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ABSTRACT

In this research, we establish the following results. Firstly, we introduce
new iterative algorithms with perturbations for finding a common element of the
set of solutions of the system of generalized equilibrium problems and the set of
common fixed points of two quasi-nonexpansive mappings in a Hilbert space. Sec-
ondly, we introduce a new general iterative scheme for finding a common element
of F(T)N(A+ B)~'0N F~10 which is a unique solution of a hierarchical variational
inequality, where F/(T') is the set of fixed points of T, (A+ B)~*0 and F~10 arc the
sets of zero points of A + B and F, respectively. Then, we prove a strong conver-
gence theorem. Finally, we introduce the iterative schemes for finding a fixed point

of an asymptotically nonexpansive mapping which is the unique solution of some

variational inequalities in CAT(0) spaces.
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CHAPTER I

INTRODUCTION

One of the most important problems in nonlinear analysis is called equilib-
rium problem (abbreviated (EP)), which can be formulated as follows. Let C' be a
nonempty set and f : C x C — R be a given function. The problem consists on

finding an element & € C such that
f(@,y) >0, forall ye C. (EP)

The element & satisfying (EP) is called equilibrium point of f on C.

(EP) has been extensively studied in recent years (e.g. [4, 5, 6, 7] and the
references therein). A part from its theoretical interest, important problems aris-
ing from economics, mechanics, electricity and other practical sciences motivate
the study of (EP). Equilibriumn problems include, as particular cases, variational
inequalities, Nash equilibria problems, complementarity problems, fixed point prob-
lems, etc.

In 1994, equilibrinin problems were introduced by Blum and Oettli [7). Since
that time, the equilibrium problem has been wildly studied by many authors, for
example, mixed equilibrium problem (MEP) (12, 13], generalized equilibrium prob-
lem (GEP) [54], generalized mixed equilibrium problem (GMEP) [26], and so on.

In 2000, the viscosity approximation method (VAM) for solving nonlinear
operator equations has recently attracted much attention. One advantage of the
VAM is that one can obtain a solution which satisfies some particular properties,
for example, it solves a variational inequality. The VAM was introduced to non-
expansive mappings by Moudafi [43] in Hilbert spaces Recently, [41] Marino and
Xu considered a general iterative method which is more general than VAM. They
proved that the iteration converges strongly to a fixed point of a nonexpansive

mapping which solves some variational inequalities in a Hilbert spaces.



In 2007, by using the viscosity approximation method, S. Takahashi and W.
Takahashi [53] introduced another iterative scheme for finding a common element
of the set of solutions of the equilibrium problem and the set of fixed points of a
nonexpansive mapping. In 2011, Yao and Shahzad [60] gave the iteration process
for nonexpansive mappings with perturbation. On the other hand, very recently,
Chuang, et al. [14] considered the iteration process for finding a common element
of the set of solutions of the equilibrium problem and the set of common fixed
points for a quasi-nonexpansive mapping with perturbation.

In 2010, Kocourek, et al. [31] introduced a class of nonlinear mappings,
say generalized hybrid mappings. Recently, Maruyama, et al. [42] defined a more
general class of nonlinear mappings than the class of generalized hybrid mappings.
Such a mapping is a 2-generalized hybrid mapping. Moreover, Takahashi, et al. [56]
proved a strong convergence theorem for finding a point of fixed points and the set
of zero points. Manaka and Takahashi [40] proved the weakly convergence to a fixed
point of nonspreading mapping and set zero points of « inverse strongly monotone
and maximal monotone operator. Very rccently, Liu, ct al. [38] generalized the
iterative for finding a common element of the set of fixed points of a nonspreading
mapping and the set of zero points of a monotone operator (A + B) (A is an «
inverse strongly monotone and B is maximal monotone operator ). On the other
hand, Marino and Xu [41] introduced the following general iterative scheme based
on the viscosity approximation method introduced by Moudafi [43]. They proved
strongly convergence to the unique solution of the variational inequality. Very re-
cently, Lin and Takahashi [36] obtained the strong convergence theorem for finding
of fixed points of a-inverse strongly monotone mapping and maximal monotone
operators which is a unique solution of a hierarchical variational inequality.

In CAT(0) spaces, fixed point theory was first studied by Kirk (see [27, 28])
in 2003-2004. He showed that every nonexpansive (single-valued) mapping de-
fined on a bounded closed convex subset of a complete CAT(0) space always has

a fixed point. In 2008, Kirk and Panyanak [29] specialized Lims concept [35] of



A-convergence in a general metric space to CAT(0) spaces and showed that many
Banach space results which involve weak convergence have precise analogs in this
setting; for instance, the Opial property, the Kadec-Klee property and the demi-
closedness principle for LANE mappings.

In 2010, Saejung [46] studied the convergence theorems of the following
Halpern’s iterations for a nonexpansive mapping in a complete CAT(0) space. They
proved stongly convergence which is nearest under certain appropriate conditions.
Moreover, the author applied his result to find a common fixed point of a countable
family of nonexpansive mappings. In 2012, Shi and Chen [47], studied the conver-
gence theorems of the following Moudafi’s viscosity iterations for a nomexpansive
mapping for a contraction. They proved strongly convergence in the framework of

CAT(0) space satisfying property P, i.e., if for x,u,y1,72 € X,
d(x, Pz ygu)d(@, y1) < d(@, Pay,u)d(z, y2) + d(@, w)d(y1, y2)-

Furthermore, . they_also_obtained that strongly convergence under certain
appropriate conditions imposed. Recently, using the concept of quasilinearization,
Wangkeeree and Preechasilp [58] studied the strong convergence theorems of the
iterative schemes in CAT(0) spaces without the property 7. They proved the
iterative schemes converges strongly which is the unique solution of the variational

inequality (VIP) :
&%, 78 >0, xeF(T). (1.0.1)

On the other hand, Shi, Chen and Wu [48] studied the A-convergence of
the iteration sequence for asymptotically nonexpansive mappings in CAT(0) spaces.
For more related works, see [33, 34, 49].

Motivated and inspired by the above works, the purposes of this thesis are to
extend, to generalize and to improve the iteration schemes for finding the solutions
of equilibrium problems, variational inequality problems and fixed point problems

in Hilbert spaces and CAT(0) spaces.



This thesis is divided into 5 chapters. Chapter 1 is an introduction to the
research problem. Chapter 2 is dealing with some preliminaries and give some
useful results that will be deplicated in later Chapter.

Chapter 3 and 4 are the main results of this research. Precisely, in section
3.1, we introduce new iterative algorithms with perturbations for finding a common
element of the set of solutions of the system of generalized equilibrinm problems and
the set of common fixed points of two quasi-nonexpansive mappings in a Hilbert
space. Furthermore, we also consider the iterative algorithms with perturbations
for finding a common element of the solution set of the systems of generalized
equilibrium problems and the common fixed point set of the super hybrid mappings
in Hilbert spaces. In section 3.2, let C' be a closed and convex subset of a real
Hilbert space H. Let T' be a 2-generalized hybrid mapping of C into itsclf, let A be
an a-inverse strongly monotone mapping of C into H, and let B and F' be maximal
monotone operators on D(B) C C and D(F) C C respectively. We introduce a
general iterative scheme for finding a point of fixed points and the sets of zero points
F(T)N (A + B)™' N F~'0 which is a unique solution of a hierarchical variational
inequality, where F(T) is the set of of T, (A + B)™'0 and F~'0 of A+ B and F,
respectively. Further, we consider the problem for finding a common element of
the set of solutions of a mathematical imodel related to mixed equilibrium problems
and the set of fixed points of a 2-generalized hybrid mapping in a real Hilbert
space. Section 4.1, we introduce the iterative schemes for finding a fixed point
of an asymptotically nonexpansive mapping which is the unique solution of some
variational inequalities in CAT(0) spaces. The strong convergence theorem of the
proposed iterative schemes is established.

The conclusion of research is in Chapter 5.



CHAPTER II

PRELIMINARIES

In this chapter, we give some notations, definitions, and some useful results
that will be used in the later chapter. Throughout this dissertation, we let R be
the set of all real numbers, N be the set of all natural numbers, H be a Hilbert

space.

2.1 Basic Concepts

Definition 2.1.1. [51] Let C' be a nonempty set, and assume that each pair of
elements z and ¥ in C' can be combined by a process called addition to yield an
element z in C denote by 2+y. Assume also that this operation of addition satisfies
the following conditions (V1) — (V/4):

(V1) (zt+y)+z=z+ (y + 2);

(V2) 2 +y=y+u;

(V3) there exists a unique element in C, denote by 0 and called the zero
element, or the origin, such that z + 0 = « for all @ € C,

(V4) for each = € C there corresponds a unique element in C, denote by

—z and called the negative of z, such that x 4+ (—z) = 0.

We also assume that each scalar & € R and each element z in C can be
combined by a process called scalar multication to yield an element y in C' denoted
by y = ax satisfying (V5) — (V8):

(V5) a(pz) = (ap)z;

(V&) Lemp=u;

(VT) (a+ f)z = ax + Bz,

(V8) a(z +y) = az + ay.



The algebraic system C' defined by these operations and axims is called a
linear space. A linear space is often called a vector space, and its elements are
spoken of as vectors.

Remark 2.1.2. [51] Since we admit the real numbers as scalars, a linear space is
also called a 7eal linear space.

Remark 2.1.3. [51] We obtain a few simple facts which are easy to prove from
the axioms:

(1) &+ z =y + 2 =427,

(2) a-0=0;
(3) 0 -z =0;
4) (-1)z = —a.

Definition 2.1.4. [30] Let X be a nonempty set. A mapping d : X x X — R,
satisfying the following condition for all z,y and 2z in X:

(M1) d(z,y) =0 & =y,

(M2) d(z,y) = d(y, =);

(M3) d(z,y) < d(z,2) +d(z,y).

The function d assigns to cach pair (z,7) of element of X a nonnegative real
number d(z, y), which does not on the order of the elements; d(z,y) is called the
distance between ¢ and y. The set X together with a metric, denoted by (X, d), is
called a metric space. The conditions (A1) — (M3) are usually called the metric

axioms.

Definition 2.1.5. [30] A normed linear space is a vector space V over R (or C)
and a mapping ||-|| : V — R, called norm, for all z,y € V and all « € R that
satisfies:

(i) llzll = 0;

(ii)||z]| =0 <=2 =0;

(iii) [|az]| = feljl;

(i) lz +yll < ll=ll + [yl



From this norm we can define a metric, induced by the norm || - ||, by
A linear space X equipped with the norm || - || is called a normed linear space.

Definition 2.1.6. [30] Let (X, | - ||) be a normed space.

1) A sequence {z,} C X is said to converge strongly in X if there exists
x € X such that 1111_1){.10 |z, — || = 0. That is, if for any € > 0 there exists a positive
integer N such that ||z, — || < &,Vn > N. We often write nll_l)l(’)lo Ty =T O Tp — T
to mean that z is the limit of the sequence {z,}.

2) A sequence {x,} C X is said to be ¢ Cauchy sequence if for any € > 0
there exists a positive integer N such that ||z, —z,| < €,¥ m,n > N. That is,
{x,} is a Cauchy sequence in X if and only if ||€m — @,|| — 0 as m,n — co.

3) A sequence {z,} C X is said to be a bounded sequence if there exists

M > 0 such that ||z,|| < M, Vn € N.

Definition 2.1.7. [51] A subset C of a normed linear space X is said to be convez

subset in X if Az + (1 — ANy € C for each z,y € C and for each scalar A € [0, 1].

Definition 2.1.8. [30] A normed space X is called to be complete if every Cauchy

sequence in X converges to an element in X.

Definition 2.1.9. [51] An inner product space is a complex linear space H which
for any pair of elements x and y in H there corresponds a complex number, denoted
by (z,y) , and called the inner product of z and y, with the following properties:

(M) {z,z) >0, and (z,z) =0 & x = 0;

(I12)(z + v, 2) = (&, 2) + (3, 2);

(I3) (az,y) = alz,y);

(14) (z,y) = {y,2)-



Remark 2.1.10. [51] An inner product space is called a real inner product space
for the case when the scalars are the real numbers and (z, ) is a real number. For

the case, (I4) means

{x,y) = (y,%).

If X is a linear space with an inner product (-, -), then we can define a norm

on X by

llll = /{2, 2).

Thus, any inner product space is a norm space.

Definition 2.1.11. [51] A Hilbert spaces is an inner product space which is com-

plete under the norm induced by its inner product.

Lemma 2.1.12. [30](Schwarz Inequality) Let (#, (:,-)) be an inner product space,
then for all =,y € I

[z, 9] < llzllfly]l-

Lemma 2.1.13. [30](Triangle Inequality) Let H be an inner product space, then
forallz,y e H

e+ yll < ll=ll + [yl

Lemma 2.1.14. [30](Parallelogram Law) Let H be an inner product space, then
for all z,y €

e+ yl1* + lle — yl* = 2lll” + 2[ly]*
Lemma 2.1.15. [51] Let H be a real Hilbert space. Then the following inequalities
hold:
@) lle+yll? < l=ll” + 2, © + y);
(i) flo+yll* = ll=ll* + 2(y, );

(i) [lz +ylI* = =]l + lyll* + 2(z, ).



Definition 2.1.16. [30] The metric projection (or nearest point ) from H onto ¢
is the mapping Pg : H — C which assigns to each point € C' the unique point

Pex € C satisfying the property
o~ Pol = inf lo ~ 4l = d(z, C).
Lemma 2.1.17. [51] Let C be a closed convex subset of a real Hilbert space H.
Given z € H and y € C. Then
(i) z=Pex & (z—2z,y—12)>20,Vy € C;
(i) ||Pez — Pey|l < ||z —yl|, Yo,y € H;
(iii) |Pox — Poyll* < (Poz — Poy, = — ), Y,y € H;
(iv) (& — Pox,y — Pez) <0,Ve € Hyy € C,
() lle = gl*> llz = Poall* +lly — Poall, Ya € Hyy € C.

Lemma 2.1.18. [51] Let {x,} be a sequence of a normed space (X, || - ||),z € X
and let , - z if and only if, for any subsequence {x,,} of {z,}, there exists a

subsequence {z,, } of {z,,} converging to x.
7

Lemma 2.1.19. [51] Let X be an inner product space and {z,} be a bounded

sequence of H such that =z, — @. Then following inequality holds:
Izl < lim inf ||z,
n—oo
Lemma 2.1.20. [37, 59] Let {a,} be a sequence of nonnegative real numbers
satisfying the property:

An41 S (1 - O"n)an + O-'nﬂm . 2 O)

where {a,} C (0,1) and {8,} C R such that:
(i) E?:o Qy = 00;
(ii) imsup,, ,oo Bn < 0 0r oo o |anfBn| < 0.

Then, {a,} converges to zero as n — co.
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Next, we introduce basic concepts in Hilbert spaces. Let C' be a closed
convex subset of a real Hilbert space H with inner product and norm are denoted

by (-,-) and || - ||, respectively. We have the following are hold:

le = ylI* = lll® + llyll* — 2(z, v),

and

Az + (1 = Nyl = Mlz|® + @ =Myl = A0 =A)l= — yll*,

for all z,y € H and A € R.

Definition 2.1.21. [51] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let f be a function of C into (—o0,00]. Then, f is called

proper if there exists € C with f(z) < oo, that is,
D(f) ={zeC: f(z) <o} #0.

Definition 2.1.22. [50] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let f be a function of C into (—oo, 00}, where (—co,00] =
RU{oo}. Then, f is called lower semicontinuous (short L.w.c) if for any a € R, the

set {z € C: f(z) < a} is closed.

Theorem 2.1.23. [51] (Opial’s theorem). Let H be a Hilbert space and suppose
T, — . Then

liminf ||z, = || < liminf ||z, — yl|
n—oo n—co
for all y € H with © # v.

Lemma 2.1.24. [2](Demi-closedness Principle) Assume that 71" is a nonexpansive
self-mapping of a nonempty closed convex subset C' of a real Hilbert space H. If
T has a fixed point, the I — T is demi-closed; that is, whenever {z,} is a sequence
in C' converging weakly to some © € C' (for short, «,, — « € C), and the sequence
{(I = T)z,} converges strongly to some y (for short, (I — T)xz, — y), it follows

that (I — T)x = y. Here I is the identity operator of H.
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2.2 The Classical of Fixed Point Theory

Definition 2.2.1. An element z € C is said to be a fized point of a mapping
T : C — C. The set of all fixed points of T'is denoted by F(T) = {z € C : Tz = z}.

Definition 2.2.2. Let H be a Hilbert space and let C' a nonempty bounded convex

subset of H. A mapping T : C — C is called nonezpansive on C if
ITx — Ty|| < ||z —yll, Yo,y € C.

Lemma 2.2.3. [50] Let H be a Hilbert space and let C' be a nonempty bounded

closed convex subset of H. Let T be a nonexpansive mapping of C' into itself.

Then, F(T) # 0.

Theorem 2.2.4. [30] Let H be a Hilbert space and let C' be a nonempty bounded
closed convex subset of H. Let T be a nonexpansive mapping of C into itself. Then

F(T) is closed and convex.

Definition 2.2.5. [57] Let H be a Hilbert space and let C' a nonempty bounded
convex subset of H. A mapping f : C — C is called a contraction on C if there

exists a constant a € (0,1) such that

If(z) = fW)ll < allz —yll, Ya,y € C.

2.3 Some Nonlinear Mappings in Hilbert Spaces

Let C' be a closed convex subset of a real Hilbert space H with inner product
and norm are denoted by (-,+) and || - ||, respectively. Let T': C' — C' a nonlinear

mapping.

Definition 2.3.1. [2] Let C' be a subset of an inner product space H. A mapping

A:C — C is said to be monotone if for all z,y € C,

(Az — Ay,z —y) > 0.
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Definition 2.3.2. (2] Let C' be a nonempty closed convex subset of H and let
A:C — H. A mapping A is said to be a—inverse strongly monotone if there

exists a positive real number « such that for all z,y € C,
(Az — Ay,z —y) > of| Az — Ay|>.

Lemma 2.3.3. [2] Let A: H = H be a a-inverse-strongly monotone mapping. If
A < 2q, for any A > 0 then / — \A is a nonexpansive mapping from H into itself.

Proof Let v,v € H and A > 0,

(I —AA)u — (I — AA)|?2 = |[(u—v) — A(Au — Av)|)?
= |lu—v|* - 2\u — v, Au — Av) + X*||Au — Av|®

< e =2||2 = 2A(\ — 2a) || Au — Av||®.
Definition 2.3.4. [2] A mapping A : C — C is called L-Lipschitz-continuous if
there exists a positive real number L such that
||Au — Av|| < L||u —vl|, Vu,v € C'

Remark 2.3.5. Tt is casy to see that if A is an a-inverse strongly monotone

mapping of C into H, then A is &—Lipschitz continuous.

Definition 2.3.6. [2] A mapping B : H — H is called strongly positive bounded

linear operator on H if there is a constant 7 > 0 with property
(B, ) = Flall,
forallz € H.

Definition 2.3.7. A nonlinear operator V : H — H is called strongly monotone

if there exists ¥ > 0 such that
(@ —y, Ve — Vy) 2 Flle -y,

for all z,y € H.
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Definition 2.3.8. [32] Let C' be a nonempty closed convex subset of a Hilbert
space H and T : C — H a mapping. A mapping T is called firmly nonspreading
on C if

2T — Tyl < |Tw — yl* + 1Ty — =, Va,y € C.

Definition 2.3.9. (23] Let C' be a noncmpty closed convex subset of a Hilbert
space H and T : C' — H a mapping. A mapping T is called nonspreading on C' if

and only if

T2 — Ty||* £ |lz —yl|* + 2{x — Tz,y — Ty), Vz,y €C.

Definition 2.3.10. Let C be a nonempty closed convex subset of a Hilbert space H.
A mapping T : C — H and F(T) # 0 . A mapping T is called quasi-nonezpansive
on C' if

|7z — y|| < lle —yll, Yz e C ye F(T).

Definition 2.3.11. [9, 21] Let C be a nonempty closed convex subset of a real
Hilbert space H. A mapping F : C' — H is said to be firmly nonczpansive it

| Fz R0l yll? S Rar By,
for all z,y € C.

Definition 2.3.12. [52] Let C be a nonempty closed convex subset of a real Hilbert
space H. A mapping T': C — H is said to be hybrid if

31T — Ty|l* < ||z — yll* + 17w — yll* + | Ty — =%,

for all ,y € C.
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Definition 2.3.13. [31] Let C' be a nonempty closed convex subset of a real Hilbert
space H. A mapping 7T is called generalized hybrid (or (o, B)-generalized hybrid)

if there are o, # € R such that
a|| Tz — Ty|* + (1 — a)l|lz = Tyl < BTz — gl + (1 = B)lle —yl*, (2.3.1)

forall z,y € C.

For example, generalize hybrid mappings
(1) Ifa=1,8=0in (2.3.1), then 7" is nonexpansive mapping.
(2) fa=2,8=11in (2.3.1), then T is nonspreading mapping.
B)Ifa= %, = % in (2.3.1), then T is hybrid mapping.

Definition 2.3.14. Let C' be a nonempty closed convex subset of a real Hilbert
space H. A mapping T : C' — C is called 2-generalized hybrid (or (a1, o, 1, B2)-

generalized hybrid) if there exist ay, as, 31, 2 € R such that

all|T*e = Ty||* + e[ Tx — Tyl* + (1 — a1 — ) |lw — Tyl
< BullT?e = yl* +Ball T ~ y?

+H1 = p= Bl —9l®, (23.2)

for all z,y € C.
Remark 2.3.15. If T is a 2-generalized hybrid mapping and « = Tz, then for any

y€eC,

airlle = Ty||* + czlle — Tyl* + (1 — a1 — aw)lle — Ty||*
< Bulle = yl* + Bellw — yll?

+(1 = By = Be)llw — yl*.

Hence ||z — Ty|| < |lo — ||
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This means that a 2-generalized hybrid mapping with a fixed point is quasi-

nonexpansive.

Remark 2.3.16. If a; = 0,8, = 0 in (2.3.2), then T is (g, f2)-generalized hybrid

mapping.

Definition 2.3.17. Let C' be a nonempty closed convex subset of a real Hilbert
space H. A mapping S : C — H is called super hybrid(or (o, 3,y)-super hybrid)

if there are «, 3, € R such that

al|Sz — Sy||* + (1 — a+ 7)< = Sy|*
<(B+B-alSz—yl*+ (1 -8 - (B—a=1))|z—yl?

+a = Blla — Szl|* +vlly — Syl (2.3.3)
for all z,y € C.

We call such a mrapping an (@, 3,v)-super hybrid mapping.

Remark 2.3.18. If v =0 in (2.3.3), then S is is («, B)-generalized hybrid.

So, the class of super hybrid mappings contains the class of generalized

hybrid mappings. A super hybrid mapping is not quasi-nonexpansive.

Lemma 2.3.19. [55] Let C be a nonempty subset of a Hilbert space H and let
a, 8 and  be real numbers with v # —1. Let S and T" be mappings of C' into H
such that S = T-}-—VT + =1 Then, T is (o, B,7)-super hybrid if and only if S is
(cx, B)-generalized hybrid. In this case, F(S) = F(T).

Lemma 2.3.20. [55] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let S : C — H be a generalized hybrid mapping. Then § is

demi-closed on C.
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Lemma 2.3.21. [39] Let {I",,} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I'y,} of {I';} which satisfies

[, < Ty for all i € N. Define the sequence {7(n)}n>n, of integers as follows:
{n) = max{k £ n : T < T},

where ng € N such that {k < ng : T'x < Tg41} # 0. Then, the following hold:
(i) 7(1) £ 7(2) £... and 7(n) = 00;

(ll) F‘r(n} < P-r(n)+1 and I',, < I‘\1-(71)+1: Vn € N.

Lemma 2.3.22. [1] Let {a,}nen be a sequence of nonnegative real numbers, {ay,}
a sequence of real numbers in [0, 1] with £%2, @, = oo, {u,} a sequence of non-
negative real numbers with X2 v, < oo, {t,} a sequence of real numbers with

limsupt, < 0. Suppose that

tnt1 < (1 — ay)a, + antn + Uy, forall n € N

Then lim a, = 0.
n—eco

Definition 2.3.23. Let B be a mapping of H into 2. The effective domain of B
is denoted by D(B), that is, D(B) = {# € H : Bx # 0}.

Definition 2.3.24. A multi-valued mapping B on H is called monotone if for all

z,y € D(B),u € Bz, and v € By imply (z —y,u —v) > 0.

Definition 2.3.25. A monotone mapping B : H — 2F is maximal if the graph of
G(B) of B is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping B is maximal if and only if for (z, f) €

Hx H,(x—y, f—g) >0 for every (y,g) € G(B) implies f € Bz.

Definition 2.3.26. Let H be a Hilbert space and let A C H x H Dbe a set-valued

mappoing. Then A is called accretive if for any (21,91), (€2,¥2) € A,

(w1 — 22,91, 92) > 0.
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Definition 2.3.27. Let A € H x H be an accretive operator and for any r» > 0
and x € H, define the J.z by

Jx={z€ H:2x € z+1Az}.

Definition 2.3.28. Let the set-valued mapping B : H — 2 be a maximal mono-

tone. We define the resolvent operator J,. associate with B and 7 > 0 as follows:
g, =1 +rB) >

It is worth mentioning that the resolvent operator J,. is single-valued, nonexpansive

and l-inverse strongly monotone.

We denote by A, = £(I —J,.) the Yosida approximation of B for r. We know

>

[51] that

Axe Bile, Yz ¢ Hy v A 0. (2.3.4)

Definition 2.3.29. Let B be a maximal monotone operator on H and let B~10 =
{z € H : 0 € Bz}. Then resolvent J, is firmly nonexpansive and B~'0 = F(J;)

for all » > 0, ie,

|z — Syl < {z —y, Jez = Joy), Va,y € H. (2.3.5)

Lemma 2.3.30. Let H be a real Hilbert space, and let B be a maximal monotone
operator on H. For r > 0 and & € H, define the resolvent J.z. Then the following
holds:

s—t

. (Jox — Sz, Jyx — x) > || Jom — Jex||?, (2.3.6)

for all s,t > 0 and x € H.
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From Lemma 2.3.30, we have that
Nz — Juzll < (1A = pl/A) ||z — Ixell, (2.3.7)

for all A, it > 0 and 2 € H; see also [20, 50]. To prove our main result, we need the

following lemmas.

Remark 2.3.31. It is not hard to show that if A is an a-inverse strongly mono-
tone mapping, then it is é -Lipschitzian,and hence uniformly continuous. Clearly,
the class of monotone mappings include the class of a-inverse strongly monotone
mappings.

Remark 2.3.32. It is well known that if T : C — C' is a nonexpansive mapping,
then I —T is 1 -inverse strongly monotone, where I is the identity mapping on H;
see, for instance, [51]. It is known that the resolvent J; is firmly nonexpansive and

B0 = F(J,) for all 7 > 0.

Lemma 2.3.33. [40] Let H be a real Hilbert space and let C' be a nonempty closed
convex subset of H. Let a > 0. Let A be an a-inverse strongly monotone mapping
of C into H and let B be a maximal monotone operator on H such that the domain
of B is included in €. Let Jy = (I + AB)~! be the resolvent of B for any A > 0.
Then, the following statements hold:

(i) if w,v € (A + B)™'(0), then Au = Av;

(ii) for any A > 0,u € (A -+ B)~'(0) if and only if u = Jy\(I — AA)w.

Lemma 2.3.34. [36] Let H be a Hilbert space, and let ¢ : H — H be a k-
contraction with 0 < k < 1. Let V be a 4 -strongly monotone and L-Lipschitzian
continuous operator on H with 4 > 0 and L > 0. Let a real number vy satisfy
0<y< ZE Then V —~g : H — H is a (7 — vk)-strongly monotone and (L + vk)-
Lipschitzian continuous mapping. Furthermore, let C' be a nonempty closed convex
subset of H. Then Pg(I — V + yg) has a unique fixed point 2y in C. This point

zp € C is also a unique solution of the variational inequality

(V—=vf)z,q—2) >0, YgeC.
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Definition 2.3.35. Let H be a Hilbert space and let f be a proper lower semi-
continuous convex function of H into (—oo, 00]. Then, the subdifferential df of f

is defined as follows:

0f(z) ={z € H: f(2) + (2,9 —2) < f(y),y € H},

for all € H; see, for instance, [51]. From Rockafellar [45], we know that Of is

maximal monotone.
Definition 2.3.36. Let C be a nonempty closed convex subset of H and let i be
the indicator function of C, i.e.,

W/ =€

oo, ¢ C.

‘ic(.’c) ==

Then, i¢ is a proper lower semicontinuous convex function of H into (—oo, co) and

then the subdifferential ;. of i¢ is a maximal monotone operator.
So, we can define the resolvent Jy of ;. for A > 0, ie.,
Iz = (I +29;,) 'z,
for all € H. We have that for any z € H and v € C,

u = e v eu\d,u

& T €u+t ANgu

& x—u€ ANgu

& %(:ﬁ—u,v—u)g(}, YveC
& (z—uwv—uw) <0, Wwel
& u= Pz,

where Ncu is the normal cone to C' at u, i.e.,

Neuw={z € H: (z,v—u) <0,V € C}.
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2.4 Equilibrium Problems

Definition 2.4.1. Let G be a bifunction of C' x C into R, where R is the set of
real numbers. The equilibrium problem for G : C' x C' — R is to find « € C such
that

G(z,y) 20, VyeC. (2.4.1)

The set of solutions of 2.4.1 is denoted by EP(G), that is,
EP(G)={z€C:G(z,y) > 0,Vy € C}.

Definition 2.4.2. Let G : C x C — R be a hifuction and ¥ : ¢ — H be a
p-inverse strongly monotone mapping. The generalized equilibrium problem (for

short, GEP) for G and ¥ is to find z € C such that

G(z,y) +(Yzy—2) 20, Vye C. (2.4.2)

The set of solutions of (2.4.2) is denoted by GEP(G, ¥), that is,
GEP(G,%) = {z € C:G(z,y) + (¥=z,y—2) >0, Yy € C}.

Remark 2.4.3. If U = 0, in (2.4.2), then GEP reduces into to the classical

equilibrium problem.

Remark 2.4.4. If G = 0 in (2.4.2), then GEP reduces to the classical variational
inequality and GEP(0, ¥) is denoted by VI(¥, C), that is,

VI(U,C)={2€C:(Vz,y—2) >0, VyeC}.

Definition 2.4.5. Let G : C' x C — R be a bifuction and let ¢ be a real valued
function. The mixed equilibrium problem (for short, MEP) is to find & € C such
that

G(z,y) +¢(y) —e(z) >0, Vy € C (2.4.3)
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Remark 2.4.6. If ¢ = 0, in (2.4.3), then MEP reduces to the equilibrium problem.

Definition 2.4.7. [7] For solving the equilibrium problem, let us assume that the

bifunction G satisfies the following conditions:

(Al) G(z,z) =0, for all z € C;
(A2) G is monotone, i.e., G(z,y) + G(y,&) <0, for any z,y € C;
(A3) for each v,y,z € C

ltijl,élG(tZ + (1 -t),y) < G(z,y);
(A4) for each x € C,G(x, ) is convex and lower semicontinuous.

Definition 2.4.8. [7] For solving the mixed equilibrium problem, let us give the

following assumptions for the bifunction G, ¢ and the set C:

(Al) G(z,z) =0, forall z € C;
(A2) G is monotone, i.e., G(z,y) + G(y,z) <0, for any z,y € C}
(A3) for each z,7y,z € C

1}&16’(1‘,2 + (1 =)z, y) < G(z,y);
(A4) for each x € C,G(z,-) is convex and lower semicontinuous;

(B1) for each x € H and r > 0, there exist a bounded subset D, C C' andy € C
such that for any z € C\D,,

Gle9) +9(6) — 9lz) + -y — 2,2~ 2) <O

(B2) C is a bounded set.
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Lemma 2.4.9. [7] Let C' be a nonempty closed convex subset of H and let G be
a bifunction of C' x C' into R satisfying (A1) — (A4). Let » > 0 and = € H. Then,

there exists a unique z € C' such that
1
G(z,y) + ;(y —z,z2—a) > 0, VyeC.

Lemma 2.4.10. [15] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let G : C'x C' — R be a bifunction which satisfies conditions (A1) — (A4).

For » > 0 and = € H, define a mapping 7, : H — C as follows:
1
T(x) = {= @ : Gt ;(y —z,z—x) >0, YyeC},

for all x € H. Then the following statements hold:
(i) T; is single-valued;

(ii) 7 is firmly nonexpansive, i.e., for any @,y € C,
Nz — Tyl® < {To— Ty, x — y);

(iii) EP(G) is a closed convex subset of C;
(iv) G(T) = BP(G).

Remark 2.4.11. For any z € H and r > 0, by Lemma 2.4.10 (i), there exists

u € C such that

G(u,y) + :}(y —u,u—x) > 0,Vy € H. (2.4.4)
Replacing @ with z — r¥z € H in (2.4.4), we have

G(w,y) + (Yz,y —u) + %(y—u,u—:c) >0,Vy e H, (2.4.5)

where ¥ : H — H is an inverse-strongly monotone mapping.
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Lemma 2.4.12. [44] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let G : C'x C' — R be a bifunction which satisfies conditions (A1) — (A4)
and let ¢ : C' = RU{+0c0} be a proper lower semicontinuous and convex function.
Assume that either (B1) or (B2) holds. For 7 > 0 and x € H, define a mapping
T.: H — C as follows:

T(x) ={2€C:G(2,y) +¢(y) + %(y ~2,2- %) 2@(2), Yy € C},

for all € H. Then following conclusions hold:
(1) For each z € H,T;(x) # 0;
(2) T is single-valued;

(3) T, is firmly nonexpansive, i.e., for any z,y € H,

1T (z) — T W)I? < (Th(z) = T(y), = — v);

@) F(T,) = MEP(G, ¢);
(6) MEP(G, ) is closed and convex.

We call such T} the resolvent of f for r > 0. Using Leminas 2.4.9 and 2.4.12,

Takahashi, Takahashi and Toyoda [56] obtained the following lemma.

Lemma 2.4.13. [56] Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. Let G : C x C' — R satisfy (Al) — (A4). Let A¢ be a set-

valued mapping of H into itself defined by

{z€e H:G(z,y) > {y—=,2), YyeC}, VaeC
0, Vz¢C.

A(;:I.' =

Then, MEP(G) = AZ'0 and Ag is maximal monotone operator with dom A¢ € C.
Furthermore, for any & € H and r > 0, the resolvent T, of G coincides with the
resolvent of Ag, i.e.,

Trx = (I +rAg) 'w.
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Applying the idea of the proof in Lemma 2.4.13, we have the following

results.

Lemma 2.4.14. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. Let G : C' x C' — R satisty (A1) — (A4) and let ¢ : C — RU {+o0}
be a proper lower semicontinuous and convex function. Assume that either (B1)

or (B2) holds. Let A(q,) be a set- valued mapping of H into itself defined by

{z€ H:G(z,y) +oly) —p(e) ={y—=,2), YyeC}, Vzel
B, VaécC.

A )T =
(2.4.6)

Then, MEP(G, @) = A(_c} Y and A(g ) is 2 maximal monotone operator with dom
A(g) C C. Furthermore, for any x € H and r > 0, the resolvent T;. of G coincides

with the resolvent of Ag,,), i.e.,

TTTC — (I o TA(G,@))—l:U-
Proof. It is obvious that MEP(G, ) = A(‘é 0. In fact, we have that

z € MEP(G,p) G(z,y) +oly) —p(z) 20, Vyel

-

& G(z,y)+e(y) —pl2) > {y—20), YyelC
& 0€ Agyp?
~

-1
7 E A(GW)O.

We show that A(g,,) is monotone. Let (x4, z1), (2, 22) € A(g,) be given. Then, we

have, for all y € C,
G(z1,y) +9(y) — (1) 2 (y —21,21) and G(x2,y) +0(y) — @(@2) =2 {y — %2, 22)
and hence

G(z1,@2) + @(22) — (1) = (T2 — 21,21) and G(wz,21) + @(21) — w(22) = (T1 — 22, 22).-
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It follows from (A2) that
0 > G(.’L‘l,ﬂlg) + G(.’TIz,i’Bl) > (.’Ug — &y, Zl) + (.’Cl — g, 22) = —(.’El — X9,21 — Zz).

This implies that A ) is monotone. We next prove that Az, is maximal mono-
tone. To show that Agy) is maximal monotone, it is sufficient to show from
[50] that R( + rA(,y)) = H for all » > 0, where R(I 4 rA¢,,)) is the range of
I+7rAgy). Let © € H and r > 0. Then, from Lemma 2.4.12, there exists z € C

such that
1
G(z,y) + ¢ly) — w(2) + ;(y ~2z,2z—3) 20, Vyel.

So, we have that

1 .
Glzy) +oy) —ol2) 2 (y — 2, ~(x—2)), Vyel
By the definition of A(g ) , we get

1
7

(a— 2)

/1((;'('9)2 =

and hence x € z + 74(g,)2.
Therefore, H C R(I + rAc,p)) and R(I + 1Ac,p)) = H. Also, T € z + rA(g,)2

implies that T,z = (I +rAgy) '@ forall z € H and r > 0. a

2.5 CAT(0) spaces

In this section, we present the special metric space which has the geometry

defined on it. We also introduce the concept of several types of convergence on it.

Definition 2.5.1. [8] A geodesic path joining = € X to y € X (or, more briefly, a

geodesic from x to y) is a map ¢ from a closed interval [0,{] C R to X such that
(i) c(0) = z,c(l) =y;

(i) d(e(t),c(t)) = |t —t/| for all ¢,¢" € [0,1].



26

In particular, ¢ is an isometry and d(z,y) = . The image « of ¢ is called a geodesic

(or metric) segment joining x and y.

When it is unique this geodesic segment is denoted by [z, y].

Definition 2.5.2. The space (X,d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there

is exactly one geodesic joining 2 and y for each z,y € X.

Definition 2.5.3. A subset C of a CAT(0) space is convex if [z,y] C C for all

z,y€C.

Definition 2.5.4. A geodesic triangle A(x;, 2, %3) in a geodesic metric space
(X, d) consists of three points x1, 22, x3 in X (the vertices of /) and a geodesic seg-
ment between each pair of vertices (the edges of A). A comparison triangle for the
geodesic triangle A(z1, @y, x3) in (X, d) is a triangle A(z1, 22, 33) 1= A(T1, T2, Ts)
in-the-Euclidean plane E? such-that dg: (T, T;) = d(w;; @;) for all-4,5 € 1,2,3 (see

Figure 1).

¥ 2

O

)

Figure 1 Comparison triangle

Definition 2.5.5. A geodesic space is said to be a CAT(0) space if all geodesic
triangles of appropriate size satisfy the following comparison axiom.

CAT(0) : Let A be a geodesic triangle in X and let A be a comparison triangle
for A. Then A is said to satisfy the CAT(0) inequality if for all x,y € A\ and all
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comparison points T,y € A,

(l(.’E, y) < dg: (."E;?j)

(see Figure 2).

Figure 2 CAT(0) inequality

Definition 2.5.6. Let z,y;,9, be the points in a CAT(0) space and y, be the

midpoint of the segment [y1,y2], then the CAT(0) inequality implies

1 1 1)
——d¥(@yy0) < Ed-z(i',‘yl) 2} §d2(ﬂf‘=y2) f- Zdz(yl,yﬂ. (CN)

This is the (CN) inequality of Bruhat and Tits [11]. In fact (cf. [8], p. 163),

a geodesic space is a CAT(0) space if and only if it satisfies the (CN) inequality.

It is well known that any complete, simply connected Riemannian manifold
having nonpositive sectional curvature is a CAT(0) space. Other examples include
Pre-Hilbert spaces, R-trees (see [8]), Euclidean buildings (see [10]), the complex
Hilbert ball with a hyperbolic metric (see [22]), and many others. Complete CAT(0)

spaces are often called Hadamard spaces.
Next, we collect some useful lemmas in CAT(0) spaces.

Lemma 2.5.7. (8, Proposition 2.2] Let X be a CAT(0) space, p,¢,r,s € X and
A € [0,1]. Then

dAp® (1 — Ng, Ar & (1 — X)s) < Md(p,r) + (1 — N)d(q, s).
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Lemma 2.5.8. [18, Lemma 2.4] Let X be a CAT(0) space, z,y,2 € X and A €
[0,1]. Then

dAz @ (1 — Ny, 2) < Ad(z,2) + (1 — N)d(y, 2).

Lemma 2.5.9. [18, Lemma 2.5] Let X be a CAT(0) space, x,y,z € X and \ €
[0,1]. Then

Az @ (1 — Ny, 2) £ M (2, 2) + (1= Nd*(y,2) — A1 = N)d*(z,y).

We give the concept of A-convergence and collect some basic properties.
Let {z,} be a bounded sequence in a CAT(0) space X. For x € X, we set

r(z, {z,}) = limsup d(z, 2,).

=00

The asymptotic radius r({z,}) of {z,} is given by

r{{z,}) = {NgAAN " BEK),
and the asymptotic center A({z,}) of {z,} is the set
A({zn}) = {z € X : r(@, {2n}) = r({za})}

It is known from Proposition 7 of [17] that in a CAT(0) space, A({z,}) consists of

exactly one point.

Definition 2.5.10. A sequence {z,} C X is said to A-converge to x € X if

A({w,,}) = {a} for every subsequence {z,, } of {z,}.

Uniqueness of asymptotic center implies that CAT(0) space X satisfies

Opial’s property, i.e., for given {z,} C X such that {z,} A-converges to = and
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given y € X with y # z,

lim sup d(z,,, z) < limsupd(z,,y).

n—oo n—oo

Since it is not possible to formulate the concept of demiclosedness in a CATY(0)
setting, as stated in linear spaces, let us formally say that “I — T is demiclosed
at zero”if the conditions, {z,} C C' A- converges to & and d(z,,Tz,) — 0 imply

z € F(T).

Lemma 2.5.11. [29] Every hounded sequence in a complete CAT(0) space always

has a A-convergent subsequence.

Lemma 2.5.12. [16] If C' is a closed convex subset of a complete CAT(0) space

and if {z,} is a bounded sequence in C, then the asymptotic center of {@,} is in

C.

Lemma 2.5.13. [16] If C is a closed convex subset of X and 7 : C —» X is a
asympototically nonexpansive mapping, then the conditions {z,} A-convergence

to z and d(z,,T'z,) — 0, and imply « € C and Tz = =.

Definition 2.5.14. [3] Let X be a CAT(0) space and a,b,c,d € X. Then quasi-

linearization is defined as a map (-,-) : (X x X) x (X x X) — R defined by

(@b, cd) = % (d(a, d) + d2(b, ¢) — d(arc) — d2(b,d)) . (2.5.1)

It is easily seen that (a—g, E?) = (c_gl, @), (EE, 3) = —(ﬁ, c—(i) and (at, Eé) +
T ,% = a—g,EZ} for all a,b,c,d,z € X. We say that X satisfies the Cauchy-
zb, od

Schwarz inequality if
(@b, cd) < d(a, b)d(c, d), (2.5.2)

for all a,b,c,d € X.
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Having the notion of quasilinearization, Kakavandi and Amini [25] intro-

duced the following notion of convergence.

Definition 2.5.15. A sequence {,} in the complete CAT(0) space (X,d) w-
converges to & € X if lim, o0 (TT1, Zh) = 0, d.€., imy o0 (d2(Tn, ) — d?(n, y) +

d*(z,y)) =0for ally € X.

Lemma 2.5.16. [58] Let X be a complete CAT(0) space. Then for all u,z,y € X,

the following inequality holds
d(z,u) < d(y, u) + 2(zY, T0).

Lemma 2.5.17. [58] Let X be a CAT(0) space. For any ¢ € [0,1] and u,v € X,
let wy =tu & (1 — t)v. Then, for all 2.y € X,

1. (@, U} < t(ud, W) + (1 — t) (0, wg);

2ty ug) < (et uff) + (—t)(od; uf) and
(wd, vg) < t(ud, vf) + (L - t)(vd, v]).

It is obvious that convergence in the metric implies w-convergence, and it
is easy to check that w-convergence implies A-convergence (25, Proposition 2.5],
but it is showed in ([24, Example 4.7]) that the converse is not valid. However the
following lemma shows another characterization of A-convergence as well as, more

explicitly, a relation between w-convergence and A-convergence.

Lemma 2.5.18. [24, Theorem 2.6] Let X be a complete CAT(0) space, {z.} be a

sequence in X and ¢ € X. Then {z,} A-converges to « if and only if

limsup(zz,, 7)) <0, forally € X.

n—o0
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Theorem 2.5.19. (8] Let X be a complete CAT(0) space, and let C' be a nonempty
closed convex subset of X. Then,

(i) for every @ € X, there exists a unique point yo € C, denoted by P, such
that d(z,yo) = d(z, C) = infyec d(z, y);

(ii) if =’ belongs to the geodesic segment [z, yo|, then Pea’ = Pew.

Theorem 2.5.20. [19] Let C be a nonempty convex subset of a complete CAT'(0)

space X, ¢ € X and v € C. Then

u= Pgx if and only if (y—ﬁ, ﬂ) >0, forallyeC.



CHAPTER III

ITERATIVE APPROXIMATION METHODS FOR
GENERALIZED EQUILIBRIUM PROBLEMS

AND FIXED POINT PROBLEMS

3.1 Iterative algorithms with perturbations for solving the
systems of generalized equilibrium problems and the

fixed point problems of two quasi-nonexpansive map-

pings

In this section, we present the iterative algorithms with perturbations for
finding a common element of the set of solutions of the system of generalized
~ equilibrium problems and the set of common fixed points of two quasi-nonexpansive

mappings in a Hilbert space.

Theorem 3.1.1. Let C' be a nonempty closed convex subset of a Hilbert space H.
Foreachi=1,2,...,k, let G;: C x C = R be a bifunction satisfying (A1) — (A4)
and ¥; a p;-inverse strongly monotone mapping. For each j =1,2,let T; : €' — H
be two quasi-nonexpansive mappings such that I — T} are demiclosed at zero with

Q= F(TY) N F(Ty) n (N2 ,GEP(G;,Y;)) # 0. Let the sequences{z,}, {yn}, and
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{z.} be defined by

'

z € H,
Gi(un,1,y) + (Y1n, ¥ — Un,1) + ﬁ(y — g1, Wa —Ts) = 0, Yy €06,

GZ(un,2:y) + (‘P2$n; y - un,Z) + ,l”(y - 'uu,2aun,‘2 - mn) 2 01 Vy S O:

¢« (3.1.1)
Grlttn 5, Y) + A%, Y — Un) + 7Y — Un gy Un gk — Tn) =0, Yy €C,

Wy = % Zf:l Un,is

Yn = Yutn + (L = n)T1wn,

Zn = Pt + (1 — B,) Tow,,

Tyl = Quttn + (1 — ap)zn, V€N,

where {a,}, {On}, {72} are sequences in (0, 1) and {u,} C H is a sequence and
{rn} C [a,2u;) for some @ > 0 and for all ¢ € {1,2,...,k}. Suppose the following
conditions arc satisfied.

(C1) lim a, =0 and £ a,, ="00;

(C2) lim inf Gn(1 — B >0;

(C3) 1i?tlll)gf Tu(l —va) > C;

(C4) Jim up = w for some uw C H.

Then {z,} converges strongly to «*, where ¢* = Pqu.

Proof. We first have that foralli =1,2,...,k, I—r,¥; is a nonexpansive mapping.

Indeed, for all z,y € C, we obtain

I = 7% = (I = ra¥ayll* = [l(z —y) — ra( Tz — Tay)||*

= &=yl - 2 (Tiz — Ly, 5 — )
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+ro || Wi — ey

ll = ylI? — 2rapl| Wiz — Wyl
+r2[| Wiz — Wiy

ll& = lI? = 7 (2p; — o) [ Wi — Ly |

ll& - ylI*.

Thus I — 7,,¥; is nonexpansive for each ¢ € {1,2,...,k}. Now, let w € § be

arbitrary. By (C4), {u,} is a bounded sequence, there exists M > 0 such that

sup ||u, — w|| < M.
nell

For each i = 1,2,...,k and n € N, we have from u,; = T}, (@, — 7,¥;x,) that

"un,i -l = “Trn,;(fl’n — ety )= T?',.,i('w = ra V)|
< Nzp —ma¥iz,) — (w— ry Vw)|
< len —w, (3.1.2)
which gives also that
12X
loon — ]l <+ 2_1: llttn,; — w]| € ||l —w| Y € Q. (3.1.3)
Since T; is quasi-nonexpansive we have
lyn — wll = llymewn + (1 = ) Tiwn — wl]
= |lrm(wn —w) + (1 — ) (Thw, — w)||
S ’Yﬂ”wu - tU" + (1 - ’rr:)”leu = 'lb‘”
< lwn —wl. (3.1.4)

So, we have from (3.1.3) and (3.1.4) and the quasi-nonexpansiveness of T3 that

ensr —wll = flan(un —w) + (1 = an)(zn — w)|
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< anllun —w|| + (1 - an)ljz0 — ]|

< anllun — wll + (1 = an){Bullyn — wll + (1 — Ba) || Tows — w|}
< atlltn = Wl + (1 = ) Bulln — 0] + (1 = Bl — 0]}
< cnlltn —wll + (1 = o)l — ]

< apllup — | + (1 — an)||lzn — wl|

< max{M, ||z, —w|}.

By Induction, we have that

|lzn — w|| < max{||z; —w||,M}, VneN.

Thus we obtain that {||z, —w||} is bounded, so also {z,}, {vn}, {z.}, {wa}, {T1wn}
and {Tow, } are bounded. Since €} is closed and convex, we can take z* = Pqu. It

follows that

Iy, — x*llz = \ kst ") HW1 2y, ) (s — 3"*)“2
=\ Ynllws — 2 ”2 T (1 ~ ¥n) || T1wn — 3:*“2 — WA Tﬂ)”wn N len”2

g ’Yn”w" 1 ‘T*”2 % (1 -y Tn)“wn = 1*”2 = f)’ﬂ(l 3 Afi't)”c")n 7] lennz

— ”wn Y = 7!1(1 = ﬂ/n)”wn = lennz
< w, — z*||% (3.1.5)
From (3.1.5), we have
lzn — 2> = [1Balyn — %) + (1 = Bo) (Town — ™)

= Bn”yn - Ll,'*”2 5 (1 - ﬁu)”TZer - :L‘*Hz - ﬁn(l - ﬁn)”'yn - T2wu||2
< tBn”wn - 3:#“2 + (1 - ﬁn)“wn - 1"*”2 - JBH(]- - ﬁn)“yn - Tzwrz“2
= ”wn - $*||2 - ﬁn(l - 5;;)“%1 - T2wn||2

< flwn — 7). (3.1.6)
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Hence we have from (3.1.3), (3.1.5) and (3.1.6) that

e

= [lan(un — 2°) + (1 — an)(z0 — 29|

= anllun — ">+ (1 — @n)ll20 — &%) = 01 = @) |un — 2|

< agllun — 2P+ (1 - an)l|zn — 2"

= anllun — 2*||? + @M —aTP e — 5,)|| Tow, — °||?
~Bn(l = Ba)llyn — Townl|’}

e — 'Lx”z + Bufvallwn — 37*”2 + (1 =)l Thwn — 31*“2

[A

(1 =)l — Tiwa|*} + (1 — Ba) | Town — =]
7[311(1 7 5::)”?]:1 =, ]——‘~r‘2‘5f¢)ﬂ”2

Oalltn — & + Bu(Yallown — @ + (L= 7a) Jwn — 2"

1A

(L — Y)llwn — Tawnl?) + (1 — Ba) |l — 2*||

— —ﬁn(l _ﬁai)lwn _TZwﬂuz

- a'n”un - 11:*“12 K ”wu = -’UQ'!”2 - A/n(l - 'er)“wn = lenllz

_ﬁn(]- - ﬁn)llyn 3 T2wn”2' (317)

We also have that

[A

ol — Fa) llwn — len“2 O ||t —~ ’U*Hz + [lwn = 5‘3*”2

— w1 — 7|2, (3.1.8)
and

ﬂn(l - ﬁn)”yn - T2Wn"2 = a'n”'u'n - -'5*”2 . i ”Wn - 3:*“2

Nt — 2| (3.1.9)
Furthemore, we have from y, = v,wy, + (1 — v,)Tiw, that

”wn - T2wﬂ|| S “wn - yn” + “yn - T2wn”
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= ”wu — TnWn — (1 - fYn)len” + ”yn - T2$n”

= (1 =m)llwn = Tiwnll + llyn — Townl|- (3.1.10)

On the other hand, since 2,41 — 2* = o, (¢, — 2*) + (1 — o) (2, — &%), we have

lewnsr — =*||?

We also have that

”$n+1 - wn”

< wper — 2|
< (1 - O‘n)“zn = 1"*'12 + 2a;, ('un — $*1$n+1 - 33!)
S (1 -3 an)'lwn 7 :L‘*HZ I 20"11 (un - :L'*: Tny1 — :E*)

(1 — anllwn — %)% + 2000 (1, =Ty — &)
RN 2°, Ty — )
= (1 = an)|lwn =& || + 205 {t4s — 4, Trg1 — x*)

+20, (v — &, Tpy1 — W) + 20, (v — a*,w, — %), (3.1.11)

Znt1 = all + [yn — wall

llon (vt = ¥a) + (1 — an)(zn — ya) || + (1 = va)(wn — Trwa)|l
anllttn — Ynll + (1 = @) l|BaYn + (1 — Br)Town — ¥all

+(1 = y)llwn — Trwn||

nlttn = Ynll + (1 — @)1 = Bu)llyn — Towall

+(1 = )llwn — Thwy |- (3.1.12)

Moreover, for any i € {1,2,...,k}, we have from w,; = T, ,(¢n — rn¥;%,) that

“un,i - w*llz <

I(@n — &%) — ra(Tizn — Ca™)||?
|2, — 37*"2 = 2rp (T — 2*, Vi — V") + 7‘121,”‘1’2"’3?! - ‘I’:’fﬂ*nz

”‘Tn - 1"*"2 - Tu(2ﬂi - Tn)”‘pixn - ‘I’ifﬂz-
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It follows that

k
1
leow = 2** =11 3 (s — 2"
i=1

k
1 *
< 5 2 g = 2P
i=1
1 k
< lew =2 — =) (2 — )| Vi, — Ciz*||2 (3.1.13)
k —
This implies that
#ns1 — 2*|1° = llanlttn =7") + (1 — an)(zn — *)|?
< anlltn — &7 + (1 — @) flwn — 2*||?
< opllun — ‘E*Hz + (1 - an)llen — = 3

k
1 .
—(1 - QH)E ;7',1(2/_11- — q'n)“\Pi:L‘n R \I’,-g;sllz’

and hence
L
(1= a) D r(Zpts = )| Liten — Wia”|
i=1
< anllu, =@M llen — )2 = (|20 — 27| (31.14)

Furthermore, we have from Lemmna 2.4.10 that for any 2 € 1,2,...,k, we have

|lens — :c"‘||2 < Az — ra¥izy) — (" — raVig™), Ui — 2°)
= %{ll(ﬂ?n — Py Bmn) — (& — rp Wi )PP+ g —2[®
—|[(n — Ta¥izn) — (* — 1 Viz*) — (wn; — )|}
< o~ 2P+l = I = e — ) — 7 (Wi — TP}
= %{“wn — &2 + [lung — &*|1* = @ — wnill? = 72l Wizs — Tia*|®

+2r,{Tp — Up i, Vitn — V™) }.
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This implies that

lni — 21 < flwn — 2" = llzn — wnall®

+2ry ||z — ||| Vizn — iz®||. (3.1.15)

Then we have from (3.1.15) that

k
: 1 .
llwn — 2:*“2 < & Z \|lust = ‘T*HE
i=1
1 k
< fon =17 = 23 s =zl
i=1

k
1 .
+E E:Zl 27‘11”3-7?1 o un,i” ”\Pffﬂn 1 ‘l,i‘l'x“ (3116)
Hence we have from (3.1.16) that

=Y <o b P A b, = 2T

k
* + l
nlltt, —a* |2 + (1 - ay) (llmn mkll > et = ﬂ"-nllz)
f==i

k
1
+(1 N O-'n.) (Z E 27111“3711 . ’un,i””lpiwn iy \Ijz(l**”) -
=1

IA

It follows that
1 k
{1~ Q'H)E Z l|etn,i — Tal? £ anlltn, = P — ||, — 2
i=1

k
1 .
+(1 - a’n) (E erﬂ"mﬂ - u‘n.i"”lpiwn - \II,-:B “) '
i=1
(3.1.17)

Next, we shall consider the following two cases.
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Case A : Put I, = |lw, — z*||? for all n € N. Suppose that I',4; < I, for all

n € N. In this case li_r}n I, exists and then lim (I,4; — I',) = 0. By (C1), (C3)
n—oo n—oo

and (3.1.8), we have

lim ||w, — Tiw,|| = 0. (3.1.18)

n—oo

Similarly by (C1), (C2) and (3.1.9), we also have
lim lyn — Town]| = 0. (3.1.19)
So, we have from (3.1.10), (3.1.18) and (3.1.19) that

lim ||lw, — Tow,|]] = 0. (3.1.20)

n—oo

Since lim lwn — «*|| exists, we have from (3.1.7) and (3.1.18)
n—o0

ﬂli)n;ollwn — 2| = ?}1_1}1010 2w — 2| (21

We also have from (C1), (3.1.12), (3.1.18) and (3.1.19) that

I [l — ] = 0 (3:1.22)
Since 7111_)171;‘J |z, — =*|| exists we have from (C1) and (3.1.14) that

7}2130”\11,-3;,1 —Vu*|| = 0, Vi=1,2,.. .k (3.1.23)
This together with (3.1.17) and the existence of T}Lnolo |z, — z*|| implies that

W |[un; —@al] = 0, Vi=1,2,...,k (3.1.24)

n—00

which gives that

k
> Nttni — @l =0 as n - oco. (3.1.25)

1
”wn _mn“ s 7
k£

i=1
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So, from (3.1.22), nh—?olo |Zn+1 — 2|l = 0. Furthermore, we have from (3.1.25) that
lwnsr —wnll < llwnsr = Znsal| + @01 — @all + [[2n — wnll = 0 as n — oo;
that is
n11_1)101o |ltwns1 — wa|| = 0. (3.1.26)

Now, since {w,} is a bounded sequence, there exists a subsequence {wy;} of {w,}

such that

limsup(u —%&f, wil— o) = lim (u — 25 w7} 5 (3.1.27)
n—00 j—00

Without loss of generality, we may assume that w,, — v. Since 7} is demiclosed at
zero and by (3.1.18), we conclude that v € F(T}). Similarly, since 73 is demiclosed

at zero and by (3.1.20), we have v € F(T5). Therefore, we get that
v e F(T) N F(Ty). (3.1.28)

Next, we show that v € N&,GEP(G;, ;). For each i € {1,2,...,k}, since u,; =

Troi(Tn — 1 Vi), we tye

1
Gi(tni,y) + (Vitn, ¥ — Un;) + I—(y s Uni—mpe 0, VyeC.

n

From (A2), we also have
1
(qlimn} Yy — un.,i) + r(y - un.i: u’l’l‘i - :13“) 2 Gi(yruu,i)-
Replacing n by n;, we have

u'n_j,:' - mnj -
(qj-imnj Yy — unj,i) =t (y - u'nj,iz _?"—) 2 Gi(y;'unj,i)- (‘3129)

By
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Put gy =ty + (1 —t)vforallt € (0,1) and y € C. Since v € C, then y; € C' and

(?,’t — Un;,iy ‘I’iyt) > (yt — Un; iy ‘Ijiyt) - (yt = Un; iy ‘I’i-’ﬂnj)

Up;i — Ty

_(yt — Up; iy ) + Gi(yhurlj,i)

= (yt — Un; iy Uiy — ‘I’iﬂ»n'_,-,i) + (y¢ = Unj iy ‘I’i'ﬂn,-,i - ‘I’iﬂ?n,-)

nj

Wiz i = B

— (e — Un; i } + Gilagittng i)- (3.1.30)

L

Since ||ty s — ;|| — 0 as j — oo, we obtain that ||V, ; =¥z, || = 0asj — oo.

Furthermore, by the monotonicity of ¥;, we obtain that
(e — wny i Vi — Wiuy, i) > 0.
Taking j — oo in (3.1.30), we have from (A4) that
(ye —v, Lay) = Gy, v)- (3.1.31)

Now, from (A1), (A4) and (3.1.31), we also have

A

0=Gi(y,v:) < tGi(ye.v) +(1 = t)Gi(ye,v)
tGi(yh y) H (1 - t)(% -7, \I;iyt)

tGi(ye, y) + (1= 6)ty — v, Vi),

A

Il

which yields that

Gilyny) + (1 —t)y—v, Yiy) > 0.

Taking ¢ — 0, we have, for each y € C

Gi(v,y)+ (y—v,%w) > 0, forall i€ {1,2,...,k}.
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This shows v € GEP(G;,¥;), for all i = 1,2,...,k. Then, v € N\ ,GEP(G;, ¥;).

Hence we have v € F(Ty) N F(Tz) N (N, GEP(G;, ¥;)) := Q. So, we have from
(3.1.27) that

limsup{u — z*,w, —2*) = (u—z*,v—2a") <0. (3.1.32)

n—roo

By (C1), (C4),(3.1.11), (3.1.22), (3.1.32) and Lemma 2.3.22, we obtain that lij)n ||lwn—

z*|| = 0. Hence we have from (3.1.21) that {x,} converges to a*, where a* = Pqu.

Case B: Assume that there exists a subsequence {I',,}i>0 of {I';}.>0 such that
[y, < Tpqa for all 2 € N In this case, it follows from Lemma 2.3.21 that there
exists a subsequence {I';(,)} of {I'y} such that I';(n)31 > Trny, where 7 : N — Nis

defined by
7(n) = max{k<n: Iy <Tyu}, forallneN.
So, from (3.1.8), that

lwrmy+1 — 212 = Nlwrmy — 27 + Yo () (1 = Fe(m) 1@ (n) — D102 ||°

< arg It — @I
Since ||wr(m) — &*||? := Tr(n) < Lry41 = [|wr@my+1 — @°]|?, we have
Yee)(1 — V) lwre) — Tiwrp)I? € rguyllttemy — 2|12 (3.1.33)
By (C1) and (C3), we have
JEEOHMT(N) —Tw,m)| = 0. (3.1.34)
By (3.1.11), we have

lwrmysr — 212 < (1 — @rgw))|wrey — &°|J



+20 (n) (Ur () — £*5 Tr(n)41 — Z°)-
Now, in view of I'z(5) < I'7(n)41, We see that

lwry = 2*[* < 2uurey = 2%, Trgy41 — &)
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(3.1.35)

= iy — % Brfuyii — ) + 20—, B — Weln)

+2{u — z*, WeEy="T").

Furthermore, we also have from (3.1.9) that

(3.1.36)

ﬁ‘r(n)(]- - 6‘1’(?1))"'?)‘1’(1‘!,) = T,ZL‘U"r(n}”2 < C1"1'(?1)““1'01) N w*”? + ”w-r(n) = 1:*“2

_”wr(n)+1 = -"7*“2

IA

iy l|ttrimy — @12
Applying (C1) and (C2) to the last inequality, we get that
rzlﬂnr}o ”y’r(n) A1 I?‘»‘-’r(n)” = 0.
By (C1), (3.1.12), (3.1.34) and (3.1.38), we have
,}l_l)]‘;lo ”-'E‘r(n)+1 - W-r(n)“ = 0.
By (3.1.25), we have

nh_)rlgo ”w'r(n)+1 = $7(n)+1" = 0.

It follows from (3.1.39) and (3.1.40) that

,}Egouwﬂn)ﬂ—w-r(n)” = 0.

(3.1.37)

(3.1.38)

(3.1.39)

(3.1.40)

(3.1.41)
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Since {wr(n)} is a bounded sequence, there exists a subsequence {wf(,,j)} such that
limsup(v — &%, W) —2%) = lim (u — 2%, wr(n;) — 7). (3.1.42)
n—o00 Jo0
Following the same argument as the proof of Case A for {wT(,,j)}, we have that
limsup(uv — &%, Wy — ) < 0. (3.1.43)
n—oo
Using (C4), (3.1.36), (3.1.39) and (3.1.43), we have that
lim lwrny — 2| = 0. (3.1.44)
By (3.1.41) and (3.1.44), we have that

JLI;;O||MT(,E)+1 —z*] = 0. (3.1.45)

By Lemma 2.3.21 (ii), we get lim I';, = 0; that is lim ||w, — 2| = 0. We observe
n—co n—o0

that
lznsr — 21 < ol — 2" + (1 = o)llwn — 2%
Applying (C1), (C4) and nlglgc lwn — 2*||* = 0, we have immediately
lim |, — 27 = 0;

that is {z,} converges strongly to z*, where z* = Pqu. O
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Setting ¥; =0 for all i = 1,2,...,k in Theorem 3.1.1, we obtain the follow-
ing result.
Corollary 3.1.2. Let C' be a nonempty closed convex subset of a Hilbert space H.
Foreachi=1,2,...,k, let G; : C x C' = R be a bifunction satisfying (A1) — (A4).
For each j = 1,2, let T; : C' = H be two quasi-nonexpansive mappings such that
I — T; are demiclosed at zero with Q := F(T}) N F(T2) N (N%_,EP(G;)) # 0. Let
the sequences {x,}, {v.}, and {z,} be defined by

(
) € H,

G1(tn1,y) + 7Y = Un 1,01 — T) >0, Yy € C,

GZ('un,Zu y) + Fl?:(y —Up2,Un2 — xn) b 0: Vy = O'»

Gk('un,k: y) 57 %(y = Up ks Un ke — En) 2 0: V’y = Cf:
k

Wn — % Zg=1 Un,i,

Yn = TnWy + (1 il ’le)len:

Zn = ,Bn'yn += (1 5 ﬁn)Tzwm

| Tn41 = Qnttn + (1 - oz Y ety

where {a,}, {B.}, {1} are sequences in (0, 1) and {u,} C H is a sequence and
{rn} C [a,2p;) for some a > 0 and for all 7 € {1,2,...,k}. Suppose the following
conditions are satisfied:

(C1) nll’nolo a, =0 and X2, 0, = 00;

(C2) liminf B,(1 - B,) > 0;

(C3) li,ﬁiol.}f'y"(l = Yu) > 0;

(C4) nl]_{lgo U, = u for some u € H.

Then {z,} converges strongly to «*, where * = Pyu.
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In the next results, using Theorem 3.1.1, we have new strong convergence

theorems for two nonexpansive mappings in a Hilbert space.

Corollary 3.1.3. Let C' be a nonempty closed convex subset of a Hilbert space
H. For eachi = 1,2,...,k, let G; : C x C — R be a bifunction satisfying
(A1) — (A4) and ; a p;-inverse strongly monotone mapping. For each j = 1,2,
let T; : C — H be two nonexpansive mappings such that Q := F(T1) N F(T3) N
(NL,GEP(G;,0;)) # 0. Let the sequences {z,}, {y.}, and {2,} be defined by
(3.1.1), where {o,}, {8}, {7} ave sequences in (0, 1) and {u,} C H is a sequence
and {r,} C [a,2y;) for some a > 0 and for all i € {1,2,...,k}. Suppose the
following conditions are satisfied:

(C1) nll_l)lolg o, =10 and X% . o, =004

(C2) li;gglf Bu(1 = B,) >0

(C3) li;ri)gf Yu(l — ) > 0;

(C4) n]!_l)lc}o U, = u for some u € H.

Then {z,} converges strongly to z*, where z* = Pqu.

In this section, we used super hybrid in proved strong convergence. Setting
S; = 1+1,-T:7 + 1_}_%,[ in Theorem 3.1.1, where Tj is a super hybrid mapping and +;

is a real number, we obtain the following result.

Theorem 3.1.4. Let C' be a nonempty closed convex subset of a Hilbert space
H. For each i = 1,2,...,k, let G; : C x C — R be a bifunction satisfying
(A1) — (A4) and V; a p;-inverse strongly monotone mapping. For each j = 1,2, let
T; : C — H be («j, B;,7;)-super hybrid mappings such that Q := F(T}) N F(T2) N
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(Nt ,GEP(G;,¥;)) # 0. Let the sequences {z.}, {y.}, and {2,} be defined by

’

T € H,
Gl(un,lay) + (\I‘Ifum Y- un,l) + %(y — Un,1, u-n,l - mn) Z 01 Vy € C:

G2(un,2|y) + (‘1123711) y— 'un,Z) + ;{;(y — Un,2,Un2 — :En,) Z 0: Vy = O:

(3.1.46)
Gr(tn gk, y) + (Vrtn, ¥ — ung) + }(y — U s Un ko — Tn) 200, VHRSHCH

Wy = % Zf:l Un,iy

Yn = Yntn + (L =) (ﬂ%lﬂwn + -I_%wn) :

Zp = Bny?a + (1 = ﬁn) ('ﬁTQWH + %Cdn) 3

| Tn+1 = Ontn + (I— a,)zng Vi€ N;

where {an}, {Fn}, {7} are sequences in (0, 1) and {u,} € H is a sequence and
{ra} C [a,2u;) for some a > 0 and for all i € {1,2,...,k}. Suppose the following
conditions are satisfied:

(C1) 7111_1)1010 Ol NANA S O Peg O

(C2) “ﬁ‘i{.{}f Gn(1 —965).>'0;

(C3) li;]lgf Ya(l — 1n) > 0;

(C4) nlgl;o U, = u for some u € H.

Then {z,} converges strongly to «*, where a* = Pou.

Proof. For each j =1, 2, setting

il Y5
e ST J
4 1 4y 4 149

b

we have from Lemma 2.3.19 that each S; is a generalized hybrid mapping and

F(S;) = F(T;). Since F(S;) # 0, we have that each .S; is quasi-nonexpansive.
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Following the proof of Theorem 3.1.1 and applying Lemma 2.3.20, we have the

desired result. This completes the proof. a

Setting ¥ = 0 in Theorem 3.1.4, we obtains the following result.

Corollary 3.1.5. Let C be a nonempty closed convex subset of a Hilbert space H.
Foreachi=1,2,...,k, let G;: C x C = R be a bifunction satisfying (A1) — (A4).
For each j = 1,2, let 7} : C — H be (e, B;,7;)-super hybrid mappings such that
Q:= F(Ty) N F(Tz) N (N, EP(G;)) # 0. Let the sequences {x,,}, {ya}, and {z,}
be defined by

4

x € H,
Gl(“n.l: 7]) 1i i(y F— “n,l:”n,l — -"Bn> 2 0: \7’?} = G)

Ga(tnz,¥) + = (U — UnzyUnz — 2n) 2 0, Yy €C,

4 s (3.1.47)

Gk(‘un,kwy) L ,—]._”(y = Up, ks Up k. — (L‘”> Z 0: Vy = C‘-.
_ d k
Wn = 1 Zz‘:l Uiy

yn, = Tnly + (1 - 'Yn) (ﬁleu - l:*r__l.nwu) )

Zn — ,Bnyn + (1 - ﬁn) (ﬁTZWn + ﬁ%wn) 3

\ Tnt1 = Qplly + (1 - an)zu: Vn € N?

where {a,}, {fn}, {1n} are sequences in (0, 1) and {u,} C H is a sequence and
{rn} C [a,2u;) for some a > 0 and for all i € {1,2,...,k}. Suppose the following
conditions are satisfied:
3 =) ¢ 00 i
(C1) ﬂlgl;oan 0 and 22,0, = 00;
(C2) linlinfﬁ,,(l — Bn) > 0;
(C3) liminf~y,(1—,) >0;
n—oed



50

(C4) lim u,, = for some u € H.
n—oo

Then {z,} converges strongly to z*, where z* = Pyu.

In Corollary 3.1.5, put G;(z,y) = 0 for all z,y € C and r, = 1 for all
n € N. Then we have that u,; = @, for all ¢ = 1,2,...,k, which gives that

Wy = % Zle Up,i = T,. Thus we obtain the following results from Corollary 3.1.5.

Corollary 3.1.6. Let C' be a nonempty closed convex subset of a Hilbert space
H. For each j = 1,2, let T; : C = H be (g, 8;,7;)-super hybrid mappings such
that F(T1) N F(13) # 0. Let the sequences {z,}, {y.}, and {z,} be defined by

T € H,

yn = Tnly, + (1 - ’Tn) (_1_T11:n + "Y—lﬂ;n) 3
1+7 147 (31.48)

Zn = JBnyn T (1 T )Bn) (1_:?233371 + %1}71) y

ZTas1 = o (1 — o)z, Yn €N,

where {a,}, {8n}, {7} are sequences in (0, 1) and {u, } C H is a sequence. Suppose
the following conditions are satisfied:

(C1) nl-lilclo o 0 Rand/Y22 v, =I0b;

(C2) ]iéll}il;f Gl = Bi)>0;

(C3) ]iy]]lhl?iolr;lf Yu(l — ) > 0;

(C4) lim up = for some u € H.

Then {z,} converges strongly to z*, where z* = Prm)nFm)u-

In Corollary 3.1.6, put 77 = I, the identity mapping, and 7, := T, an

(e, B,7)-super hybrid mapping. Thus we obtain the following results.
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Corollary 3.1.7. Let C' be a nonempty closed convex subset of a Hilbert space H.
Let T be an («, 8, )-super hybrid mapping such that F(T") # . Let the sequences
{z.}, {yn}, and {2,} be defined by

T € H,
Zn = Pun + (1 — Ba) (#,chn + l—jfr;rcn) :

Tnt1 = Quity + (1 — ap)z,, YR e N,

where {a, } and {£,} are sequences in (0, 1) and {u,} C H is a sequence. Suppose
the following conditions are satisfied.
(C1) lim @ =0-andhZ>2 o, = oo;
n—o0
(C2) limint 8,(1 - B,) > 0;
n—00
(C3) lim wu, = u for some u € H.
n—oo

Then {z,} converges strongly to «*, where &* = Pp(r)u.

3.2 A general iterative method for two maximal monotone operators

and 2-generalized hybrid mappings in Hilbert spaces

In this section, we are a position to propose the new gencral iterative se-
quence for 2-generalized hybrid mappings and establish the strong convergence

theorem for the proposed sequence.

Theorem 3.2.1. Let H be a real Hilbert space and let C' a nonempty, closed and
convex subset of H. Let o > 0 and A an a-inverse-strongly monotone mapping of
C into H. Let the set-valued maps B: D(B) C C — 2H and F : D(F) c C — 2%
be maximal monotone. Let Jy = (I + AB)~" and T, = (I +7F)~! be the resolvent
of B for A > 0 and F for r > 0, respectively. Let 0 < £ < 1 and let g be a
k-contraction of H into itself. Let V' be a 4-strongly monotone and L-Lipschitzian
continuous operator with 4 > 0 and L > 0. Let T : C — (' be a 2-generalized

hybrid mapping such that Q := F(T)N (A + B)710N F~10 # 0. Take p,y € R as
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follows:
2
2y s
O<pu< —, O0<y< A
1 12’ i ”

Let the sequence {z,} C H be generated by
(
21 = & € H, arbitrarily,

Zn = J,\,;(lr - /\nA)Tr,.:Em

g (3.2.1)
e = T30 T,

Tpy1 = O'rfyg(itrz) G (I = anv)ym Vn= 1; 25 vy

\

where the sequences {a,}, {A:} and {r,} satisfy the following restrictions :

(i) {en} C (B 1], Nnpfsge= Pand >~ @y=doi
(ii) there exist comstants ¢ and b such that 0 < @ < A\, < b < 2a for all n € N;

GiDJdincint, B 1,80,

Then {x,} converges strongly to a point py of 2, where pg is a unique fixed point
of Po(I —V + ~vg). This point py € Q is also a unique solution of the hierarchical

variational inequality

{(V —v9)po, ¢ — po) =2 0,¥g € Q. (3.2.2)

Proof. First we prove that {,} is bounded and lim,,_, ||z, — p|| exists
for all p € Q. Let p € Q, we have that p = Jy, (I — A\, A)p and p = T, p. Putting
Un, = T, x,, we have that

"n

“zl’l' == p”2 = |I'jf\n(I = A3"‘(4)]'?"11ﬂ""'ﬂ == J’\H(I == ’\HA)p“2
2 iz = Trup) ~ X AT 0 — ATrnP)Hz

= T2 — Tl = 2Xa(un — p, A — Ap) + X3 || Aur — Ap|®



IA

llzn — P”2

IA

llzn — pII®.

< "Ur! - pllz - 2Ana“‘4ﬂn - Ap||2 + ’\ﬁllAu‘ﬂ

a(20 — Ap) || Auy, — Ap”2

This together with quasi-nonexpansiveness of 7" implies that

=
n 2T

”yn - P” =

IA

IA

7 ”Zn _p“ = ”%n

Therefore, we have

"(Un+1*p|| =_|loh (7o,

7AN

A

O'n.’Yk I I Ty

)_

Qay ”75’ (o) —

1 —1

?— Z ITan T p“

1=

E Z “zn ", P”
k=0

- p||.

— Ap|?

Vp)+ (I —anV)gn — (I — o V)p||

V])” + ”(I — anV)yn — (I F O',IV)

= pll + aallvg(p) — Vol

+“(I S an V) =(I= Cl‘nV)])”.

Putting 7 = 7 —

I = anV)gyn — (I — anV )|

, we can calculate the following,

H(yn —])) - Q’n(vyn — Vp)”2
"yn - ]7”2 — 2 (yu - P Vyn -
+a}|Vya — Vl®

il

Vp)

93

(8.23)

(3.2.4)

lyn = plI* = 2007y — plI* + o2 L2 |lyn — pl|?

(1 — 20,7 + o2 L) |lyn — plI?
(1 — 2007 — e LPp + aﬁLg)”yn

(1 — 20,7 — o (LPpt — iy L?)

—p|?
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+a7%) ||y, — p|I?
< (1= 20,7 + 27|y — 2|

= (1= an?)’[lya —plI*. (3.2.6)
Since 1 — a,,7 > 0, we obtain that
(7 —aV)yn — (I —aV)p)| < l= )|y = 2.

Therefore, by (3.2.5), we have

IA

|Znss —pll < anvkllen = pll + anllyg(p) — Vol + (1 — cnt) |t — 2|

[

an Yk, — pll + aullvg(@) = V|| + (1 = an7) ||z, — 2l

(1 = an(T — 7)) ||zn — 2l + anllvg(p) — Vol
(p) — Voll

(1 — an(r — 7k) |20 — p|| + nlr — k) ”797 -

WL Vo
max {Ha:n —pl}; M—pll} ,for-all n-€ N,
T —k

IA

which arrives that the sequence {||v, — p||} is bounded, so are {z,}, {vn}, {V¥a},
{9(z,)} and {T*z,}. Using Lemma 2.3.34, we can take a unique po € § of the

hierarchical variational inequality
(V' —9)po,a —po) 2 0, Vg e (3.2.7)

We show that limsup,_,.((V — 79)po, &n — po) = 0. We may assume without ioss
of generality that there exists a subsequence {z,, } of {z,} converging to w € C,

as k — oo, such that

limsup((V — vg)po, ©» — po) = Jim ((V = v9)po, Tn,. — p0))-
n—oo v—00

Since {||zn, —p||} is bounded, there exists a subsequence {x,, } of {z,,} such that

lim; 00 ||:cnk£ — p|| exists. Now we shall prove that w € Q.
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(a) We first prove w € F(T) . We notice that

||37n-+1 - yn” = ”an'Yg(:Eu) i (I - anV)y" - yn” = an”'}(g(mr:) - Vyn "

In particular, replacing n by ny, and taking ¢ — oo in the last equality, we have

xll\rcr’lo ||37ﬂk;+1 Yy, =0

so we have y,, — w. Since T is 2-generalized hybrid, there exist a;, az, 41,6 € R

such that

o ||T?z — Ty|” + || Tz — Tyll* + (1 — o1 — @a2)ljz — Tyl|?
< Bil| Tz — yl|® + Bo|| Tz -y

+(1 — By — Ba)llw — yII”,

forallz,y € C. Forany n € Nand £ =0,1,2,...,n— 1, we compute the following

IA

Bl T*T* 2, — ylI* + Bl TT 2 — ylI* + (1 — B1 — B)|IT* 20 — yl1?
—ay | T T 2, = Tyl? — ol PT 20 — Ty|” — (1= g — a2) || T2 — Tyll*
Bull T 22 = yl* + Bl T 2 — ylf? + (1 — By — B)I|T 2, — 9]
—on||T**22, — Ty® — aal T 2 = Tyl® — (1 — au — )| TX2 — Ty
BTz — Ty|? + 1Ty = yl°} + BoANT* 20 — Tyll® + | Ty — yl|*}
+(1 = 61 = B){IT*2 — Tyl + | Ty — yII*} — || T**? 2, — Ty||?

— | T*z, — Ty|* — (1 — ay — )| T* 2, — Ty

BT 2z, — Tyll® + Ty — yl|* + 2T**22, — Ty, Ty — v)}
+Bo{|IT" 20 — Tyl + | Ty — ylI* + 2(T* 2, — Ty, Ty — y)}

+(1 = By = BT 20 = Tyll® + Ty — yl* + 2{T*2, — Ty, Ty — v)}
—ai[|[T**?z, — Ty|® — az|T* 20 — Ty|* — (1 — 01 — a2)[|T* 2, — Ty||?

(B — a)IT 2z, — Ty + (B2 — )| T¥ 2 — Ty
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o+ ag = By = Bo)[T 20 — Tyll* + By + Bo + 1 — B — Bo) || Ty — ||
+2(B T2, — BiTy + BT 2, — BoTy
+(L =By = Ba)T* 2. — (1 — 1 — B2)Ty, Ty — y)
= (b1 — a)IT**22, = Ty|* + (B2 — )| T 2, — Ty||?
—((Br = 1) + (a2 = L) T 20 — Tyl* + | Ty — y]I?
12(0:T* 22, + BoT* 2, + (1 — Lrilbo) B2 — Ty, Ty — v)
= (B — a)([|T**20 — TY|* = | T2 = Tyl?) + (B2 — e2)(IT* 2, — Ty
—|1T*2, — TylI®) + | Ty — ylI* + 2{B: T* 2, + LT 2,
+(1 = B1 = B2)T*% — Ty, Ty — y)
= Ty — yll* + 2(T* 2z — Ty, Ty — ) + 2051 (T* 2 — TFa,)
0. (T 1 AL o), A =4}
+(By— ar)(IT¥*2 2, = Tyl — | T2 — Tyll?)

+(Bz — a2) 1T 20 — Tyl? — | T* 2 — Tyl?).

Summing up these inequalities from k£ = 0 to n — 1,

n—1 n—1
0 < Y ITy—yllP + 20 (T 2 = Ty), Ty — y)
k=0 k=0
n—1 n—1
+2(B1 ) (T2, =T2,) + B2 Y (T* 2 — T*2,), Ty =)
k=0 k=0

n—1
+(Br — 1) Y _(IT*+22, — Ty|* — |T*2, = Ty||?)
k=0

n—1
(B2 — 02) Y (T 20 — Ty = 720 — Tyl
k=0

n—1

= n||Ty —yl*+ 2(2 T*%, —nTy, Ty — y)
k=0
+2(61(T"+1zn —T 2 — 20— T2,) + Bo(T" 20 — 20), Ty — v)
F(By — ar) (1T 2 = Tyl + T2 = Tyll? = 70 — Tyl — | T2 — Tyl?)

(B2 — 02)(IT" 2 — TylI* = ||z — Tyl?).
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Dividing this inequality by n, we get

0 < Ty —yl* +2(ya — Ty, Ty — y)
1 1
+2(Eﬁ1 (Tu+lzn - Tmzn, ik = TZ") + EﬁZ (Tnzn - Z,;), Ty - y)
1
+o (B - a)(IT™ 2z, = Tyl + IT"20 — TYlI* = 120 — Tyll* = T2, — Tyll?)

(8~ )"z = Tyl = lew ~ TylP).
Replacing n by ny, and letting ¢ — oo in the last inequality, we have
0 < ||Ty—yll> +2(w— Ty, Ty — ), for all y € C. (3.2.8)
In particular, replacing y by w in (3.2.8), we obtain that
0 < ||ITw—w|?+ 2(w—Tw, Tw — w) = —||Tw — w|?,

which ensure that w € F(T').

(b) We prove that w € (A + B)~'0. From (3.2.3), (3.2.4) and (3.2.6),

lass = pl* < (7= @V)yn — (T = aaV)pl* + 200, (v9(a) — VP, Tus1 —P)

< (1= an™Pyn =2l + 200 {v9(x0) = VP, Tngr — p)

< (1= an7)?llza — Pl +2an{19(%n) — VP, a1 — p)

< (= awt){llen — 2l — Ma(2a — M)l Au — Ap]*}
+2e(v9(20) = VP, @1 — p)

= (1 =207+ 27 ||zn — plI* — (1 — @n7)?* A0 (2a — A,)||Au, — Apl?
+20n (v9(2n) = VP, Tni1 — p)

< llon = pl* + afr? |z = plI* = (1 = @ar)? A (20 = An)|| A — Apl|®

+2000{9(%n) — VP, Tns1 — p), (3.2.9)



98

and hence

(1= an7)®An (20 — An) | Au — Apl® < |z — 2l — l@nss — pl* + af7? ||z — pII?

+2a,(v9(xn) — Vp, g1 —p).  (3.2.10)
Replacing n by ny, in (3.2.10), we have

(1 - anx;iT)Q’\m;, (2c1- - )\ﬂki)”Aunki ik AL}')“‘2 % “wm.-,- N ]J||2 . ”ml‘lr\-i+1 - pHZ

+a,2u_i'rz][:vnki #p”?‘

+20n, (79(Xn) — VP, %y 41 — P)-

Since limp 0 @y = 0,0 < @ < A, £ b < 2 and the existence of lim;_,o ||2,,. — P,

we have
.lim | Atn,,, — Apl| = 0. (&g 11)
We also have from (2.3.5) that

2un —plI? = 2T, 20 — T,

< 2@ —piun = p)

= H-'En - ])”2 "y “'”n- = p“2 Sfjugs 1L‘n||2=
and hence
lun —pI* < Nlzn —plI* = llun — 2> (3.2.12)

From (3.2.3), (3.2.4), (3.2.6) and (3.2.12), we obtain the following,

||mrn+1 - P“Z S ” (I - anv)yn - (I - Uan)p"2 + 2(1’,1(79(’0“) - Vp: Tp41 — p)

IA

(1 - OfnT)2||yn = P“2 + Zan(’rg(fb‘n) — V0, Zag1 — p)



and hence

(]- - 0?17)2”1111 — Ty H2 S ”mn N p”'2 - ||$7'l+1 _ pl

IA

IA

IA

VAN

LA
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(1 = aut)?||zn = plI* + 20 (¥9(xn) — VP, Tns1 — p)
(1 = anT){lltn — plI* — An(2a — A || Awty, — Apl[*}
+2an(79(n) — VP, Tnt1 — p)

(1 = cur{llen — ol = ltn — 2P}

(1 - @) An2e — A A — Apll?

+2an(79(2n) — VP, Tnsr — p)

(1 = 2007 + A7) |30 = Pl = (1 = anr)ltn — 24|?
—(1 = an7)? N (20 — M)A, — Ap||?

20 (Y9(%n) — VP, Tnt1 — p)

Iz — plI” + a27? |20 — plI* = (1 = @t lun — 2a|?
(L eV X, (24 — An)||Aw, — Ap”2

+200,(v9(2n) — Vo, Tny1 — ),

\2 + Q’i?‘zllg‘{:n F I)Hz
—(1 = 1) A (20 — N || Awn — Ap|?

+20, (Y9(2n) — VD, Tns1 — D) (3.2.13)

Replacing n by ny, in (3.2.13), we have

(1 - a“kiT)g“um.-l- - :I:m.-‘-"2 & ”'Tﬂk,- _p”2 - "wnk{-’rl —P"2 + O"2 Tznf'ink,. _p"2

ny,

—(1 - a’n;_.,.’r)z)\nki (2(1 - Ank,-)“Auﬂ.r.-,- - Ap||2

+20"“k5 (')’g(mnki) — Vp, Ty, +1 — D).

From (3.2.11), lim,_,,, @, = 0 and the existence of lim;_, lZn,, — pll, we have

_li)m |y, — Tny, [ = 0. (3.2.14)
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On the other hand, since Jy, is firmly nonexpansive and u,, = 7, x,, we have that

lon =P = Nn(T = MAYu = Jao (I = M)l
< (o= 0 (= MaAun — (I = Ma)p)
= 5l = I+ T = M — (1 = Au Al
o = 2= (I = MY+ (T = Ao Aol

1

% 5{ 12, = p||2 + ||uggs P”z Az —p— (= ’\nA)“n + (I = )\nA)PHZ}

1
S 5(”3?& i pll'2 ;' ”‘1:?! — ?)”2 - ”zn = HHHQ £ QA;; (Zn 2% 'U”,A’HH == A]))

— |l Aun — Apll),
and hence

”Zn - P”2 <{(llz-f- FHQ i ”zn 7 un“2 -1 2)‘n(zn ~ Uy, Au, — Ap)

—22|| Au, — Ap||®. 2-2]5)

From (3.2.3), (3.2.4), (3.2.6) and (3.2.15), we have

[zasr —pl* < [(F=0aV)yn — (I —anV)pl* + 20, (v9(0) — VDsTny1— p)

< (1 = au)?|lyn = pI* + 200 (9(x0) = VP, @ot1 — D)

< (1= agm)?l|zn =2l + 200 (79(2n) — VP, Tns1 — p)

< (1= an?)* (=2’ = |l2. = w.]*-—22ad%" — ua, Aup, — Ap)
—MallAun — Ap|®) + 20 (vg(2a) = VP, Tasr — p)

< len = pll* + @i 7|z — pl* — (1 = an)?||2n — ua|
—2(1 — a, )2 A (A — 20)||20 — ||| Au,, — Ap||
(1= anT)? N3 | At — Apl|* + 200 (v9(wn) = Vp, 41 — ),

and hence

(1= an7)’llzn — tnll < Nl#m = pI* = l#nss — pII* + @7 ll2n — pII”
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—2(1 = a,,7)* A (N — 20)| 120 — wa|||| Aney, — Ap|
—(1 = an7)* XLl Aun — Apl|* + 206 (79(n)
—Vp, Toy1 — D). (3.2.16)
Replacing n by ny, in (3.2.16), we have
I

(1 - a'nkl-T)zllz”k, - u"k“ “2 S ”"Bm\-i | — ”ﬂ:ﬂk,—Jrl — p“2 it 0'121;,.1, TZH:Elei o P“2

—2(1 — a,lk._fr)z)\nki (Any,, = 20) |20y, =ty ||| Aty — Ap|
—(1- Q’MiT);"/\EH || Aty = Ap“z(’yg(:c,,ki)

+2ay, — Vp, Tny,+1 — p)-

From (3.2.16), lim, ;00 &, = 0 and the existence of lim;,o, ||, — || , we obtain

that
lim ||z, — u,, || =0. (3.2.17)
i—00 ¥ i

Since [|zp,, — Tny || < 20k, = Wy, |-+ [[ttry, — %y [, by (3.2.14) and (3.2.17), we

obtain that
lim ||z, — @y, || =0: (3.2.18)
i—00 ! ¢

Since A is Lipschitz continuous, we also obtain
lim ||Az,,, — Az, || =0. (3.2.19)
=00 ! ' )

Since z,, = JA(I — AA)u,,, we have that

2 = ({+2.B)- AnA)u,
(I — AMA)un € (I + M\yB)z, = 2, + M\ B2y,

Up — Zn — AMAu, € A\, Bz,
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1
& —(u, — 2z, — \MAw,) € Bz,.

An

Since B is monotone, we have that for (u,v) € B,

(20 — u, l('a:n — Zn — AMAw,) —v) 20,

T

and hence

{20 — U, Uy — 20 — An(Auy, +v)) = 0. (3.2.20)
Replacing n by ny, in (3.2.20), we have that

(Zny, = Wy Unye, — Zuy,, — Ay (Atty, +)) 2 0. (3.2.21)

Since xp, — w, and %, — Uy, — 0, 850 Uy, — w. From (3.2.21), we get that
1 T T 1

2y, —w;-together with (3.2.17), we have that
(w—u,—Aw —v) > 0.

Since B is maximal monotone, (—Aw) € Bw. That is, w € (A + B)7*0.

(c) Next, we show that w € F~'0. Since F' is a maximal monotone oper-
ator, we have from (2.3.4) that Arnk_a:nk_ e T"nk,a:nk,-1 where A, is the Yosida

approximation of F' for » > 0. Furthermore, we have that for any (u,v) € F,

By, — Uiy
U= gy et } > .
1 Tnk‘-

Since liminf, 0o 7 > 0, u,,, — w and z,, —u,, — 0, we have
1 1 i

(u—w,v) >0
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Since F' is a maximal monotone operator, we have 0 € Fw, that is w € F~10. By

(a), (b) and (c), we conclude that
we F(T)N(A+ B)™'on Fo.
Using (3.2.7), we obtain

Limsup((V' —79)po, Tn — po) = Hm (V' — 79)po; &n, — po))

n—o0
Ti ((V — 99)Po, W — po)) = 0.

Finally, we prove that z,, — pg. Notice that

Tns1 — Do = anyg(®s) = 10) + (I — @nV )y — (I — 0 V)po,

we have
enss —poll? S (L = cur) il = pollE -+ 20 (Yo @) — Vs Bkt = o)
< (1 —aam)?llzn — poll® + 200 (79(zn) — Vo, Tas1 — Po)
< (1= an7)?[l%n — poll® + 2anvkllTa — pol|llzn+1 — poll
+200,{79(P0) — VP05 Tnt1 — Do)
< (1= aa7)?l|zn = ol + anvk(llzn — poll + ltns1 — poll?)
+20(79(po) — VDo, Tngr — Do)
< {1 = ann)? + anvk}Hzn = poll® + anvkl|zni1 — poll®
+200,(79(P0) — VDo, Tnsr — Do),
and hence

1 = 20,7 + (aa7)? + apvk
1 — o5,k
20,

"-Tﬂ-i-i - p0”2 < ”1‘,1 = pCO"2

+ (’YQ(PU) — Vpo, Tnp1 — Po)
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2(r —vk)a, o (anr)? )
= ATV, G
{ T amyk J 1o 2ol Tl pol
2a
+r_ﬁ(vg(m) — VDo, Tnta — Po)
2(T — Tk)an 2 p - QnTZ 2
- L S Tp — _ —
{ 1 — anvk lzn — poll* + T Oz,(yk”w" ol
20,

Tk (19(P0) = VPo, T —po)

== (1 . ﬁn)“-’cn - 1’70”2

g anTzlla’n 1’)0”2 1
n g\ y In ] )
{ 2(r — k) T —k {(v9(po) = Vpo, 2ni1 IJO)}

(3.2.22)

where 3, = % Since )77 | B, = oo, we have from Lemma 2.1.20 and (3.2.22)

that x, — po. This completes the proof. O

Next, using Theorem 3.2.1, we obtain the following results for an inverse-

strongly monotone mapping.

Theorem 3.2.2. Let H be a real Hilbert space and let C' a nonempty, closed
and convex subset of H. Let & > 0 and let A be an a-inverse-strongly monotone
mapping of C' into H. Let 0 < k& < 1 and let g be a k-contraction of H into
itself. Let V' be a #¥-strongly monotone and L-Lipschitzian continuous operator
with ¥ > 0and L > 0. Let T : C — C be a 2-generalized hybrid mapping such
that I' :== F(T) N VI(C, A) # 0. Take p,y € R as follows:

" - L%

Ll 7
0<,LL<L2, U<y < 2

Let {z,} C H be a sequence generated by

3

x; =« € H,arbitrarily,

Zn = PC(I - A1114)]3(,-‘5'3r )
! : (3.2.23)

U =130 0 T%., Ya=134,...,

Tn+1 = a"“yg(:?}n) L2 (I - anv)ym for all n € N,
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where {a,} C (0,1), and {r,} C (0, 00) satisfy

(e 0]
lim a, =0, E a, =00 and liminfr, > 0.
n—00 p n—co

i

Then {x,} converges strongly to a point py of I', where py is a unique fixed point
of Pr( —V +g). This point pg € T is also a unique solution of the hierarchical

variational inequality

((V —9)pu,q — po) = 0,Yg € VI(C, A). (3.2.24)

Proof. Put B = F = i in Theorem 3.2.1. Then for A\, > 0 and r, > 0,

we have that

hi. =T F EhN\

Furthermore we have, from the proof of [36, Theorem 12], that

(Bic)™10 = C and (4 + dic) 0= VI(C, A).

Thus we obtained the desired results by Theorem 3.2.1. O

Using Theorem 3.2.1, we finally prove a strong convergence theorem for

inverse-strongly monotone operators and equilibrium problems in a Hilbert space.

Theorem 3.2.3. Let H be a real Hilbert space and let C' a nonempty, closed
and convex subset of H. Let o > 0 and let A be an a-inverse-strongly monotone
mapping of C into H. Let B : D(B) ¢ C — 2% be a maximal monotone Let
Jy = (L + AB)™! be the resolvent of B for A > 0. Let 0 < k < 1 and let
g be a k-contraction of H into itself. Let V be a ¥-strongly monotone and L-
Lipschitzian continuous operator with ¥ > 0 and L > 0. Let G : ¢’ x C — R be

a bifunction satisfying the conditions (Al) — (A4) and let ¢ : C — R U {+o0}
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be a proper lower semicontinuous and convex function. Assume that cither (B1)
or (B2) holds. Let T : C' — C be a 2-generalized hybrid mapping with © :=
F(T)Nn(A+ B)"'0NMEP(G,p) # 0. Take u,v € R as follows:

2
0<,LL<L—Z, 0<y<

= LZ#
T3

k

Let {z,} C H be a sequence generated by

x; = « € H,arbitrarily,
G(umy) + Lp(y) F (:0('“‘11) n %(y — Up, Up — wn) > 0,Vy e C,

Y 2= I, (I = A A)uy, (2.25)

’ 1 n—1 g o
y“_;fzj‘-:UT Zan e n=1,2. ..,

Tnt1 = AnYG(Tn) + (I — anV)yn, Vn € N,

\

where {a,} € (0,1), and {r,} C (0, 00) satisfy

o0
lim «,, = 0, E &, =00 and liminfr, > 0.
n—oo 1 n—oo

=

Then {,} converges strongly to a point py of ©, where py is a unique fixed point
of Po(I —V +yg). This point py € © is also a unique solution of the hierarchical

variational inequality

((V = 9)po,q — po) = 0,Vg € ©. (3.2.26)

Proof. Since G is a hifunction of C' x C' into R satisfying the conditions
(Al) — (A4) and ¢ : C = RU {+o0} is a proper lower semicontinuous and convex
function, we have the mapping Ag, defined by (2.4.6) is a maximal monotone
operator with dom Ag, C C. Put F' = Ag,, in Theorem 3.2.1. Then we obtain

that u,, = T.,x,. Therefore, we arrive the desired results. o



CHAPTER 1V

VISCOSITY APPROXIMATION METHODS FOR FIXED

POINT PROBLEMS IN CAT(0) SPACES

4.1 Viscosity approximation methods for asymptotically non-

expansive mappings in CAT(0) spaces

Let C' be a nonempty subset of a complete CAT(0) space X. A mapping
T of C into itself is called asymptotically nonexpansive if there exists a sequence
{kn} C [1,00) with &, — 1 such that d(T"z, T"y) < k.d(z,y) for all integers n > 1
and all z,y € C. A mapping f of C into itself is called contraction with coefficient

a € (0,1) iff d(f(z), f(y)) < ad(z,y) for all z,y € C.

In this section, we present strong convergence theorems of Moudafi’s viscos-

ity methods in CAT(0) spaces.

Theorem 4.1.1. Let C be a closed convex subset of a complete CAT(0) space X,
and let T : C' — C be an asymptotically nonexpansive mapping with a sequence
{ka} € [1,+00) and lim, o K, = 1 such that F(T) # 0. Let f be a contraction
on C with coefficient 0 < o < 1. Let {e,} be a sequence of real numbers with

0 < a, < 1. Then the following statements hold:

(1) For eachn € N, if Lg;—l < 1 — a, then there exists y, such that

Yn = Anf(Yn) ® (1 — @) T"Ya. (4.1.1)

(ii) If o, — 0 and "—[;:—1 — 0 as n — oo, then {y,} converges strongly as n — oo

to & such that & = Ppr)f(&) which is equivalent to the following variational



68

inequality:

Gf@),53) >0, e F(T). (4.1.2)

Proof. For each integer n < 1, define a mapping G, : C — C by
Gu(z) =anf(z)® (1 - a,)T"z, VzeC.

We shall show that G,, is a contraction mapping. For any z,y € C

d(Gr(z),Gn(y)) = dlanf(z)® (1 —an)T "z, 00f(y) ® (1 — an)T"y)
and(f(2), f(¥)) + (1 — e )d(T"=, T"y)

< oped(z,y) + (1 — an)ked(z, y)

A

(kn — ank, + aa,)d(z, y).

Since 0 < 52;:1 < 1 — a, we have
kﬂ 1

Qn

0< <1 —a <ok, —ao,.

It follows that 0 < k, — a,k, + a,a < 1. We have ¢, is a contraction map with
coefficient (%,, — ankn + a,a). For each integer n < 1, there exists a unique y, € C
such that G, (y.) = yn, that is

Yn = anf(yn) 57 (1 N U-'n)Tnyn-

Next, we show that {y,} is bounded. For any p € F(T), we have that

d(yn:p) = d(arzf(yn) © (1 - G’,,)Tny,“p)
< and(f(¥n), f(P)) + and(f(p),p) + (1 — an)d(T"yn, p)
< a@ad(yn, p) + and(f(p), p) + kn(1 — an)d(yn, p)

= {!‘n - (kn - a')a'n}d(yn,p) + cxnd(f(p),p).

Then

Qg

d(yn:p) < (kn — a)an — (kn — 1)

d(f(p), p)
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< ——d(f().p)
< 75/ ®),p)-
Hence {y.} is bounded, so are {T'y,} and {f(y.)}. We get that

im d(yn, T"y,) = lim d(a, f(ya) ® (1 — @) T Yn, T"Yn)
n—00 n—oo
lgn [and(flyn), T"y) + (1 — a,)d(T™y,,, T™y,,))

S ]illl and(f(yn)aTnyﬂ)'

n—oo

IA

Thus

Jlim d(y,, T"yn) = 0. (4.1.3)
Let L = sup,, k,,, then we have

AT"Yn, p) < knd(yn, p) < Ld(ya, p)-

It follows that the sequence {17y, } is bounded. We claim that limy, o0 d(yyn, Tyh) =

0. Indeed, we have that

d(y‘r‘n T’lgly?l) = fﬁ((lnf(.?jn) & (1 — Qn)T”yn, Tnf]_yn)
a'nd(f(yn),T”—lyn) A+ (L&t Gn)(T”yn,T”'l‘yn)

= O (AT YA (L — AN T TR T 7o)

IA

VAN

O’nd(f(yn): T“ilyn) + (1 - G‘n)kn—l(T'ym yn)- (4-1'4)

By (4.1.4), we have

AYn, Tyn) = dlonf(yn) ® (1 — n)T"yn, Tyn)

ond(f (Yn), Tn) + (1 — an)d(T"Yn, Tys)
and(f(yn), Tyn) + (1 = )T (T y), Tyn)
and(f(Yn), Tyn) + (1 — cn)krd(T" "y, yn)

A d(f(Yn), Tyn) + (1 — n)kr[cnd(f (yn), T 'yn)

AN | VAN

IA
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+(1 = o)k (TYn, yn)]
= nd(F(Yn), Tyn) + (1 — an)anksd(F (yn), T" yn)
+(1 — 02 keykn—1 (T, Yn)
() T + 1 = ) ). T
(1 = n)?L*(Tyn, yn)-

A

This implies that

(1 —ay,)a, L
1— (1 — an)2L?

d(Yn, Tyn) < 1— = d(f Y Tyn)) +

(1 — an)?L2 d(f(yn), Tnﬁlyn)-

Since a, — 0, we get

lim d(y,, Ty,) = 0.

00

Next, we will show that {y, } contains a subsequence converging strongly to % such

that & = Pp(r)f (&) which is equivalent to the following variational inequality:

EF@), 78) > 0, Ve € F(T).

Since {y.} is bounded, there exists a subsequence {yx,} of {g,} which A-converges
to Z. By Lemma 2.5.11, 2.5.13, we may assume that {y,,} A-converges to a point

% and & € F(T). It follows from Lemma 2.5.17 (i) that

Py 7) = (Yo, Yy )
< iny (), ) + (1 = )Ty, )
< iy (Pl Y ) + (1= 0, AT, 2)(01 )
S o, U(y—m)%’ yTJﬂk’) + (1 — o, )kn; d(Yn;» E)d(Yn;, T)

e it —— -
Oy (f(ynj)w'l yﬂjﬂ") + (1 - a"j)kﬂjdz(yﬂj? 3')

It follows that

nj -2 —
d*(y,., %) < Y s )T Un o T
(Un;, &) < (1_(1_anj)kﬂj)(f(y,)T,y,f)



Fii

— (1 — ( [(m yn,x) + (f(:c)"c y”JT">]

onj)kn,
T T y 7 SN
< A== an)k) [d(f(yn.,-),f ))d(yn,;, &) + (f(ﬂ,)g,,yﬂjw)]
nj 2 5 e
S iy [ D)+ @500
and hence
dz(yﬂja:l‘) S Q'nj ('l“n_, 0 ) B ('li’n} — 1) <f(~L).L,ynj:l.)
< TR (4.15)

l—o
Since {ynj} A-converges to Z, by Lemma 2.5.18, we have

— 8
limsup (f(Z)7, yn,2) < 0. (4.1.6)

n—o0

It follows from (4.1.5) that {yn,} converges strongly to &. Next, we show that &

solves the variational inequality (4.1.2). Applying Lemma 2.5.9, for any ¢ € F(T),

Yy, q) = &, f Wng) @ (1 — 0, )T Ys;, )

S Q'njd?(f(yﬂj)s Q') * (1 = a'ﬂj)dz(Tujyﬂj? Q)
ﬁa’nj(l 1 O'nj)dz(f(ynj)sTnjynj)
< oy d(f (Yn;)s @) + (1 — ;) k2 P (yn;, q)

_a’”j(l - O'nj)JQ(f(ynj),T”’ynj),

and hence

2

k2 —1
(1 - anj)dz(f(ynj)aTnijj) + k?tjd(yﬂj!q) < dz(f(ynj)v q) + " dz(y"j!q)'

Lt

‘We then have

by — 1=
(1= atn; ) (f ;) T"yn,) + K3 At @) < d(f (W), 0) + M,

nj

where M = (ky; 4+ 1)d*(y,;,q). Since y,, — & and by (4.1.3), we have 7" Un; — T.
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It follows from a,,; — 0, k,; — 1, E’— — 0 and continuity of metric distance d

that

*(f(2),2) + d*(&,q) < &(f(3),q)-

Hence

[(&, &) + d(f(&).q) — (7, q) — P(f(3),3 'ﬁ qz), Vg€ F(T).

t\Jll—‘

This is, & solves the ineguality (4.1.2). Assume there exists subsequence {y,,} of
{yn} which A-converges to & by the same argument, we get that & € F(T) and

solves the variational inequality (4.1.2), i.e

FFE), 78 <0, (4.1.7)
and
GG, 7) <. (4138)

Adding up (4.1.7) and (4.1.8), we obtain that

A
o

= (@f@E), )+ @G 3) — (&%, 74

=~
=
=
~
_——
=t
~n
~
=
&
=
-

kv

—d(f(%), f(2))d(2,7)
d*(i, %) — od(%, 2)d(%, &)

v

&3, 8) — ad?(#, )
(1 - a)d*(%, 2).

Il

Since 0 < @ < 1, we have that d(Z,4&) = 0, and so & = &. Hence {y,} converges

strongly as 7 — co to & which solves the variational inequality (4.1.2). a
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Now, we present a strong convergence theorem for asymptotically nonex-

pansive mappings.

Theorem 4.1.2. Let C be a closed convex subset of a complete CAT(0) space X,
and let T': C' = C be an asymptotically nonexpansive mapping with a sequence
{kn} C [1,400) and lim,e kn = 1 such that F(T) # 0. Let f be a contraction
on C with coefficient 0 < @ < 1. For the arbitrary initial point zy € C, let {z,}

be generated by
Tpg1 = Oy, (3311) @D (1 7= O‘n)TnfCrz: Vn 2 0’ (419)

where {a,} C (0, 1) satisfies the following conditions:

(1) limn—)oc O 0:
(if) Y onegOn = 005
(iii) limp e "‘J;;—l =g;

(iv) T satisfies the asymptotically regularity lim, o, d(z,, T"%,) = 0.

Then {z,} converges strongly as n = co to & such that & = Ppr)f(Z) which is

equivalent to the variational inequality (4.1.2).

Proof, We first show that the sequence {,} is bounded. By condition (iv), for
any 0 < € < 1 — « and sufficient large n > 0, we have k, — 1 < ea,. For any

p € F(T), we have that

d(@pi1,p) = dlanf(z,) ® (1 — an)T %y, p)

< and(f(2n),p) + (1 — an)d(1"zn, p)
< o (d(f(zn), f(p) +d(f(p).p)) + (1 — c)d(T" 2y, p)
< Q’nad(ﬂ;mp) + Ll'nd(f(p), p) + (1 - an)k‘nd(ﬂ;n:p)

(ka(1 = ) + @0g)d(@n, p) + and(f(p),P)
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= (1+ (kn — 1) = (ku — a)an)d(zn, p) + and(f (p), p)
< (L+4ean — (kn — a)an)d(zn, p) + and(f(p), p)

= (1= (ko — a —€)ag)d(zs, p) + and(f(p), p)

(11— (1 - a—¢)an)d(@n,p) + and(f(p),p)

< max{dew,p) Sd)0)}.

l—a-¢

IA

for all n € N. This implies that {z,} is bounded, so are {T"z, } and {f(z,)}. Next,

we claim that lim, .. d(z,,Tz,) = 0. Indeed we have

B(nii, Tn) I AT 2) + (T 20, %0)
= dlanf(z,) ® (1 — )T 20, T w,) + AT z5, T3)

< apd(f(z,), T'x,) +d(T 2z, z,) — 0.

d(mrnTn_l‘T'n) = d(an—lf(mn—l) & (1 3 O—n—l)Tn_l-Tn—lsTn_lmn)

IA

DA LT, S E alg), F (10, (T a0y, T224)

IA

an—ld(f(mn—l)aTHUIR:R) + (1 - n'n.u1)'ﬂ“:ngld(xzrzfl:-Tn) = J L
Therefore

Han; Trn) < d(zn, T et " Dev-Liln)
= d(Tn, T"Tn) + ko d(T*@gymn) =" 0.
By Theorem 4.1.1, we have
—
limsup{f ()%, t,%) < 0. (4.1.10)
n—oo

Finally, we prove that z, = & asn — co. Forany n € N, we set y, = o, 2 @ (1 —

0 ) T" %y, It follows from Lemma 2.5.16 and 2.5.17 (i), (ii) that

P (Tnr1,8) = lanf(Tn) ® (1 — an)T "z, &)
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< (Y &) + ATt ihs Tt )

< (cnd(%, %) + (1 — an)d(T"2p, ))?
2{n (7 @) ms Tari) + (1 = ) (T T, Tari)]

< (1 - )R (@, ) + 2l (@), 3r1d)
tatn(L = ) ( (@) ", Trr 1)
(1 — an) (T, )
+(1 - a,t)z(T""U,,T“.?:,Z, 3;,;+1.%‘]

< (1 @) K2 (@, E) + AnernlFw0)T, Tmrit)
a1 = ain) (F@n) T, T 1)
Fan(L= ) (T"00, Ty 1)
+(1 = a2 d(T" %, T d(@ 1, 7))

L (1L ook, 3)+ Habon Flon)t, Tuard)
o, (1 — Q‘,;)(f(ﬂf,;)Tn[E,i, nrn+1.%)

- 0t (1 — ) (T, 1)

— (1 — @)K (w0, B) + 2000 (F (@), Tuy1)

= (1= )R (@, ) + 200 (F @) F (@), B 10)
120, (@)%, Bnird)

< (1 —ap)?kid®(@,, ©) + 200,0d(@0; B)d(@re1, £)
120, (D), g1

< (1 — ap)?kid?(zy, £) + ana(d®(zn, ) + d(Tpgs, £))

_— —
+2CY"(f(.'E)3}, ﬂ;u-l-la;)-

Since {a,} and {z,} are bounded, there exists M > 0 such that

1
——|2d*(z,, %) < M.
1-—aa, " (@n, %) <
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It follows that

(1 — an)k2 + aay, 2
1 - aaq,

20'71 T M
+m(f (2)T, Tns12)

dz ($n+l 3 ﬁ) S

(2, 2)

=Y 2 .
(1 —20,)k: + aa"dﬁ(:c,,,:'f:)

=
— aan,
20 e ——&
=+ n (f(m)w=$n+1$>+aiﬂf[
1 —aay
S (]_ — 1 g 2(1‘0’1'! - (1 o Qa'n)kg) dz(wn,i,)
1~ o
2.‘:\:,1 — ] )
1—aa, &, Tp+12) + oy M
+1 — aa, <f($)f" & z+1’l) +a;,
1 —2aq, — (1 — 2a;,)k2 )
S (1 = a, ( Q ) n) dz(ilr'n,.’t‘)
1 — aay,

2 R =
.- (1 e (f(2)Z, xnp12) + criﬂa’) .

l—aay, l—aay,

: % — —
Now, taking v, = 1_2““"_(1_2“”“‘?',5,1 o (L(f(fﬁl:‘)i;,fﬂn+1$> -+ a%ﬂf[) .

Applying Lemma 2.1.20 and (4.1.10), we can conclude that =, — &. O

IfT:C — C in Theorem 4.1.2 is a nonexpansive mapping, we can obtain

the following result immediately.

Corollary 4.1.3. [58. Theorem 3.4] Let C be a closed convex subset of a complete
CAT(0) space X, and let T": C'— C' be a nonexpansive mapping with F(T) # 0.
Let f be a contraction on C with coefficient 0 < e < 1. For the arbitrary initial

point ©y € C, let {x,} be generated by
Tnt1 = O f(20) ® (1 — )Tz, Yo >0, (4.1.11)

where {a,} C (0,1) satisfics the following conditions:
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(i) lim,—e0 oy, = 0;
(i) Doep@n = o0;
(iii) either D o0 o |ant1 — Q| < 00 or limy, o0 (@ny1/an) = 1.

Then {z,} converges strongly as n — oo to & such that & = Ppr)f(Z) which is

equivalent to the variational inequality (4.1.2).



CHAPTER V

CONCLUSION

The following results are all main theorems of this dissertation:

1. Let C be a nonempty closed convex subset of a Hilbert space H. For
each 2 = 1,2,...,k, let G; : C x C = R be a bifunction satisfying (A1) — (A4)
and ¥; a yi;-inverse strongly monotone mapping. Foreach j =1,2,let 7T, : C = H
be two quasi-nonexpansive mappings such that I — 7} are demiclosed at zero with
Q= F(TY) N F(T:) N (N, GEP(G,, ;) # 0. Let the sequences {z,}, {y.}, and
{zn} be defined by

.
T € H,
Gl(un,lay) " (‘Illl;rny - r“n,1> + _1‘<y - un.lsun,l - :En) 2 01 Vy = Ca

Tn

G2(‘“n,2ay) - (\II'ZQZrH'y = Uﬂ,2> + %(y —Un25Un2— Tn) > Oa Vy S C',

Gre(ttn k> Y) + (ks ¥l = Unkd o 5 (Y = Un ey Unp— Tn) 20, Yy €C,
W, = % Zf:l Upis
Yn = YnWn + (1 - Vrz)lem

Zn = ﬁn'yn 3 (1 - ﬁn)TZL‘-"m

\ mﬂf{'-l = an'u'n + (1 - an)zn, Vn G N,

where {a}, {8n}, {n} are sequences in (0, 1) and {u,} C H is a sequence and

{rn} C [a,2u;) for some a > 0 and for all 7 € {1,2,...,k}. Suppose the following

conditions are satisfied:
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(C1) ,11520 o, =0 and £2 0, = oo;
(C2) Timinf B (1~ B) > 0;

(C3) liminfy,(1—) > 0;

(C4) n]1_1}1{}0 U, = u for some v € H.

Then {x,} converges strongly to z*, where 2* = Pqu.

2. Let C be a nonempty closed convex subset of a Hilbert space H. For
each i =1,2,...,k, let G; : C x C — R be a bifunction satisfying (A1) — (A4).
For each j = 1,2, let T : ' = H be two quasi-nonexpansive mappings such that
I — T; are demiclosed at zero with 2 := F(Ty) N F(Tz) N (N, EP(G;)) # 0. Let

the sequences {z,}, {y.}, and {z,} be defined by

T € H,
Grlug f )Nk o= — it ) =0 YoE C,

GZ(UH,Z:y) W, ',%(y — Up,2;,Un2 — 1L'n> = 0, Vy & C;

Gk(un,k: y) 3 i‘(y — Un ks Unk — 3;,,) = 0, Vy & Cf:
k

Wy = %Zi:l 'uTl,!')

Un = Tnly + (1 - /}'n)lem

Zn = ﬁnyn + (1 - ﬁn)TZWm

Tpi1 = Qply + (1 - U—'n)zm Vn € N:

where {ay,}, {#.}, {7} arve sequences in (0, 1) and {u,} C H is a sequence and
{ra} C [a,2p;) for some @ > 0 and for all ¢ € {1,2,...,k}. Suppose the following

conditions are satisfied:
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(C1) nh_}nolo o, =0 and £, = o0;
(C2) liminf 5,(1 - B,) > 0;

(C3) liminfy, (1L —7,) > 0;

(C4) nh—l)]c}o U, = u for some u € H.

Then {z,} converges strongly to z*, where z* = Pqu.

3. Let C be a nonempty closed convex subset of a Hilbert space H. For each
i=12,...,k let G; : C x C — R be a bifunction satisfying (A1) — (A4) and ¥;
a pi-inverse strongly monotone mapping. For each j =1,2, let T; : C' — H be two
nonexpansive mappings such that Q := F(T))NF(T,)N(N ,GEP(G;, V,)) # 0. Let
the sequences {z,}, {y.}, and {z,} be defined by (3.1.1), where {an}, {8}, {7}
are sequences in (0, 1) and {u,} C H is a sequence and {r,} C [a, 2y;) for some
a>0and for all ¢ € {1,2,...,k}. Suppose the following conditions are satisfied:
(C1) nl-i—I)lolo o\= Ofand. X rr=<= o
(C2) liTIllE?Ll\:.llf Ba(1 — Bn) > 0;

(C3) lminf 4, (1= 7,) > 0; B
(C4) lim w, = u for some u € H.
Then {z,} converges strongly to z*, where z* = Pou.

4. Let C be a nonempty closed convex subset of a Hilbert space H. For
eachi =1,2,...,k, let G; : C' x C — R be a bifunction satisfying (A1) — (A4)
and ¥; a p;-inverse strongly monotone mapping. For each j = 1,2, let T} :

C — H be (aj,B;,7;)-super hybrid mappings such that Q := F(T1) N F(T3) N



31

(N5 ,GEP(G;,9;)) # 0. Let the sequences {x,}, {y.}, and {z,} be defined by

T € H,
Gl(un,lly) + (‘1’1-'8;“?; = 'un,l) + ;%;(y = un.ljun.l = (E,,) 2 0: Vy € Ca

Ga(un,2,Y) + (Yan, Y — Un2) + ;-(Y — Unz2,Un2 — T} > 0, Yy € C,

Grelttn i Y) + {Ya, Y — Unj) + 7Y — Un, Ung — Tn) >0, Yy EC,
= % z:t;l Un iy
yn = YnWn - (]- . ’Yn) (1+'Y len 1+1_“ wn) 3

Zp = Bilyrl + (1 o 8 ) (1+,),,T2wn - %wn) )

Tntl = Ontin +(1 — 0n)2n, VR € N,

where {a,}, {8.}, {7} are sequences in (0, 1) and {u,} C H is a sequence and
{rn} C [@,24;) for some a > 0 and for all 7 € {1,2,...,k}. Suppose the following
conditions are satisfied.

(C1) ”1'1_1)11 o, =0 and 22, o, = 003

(C2) 11111 ngf Bn(1 = Bp)>0;

(C3) ll?Illl)lllf Tu(l —vn) > 0;

(C4)

lim u, = u for some u € H.
n—eo

Then {x,} converges strongly to z*, where x* = Pqu.

5. Let C be a nonempty closed convex subset of a Hilbert space H. For
each i = 1,2,...,k, let G; : C'x C — R be a bifunction satistying (A1) — (A4).
For each j = 1,2, let T; : C' — H be (aj, B;,7;)-super hybrid mappings such that
Q= F(T\) N F(Ty) N (NE,EP(G;)) # 0. Let the sequences {z,}, {yn}, and {z.}
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be defined by
z, € H,

G1(tn1,Y) + 7o (Y — Un,1, Uny — @) >0, Vy € C,

G2(tn2,Y) + 7 (Y — Un2, Un2 — 2n) >0, Vy € C,

Gk('un,k)y) F ;{T(y = Unky Un g — -’Un> > O, Vy = C‘;

_ 1vrf e
Wn = % Doiey Unsis

Yn = Tan + (1 =) (ﬁﬂwn -+ 111»““"71) ;

Zn = .Bnyn 5 (]- T ,Bn) (1_4_1.);T2wn 33 %wn) H

[ Zn+1 = Ol + (1 - a,)z,, VneN,

where {a,}, {6}, {7} are sequences in (0, 1) and {u,} C H is a sequence and
{rn} C [a, 00) for some a > 0., Suppose the following conditions are satisfied.
(C1) ﬂlgl;o a5 0 Bnd [28, O = 159;
(C2) liminfB,(1 - 8.) > 0;
n—o0
(C3) liminfy,(1 —v) >0;
n—oo
(C4) lim w, = u for some u € H.
n-—ca

Then {z,} converges strongly to z*, where 2* = Pyu.

6. Let C' be a nonempty closed convex subset of a Hilbert space H. For

each j = 1,2, let T; : C — H be («j, B;,7;)-super hybrid mappings such that
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F(Ty) N F(T3) # 0. Let the sequences {z,.}, {y.}, and {z,} be defined by

T € H,
yri == 7:13311 + (1 - 'Yn) (ﬁTla;n + 1_—’{1}-1_1:5") 3
Zn = BnlYn + (1 - 67:.) (ﬁl.?u'T2$n + %‘Ln) )

Tnt1 = ott, + (1 — @)z, YneN,

where {ay}, {8}, {7.} are sequences in (0, 1) and {n,,} C H is a sequence. Suppose
the following conditions are satisfied:
(C1) lim o =0 D240, = oo;
n—o0
(C2) limint B,(1 — B,) > 0;
n—o0
(C3) liminf~,(1 ==,) > 0;
n—o0
(C4) lim u, = u for some u € H.
n—od

Then {z,} converges strongly to z*, where z* = Prr)nrm)te.

7. Let C' be a nonempty closed convex subset of a Hilbert space H. Let T'
be an (o, B, y)-super hybrid mapping such that F(T') # 0. Let the sequences {z,},
{yn}, and {z,} be defined by

€ H,
2 = B + (1 = B (5 Ton+ T580)

Tptl = iy, + (1 == O.'“)Z“, VneN,

where {a,,} and {f,} are sequences in (0, 1) and {u,} C H is a sequence. Suppose
the following conditions are satisfied.
(C1) lm a, =0 and Z2,a, = oo;
M— 00
(C2) liminf B,(1 - B,) > 0;
n—oo
(C3) lim u, = wu for some u € H.
n—oo

Then {x,} converges strongly to z*, where &* = Ppryu.
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8. Let H be a real Hilbert space and let C' a nonempty, closed and convex
subset of H. Let a > 0 and A an a-inverse-strongly monotone mapping of C' into
H. Let the set-valued maps B : D(B) c C — 2# and F : D(F) c C — 2 be
maximal monotone. Let Jy = (I+AB)~! and T, = (I+7rF)! be the resolvent of B
for A > 0 and F for r > 0, respectively. Let 0 < k < 1 and let ¢ be a k-contraction
of H into itself. Let V be a F-strongly monotone and L-Lipschitzian continuous
operator with % > 0 and L > 0. Let T : C — C' be a 2-generalized hybrid mapping

such that Q := F(T) N (A + B)~'0N F~10 # ). Take p,y € R as follows:

2
25 iy
O<pu<—, OfHN< 3
s 7z’ ) i

Let the sequence {z,} C H be generated by

.

T, = x € H, arbitrarily,

Zp = J.\n (I o AILA)I_'? Tn,

n*

_ i n—1 pg
Yn = ;,-=()T Zn,

n

Tnt1 = a‘n’)/g(ﬂ;n) il (I " Q'riv)yrn Vn = Lyis ok

.
where the sequences {a,}, {\n} and {7} satisfy the following restrictions :
(i) {en} C[0,1], Iy d=0antha, 5 trr=15;
(ii) there exist constants @ and bsuch that 0 <e <\, <b<2a for alln € N;
(iii) liminf, . 7, > 0.
Then {x,} converges strongly to a point py of €2, where py is a unique fixed point

of Po(I —V +g). This point py € § is also a unique solution of the hierarchical

variational inequality

((V —~9)po,q — po) > 0,Vg € Q.
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9. Let H be a real Hilbert space and let C' a nonempty, closed and convex
subset of H. Let o > 0 and let A be an a-inverse-strongly monotone mapping
of C into H. Let 0 < k < 1 and let g be a k-contraction of H into itself. Let
V be a J-strongly monotone and L-Lipschitzian continuous operator with 4 > 0
and L > 0. Let T : C — C be a 2-generalized hybrid mapping such that I' :=
F(TYNVI(C,A) # 0. Take 11, € R as follows:

_ - L

27 & =
0 —, 0<~ 2
<,u<L2, O<y< 7

Let {x,} C H be a sequence generated by

g

) =z € H, arbitrarily,
Zn = PC(I . ’\nA)PCT‘n:

1 n—1 ke e
Un =5 koo [ 2 YR=1,2,...,

[ Tni1 = a,v9(2,) + (I — a,V)y,, for all n € N,

where {a,} C (0,1), and {r,} C (0, 00) satisfy

(oo}
lim a,, =0, Zn'n A, “And™s lim inf r, > 0.
n—00 31 n—o0
Then {z,} converges strongly to a point po of I', where py is a unique fixed point
of Pr(I —V ++g). This point py € I' is also a unique solution of the hierarchical

variational inequality

(V —v9)po,a — po) = 0,Yqg € VI(C, A).

10. Let H be a real Hilbert space and let C' a nonempty, closed and convex
subset of H. Let @ > 0 and let A be an a-inverse-strongly monotone mapping of C
into H. Let B : D(B) C C' — 2! be a maximal monotone Let Jy = (I + AB)™! be
the resolvent of B for A > 0. Let 0 < k < 1 and let g be a k-contraction of H into

itself. Let V be a F-strongly monotone and L-Lipschitzian continuous operator
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with7 > 0and L > 0. Let G : C x C — R be a bifunction satisfying the conditions
(A1) — (A4) and let ¢ : €' — RU {400} be a proper lower semicontinuous and
convex function. Assume that either (B1) or (B2) holds. Let T: ¢ — C be a
2-generalized hybrid mapping with © := F(T) N (A + B)7'0N MEP(G,y) # 0.
Take i,y € R as follows:

i = L

2y ¥ =3
0 .
<p,<L2, 0<y< 2

Let {z,} C H be a sequence generated by

i
x1 = x € H, arbitrarily,

G(Urza y) + {,Q(y) — (,0(‘11,,) + ,.L”(y — Up, Up — $r1> = O:VU € C,
9 Zn = J,\" (I i f\nA)u'm

— 1 n—1rf; T
Ui = FLreg L 2 Y=L 2. 1.

L Tny1 = O‘n’m(fﬂn) P (I - anV)yn,V-n & Nu

where {a,,} C (0,1), and {r,} C (0, 00) satisfy

(o)
lim o, =0, E o, = oo .and - liminfr, > 0.
n—oco 1 n—eo

=

Then {xz,} converges strongly to a point po of ©, where py is a unigue fixed point
of Po(I —V +g). This point py € © is also a unique solution of the hierarchical

variational inequality

((V = ~v9)po, g — po) = 0,Yq € ©.

11. Let C be a closed convex subset of a complete CAT(0) space X,
and let T : C' — C be an asymptotically nonexpansive mapping with a sequence
{k,} C [1,+00) and lim, o, k, = 1 such that F(T) # 0. Let f be a contraction
on C with coefficient 0 < a < 1. Let {a,} be a sequence of real numbers with

0 < a,, < 1. Then the following statement hold:
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(i) For each n € N, if "—gfl < 1 — a, then there exists y,, such that
Un = a'nf(yn) @D (1 = an)T"'yn-

(ii) If a,, — 0 and 5:;’“—1 — 0 as n — oo, then {y,} converges strongly as n — co
to @ such that & = Pr()f(&) which is equivalent to the following variational

inequality:

Gf@),78) >0, e F(T).

12. Let C be a closed convex subset of a complete CAT(0) space X,
and let T : C' = C be an asymptotically nonexpansive mapping with a sequence
{ks} C [1,+0o0) and lim, , ky = 1 such that F(T) # (. Let f be a contraction
on C with coefficient 0 < o < 1. For the arbitrary initial point zo € C, let {x,}

be generated by
Tn1 = anf(mn) S? (1 = C"n)Tanm Vn > 01

where {a,} C (0, 1) satisfics the following conditions:

(l) limg, o0 @, = 0;

(ii) Y peo@n = 00;

(i) lim,_e 2t = 0;

py

(iv) T satisfies the asymptotically regularity lim, oo d(2n, T"25) = 0.

Then {z,} converges strongly as n — oo to & such that & = Pr(r) f(Z) which is

equivalent to the variational inequality:

GG, ) >0, weF(T).
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