Tiun, Tiw)

< 2%d(Tittn,y 1) + d(tn, w). (5.2.49)

So,

A(T2u, T?u,) < 2%d(Tiuy, uy,) + dluy, u). (5.2.50)
By above process, we obtain that

d(TPu, THuy) < 2d(T?  uy, ) + d(ttn, ). (5.2.51)
Hence

- - j
d(zj, un) < d(Tiu, Thua) + Y d(Ta,, T u,)

k=1

< Zjd(’]"}un, W) + d(tn, w) +7d(Tin, u)

= (27 + )d(Tittn, ) + d(tn, w). (5.2.52)
Therefore
(24, , {un} = limsup d(z;, u,) < limsup d(uy, 1) = r(u, {u,}). (5.2.53)

Since Ax({u.}) = {u}, we have r(u,{u,}) < r(y,{un}), for all y € K. This

implies that liminf;_,, 7(2j, {un}) < r(u, {tn}). So, we have lim;_,, 7(2j, {un}) <

r(u, {u,}). Tt follow from Lemma 2.2.15 that lim;.,, Tiu = u. As T; is uniformly

continuous, so that Ty = T;(lim,_,e T1) = lim; o 79 'u = u. That is u € F(T}).

Similarly, we also can show that « € F'(S;). Hence u € F. Moreover, lim,_,o d(;,, %)

exists by Step 1. Assume 2 # u. By the uniqueness of asymptotic centers, we have
lim sup d(u,, u) < lim sup d{up, z)

< limsup d(z,, )

n—00

< limsup d(zn, u)

n—oo

= limsup d(u,, u), (5.2.54)

n—eo
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which is contradiction. Thus z = u. Since {u,} is an arbitrary subsequence of
{z,}, therefore A({u,}) = {u} for all subsequences {u,} of {z,}. Hence {z,}

A-converges to a common fixed point in F. 0O



CHAPTER VI

CONCLUSION

In this thesis, we establish the following results. Firstly, we introduce some
nonlinear mappings and prove fixed point theorems for generalized multi-valued
mappings satisfying some inequalities in metric spaces. Secondly, we introduce
the notions of type multi-valued-coupled contraction, multi-valued-coupled Kan-
nan mapping and prove coupled fixed point theorems on metric spaces. Thirdly,
we establish dislocated quasi-b-metric spaces and prove basic properties of dis-
located quasi-bmetric spaces. Fourthly, we introduce the notions of type dqb-

cyclic-Banach contraction, dgb-cyclic-Kanman mapping, type dgb-cyclic-weak Ba-

nach contraction and dqb-eyclic--contraction.- Other than, we present some exam-

ples to illustrate and support our results. Fifthly, we proved some properties of

a fundamentally nonexpansive self-mapping on a nonempty subset of a hyperbolic

space and and prove convergence and A-convergence theorems of the generalized

Krasnoselskij-type iterative process to approximating a fixed point for fundamen-
tally nonexpansive operator in a hyperbolic space. Moreover, we show that if
the hyperbolic space is having the A-Opial condition, then the fixed points set of
such a mapping with the convex range is nonempty. Finally, we prove fixed point
theorems for some generalized nonexpansive self-mapping on a nonempty subset
of a hyperbolic space and approximating a fixed point for such mappings in a a
hyperbolic space. Furthermore, we obtain some properties of fixed point set of
generalized nonexpansive mappings in hyperbolic spaces The following results arc

all main theorems of this thesis:
1. Define a non-increasing function ¢ from [0, ) into (0, 1] by

1, if 0<r< ¥l

1-2r  ;f 51 . |
if ﬁ+1£7<2‘

1—r?

o(r) =
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Let (X, d) be a complete metric space and let T’ be a mapping from X into CB(X)
such that Tz is compact for all = € X. Suppose that there exists r € [0,1) such
that

¢(r)d(z,Tz) < d(z,y) implies H(Tz,Ty) <rM(z,y)

where M (z,y) = max{d(z, y),d(z, Tz),d(y, Ty), d(z, Ty), d(y, T'z) },

for all z,y € X. Then there exists z € X such that z € T'z.

2. Define a non-increasing function ¢ from [0, ) into (0,1] by

1, if 0<r< L,
p(r) =

1-50 VE-1 it
omtf e ST

Let (X, d) be a complete metric space and let T be a mapping from X into C'B(X)
such that Tz is compact for all z € X. Suppose that there exists r € [0, %) such
that

w(r)d(z, Tz) < d(z,y) implies H(Tz,Ty) < S(x,y)
where S(z,y) = rd(z,y) + rd(z, Tz) + rd(y, Ty) + rd(z, Ty) + rd(y,T'z) for all

z,y € X. Then there exists z € X such that z € T'z.

3. Define a non-increasing function ¢ from [0, 1) into (0, 1] by

1, if 0<r< Y5l
p(r) = :
1—7, if @§r<1_

Let (X, d) be a complete metric space and let 7" be a mapping from X into C'B(X)
such that Tz is compact for all * € X. Assume that there exists a € [0,1) such

that
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o(r)d(z,Tz) < d(z,y) implies H(Tz,Ty) < aM(z,y)

where M (z,y) = max{d(z,y),d(z, Tz),d(y, Ty), d(z, Ty),d(y, Tx)},

for all 2,y € X, and r = 2. Then there exists z € X such that z € Tz.

4. Let (X, d) be a complete metric space and let T be a mapping from X
into C' B(X) such that Tz is compact for all z € X, with the function  is defined

as Theorem 3.1.5. Assume that there exists a € [0, 1) such that
o(r)d(z, Tz) < d(z,y) implies H(Tz,Ty) < S(x,y)

where §(,y) = ad(z,y) + ad(z, Tz) + ad(y, Ty) + ad(z, Ty) + od(y, Tz) for all

z,y € X, and r = ba. Then there exists 2 € X such that z € Tz.

5. Define a non-increasing function ¢ from [0, 1) into (0, 1] by

1, if 0<r<i,
ofr) =
1—g, if 3<r<l

Let be (X, d) a complete metric space and let 7" be a mapping from X into C'B(X)
such that T'z is compact for all z € X. Assume that there exists a € [0, %) such

that
o(r)d(z, Tz) < d(z,y) implies H(Tz,Ty) < S(z,y)

where S(z,y) = ad(z,y) + ad(z,Tz) + ad(y, Ty) + ad(z, Ty) + ad(y, Tx) for all
z,y € X, and r = 1—3"‘— Then there exists z € X such that z € T'z.

—2a’

6. Let (X,d) be a complete metric space and let T: X x X — 2X be a

multi-valued-coupled contraction mapping, (i.e., there exists k € [0, 1) such that

H(T(z,y),T(u,v)) < %[d('v,u) +d(y,v)], forall z,y,u,ve X).
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with constant k& € [0,1). Suppose that zo,y0 € X. If there exist 21,7 € X such
that z; € T(zo, ) and y1 € T(yo, o), then T has coupled fixed points in X.

7. Let (X, d) be a complete metric space, and T: X x X —» CB(X) be a
multi-valued-coupled Kannan mapping, (i.e., there exists r € [0, %) such that
H(T(z,y), T(u,v)) < rld(z, T(z,y)) + d(u, T(w,v))], forall z,y,u,v € X).
with zg,y0 € X. If there exist z;,31 € X such that z; € T(zo,y) and y1 €
T(30, x0), then T has coupled fixed points in X.

8. Let A and B be nonempty subsets of a complete dislocated quasi-b-
metric space (X, d). Let T be a cyclic self-mapping that satisfies the condition a

dgb-cyclic-Banach Contraction, (i:e., there exists k € [0,1) such-that
d(Tz,Ty) < kd(z,y) forallz € A, y € B and sk < 1).

Then T has a unique fixed point in AN B.

0. Let A and B be nonempty subsets of a complete dislocated quasi-b-
metric space (X, d). Let T satisfies the condition a dgb-cyclic-Kannan mapping,

(i.e., there exists r € [0, 3) such that
d(Tz,Ty) < r(d(z,Tz) + d(z,Ty)), forallz e A, ye B and sr < 3).

Then T has a unique fixed point in AN B.

10. Let A and B be nonempty subsets of a complete dislocated quasi-
b-metric space (X, d). Let T satisfies the condition a dgb-cyclic-weak contraction,
(ie, for all z € A, y € B such that sd(Tz,Ty) < d(z,y) — ¥(d(z,y)), where
1 : [0,00) — [0,00) is a continuous and nondecreasing function such that ¥(t) = 0

if and only if { = 0). Then, T has a unique fixed point in AN B.
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11. Let A and B be nonempty closed subsets of a complete dislocated
quasi-b-metric space (X, d). Let T satisfies the condition a dgb-cyclic-¢-contraction,
(i-e., there exists k € [0, 1) such that sd(Tz, Ty) < ¢(d(z,y)), forallz € A,y € B,
where @ the family of non-decreasing functions: ¢ : [0,00) — [0,00) such that
Yoo 9™(t) < oo and ¢(t) < ¢ for each ¢ > 0, where n is the n-th iterate of ¢).

Then, T has a unique fixed pointin AN B.

12. Let K be a nonempty bounded closed convex subset of complete
uniformly convex hyperbolic space X with monotone modulus of uniform convexity
7, and let {z,} be a sequence in K. If T : K — K be fundamentally nonexpansive,

and lim,_, d(2,, T'z,) = 0, then F'(T) is nonempty A-closed and convex.

13. Let T be a fundamentally nonexpansive self-mapping on a nonempty
subset K of a complete hyperbolic space X, and let T'(K) be bounded and convex.
Define a sequence {T'z,,} in T(K) by z; € K and Tz,;1 = W(T?%x,,, T%,, @) for all
n € N, where « € (0,1). Then {T'z,} is an approximate fixed point sequence for
T.

14. Let T': K — K be a fundamentally nonexpansive mapping, where
K is a nonempty subset of a complete hyperbolic space X. Then F(T) is closed.
Moreover, if X is strictly convex, and K or T(K) is convex, then F(T) is also

convex.

15. Let K be a nonempty subset of a uniformiy convex hyperbolic space
X, and let T be a fundamentally nonexpansive self-mapping from K onto K. If
T(K) is bounded, closed, then (T") is nonempty.

16. Let K be a nonempty subset of a uniformly convex hyperbolic space
X, and let T be a fundamentally nonexpansive self-mapping from K onto K. If
T(K) is bounded, closed, then F(T) is nonempty and closed. Moreover, if K or

T(K) is convex, then F(T) is also convex.
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17. Let K be a a nonempty compact subset complete hyperbolic space of
X. Assume that T : K — K is fundamentally nonexpansive and T'(K) is convex.
Then {Tz,} in T(K) defined by z; € K and

Tapyr = W(T%x,, Ty, @)
forn =1,2,3,... , where a € (0, 1), converges to a fixed point of T'.

18. Let K be a a nonempty A-compact subset complete hyperbolic space
of X with the A-Opial condition. Assume that 7" : K — K is fundamentally
nonexpansive mapping and T(XK) is convex. Then {T'z,} in T(K) defined by
xy € K and T2y = W(T?z,, Tx,,a) forn = 1,2,3,... , where @ € (0,1), A-

converges to a fixed point of 7.

19. Let K be a a nonempty A-compact subset uniformly convex complete
hyperbolic space of X. Assume that T : K — K is fundamentally nonexpansive
mapping, and T(K) is convex. Then {Tz,} in T(K) defined by z; € K and
Txnsr = W(T%x,, Ty, 0) for n = 1,2,3, ... , where & € (0,1), A-converges to a
fixed point of T.

20. Let K be a nonempty and convex subset of a strictly convex hyperbolic

space X. If T : K — K satisfies condition C, ThenF(T) is closed and convex.

21. Let K be a nonempty closed and convex subset of a complete uni-
formly convex hyperbolic space X, with monotone modulus of uniform convexity
7. Suppose that {z,} is a sequence in K, with d(z,,Tz,) - 0,and T : Kk — K
satisfies condition C. If A({z,}) = {z}, then = is a fixed point of T. Moreover,

F(T) is closed and convex.

22. Let K be a nonempty closed and convex subset of a complete uniformly
convex hyperbolic space X, with monotone modulus of uniform convexity 7. If

T : K — K satisfies condition C, then F'(T’) is nonempty closed and convex.

23. Let K be a nonempty closed and convex subset of a complete uni-
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formly convex hyperbolic space X, with monotone modulus of uniform convexity 7.
Suppose that {z,} is a bounded sequence in K with d(z,,Tz,) - 0. IfT: K - K
satisfies condition C' and A({z,}) = {z}, then z is a fixed point of T. Moreover,

F(T) is closed and convex.

24. Let K be anonempty closed and convex subset of a complete uniformly
convex hyperbolic space X, with monotone modulus of uniform convexity 5. If

T : K — K satisfies condition C| then F(T') is nonempty closed and convex.

25. Let K be a nonempty and convex subset of a strictly convex hyperbolie
space X. Suppose that T : K — K satisfies by one of the conditions SKC, KSC,
SCC and CSC. Then F(T) is closed and convex.

26. Let K be a nonempty closed and convex subset of a complete uni-
formly convex hyperbolic space X, with monotone modulus of uniform convexity
7. Suppose that {z,} is a sequence in K with d(zy,,Tz,) — 0, and T : K —» K
satisfies by one of the conditions SKC, KSC, SCC and CSC. If A({z,}) = {z},

then z is a fixed point of T. Moreover, F(T) is closed and convex.

27. Let K be a nonempty closed and convex subset of a complete uniformly
convex hyperbolic space X, with monotone modulus of uniform convexity 7. Sup-
pose that {z,} is a bounded sequence in i with d(z,,T%,) - 0,and T: K — K
satisfies by one of the conditions SKC, KSC, SCC and CSC. If A({z,}) = {z},

then x 1s a fixed point of 7. Moreover, £'(1) is closed and convex.

28. Let K be a nonempty closed and convex subset of a complete uni-
formly convex hyperbolic space X, with monotone modulus of uniform convexity
7). Suppose that {x,} is a sequence in K with d(z,,T2,) - 0,and T : Kk — K
satisfies conditions E,. If A({z,}) = {z}, then z is a fixed point of T. Moreover,

F(T) is closed and convex.

29. Let K be a nonempty closed and convex subset of a complete uni-
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formly convex hyperbolic space X, with monotone modulus of uniform convexity
7. Suppose that {z,} is a sequence in K with d(z,,Tz,) > 0,and T : K - K
satisfies conditions Cy. If A({z,}) = {z}, then z is a fixed point of 7. Moreover,

F(T) is closed and convex.

30. Let K be a nonempty closed convex subset of a complete uniformly
convex hyperbolic space X with monotone modulus of uniform convexity 7. Let
T;: K — K and S; : K - K, i = 1,2 satisfies the condition SKC. Assume
that F = ﬂ?:lz F(T)NFE(S;) # 0, for arbitrarily chosen «; € K, such that {z,} is

defined as follows

Tpy = W(S]ﬂ?n, Ty, Q’n):

Yo = W(Soltn; Tazn, Bn), Y 2 1 (5.2.55)

where {o,} and {3, } satisfy the following condition:

(¢) Suppose that 7; and S;, i = 1,2 are nonincreasing-asymptotic-mapping for a
sequence {z,}.

(4%) Suppose that T; and S;, ¢ = 1,2 are continuous on K.

(%) d(z, Tiy) < d(S;z, Tiy) for all z,y € K and ¢ = 1,2

Then the sequence {z,} defined by (5.2.55) A-converges to a common fixed point

in I
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