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ABSTRACT

Yukawa scattering, includes the effecting mass in the interaction to inci-
dent particle, is pedagogically interpreted by the Schwinger’s quantum dynamical
principle involving the generating functions. These functions are finally replaced
by a functional differential operation. As for the results, we got the asymptotically
free Green function that explains the behavior of the Yukawa potential when the
mass parameter is increasing. In particular, it can also lead to scattering amplitude

and differential cross section, respectively.



CHAPTER I

INTRODUCTION

1.1 Literature review

Presently, many discovery of elementary particles were found from the
scattering by accelerating those particle to hit each other, such as electron, neu-
tron, proton or nucleus. These oceurred particles were observed and detected in
the experiment. Physicists had discovered many particle from the detector, shows
and tracks the particle’s trajectories on screen, along late 19th century until now.
Historically, they found the electron, nucleus (consists of proton and neutron), the
photon (by Compton scattering), mesons, antiparticles, neutrinos (carry out the
momentum energy), strange particles and quarks, respectively. Finally, the stan-
dard model was established to interpret all of particles [2]. This theory includes
many rules of number ratio which explain the reaction probability, like the chem-
ical reaction. Moreover, the toy model (Feynman diagram), presented by R. P.
Feynman, simplifies all this scattering phenomena.[13, 14]

In the field of quantum theory, many methods have been applied to ex-
plain a bchavior of the particles traveling; propagator. One of all, the quantum
dynamical principle (QDP} provides a formalism for quantum physics which is de-
vel()pe-d and proposcd by J. S. Schwinger [17, 18, 19, 20, 21, 22, 23]. It has been
proved to be the powerful and elegant tool of the elementary particles dynamics
and, furthermore, high-energy physics. It gives an expression for the variation of a
transformation function, d({at|bt’), from a B at time ¢’ to an A at time ¢, whereas
occurring from any changing of the parameters of Hamiltonian such as masses,
coupling constants, charges, external sources, cte. This method is derived from
the functional differentiation that respects to the general Hamiltonian, depending
on time. It bases on the source theory, imposed by Schwinger [23]. These sources

generate the coordinates or degrees of freedom for any dynamical system that de-



pends on time evolution. Our interested system is satisfied the Hamiltonian with
sources, like H(q,p,t) = Hy —q- F({) + p- S(¢), where Hy is the free Hamilto-
nian which only includes the momenta, p?/2m. This generating function (source)
is finally replaced by the functional differential. For the specific transformations
are {qgt|q't’), {at|pt’) or (pt|p't’) in q,p language. These transformations func-
tions lead to the propagator, as the final result, that we have to evaluate it. This
propagator actually describes the behavior of particle’s motion, evolved on time.
The quantum dynamical principle is a wideness length tool that can be applied
to many problems of guantum physics, including the particle propagator through
the potential problem, the forced harmonie oscillator problems, Bose/Fermi exci-
tations. Furthermore, surprisingly, it can also apply to the path integrals [5, 15].
Comparing with the path integrals method, proposed by R. P, Feynman, it is an
infinite continual integrating which uses many approximations for scattering case,
such as estimating a range [12]. In a case of the dynamical principle, however,
we have to do many step of mathematics but it is clegant and powerful when we
actually want to use this transformation function in the closed-form for propagator
calculating.

For theory of scattering, the classical one is considered an impact param-
eter b, and a scattering angle 8, when given a small impact parameter, will get
the greater scattering angle. In the mcasurement, the particle incident with a
cross-sectional area, o will scatter corresponding solid angle, §2. The ratio between
a cross -sectional and a solid angle is the differential (scattering) cross section,
denoted as D(f) = do/d). Also, for the quantum scattering which is measured
within the solid angle, we deal with a wave traveling scatter the potential and
get the outgoing spherical wave. So, we have to work with scattering amplitude,
f(0) that is the probability of scattering [1]. Finally, we get the differential cross
section from that scattering amplitude by taking the absolute squarc. In this case,
the Born approximation which applies and describes the scattering amplitude of
incident particles, is very useful. Obviously, it leads to the Born series, explains
a situation that the incident particles are effected by the force of potential with
many times. If we need correcting the Born approximation, it has to deal in higher

order of this scattering. The quantum dynamical prineiple also leads to this ap-



proximation by deriving the transformation function, gives a propagator. It gives
us the modified Born approximation which is multiplied with a particle’s trajectory
[5, 7], eventually. Thus, this method inspires us applying to other potential such
as Yukawa potential.

For the condense-matter field, so-called the material sciences, they work
with the charge particles (electrons) scattered the potential of the semicondue-
tors, valence-band holes, and analyze the radial wave functions from the Lippman-
Schwinger integral equation by dealing with the Yukawa potential [11]. Many
application in this field is always based on the quantum theory that consider the

potential or a band energy, depends on the material kind.

1.2 Objectives

For this thesis, our objective is how to use the method of Quantum Dy-
namical principle in a case of Yukawa scattering. And, this method is applied to
Yukawa, potential to obtain the asymptotically free Green funetion which leads to

the scattering amplitude and differential cross section eventually.

1.3 Frameworks

In this project, we apply the quantum dynamical principle to deal with
the Yukawa potential, called the screened Coulomb potential that has the mass
of particles involving, A detail about the basic of scattering is provided in
the Chapter II. In the Chapter III, we simplify and cxplain a process of the
quantum dynamical principle, a visual concept of this method and, in particular,
the simple source theory concept. The free particle and the asymptotically free
Green functional propagators, by using the QDP, are in the Chapter IV. It is
about the Coulomb scattering, an interaction between the charge particles, and
then we obtained the fransition amplitude. For the Chapter V, it is about the
calculation of this method (QDP) which using Yukawa potential to carry out the
asymptotically free Green function. The last chapter is a conclusion that about

the obtained propagator and differential cross section, given in Chapter VI



CHAPTER 1II

THE THEORY OF SCATTERING

Now a day, many particles, also known as “standard model” of elementary
particles, are discovered by the cxperimental scattering system in the frame of
laboratory. In this chapter, we present about the theory of scattering, begins
with classical and becomes to quantum. Generally, the system of a scattering
consists of two particles, are the own potential particle (a target) and the in-coming
particle (an incident). In the classical scattering, it deals with the differential cross
section. But in the case of the quantum scattering, it performs with the scattering

amplitude. The detail is given in the following section.

2.1 Classical Scattering

Let’s imagine about the scattering system, in normal sense, when you kick
a smaller football to the bigger one and then its trajectory will bend from the
straight line. In cxperimental, a particle collides on the target (Scattering center)
with the momentum cnergy F and impact parameter b. After scattering, it
emits at some scattering angle 4 -(Figure 1). When we give the small impact

parameter, we will get the large scattering angle.



Scattered particles

R

Incident particies

b

Scattering center

Figure 1 The classical scattering with the impact parameter b and the
scattering angle 4.

The particles incident with an infinitesimal of cross-sectional area do is scattered
from the scattering center with an infinitesimal solid angle df). do and dQ are

proportional value which equal to the differential cross-section, (Figure 2},

D)= (2.1)

o

A

el

3~

Figure 2 Particles incident in the cross-section area do scatter to the
solid angle df2.

For the impact parameter and the azimuthal angle ¢, do = bdbd¢ and

df2 = sin 0d0d¢, thus

b |db
~ sinfido|’
The absolute of db/df in Eq.(2.2) because @ is a function of b which decreasing.

D(6)

(2.2)



After integrating over solid angles for D(f), we get the total cross-

section is

o= f D(9)dR2. (2.3)

In the experiment, a target is “soft” such as the Coulomb potential of nucleus, how-
ever, for normal sense with football kicking is “hard-sphere” which about incoming
particles with the impact parameter b might miss the target. The soft-sphere is
not about hitting or missing.

Lastly, we assume that have an incident particles beam, it is called inten-

sity (luminosity)

number of incident particles

¥

/unit time . (2.4)

ll

unit area

From Figure 2, the number of particles passing an do area per unit time

and scattering through the solid angle df}, is

dN = Ldo = LD(0)dS) . (2.5)
Therefore
1dN
D(0) = 70 (2.6)

which is the definition of the differential cross-section in the laboratory that is easy

to be measured [1].

2.2 Quantum Scattering

In a case of the quantum scattering theory, we are thinking about an
incident plane iva,ve, ¥(z) = Ae™ travels in the z direction, which enters a potential
and scatters that producing an outgoing spherical wave [1] - (Figure 3). Therefore,
we have to look for the solution of the Schrodinger equation. It is given in the

form as

T

¢mmzAFm+ﬂm”j, (2.7)

where radius 7 is large, an azimuthal ¢ of target is symmetric, and f (9) is the

scattering amplitude.



The wave number £ is associated to the energy of the incident particles that is

VZ2mE
.

k= (2.8)

ikr

o

Ny

&

Figure 3 Wave scattering which an incoming plane wave produces an
outgoing spherical wave.

ikz

This scattering amplitude f(6) gives us the probability of scattered at
an angle §.that is related to the differential cross-section. For the probability of
the incident particles through an infinitesimal cross-section area do at speed v in

time dt is given as

P = | imeidens2dV = |AP(vdt)do. (2.9)

For the probability of the scattered particles passing a solid angle dS} is
2
P = [scattered] AV = 14 | 'f | — 7 (vdt)rdQ, (2.10)

The following result, by comparing Eq.(2.9) and (2.10), do = | f[2dS2, is

do
0 )|2. 2.11
D) = =1/6)] (2.11)
The differential cross-section equals to the absolute square of the scatter-
ing amplitude which solving from the Schrédinger equation.
This problem can use many techniques to cvaluate the scattering ampli-
tude, such as the partial wave analysis and the Born approximation. How-

ever, in this thesis, we will give you the detail of the Born approximation method



so you can read more content about the partial wave analysis in the J.Griffiths’

book [1].
2.3 The Born approximation

We gently start with the time-independent Schrédinger equation to find

the integral form of this equation,

h2
— %v% + Vi = Ey. (2.12)
It is simply written as
(V2 4+ k) = Q, (2.13)
where
2mb 2m
k= h and Q= EQ—VI,D (2.14)

This is the inhomogeneous differential equation, called the Helmholtz equation,

with Q is depends on 4. Thus, Eq.(2.13) obviously becomes
(V2 + K5)G(r) = 6*(x) (2.15)

We have to find G(r), called Green’s function, which solves the above

equation. So, the 1/ is expressed, integral form, as
P(r) = / G(r — 10)Q(ro)d%ro, (2.16)
and then we substitute Eq.(2.16) in Eq.(2.13). We get

(V2 + E2)ep(r) = f (V2 + £3)G(x — 10)] Q(ro)dro

(2.17)
o f(53(r — 19) Q(rg)drg = Q(r)
The first, the Fourier transform for G(r) is
— 1 (-0 3
Gl) = Gy f &7 g(s)d%s. (2.18)



Taking (V2 -+ k%) operator to the above equation, so
1 .
2 2 . 2 2y is-r 3
(V2 +I)GO) =y 0m f (V2 + B3] g(s)ds. (2.19)
From the operator V2, we get
v2eis-r — _8282'3-:" (220)

and the Fourier transforms of the delta function in Eq.(2.15) is

1 isr
8 (r) = o / e= T3, (2.21)
So, Eq.(2.15) becomes
1 2 k? isr dS T 1 is'rdS 2.99
(27T)3/2 (—S -+ )6 g(s) 85 = W € s, ( . )

The result is
1

g(s) = G PTERE 52 (2.23)
‘Then, we substitute g(s) back into Eq.(2.18), so
1 isr 1 3
G = s /e R (2.24)

By using the Complex analysis, a detail about calculating is given in Ap-

pendix. A, we get, .
CINZ =2 (2.25)

dap

Eq.(2.15) possible add any function Gp(r) which satisfies the homogeneous
Helmholtz equation,

(V2 + k) Gy(r) = 0. | (2.26)

Of course, the result of (G + Gy) satisfies Eq.(2.15).
For Eq.(2.16), the solution of the Schrédinger cquation becomes

m etk

D) = o) = 55 [ oV oo (227)
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where 1) satisfies the free-particle Schrodinger equation, as
(V2 + k¥ )po = 0. (2.28)

Eq.(2.27) is the intergral form of the Schridinger equation for any potential.

2.3.1 The First Born Approximation

Assume V (rp) is localized that re a2 0 and we have to calculate ¥(r) at
far away from the scattering center. So, |r| > |rp} for all points in the integral of

Eq.(2.27), therefore, it is

o —rof> =72+ 72 —2r xp A r? (1—21‘;’:0), (2.29)
then
lr —ro| 7 — 7 1ro. (2.30)
Let
k = k7, (2.31)
80
e’ik|r7r0| o e'ikreﬁik-roj (232)
and we got
62']6;1-_1'0 eikr =10
=i =11 T i (2.33)

For an incident plane wave that scattering, we give
Po(r) = Ae™”. (2.34)

A large r, by input Eq.(2.33), thus, it is given as

m eikr

2mh? r

P(r) =2 Ae” — fe“ik‘l'OV(ro)@b(ro)dE’rg. (2.35)

Comparing between Eq.(2.35) and Eq.(2.7), the above equation is a general
form. So, we get the scattering amplitude as

m

£6,8) = =5 [ €™V (ra)p(xo)d’ro. (2:36)
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In a case of that depending on the Born approximation, we suppose the incident

plane wave is not under influenced by the potential, so
P(ro) = to(ra) = A0 = Ao, (2.37)

where k/ = k2. Then, we finally get the Born approximation that is

m

./e"(k’—k)'r“V(rg)dSro. (2.38)

This method is very useful for many scattering cases which easily gives us

the scattering amplitude.

2.3.2 'The Born series

The Born approximation likes the impulse approximation, the meaning
of impulsing is a ball hits a wall and returned by the impulse of force, in the case of
classical scattering. With the force from an impulse to the particle which entering
the potential, we get

I / Fodt. (2.39)

The incident particles, with the momentum p, pass through the scattering center

by the scattering angle 8, is very small, that is
8 = tan (I /p). (2.40)

From the integral form of the solution of the Schrédinger equation is

$(r) = o(x) + [ gl = ro)V (ro)ep(xo)d’ro, (2.41)
where
m eikr
glr) = —5 5, (2.42)

which is the Green’s function. The 1y is the incoming plane wave without the
potential influencing, is the 0%* order Born approximation. So, Eq.(2.42) is simpler

rewritten as

b=vo+ [ gV, (2.43)



12

where V' is the scattering potential.

When, we substitute Eq.(2.43) into itself, thus it becomes

=1+ f gVtho + f f gVgVip. (2.44)

Repeating the process again, we obtain a series for ¢, is

b=vo+ [ Vot [ [avavior [ [ [avevavpe+. . (@48)

Figure 4 The representational diagram of the Born series.

This Eq.(2.45) generates for us the higher-order correction, The Born series, rep-
resented in Figure 4, was the inspiration for Feynman'’s formulation of relativistic

quantum mechanics, Feynman diagrams.[1]



CHAPTER III

THE QUANTUM DYNAMICAL PRINCIPLE

The quantum dynamical principle (QDP) is, also called the quantum ac-
tion principle (QAP), proposed by Julian S. Schwinger. Tt easily apply to many
case of quantum physics. In the working frame, it takes an expression of the varia-
tion of transformation fimction, é (at|bt’), from a B state at an initial time # to an
A state at a final time t. This (at|bt’) is given by changing on the parameters of a
Hamiltonian that depends on masses, coupling constants, prescribed frequencices,
external sources, etc.,[5]. The specific transformation functions is considered in the
term of {(qt|q't’) and (qt|pt’} which q and p are the general coordinate.

The QDP is the powerful method for the development of quantum physics
that can apply to many problem, one possible as approaching over the “path inte-
gral” and, morcover, the Quantum field theory.

Before we start the detail and mathematical background of this method.

We would like to present the concept of the external source which is carly given.

3.1 The Simple Source Theory

At this state, we will give the detail about the “Source theory” in the
scope of Quantum theory that is the reduced concept from Quantum field theory,

presented by Julian S. Schwinger [16, 18, 23]. -

3.1.1 The Visual concept of the External Source

First of all, we would like to tell reader about the sources theory which are
defined from the mathematical source or numerical function, F(z). The physical
source meaning is a creation of the physical properties that is own by the created
particles.

Comparing with the normal situation in real life, you can see an object
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with the light that reflects and go to your eyes. In this case, the light (particle-like)
emits from a candle or a light bulbs (the sources) and travels to incident our eyes
(the detector) given in Figure 5. Here, these sources mean that it generates, emits

or stimulates something from nothing.

N %
,_O_
/N

eye

Figure 5 The normal situation of the source and dectector.

Moreover, this external source also means an external force, depends on time, where
it affects only in a temporary time. An example, the harmonic oscillator is added
the external source. The details about this system is given in next subsection.

In the quantum interpretation, we give the Fourier transform of source as

F(p) = /dmeﬁip'xF(x). (3.1}

This thesis, the sources are F(7) and S(7), # < 7 < ¢, which is the
generator of gencral coordinates, is called the degrees of freedom, and also cause
the transition of |pt') to |qt) state. For transformation function (qt|pt’), we impose

the Hamiltonian equation that is
H(r)=—q F(r)+p- S(7). (3.2)

The image of sources which generates the physical states, is given in the

Figure 6 below
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Active

St), F(t)
I

Y
p(t).q(t)

t' T t

\/

Figure 6 The Generated g(7), p(7) state by the sources.

In particular, these two sources are activated over the interval of time between ¢
and ¢. Time is possible expanded to —oo and co. This situation begins from —co
then approaches ¢'. For the F(r) source generates the q(r) state and the p(7)
state is generated by the S(7) source. This time-dependent source is similar to
the situation that the external force stimulates the system. An example, the box
is gentle pushed by our force which affects its position, x, infinitesimal moving to
x + 0x. According to previous, the source generates, cmits or stimulates for the
system at an initial state to reach a final state, founded by detector, so, this event

makes sense to an experiment.

3.1.2 The External Source

At the beginming, we introduce the Hamiltonian, for Harmonic oscillator,
that include the external force (or source). This force is linear coupling with the
disturbance which is the time-dependent source. It is written as

P21, 2w

H() = o+ smwx? — [ Z% . 1 (1) (3.3)

where F'(t) is the external force. Then, by using the annihilation and creation

operators, (a,al), that are defined as

a*L —8—+) and af*—l— ~2+
AU TVE\ aq )
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Defining x = {/li/mwq, for removing a unit, an above equation can be rewritten
in the form of
1
() = fw (alat ) = F(t)(a+al) (3.4)

which consists (a+ af), coupling with F(t). This equation is the prototype of field
theory in zero-dimension space at time ¢ = 0 [5].

The external source leads to the disturbance of system that provides the
transition between the different states, means that ground-states to excited states.
But, somchow, the state still stay in their old state, initial state.

We set this force is “on” after T; time and “off” at T;, time where Ty > T,
so we draw it down in Figure 7. Denoting, the external force vanishes in £ < T}

and { = 75,

ON OFF
F(6)=0 F(t) F(£)=0
t

T, T,

Figure 7 The external force is swicthed ON and OFF at 7 and 73 times,
respectively.

We consider the chosen ground-state which is

[¥(T1)) = [0-), (3.5)

where this |0..) notation is borrowed from quantum field theory.
To find the possible transitions, we have to solve the time-dependent

Schrédinger equation for the final states, [¢(7%)), which is

., 0
ihoy [9(2)) = H(E) [$(2)) - (3.6)

Consequently, we can make the ansatz as

B} = e |1 (6@t + )] 102, (3.7)
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where £(t) and 7(t) are any numbering functions that satisfy
¢T) =0, n(T1)=0 (3.8)

for initial conditions. Then, Eq.(3.7) is substituted in Eq.(3.6) where we use the
identity which is
et = £@al (54 ¢

and the truth that a|0.) = 0. Finally, we obtain

éat + @] 10) = [w (5 = z60a") - FO (380 +a)] 10 (39)

This result leads to the solution of £(¢) and 5(¢) by using the integration
factor of differential equation and the initial condition in Eq.(3.8). After integrat-
ing, £(t) and 7(t) are written as

i i .
£(t) = —e— f dt' e B (1), (3.10)
fuw
n() =5 (¢ —T)
L9 % 0 dt’ /OO dt” euiw(t”ft’)F(tﬂ)e(t 5 t”)e(tﬂ - iI)F(t’). (3-11)

The integrating bound of these two equations are expanded to infinity
time that covers 71 < ¢t < T3 time interval. For Eq.(3.11), the two terms will
be vanished when ¢t = T3, In particular, ©(f — t') is a step function, orders the
time-dependent event of this system, which is zero when ¢t — ¢ < 0.

We are interested in the remaining ground-state amplitude that is

{0](T2)) ,
(Olsp(12})

F=0

(0,10 = (3.12)



18

which subseribed F is defined that this transition is disturbed by the external force.
For (0]1p(T5)), it is given as

(O (T2) = (Ol exp [+ (€Tl + ()] 0}, (3.1
= (0] exp [~—n(T2)} 0}, (3.14)

where using the fact that (0] a' = 0. This result is substituted in Eq.(3.12) then

we obtain '
(Ol exp [—£n(T3)] [0)

Ofexp [~ ()] 0]

where (0| implies the ground-state at a final time.

(0410} = : (3.15)

F=0
At last, Eq.(3.15) is immediately rewritten as

(0+10-)p = exp [~ Zw(Ty - )]
xexp[ ;2 f dt” f dt! e R O(T, — YO — tYF(E)|,  (3.16)

when B = 0, for a dividing term. It is become equaling to one and (0]0) are cancel
each other. After, exp [—~iw(Ts ~ T1)/2] is canceled because of zero point energy,
from boundary condition, and &(T; — ") = 1 due to F(*) = 0 when ' > T

Thus, we actually have

1 co o g 1 L
{04]0_) = exp [—ﬁ f dt” / At e~ —”F(t”)e(t”—t’)F(t’)]. (3.17)

Therefore, in the case of remaining ground-state probability, it is computed

and written as

9 oo o0
1{0410) 1| = exp [_}? /_00 dt” [m dt’ F(t")F(') cos(w(t” — '))O@" - t')] :
(3.18)
This Eq.(3.18) may be rewritten where we obtain

10,,]0_) 4|2 = exp [—% ’ / ‘: at e“iw*F(t)’z} (3.19)
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and then we use the Fourier transform.

So, immediately, Eq.(3.19) is simple written as

0410} = exp |- (3.20)

where

Flw) = [ °:O dt ™ ().

Importantly, for all possible states have the probability that is defined as
1 [(0410- e [{m J0_ (3.21)
‘Thus, we have the excited states, by F(¢) source, which is

{0 pl? = 1— {040 .

=1 —exp [— |F(w)l2} . (3.22)

)
Accordingly, for the transition amplitude, defined as {(n,|0_), we give this
source, is the sum of two sources, is

F(t) = Fi(t) + Fy(t). (3.23)

By setting, F1(t) is switched on and off then F(t) is switched on, immediately.
Consequently, we use Eq.(3.17) to directly obtain

(O+[0—)F = <O+|O—)F2 <0+[0—)F1

]. 0 O : i i
X exp [_?i [ [ e _”Fg(t”)Fl(t’)], (3.24)

by using the step same as Eq.(3.15), where ©(¢” — ¢) = 1 and F}(#") = 0 when
(" £ 0.
We also follow the previously representation of the Fourier transform and

have

iFy (w) iR (w)} _ (3.25)

<0+|0">F - (U+|O_>F2 (0+IO“)F1 cxXp [T h



20

Using the taylor series, the above cquation becomes

(0,10_) 5 i:; (0,0 5 [7'F :(;%/ hiF 1\(;"7%/ A 0,00 " (3.26)

Therefore, comparing with the completeness relation, we obtain

(0410205 = 37 (0 ) o, (b (n410-) (3.27)

n,m

where I (¢) is switched on then off therefore the {0..) state may transit to the |n,)
state that stays in this state until F(¢) is switched on.

In particular, {mfn}, is the amplitude of a force-frec interval between the
two sources Fi (¢) and F5(t). This transition evolves in time with a free Hamiltonian
which is

(mln)y = exp [—iwn(tz — 1)] S (3.28)

As a result, Eq.(3.27) becomes

(O+|0—>F = z <0+|m~)F2 exp [—dwn(ly — t1)] 6mn (n+|0—)F1 )

n,m

L) e @) (nyf0o) (3.29)

where m have to cqual to n duc to the property of Kronecker delta function and
we must define the new variables, n’ is the states before F, is switched on, For F,
and F; are also redefined as F' and F, respectively.

From Eq.(3.26) and Eq.(3.29), so, the transition amplitude, disturbed by

the external sources, are meaningful given as

[ie~® F(w)/h)"

(ny|0-)p = Il (0+]0*)F ] (3.30)
(04ln=) e = (0410) [ieiwtl%‘“)/ 2 (3.31)

which #; represents the time that F(w) is switched off and, #; denotes the time
that F'{w) is switched on.
Importantly, thus, the following probability of the transition states from
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the ground-state |0_) to an excited state |ny), from Eq.(3.30), we finally obtain

nelooypl? = LT 0 10y,
= IPCIRIET o [ I 5.32

by using the probability of remaining ground-state from Eq.(3.20).
This result leads to the average of the system at an excited state which

starts with
o0

=" |{ne]02) 5l (3.33)

s

After, we substitute Eq.(3.32) in an above equation and obtain

A= e (_ IF;E;N ) iﬂ% (3.34)

Then we and change the variables to [ = n; — 1 so it is rewritten as

7 = cxp (_IFg)Iz) (IFS;)IZ) i [IF(wg!lz/ﬁzl'}

=0

L exp( (o ok ) ( |F§;)|2) -4 ( +%Ij) | (3.35)

where using the Taylor series. Finally, the average of system at the cxcited states

is found as
|F{w)|?

1 == hg s

(3.36)

after the intervening source is activated.
For obtaining the transition from frn_) to |my), we provide the intervening

source, previously, is switch on, therefore, the source is given by

P(t) = Fi(t) + Fo(t) + F(1), (3.37)
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where all of these sources are defined a same logic ordering as early in Eq.(3.23),
Fy = Fy = F3. Then, we also imply Eq.(3.17) and immediately get

X oxp [iFg‘h(w) iFy }gw)] exp [iF; h(w) i h(w)]

=3 {04m_) gy (maln ) g (0 ]0-), - (3.38)

n,m

<0+|0“)F = <0+|0*)F3 (0+|0'—>F2 (0+IO“‘)F1 OXp

By using Eq.(3.30) and (3.31), the last linc in Eq.(3.38) is rewritten as

ieingF* W 1
0410 )= D040 5, i \/%( ) {myln)p,

[fen ()]
al

Then, we use the identity[9] which is

E [F 1) in(W)] AN [w;(w) M] A [_f«j_@ M}

X (0410-) f, - (3.39)

h i h h h h
5[50 @] [ir@)]” [irw)]" fRw)]™"
LMN : L M! N! (3.40)

By setting
L+ M=m, L+ N=n,

so Eq.(3.40) becomes

exp [MM] exp [2"_@@ M} - le

R R h h

[
—
g
S
.,
o
—
)
e
——

n

L))" R )] [iRw)
ﬁ‘/_\/—[ \/n?] i L!(n}—L)[!rEn—L)}! [r\/a] ' (3.41)

After that, we compare Eq.(3.40) to Eq.(3.41), thus, and obtain

, m—L . .
min{m,n} [%F(w)] e—:megeiwnTl [1F*(w)
_ LA I3
(myfn_)p = (04]10_) p Vm!nl LEZO (D)L ,

(3.42)

]n—L
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where changing F, — F. This equation is the transition |n._) to jm,.) states by
the intervening source, Fy(t), is activated.

In a case of non-transition, the state is still at its old state which |m,)
|ny). At this step, we absolutely obtain

min(n) [%F(w)] n—L g twnTs giwnTy [%F* (w)

(nefn_}p = (040-)pn! 3 ]

L=0 [(n — L)2L

min(n) [H IF(rc;)Iz]n_L e—iwn(Ta—T1)
= N pn! ‘ : 43
P O] 07 (349)

And then weset k =n—L — L=n—Fk and n =k + L therefore Eq.(3.43) is

rewritten as

., [

(niln-)p = (04]0-}p ! g;g 62t = Rl (3.44)

where, lastly, exponential term is divided for normalization of {(n4|n_) .. At the
result in Eq.(3.42) and (3.44) are the transition of any excited state to other excited
state or unchanged state.

The important point is that the external force or source affects the system
to be changed reaching an excited state, with initial state. For application of
this theory is given in the next section where you will understand how to use
it. Moreover, how is it role as the action of dynamical variables to generate the

quantum variables.

3.2 The Quantum Dynamical Principle

This section is about how the quantum dynamical principle was proved.

At first, let consider the general Hamiltonian that is
H(t,A) = H(t) + Ha{t, A) (3.45)

where Hy (), Hy(t, A) are time-dependent but Hy(¢, A) is added some parameters (A)
such as masses, coupling constants, prescribed frequencies, external sources, etc.

Furthermore, H(t, ) comes from a priori that given the time-dependent potential
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or external sources.
For the time cvolution operator of Hamiltonian H(t, A) is U(t, A) that is
defined as

m%zf(t, N) = Ht, UL A). (3.46)

And, for the specific state a, we have
0
zh(—,)g (at] = (at|H(¢, ). (3.47)

For the Hamiltonian H;(t), independent of X, gives the following time

evolution operator U, (t) as

m%ul () = Hy (O ULe), (3.48)
then setting

Clearly, the physical state (at| which is related to 1{at|, becomes
(at| = ((at[U](£)U (L, N). (3.50)
Introducing, the unitary operator is
V(X)) = Ui (U, A) (3.51)

so Eq.(3.50) becomes
' (at| = 1(at|V (L, ). , (3.52)

Thus, Eq.(3.46), by multiplying the U] (t) is

z’h%’{/(t, A) = UL (&) Ha(t, VU (£, N) (3.53)

by using the Eq.(3.51).

To end this, we use the identity which beginning with

ihg,; VIV WV XV, )] = v, ,\)ﬁ% (VI NV ) VI, ),
(3.54)
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and considering only the function of 7 term, so
imiﬁwfmvaﬂzqhVHTMQVﬁAU+EVWTMVﬁX)
ar ’ ’ Er N dr ’ ’

:WWA%mﬁvmx0+G@%Wmn)wnm.

or
(3.55)
From the Eq.(3.53) and using the complex conjugate, we obtain

' i t i}

iRV (t, W) = (UF () a6, MU, )
5 (3.56)

w%%§W@MxW@M@@MMM,

and Eq.(3.55), by substituting Eq.(3.56), becomes
mQ{WﬁﬁwvAﬂ

ot (3.57)

= VI, VU (o) Hy(r, NYU (7, X)) — U (7, N HY (7, NUL(D)V (1, AT).

From the unitary operator, V (¢, 2) and Vi(t, ), Eq.(3.57) is rewritten as

z'h?a

5= (VI NV, 2] = U, 3) (Ui(nUL(r)) Har, N)U(r, )

— UM N HY () (LU UG, N),  (3:58)
= UT(T} )\) [H2(TJ ’\I) 11 H2(T’ )\)] U(Tv ’\,):

where using the unitary U(£)UT(¢) = 1 and the Hermitian operator.
Finally, this Eq.(3.54) becomes

i [V WV )Y (5 XV )]
= V(L) [Un ) (Falr, X) = Holr, )) UG VI X, (359)

= V(&) [UN(r,\) (H(r, X) = H(r, ) U, )] V}{Z', X),

by using the earlier Hamiltonian equation.

Note that, generally, the X and A are not the same, and the unitary of
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V(t, A) are
Ve, WV =1, VIOV =1, (3.60)
Let integrating over v from ¢’ to ¢, Eq.(3.59) becomes

7=t

V&NV WV XV, V)

, ,», =t (3.61)
— V(L) [ [ arute o @ Xy = 2o U V)] VHE ),

and consider only the left hand side, is

=V, NVIENVEN)VIEN) = Vs WVHE DV, DV, X

(3.62)
= V(A [V DV X) = VIE, VX)X,
Rewriting, the two terms in a bracket are
VI MV X) = U, NU R, X,
(3.63)
VI, NV, XY = U, MU, X),
then we input Eq.(3.63) into Eq.(3.62). So, we get
= Ui} QUL [U MU N = U, U, )] Ut X))
(3.64)

= vl@wue,x)] [ute, Yo )] = [vlwue ] [ote, yo ()]

by using the unitary of U(#, A) and a property of the unitary operator V (¢, A).

From a mathematical result of the left hand side is

[V(t, MV NV (r, MW, ,\’)] Ti = V(i YWV XY —~ VDV, A).
" (3.65)
Finally, we obtain
[V, MVHEX) = VWV, )
(3.66)

1 i
= V(N | [ a0 (T ) = Hin )| Vi, X).
il
Let setting X' = A -+ §A, get the variational of Eq.(3.66) that is

5 Ve, WVHE, )] = ~%V(t, 2 [ / ' dr U (r, NS H (7, VU, )\)] Ve ). (3.67)
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Using the (q,p) language, the Hamiltonian H (7, A) can be rewritten as
H(r,A) = H(q,p,7; \) (3.68)

where dH(q, p,7;A) , the X parameter is changing but q, p and 7 are kept fixed,
is presented the change of H(q, p,7; A).
The Heisenberg representation of H(q, p, 7; A) was defined as

H{r,\) = Ul(r, \VH({q,p,T; MU (T, X) = H{g(7), p(r), 73 A) (3.69)
where q(7)} and p(7) are given by
a({r) = U'(r, A)qU(r, A), p(7) = Ul{(r, ApU(r, A) (3.70)

which are the Heisenberg representation of ¢ and p.

Thus, we can rewrite Eq.(3.67) as
1 A
$[Vie W] = gV N | [ drsH (o), p),n 0| VI Y, @)
tl

where it gives us the variation of H(q(7)}, p(7),7; \) that depends on the A param-
eter changing, (7), p(7) and 7 are kept fixed. The q and p are carried the indices
of various degrees of freedom,

Now, we take the matrix element ((at|bt'); into an Eq.(3.71) and use
Eq.(3.52) to obtain

5 (at[bty — _% / “Ur @t H ((r), p(r), 75 \) [bt) (3.72)

The equation above is the celebrated Schwinger’s dynamical (action)
principle or the quantum dynamical principle [5]. This is expression in the
physical states |at) and |bt’) which depend on A. Also, the a, b are kept fixed as
same as q(7), p(7).

The particular transformation functions are {qt|q’t’), {(qt|pt’) and (pt|p't’),

given as

Satla’®) =~ [ arlatisH(a(r),p(r), 7 Nla), (3.73)
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Slatlpt’) =~ [ dr(atsH(a(r), p(r), 7 Vipt), (3.74)
and

Splp's) =~ [ dr(psH(a(r),p(r), 7 VDY), (3.75)

The application of all above equations will be given below.

Considering, the Hamiltonian equation as

H(q:p}T; F(T), S(T)) = H(q:PyT) —q- F(T) +p S(T): (376)

where F(7) and S(7), the numerical functions of 7, are the external sources, H(t, A)
independents of these sources and a minus sign of q-F(r) is used for mathematical
convenience,

The definition of the functional derivatives, with the meaning that the

sources F, S will only exist at time ¢ (v = 1), are

§
( )F(T) ( L T)) (377)
§

s S =10 =7), - (378

and then we obtaim, from Eq.(3.76), as

Wﬂ(q,p,'r; F(7),8(7)) = —qd(t — 1), (3.79)

4
mH(q, p, 7 F(1),8(r)) = pd(t — 1), (3.80)
where the A parameter is replaced by the external sources ,F(7) and S(7).

The important following result, examples, from the Eq.(3.73)-(3.75) are

(k) gy (atla?) = (atlar)la?), (3.81)

(%ﬁ)m(qth%') {atlp(7)lq’t), (3.82)

where these equations for the matrix elements, in Eq.(3.73), of Heisenberg opera-
tors () and p(7), for ' < 7 < ¢, which depend on the ¥(7) and S(7) sources are

set to be zero, eventually.
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3.2.1 The Arbitrary Function
Example of functional (function of function), we consider
qRQZIHfLHwHﬂAWJﬂaML (3.83)

where A(7/,7") is indcpendent of F, S.

So that,
S ¢rp8)= f “ar Alr, 7S () (3.84)
(SF('TI) ) " 1 H .
& )
G[F S] A(Tl, ‘7‘2), (385)

88(r2) OF (my)
where t/ <7 <t ,t' <7 <t

Likewise, for ¢’ < 7 < t, we get

. !
dr
tl

(3.86)
= dT"A(T, TMF(r") + / dr'P(rA(, 7).

Now, let consider the arbitrary function, B(q, p, 7; A), with the Heisenberg

representation as
B(r, A} = Bla(r), p(7), 3 A) = Ul (7, ) B(a, p, 7 WU (7, A). (3.87)

Taking the unitary operator to the previous function, we get

V{t, NB(r, WWIE, A)

(3.88)
= V (£, W (r, WU{ () B(q, p, 7; NUL(T)V (1, WV(#, \),
so the functional derivative, the variation of A, for the above cquation is
5 [Vt NB(r, W'(H, 3]
(3.89)

= 8 |[V(t, WHr WUI(r)B(a, p, 73 WU (r)V (7, WV T(E, M)]
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= § [V, W, V)] Ul (1) Bla, p, s MU TV (7, WVHE, A
+V(t, N)6B(r, Wit A) (3.90)
+V (&, WV MU (D) B(a, p, 7 WU [VIn WVHE, X))
Using the Eq.(3.71), we consider the first term of Eq.(3.90) as

5 [V WV (r )] Ul B(a, p, 73 N ()Y (1, WVHE, V)

_ —%V(t, A) K / AT NSH(, U (7, /\)) B(r, A)] Vi) (3.01)

= —%V(t, ) [ f L ar SH (!, N)B(r, A)] Vi, ),

where
Vi(r, VU () B(q, p, 7; NUL(T)V (T, )
= Ul(r, VUL UL (r)B(a, p, 7 NUL(T) U (1)U (7, \)
(3.92)
= Ul(r, ) B(aq,p, s M)U(1, A)
= B(7,A)

by using the unitary operator’s property. As the same as the third term, is

V&NV (7, VT B, p, 13 WU ()8 [V (, WV, V)]

: T (5.99)
S 7PN [ [ ar'Bneu(, A)] Ve, ).
h ¥
Finally, substituting Eq.(3.91) and Eq.(3.93), we obtain
3 1
5 [V NBE W,V = -5V (5,3) [ [ arenc, NB(, )\)] Vi, n)
+ VENB(r, VI, ) (3.94)

— 2V (N [ [ a8 eu(, ,\)] Vi, A).
tl
Using the definition of the Chronological Ordering[6] which is denoted

(H@OH({E)). = (HE)VH () = HGH(E), (3.95)
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then we can merge the two term, the first and the third, as

5 [V(t, VB, VI, V)] =——Vt ) f dr’ (B(r, NH(r', \), VI, )

(3.96)
+ V (£, N6B(r, V)V, ).
Taking Eq.(3.96) for the matrix element, ;{at|bt’);, we get
51(at|V(t MBI, WV N b’y
~—< (at|V(t A) f A’ (Blr, NOHE, DO VHE, Dbt (3.97)
+ {at|V(E, N)éB(r, VI, X)|bt'),.
At last, an equation above is
8(at|B(r, \)|bt') = ——(at| / dr' (B(r, NSH (7, A)), [bt) + (at|6B(r, \)|bt),

(3.98)

where, similarly, q(7), p(7) and also a,b are kept fixed.
Eq.(3.98), by replacing B(r, A) by ¢(7) and using the functional derivative,
F(7'), leads to

(=ih)

st WA = sttt [ ar @) ), ')

6 Il
- ST )(qtlffq( 't (3.90)
= {qt| (a(7')q(r)), la't")

= () gy (i) gy ),

where without the last term, be zero, because of q(r) is kept fixed, and from
Eq.(3.81) that given in a last line.
Replacing Eq.(3.99) again, by using Eq.(3.81) and Eq.(3.82), it gives

§

( zh) (SF(’H)

R S S y
s, Masey Py 9 5 10
n)P

= (at| (a(n)..a(m)p(r).-p(r)), |4'),

where t’ <m7,...,7, and 74, ..., 7,, < t. Note that the all functional derivative oper-

ators commute.
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The functional derivative operators are imposed as the Generating func-

tion that can create the various degrees of freedom, q(7) and p(7).

3.2.2 The Propagator of Harmonic Oscillator

We will give you an easy example to find the propagator, {xals|z18:1) (but
it does not quite short) that base on the quantum dynamical principle [24] at a
below detail.

The propagator satisfies the differential equation that is

a A
i K (w3, tg,01, 1) = (o, Lol Hlwa, ha), (2> ). (3.101)

The first step, starting with the Hamiltonian operator which is

RN 2 92

with the initial and final state are

VAR

H= —mw?® X? 1
e UL X4(t1), (3.103)

s L) 1,

H === L =m i XE(18), 1
o™ = 5w (t2) (3.104)

The Hamiltonian operator is independent of time but P(t) and X (t) are
time-dependent operators.

Corresponding, the Heisenberg equations are

%X(t) = —[X(1),H] = %, (3.105)
d P 2%
PO =—1P), H) = —m X (). (3.106)

Next, using the normal differential equation method to find the solution

of this system that is X (t} = Acoswt and time-splitting then we get
X(t) = Acos(w(t — t1) + wty).

From that solution, the momentum operator is
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P(t) = mdX(t)/dt = —muwA sin(wt).

Finally, for the two operators at ,, we obtain

X(tz) = X(tl) COS(w(tg — tl)) + pﬂgﬁi) sin(w(tz - tl)), (3107)
P(ty) = —mwX (t1) sin(w(ty — £1)) + P(t1) cos(w(ty — t1)). (3.108)

Now, rewriting Eq.(3.107) as

sin(w(ta — 1))

P(ty) = [ R (t2) — X(t2) cos(w(ta — t1))] , (3.109)

and substituting in Eq.(3.103), we get

N mw?*

Horg = Fsin (W) [ X (ta) + X2(t1) — 2X (1) X (1) cos(wT)] — % cot(wT,

(3.110)
where T' =t — ¢; and by using [)A( Lol X (tl)] = ifisin{wT) /mw, the commuting.

The second step, we find the function F(z2,t2; z1,¢1) which is

(e, to) H(X (t2), X (t1)) |1, 1)
(2, La]Ty, t1)

F(mg,tg;ﬂ,‘l,tl)

mwz

- N [(33% = ’L‘i) CSCQ(WT) — 2071 cot(wT) CSC(wT)] (3.111)

R
- % cot(wT).

From Eq.(3.101), we integrate over ¢ time and it gives
p—
G, Lofon, ) = Clazy o) exp (=5 [T Fan, 1 :Bl,(})) . (3.112)
1

By the way, the F(zq,12;z1,%) function in an above equation is replaced by the
Eq.(3.111) and we get
MW

2
— ((’Eg + ) ese? (wT")

(2, Ty, 0) = Cz2, z1) ex —ideT’
L2y 4 L, - L2, 41 p L Jo 9

(3.113)
1 ! i r 2 ‘iﬁw !
— 2971 cot(wl™) esc(w )) + 5 L dT 5 cot{wT”) 1.
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Finally, we obtain the propagator which is

{z2,T)21,0) = ) [(m% + 2%) cos(wT) — 2:{:23:1]) :

C’(:r:2,:c1)e ( imw
2R sin(wT

\/sin{wT) *
(3.114)

The third step, we prove that C(z,, ;) are independent of z,, 7, and try
to write P(t;) that is a function of z(to) and z(t;), as

Plta) = mwcot(w(t, — 1)) [ (ta) — X (1) cos(w(t, — 1))

(3.115)
— muw X (1) sin{w(ty — 1)),
The conditions are

. s O

($2,t2|P(t2)|$1,t1> — M’Lha—’n—;<$2,t21$1,t1), (3116)
" 20,

(332, tz!P(fl)kEl, tl) it Zh%—(ﬂig, tg,ib‘l, tl). (3117)

I

S0, we substitute the Eq.(3.109) and Eq.(3.115) in the two above equations and

we actually get
0C (za, 1) _ 9C(zg, 1) i
63.71 3.’1}'2
that C(x3,2;) is not depend on z,, z;.

To evaluate C, we have to take the limit of T to zero of the Fq.(3.114)

0 (3.118)

and use the Gaussian integral which is

. ; C im 5
A ol O) = i, 77 oo r(en )
(3.119)
2mik
= Oy ozg — 1),
MW
where the value of wT" is small, leads to sin(wT") &~ w7 and cos{wT) ~ 1.
The result of C is given as
mw
= 12
2mih (8.120)

by the definition of initial,

T]23+<$2’ TNz1,0) = 8(z2 — z,). (3.121)
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Finally, the Eq.(3.114), the transformation function, becomes

_ mw tmw 2, 2 P
{22, T|21,0) = Sisin(T) exp (———Zﬁ,sin(wT) [(12 + z7) cos(wT) 21211]) .
(3.122)

The truly propagator, includes the time ordering condition, is

mw

K (@2, ta; 1, 11) = O(l2 — 41) 2mikisin{wT)

(3.123)

mw
XOXp (m [(IB% + IL’%) COS(UJT) — 2(172331]) .

For the applications of the Quantum Dynamical Principle is given in the

next chapter that about free particle and the potential scattering,.



CHAPTER 1V

THE PARTICLE WITH/WITHOUT THE POTENTIAL

In this chapter, we would like to provide a detail about the particle wave
travels trough free space or some potential. With the potential, the particle is
scattered and detected at last. We apply the Quantum Dynamical Principle
(QDP) to this situation (system) for finding the propagator. Eventually, we have
to find the Asymptotically Free Green function which is the time functional, going

to infinity, and independent of z for the word “free”.

4.1 The Free Particle

For free particle, (H = p?/2m, with the momentum p) we introduce the

Hamiltonian equation, includes the sources term, as

62— q P +p80), (@)

and from the previous chapter, see Eq.(3.73), we get

setatlathe= = [ dnlasHa(r), ), la ), (4.2)

d §
ta't) m——de i O | {qtld e, 43
Slalla?), ol (i i) e, (09
where £ is the arbitrary parameter which varying and replacing q(7),p(7) by the

sources (1), 8(7), the functional derivative that we have been proof before.

We integrate over £ from £ = 0 to 1 and get

ln(qt|q't’)5’: = ?i d’rH( hJFiT),iﬁJSiT)’T) , (4.4)
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(allq’t) = exp {_% / “arm (—m 5F6(»r) i S‘zT) 'r)] (atldthe  (45)

with ¢ < 7 < ¢ and {(qt|q't)¢=1 = (qt|q't). So, for the Hamiltonian equation
Eq.(4.1) with the lower script 0, the Eq.(4.5) becomes

o (46)
S=0,F=0

. 2
2h (0) — _“’l’_ ¢ : i__ I
(at|q't’) eXp[ S e 47 (zhas(f)) ] {at|q't)o

where, for the free particle, we have to finally set F, S = 0.
Next, we have to find (qt|q't')g which is & = 0. From the Hamiltonian
equation is

H——q-F(r)+p-S(). (4.7)

The Heisenberg equations from this Hamiltonian are

These all the above equations are integrated as

N 2l — : GO - )SE) i <, (4.10)

p(r) = p(e) + [ a0t~ )G 51>, (4.11)

where ©(7' —7) and @ (7 —7’) are the time ordering which tell us that the existing
of sources in time interval. For q(r), we integrate from 7 to ¢ because the S(r)
cxists in that time. Also for the F(7) source, because of p(7), is integrated from
t' to .

Next, we take the matrix elements (qt| and |pt’) into the two equations

above for £ = 0 and calculate as
A
(atla(mlpt)o = olatla(®)lpthe — [ dr'e(’ — s atlpt)o
i
= a(atlpt)o — [ dr'e(~ - S atlpt)o (4.12)

= [q — f; dr'e(r" — T)S(’T')] {atlpt’o,
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where using the relation for this equation is o{qt|q(t) = (q)o{qt|. Then,
(@lp(lpt)o = olatp()lptho + [ dr'O(r — )F()(atlpt)e
= platlpt)o + [ drO(r — )F(r) atlpt), (@.13)
= [p+ [ arew — w6 (o,

where this equation with p(t')|pt'}e == (p)|pt')0.
Finally, we get

(ala(iptho=[a— [ aret ~ns@)| @pte,  @1)
(atip()ptho = [p+ [ 4rO( =0 atlptho. (415

From the previous chapter ((3.81) and (3.82)), the Eq.(4.14) and Eq.(4.15)

are rewritten as

— ih%(qth)t’)o = [q N V/j d'rf@(,rl " | T)S(’T’)J (qt|pt')0, (4.16)
55( )(qtlpﬂo = [p + / dr'O(r — 7)F(r )] (qtlpt'e. (4.17)

The Eq.(4.16) and Eq.(4.17) are integrated as

{(qtlpt’yo = exp [%q]ﬂt drF(r ] exp [ = dT td'r’F('r)@('r' - T)S(T')J

‘ (4.18)
X exp [%q : P]
and
(at|pt’)o = exp [ﬁ%p f; drS(7) ] exp [ / d'rf dr'S(1)0(r — 7 )F(r )} (419)

i
X exp [f—iq-p],

where exp(iq - p/h) = (qt’[pt’) is satisfied the boundary condition for F = 0 and
S =0.
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The final result is
, i i i
{(qt|pt’yo = exp [—q/ d'rF('r)] exp [w—p/ d'rS('r)] exp (*q . p)
RSy i h (4.20)
i t ! ! ! '
X exp [—uﬁ -/t.f dr'S(r)e(r — ' )F(r )] :

For the other application, immediately, we multiply Eq.(4.20) by
(pt'|q't’) = exp(—iq’ - p/K) and integrate over p by dp/2rh

{at[pt’)(pt'[a't) f o 5P [m—p f drS( 'r)] exp (h(q q)- )

X exp [_ﬁqu drF(7) } exp [ il dT dT'S('r)@(T - T')F('r')]

(4.21)
then it was rewriting as
(atlq't)o = f I [i (q— 5 5 f : dTS(TJ) p} exp Fq f t dTF(T)}
\ 2nh h # R Jy (4.92)
NN N ] '
xexp[ ﬁ,/ﬂ dT,L dr'S(T)O(r — " )F(+")]| .
At last, we get
t S St
(qtlq’t)e = 6 (q —q ~/ dTS(T)) exp [iq/ dTF(T)}

: e (4.23)

X exp [_E/ dr : d’r'S(T)@(T - T’)F(T')] ,

where using the Dirac delta function, is

0q—q — f drS(71)) = hexp [?; (q— q — /:dTS(T))} .

The above transformation function, Eq. (4.23), is very uscful for the path integral.

We use the result in Eq.(4.20) for the Eq.(4.6) and set

f# t dr'O(r — T)F(r') = R(r). (4.24)
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For Eq.(4.20) is rewritten as

{qtlpt’)o = exp [%q /: dTF(T)] eécp (%q - p) exp [—% ft’t drS(r) (p + F(T))]
(4.25)
and, in above equation, the last exponential term, after using the variation of S(7),
generates [—i(p + 10(r))/ h] when the limit is S(7) — 0.
Thus, (6/6S(7))? can be replacing by [_i(p +ﬁ‘(7))/h]2 and from Eq.(4.6), we

obtain

(qt|pt'}® — exp [——2—3— th (p - ﬁ‘('r))2] exp [%q /; dfrF('r)}

wh Jir
. o (4.26)
i i "
X exp (ﬁq : p) exp [~ﬁ f drS(7)(p + F(’f))} )
; S=0
where associates with the Hamiltonian, for S{r) =0, is
p?
Hy =-———q-F(r). 4.2
=5~ 4 F(r) (4.27)

Finally, Eq.(4.26) becomes

LT exp [% (q p - %(f» - t'))] Cxp [% f: drF(7) (q 4 %(t - ’r))}

(at|pt")

xoxp [~ oz [ ar [ arFn) = r)pe)
(4.28)

where 7-. = maxz(r,7"). This equation apply to next section for finding the scat-
tering propagator.

Multiplying Eq.(4.28) by (p#|q’t) = exp(—iq'-p/h) and, similar
Eq.(4.23), integrating over p with dp/2wh, we get

dp 7 p*
VAN (1) I - p—a o —
{qt|qt’) /QWEGXP [h (q p—d-p 5 (t t))]

X exXp [% /: drF(7) (q — %(t — 'r))] (4.29)

i gt t
L C R )F '}.
xexp[ — [Lar [[ar' Pt - 70 ()
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Then, by using thc Gaussian integral that is denoted as

/dme"”””*c = \/geﬁﬂ, . (4.30)

we obtain The Free Particle which is expressed as

(atlq't)® = ) QWZ;T exp [212; (a- q’)z]
X exp [% f: drF(7) (q’ - la—d) ;ql) (r — t'))]
X exp [_% [ [ arti(n O =TT t')F(Tf)] ,
(4.31)

where, after, setting I' = 0 which generates +(q' 1 (q — q')(7 — t/)/T) that can
replace (6/0F(7)).

At last, this method gives us the above equation is the transformation
function, for the free particle from the q' — q, which is very useful for many

application. For the next section, you will understand this method.

4.2 The Functional Treatment for Quantum Scattering

In this case, we pleased to apply the functional method (QDP) [5, 7] to
find the propagator of this general potential. We would like to start with the given
Hamiltonian

2

P
H=—4%V 4.32
P v, (4.32)

where the particle mass is m that interact with the potential V(x). This section,
we use the q, p language as x, p.

Introducing, the new Hamiltonian associates with the external sources

F(7) and S(7) as

H(\7) = %:—:L- +AV(x) - x F(r) +p-S(71), (4.33)

where A, the arbitrary parameter, will be set equal to one.

From the QDP, Eq.(4.3), the variation of the transformation function of
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the Hamiltonian H'(A, 7) which respect to the X\ parameter, is

§(xt|pt’) = -% f: drd [/\ % (Hmﬁ%)} (xt|pt), (4.34)

where V(x} = V(—ihd/6F (7)) with x is replaced by —ihd/0F (7).
The Eq.(4.34) above can be immediately integrated over ) from 0 to 1 and

F(7),S(7) are set equal to zero, so, it becomes

(xt[pt)—exp[ +/ dTV( RJFL(T))}(xtlpt’)(o) (4.35)

F,S=0

which here the (xt|pt’) is governed by the Hamiltonian in Eq.(4.32).
The Hamiltonian for the transformation function {xt|pt')(® which A = 0,

H(0,7) = % —x-F(r)+p-S(r) (4.36)

and, for the free particle which depend on the Hamiltonian in Eq. (4.1), we get

(Dt = exp { i o 47 (350 } bty (430)

by using a same step as integration over ¢ from 0 — 1 in Eq.(4.6).

The transformation function {xt|pt"}y associates to
H(r) = —x F(r)+p- S{r) (4.38)
and is token to calculate, finally, as
1 t ) t
(xtlpt)o = exp [ﬁx (p + /, d’rF(’r))] exp [—Ep '/t’ d'rS('r)]
(4.39)
X exp [_ﬁf dr d’r'S(’r)@(’r — T'-)F(T')] .

Next, we sct S(7) == 0 that give the boundary condition is (xt|pt) = exp(ix - p/h)
and set the same as Eq.(4.24) (You can turn pages back to reread this method
again).

Finally, this process likes the previous deriving Eq.(4.28) that is



(xt|pt')©

S=0
gt ¢
X exp [ﬁ#ﬁ [ ar [ arrere - T>)F(T')],

and substitute this cquation back to Eq.(4.35). We obtain

(xt|pt’) = exp [—% : drV (—m 5F6(T))] exp [% (x p— %(i - t’))]

X exp [% /; drF(r) (x — %(t — ’I'))]

i gt 2
= F(r)(t — , ]
X exp [ S L dr l dr'F(r)(t — )F(7'){,
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= exp [% (x p— %(t — t’))] exp [% /; drF(r) (x — wé%(t — 'r))]

(4.40)

where we just set S(7) = 0 and, next, set F(r) = 0 that give §/0F(7) can be
replaced by +(x—p(t—7)/m). Also, for the F(r) source is replaced by —i#é /6F(r).

At last, it is given us the important result as

(xt|pt’) = oxp [% (x S i t’))]

ifi ot t ) )
X exp [% /ﬂ dr , dr'{t — T>)_;5F('r) SE(r).

X exp [-% ; drV (x— %(tuf) +F(¢))] ,

F=0

which is the Translational Invariant in Time from this theory.

For the Green function, ¢ > ¢/, is defined as
{xt|x't'y = G (xt,xt')

with the condition is G4 (xt,x't") = 0 for ¢t < 1'.

We introduce the Fourier transform that are
{(xt|pt’) = G, (xt,pt) = fd3x’ PXMAG (xt, x't),

and

A |
G t, 0 — “__ZA
+(p:p:p ) h(27rh)3

-/(; chi(p°+ie)T/ﬁ f Bx eﬁip‘x/h(XTlpi()),

(4.41)

(4.42)

(4.43)

(4.44)



44

where t —¢' =T and ¢ — 0.
We rewrite the Eq.(4.41) for (xT'[p/0), becomes

! [ ' pf2
Tp'0)y=exp [+ (x-p ~ T
(xXTp'0) = exp [ﬁ (x P )}

X exp f dT/ dr’ (t—’f>)5F( ) 6F c(5 J (4.45)

)
« exp F%f:d'rv (x = %(t~¢) +F(T))] ,

F=0

and substitute back into the Eq.(4.44), we obtain

f daez(pﬂ E(pr)+ze)a/ﬁfd3xe ix(p— p)/hI{(X p’ )
(4.46)

where E(p’) = p?/2m, p° = mc? is rest mass energy. For the last function term is

7 A 1
G+(p)p s P ) h 27]_?1

denoted as

ih NG 5
(4.47)

for above equation, we just replace 7' by «, £ —t' = «, which « is often used in
field theory [5, 7].

The physical meaning of the K (x, p’; &) is the term of source which reacts
to the particle with depends on the time parameter. Moreover, the [x—p’(t—7)/m]
functional of V(x) is the trajectory of this particle after scattering that respect to
F(r).

Note that, for the a-integrand in Eq.(4.46), the [p® — E(p) + i€] term is
the inverse of the free Green function in the energy-momentum representation.

Next, the scattering amplitude f(p, p’) with initial p momentum and final

; .
P’ momenta, is

flp,p) =

fdsp”Vp )G (", s )’ — E(p')) ,  (4.48)

P=E(p’)

2?12
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where here the Fourier transform for the potential is
V(p) = / d3x e =P/ (%), (4.49)

Let consider to find the two last terms in Eq.(4.48), by multiplying the
Fq.{4.45) with [p® — E(p")], we calculate

i [p° — E(p') +ie] oo o s
LR 8 W E(p)] = _1[}0 ia[p?— E(p')+ie] [k
Gi(p, )l — E(p)] = - k) fo dae

X /dax ei"'("'p')/ﬁ]{(x, p’; ),

1 = D il Bp)d/n
:_(%h)sfo o (£e (- () 1/)

X deX e *@-PUhEc(x ' a).

(4.50)

We integrate the above equation over e from 0 to oo with the integration by parts.
Before integrating, we have to determine the K(x, p'; @) for each boundary

condition, after, is set p° = E(p’), that arc

For o« = 0);
K(x,p';0) =exp [0 exp[0] = 1, (4.51)

where ¢ —#' = o = 0 causc the integrate boundaries similarly equal to zero.
For ov — oo

a-—00

lim f Bx e =P PVE R (x ' @), (4.52)

if this case exists, for € > 0, it will imply that

lim et /M [ Px &P AK(x b a) = 0. (4.53)

a—o0

Starting integrate, from Eq.(4.50), we separate computing, without constant, that
is

oo (—ﬁa/h) : !
f N (6‘6_ ) [ f dx OV (x pli o) (4.54)
0 da
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Next, we use the integration by parts method to consider this case, beginning with

/ud’u = uv| — fvdu, (4.55)

where we set

U= f d¥x o (=P)/h (x,p’; ),

. (4.56)
du = {f dx e_ix'(p—p’)/h———af{(x’ L ’a)] dev,
o
and
(—ea/R)
dv— (L) ,
B (4.57)

v = elme/M)

We immediately input the results of Eq.(4.56) and Eq.(4.57) into Eq.(4.55) and

obtain

fo'e) (—ear/R) g E
f de (?e_) [ f Px e > PPViE(x o a)]
0 3fe:

=\—\Tin f dPx e~ =P )/h g (x,p; ).

=00

(4.58)

Finally, the Eq.(4.50) becomes

i) 0 3 —ix- h
Gp, 0 ") - E(p)] A zﬁh)g fd xe PR (%, pll )
pP=E(p}
(4.59)
with p° = E(p’) means that the scattering occurs on the energy shell.
The scattering amplitude in Eq.(4.48) can be rewritten as
o,p') = =57 [ ap” [ dxemixteemy )
(4.60)
: ) 3 —ix-(p"-p"V/k .
x lim (27rh)3/d xe xPPOR K (x b ),

where using the Fourier transform, Eq.(4.49).

After, integrating over p”, we take the Dirac delta function to evaluate
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the last form which Eq.(4.60) is

fp,p) = lim f dPx e C=PVRY (x) K (x, p'; ). (4.61)

2k a0
In the Born approximation for the scattering amplitude is given as

m . '
fp,p) = — 5P f Ex e PPV (x) (4.62)

with K(x,p’;a) = 1.

Previously, in Eq.(4.47), V[x—p'(t—7)/m+F(r)] is a term with the func-
tional differentiations that respect to F(7) which is created by the potential. This
F(7) is the fluctuation or derivations of dynamics from straight line trajectory.

When we ignore all functional differentiations with respect to F(7), ap-
proximately, setting to be zero. We get the scattering amplitude f(p, p’), expressed

as
m AN Z o0 p.r
Foopl) = =g | e =MV ) exp [‘ﬁfo i ("‘—m“)]' %9

This equation is the Modifies of Born approximation with additional
phase factor in the last integrand, depends on the potential. For Kq.(4.61), when
the scattering is small deflections at high energies, called eikonal approximation,
where obtain from the straight line trajectory approximation with including the
functional differential operation.

The result of this section is very powerful for applying to many potentials

of the scattering problems that we will give you a detail in next section.

4.3 The Coulomb Potential

The Coulomb potential is the interaction between charge particles, for
scattering, where the incident particle straight travels to the target, own potential,
and is deflected then becomes the outgoing particle.

The Coulomb potential’s problem is about that it is a long range potential
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when o —+ 00, it increases with no bound. In case of Eq.(4.52) does not exist wherc
it cannot be integrated by parts.
Therefore, the asymptotically free Green function is used to find the prop-

agator;

4.3.1 Asymptotically Free Green function

In a case of the v = oo in Eq.(4.52) does not exist. Thus, we consider the
G4 (p.p’;p°) near the energy shell, p° ~ p’?/2m.

We introduce the new integral variable, is

~ 2 m)] (4.6)

Therefore, the Eq.(4.46) becomes

G+(p) P’;PO) [ F4 E(p’)] = (27rh)3 f dz et#(itie) deXB ix:(p-p')/h

zh
X K [xp=—29n |
( p p”—E(p’))

Next, we separately consider the K (x,p’;zh/(p° — E(p'))) term, F(7) is

(4.65)

neglected. So, we get

h i e/ (P°-E@) !

Following result, Eq.(4.65) is rewritten as

G+(p,pp") [ 0 - E(p‘r)} = f dz g1t deXe"x (p—p')/h

27r?i)3

;R (p°—~E(p")) !
X exp [—%f g daV (xu%a)} .
0

Using the inverse Fourier transform of G..(p, p’; p°), for x 3-dimensions exchangin
+ ging

(4.67)

to p momenta space with the definition as

460 = [ e ) (4.68)
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we obhtain

—ie*P/h
[p® — E(p'} +1i€] Jo

i k(" -E()) p’
X exp ~ﬁj0 doV X—E ,

Paying more attention here this js important and many mathematical step,

dzeiz(1+ie)

f Epe* "G (p,p';p") =
(4.60)

where always recall € — +0.
for a casc of the Coulomb potential V(z) — A/|z|, we get
zh/(p"—E(p')) p'
/ daV (z-La
0 m
A

21/ (p0—E(p')}
= . : ,
7 VIel +1p P 221/|]] cos 0

m2

(4.70)

where x and p are vector variable, for the absolute, we have to calculate it in term
of vector magnitude.

For integrating, we set a new integral variable which is

2
= b — 22 s
m m

N wds (4.71)
d(]f - =T y
'l \/u2 ~ |x[2(1 — cos? 0)
and then Eq.(4.70) is rewritten as
R / L (4.72)
p’l \/u2 — |x|2sin? @

After this step, we will ignore a boundary condition as well as a constant. to simplify
integrating for a while.
Next, we set a® = |x[?sin?@ and let v = asccé that leads to du —=

asec ¢ tan ¢d¢ thus the above equation becomes

du
——— = [ sec¢ =In|sec ¢ + tan ¢|
fm f (4.73)
= In|u + vuZ —a?|.
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Taking the integral variable back to get the result that we want, therefore, it is

I’ pPa? a zh/ (p°-E(p')}
In [P 1% cosd + \/|x[2 + P 2% 1| cos 6
m m m .
| 2R
=1In — |x| cos #
m(p® — E(p')) i
+ 4 ||%]2(1 — cos?8) + ( pflen — |x| 0039)2 —In{|x[{1 - cos®)
m(p® — E(p'))) ’
(4.74)
where we just give a boundary condition back.
For c« = zhif[p° - E(p’)], we early set (o —» 0o) thus we actually get
=0/ (p°~E(p"))
! 2.2
In IPler x| cos § + \/[XP o id 2a - 23|p’||x| cos §
m m
0
2lp'|zh ‘
~ In — In||x|(1 — cos @ (4.75)
m(p° — B(p')) ol )
A o 2|p'|zh
T | m(p° — E())|x|(1 — cos )|

Finally, for Eq.(4.70), the following result is

i/ (P°—E(p')) P’ A 2|p’|zR
d i | = ] 4,
) “V(" m"’) P n[m(pLE(p’))IXI(l—cosﬁ) - (476)

where, from vector dot product, cos8 = p’ - x/|p’||x%|.

Therefore, the last exponential term in Eq.(4.69) is given as

i PR~ Em) P
exp A daV {x — -

1

ol P (4.77)
~2 exp |—%#yln plzh
T E@) +id p{ t (mup'nxl—p'-x))]’
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where v = Am/h|p/|.
The above result leads Eq.(4.69) to

—jeix P /R

— B(p') + i)

X exp [—mn(2|p'|2/m)] exp {m in (L"”’qg——l’—x)] ,
(4.78)

fd3P eip'm/ﬁGJr(P:P';PO) RS " /0 dy et (1 tie) ,—iy

and, for only the z-functional term, we use the complex analysis to integrate this
term, is
o0 . r r
/ dzet*Fie ziv, (4.79)
0

Now, we change the integral variable as

u = —iz(1 4 ie),
du (4.80)

| de—F= i,

{1 -+ e)
80, we obtain
o0 . | ] 7 7 Y oo ,
f dz i) ;=i — ( ) f ey Tdu (4.81)
0 141e \1 4 ie 0

The last integrating term in Eq,(4.81) can be used the Gamma function to cvaluate

as
f ety dy ~ T(1—49). (4.82)
0

Next, we evaluate a complex value constant in Eq.(4.81), for € — +0,

which is

i\ i )
(l-i—ie) RZE (4.83)

Using the exponential properties to calculate this %7, is expressed as
it = gtrlost (4.84)
where

1
logi=In(1) +4 (g" + 2n7r) =0+ (Qn + 5) wi yn €. - (4.85)



Therefore, we get
P eiﬂy(2n+%)ﬂi.
For n =0, it gives Eq.(4.84} as
Yy
B

i = exp [~7

and, certainly, Eq.{4.83) is

& e my
(1+ie) D= [7]
Finally, Eq.(4.79) becomes

/ dz e=0F€ =8 —em™2D(1 — ),
0

and we obtain
ot }n(2|p'i2/m)

[p° — E(p') + ic] ™

f d®pe™ PG, (p, p', p°) o PR

I
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(4.86)

(4.87)

(4.88)

(4.89)

! [ ! [
X exp [z'fy In (IP I x)} M1 — 4).

When we separate a x-independent part, eventually, we obtain

ei'yln(2lp’|2/m:)

™21 (1 — i),
B = B g )

GRG(P) =

(4.90)

(4.91)

which is the Asymptotically free Green function, in the energy-momentum

representation, that can be plot below as Figure 8.
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G’ @

Figure 8 'The Asymptotically free Green function of Coulomb scatter-
ing.

4.3.2 Scattering Amplitude

For this step, we have to find the scattering amplitude so we recall the

Eq.(4.48) as

m

fp,p) = —= = f &p"V(p - "G " 0 ") — B . (4.92)

'=E(p’)

and then we use the solution from Eq.(4.90) that is given as

N, o , e — D"+ x :
dePG’XP/hG+(p,p’;p°) SR ey lwln(h)n ]ﬁ L )} Go(p),
(4.93)
where G9.(p’) is previously defined in Eq. (4.91).
After using the Fourier transform, V(p) = [d’xe P/ "V (x), thus,
Eq.(4.92) is rewritten as

m: —ix-(p—p"}/h
fop) =5 fd3p”fd3xe PPy (x)
(4.94)

x G (o, 00" [p° - E(p")] :
°=E(p’)
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Eventually, Eq.(4.93) is substituted in the Eq.(4.92) for the scattering

amplitude, becomes

m
2mwh2

X PV (x) [p° — E(p)]

f(pap’) =

/‘dSX/dsp” B“ix‘p”/ﬁG+(p”,p’;p0)
(4.95)

b)
p?=E(p’)

m e—ix-(P*p’)/hV(X) lerx’ —p'x
_ - d3 ‘ . l
2 i? f * [2° = E(p') + e exp [ny n ( - )}

« 6—i'yln(2p’2/m) e’”/zF(l — i)

p”=E(p’)'
(4.96}

Next, we use the Fourier transform for x variables, so, we immediately get

f(p,P) = —2:;21/(;) — p')exp [@"rln (Ip’llp — Pl —hp’ (- p’))}

4.97
e—‘i“f ]n(2p’2/m) - ( )
X ——e" N1 — % .
(" — E(p') +ie] & 119 =B(p')
Using the Coulomb potential in the momenta space which is denoted as
47 A
Vip—-p)= —F-, 4.98
therefore, Eq.(4.97) is
Y 4nx (Pl =P —pp-p\"
f(p:p ) o™ 2 Y
2nh? (p — p’) k
(4.99)
.e_ify]n(2p’2/m) /2 )
X ——e" (1 -1 .
[p® — E(p’) +- i€ S PO=E(p)
Finally, we get the Coulomb scattering amplitude that is
n_  mA Iplip-—pl-p p—p\"
fC(p7p)_ ﬁg(p_p,)g ( %
(4.100)

ei’yln(2|p’|2/m)

x .
[p° — E(p’) +ie] ™

e™PT(1 — i)

P=E(p)
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4.3.3 Cross Section

Next, we can calculatc the cross section for this situation that is early
defined as

D(0) = %— = [f(p,p")". (4.101)

50, the following result ,by taking Eq.(4.100) into an above equation, is

2
2 m}\ Tr . N )

[f(p, P)I* = (—W) eI (1 — i)™ (1 — iy), (4.102)
where, for the Gamma function, it is approximated as ['(1 — iy)T*(1 —iy) &~ 1 in

case of v is small. So, the previous equation becomes

4m2\2em™
N ———— 4.103
1) = o (4.108)
By defining p = |p/|n and p - p’ = |p/|? cos@ for the angle is @, it gives
n2 2 Q342 4
(p - Bt = dip/ s (), (4104
At last, the differcntial cross section is imposed as
2)\2 e
Do) =% Ll (4.105)

d T 4hip!|isin®(0/2)’

where v = Am/h|p/|.
This is, may be called, the modified Coulomb differential cross
section that different from the Classical cross section. Thercfore, we can illustrate

a graph of this differential cross section as below, Figure 9,
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Figure 9 The Coulomb differential cross section of scattering angle 6
(degrees).



CHAPTER V

YUKAWA SCATTERING BY DYNAMICAL
PRINCIPLE

The most important part of this project, we will talk about the procedure
of the Quantum Dynamical Principle which is applied for the case of Yukawa

potential.

5.1 The Functional Treatment Method (QDP)

From the early proving in the fourth chapter, we start with the Asymp-
totically free Green function which is in case of @ — co.

Therefore, we directly recall the Eq.(4.65) that is

G-I—(p! pf;po)[po - E(p')] / dz B132(1-|—te)

27rh
deXG““x(p LAV °g (X p'; P ZH( ))

where z = a/h[p® — E(p')] and ¢ — +0.

(5.1)

The first step, we consider only K term for nearing the encrgy shell, p% ~

E(p'), so it becomes

., zh N i /zﬁ/(p”—E(p’)) B R’
K (x,p o -E(p’))) e exp[ o daV | x 2l (5.2)

when we set I = 0. To end this, we have to find the propagator by finishing of K
term that is substituted for the Yukawa potential which is

emkM|x|

Vix)= A , (5.3)

|

where k is scaling parameter and M, target mass, is a mass of particle mediating

the force.



Thus, it is evaluated as

#h/ (p°—E(p")) ! HO-Ew))  exp (—kM|x — Ea
f T dav (x - %a) r~ )\/ da ( | |) (5.4)

)
I

0 0 ’pr_a‘
m

and changed the integral variable by sctting

122
e B o,
T T

= (5.5)
daz—m—& ;. a=xsind,
Y
therefore, it becomes
AkmM e

The terrible problem of this function, e */+/u? — a2, is the intcgrating diverges.

So, lets approximate the exponential function, by Taylor scrics, as

2 u3 u4
EH'STJrE:E... (5.7)

e t~1 —u-4

Separating integration, for each part, we get

2

N 2lp’|zh
Y Vud —a? : (m(p0 — E(p")}|2[(1 — cos 0)) ’
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after input the boundary condition and z is very large value.

Next, we sum all parts from above equations thus the following result is

MmMde Ammw[m(m@ 2|p/|2h )

|p’| Vu? —a? || 0 — E(p/)[x|(1 — cosd)

) (m(pflp_"i;(p,))) i ( 7 = Izﬁ( ')))2
- % (m(pip—’l?(p'))) N ITZ (m(pf!p—q?(pf)))

= (m(pﬂlp—q?(pf)))s =\ } '

We can take the sumimation form for the second term and so on where it becomes

(5.9)

AemM _/ |} ( 2|p’|zh )
Tl Ve T (@° — E(p"))|z|(1 — cos )
(5.10)
= (s
1 :L;I nin |
Simplify, we set
o !

A )\LﬂlM} ad 7 o [p'|zh (5.11)

| m(p® — E(p'))

For the term of summation, it can be evaluated by the incomplete Gamma

function which is explain below as

I'(a, z) = ['(a) — v(a, 2), (5.12)

where I'(g, 2) is the upper incomplete Gamma funetion, I'(a) is the Gamma func-

tion and y(a, z) is the lower incomplete Gamma function.
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We start with the lower incomplete Gamma function, it take in term of
Z
v(a,z) = f t*teidy,
0

z 0 ta—f—n——l
_ / S (1)t
0 = n!

_ i ( l)n atn (513)
~nMa+n)’
=y ———(ﬁl)nz .
n=0 nl(a + n)
Adding (—1/a) for both side of equation, we get
L/ o2 z)” 2% = &, (=2)

3 2 14
Vod=g =ty P UV )

Next, we take the limit that a — 0 for Eq.(5.12) and adding (—1/a) so it

becomes

lim I'(a, ) = lim (I'(z) = (e, 2)),

S N !

1 1
= i — =) =10 - =
a0 (P(z) a) a0 (’Y("”Z) a) ’ (5.15)
4 za i 1 g [as] (_z)n
(g (T—I—z ng; nln )
oG (__z)n
= |
[0, = v~z -3 47
The final result is
S G AP
n§::1 ( n')'n,z =—In(z) = T(0,2) — v, (5.16)

where «v = 0.577, is the Euler-Mascheroni constant.

Comparing, for the summation in Eq.(5.10), it equals to

>

’n:

nsln

n‘n
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and, for the upper incomplete Gamma function in case of S — oo, very large, we
get
Jim, I'0,S) =0. (5.18)

Then, substituting it back and replacing for S to the Eq.(5.10), we obtain

#h/ (0"~ E(p")) p’ 2|p’|zh
d ——al~n|l
d! Wb‘m@ %“@w—mmmm—mm

R | L 5.19
o) 4’ 19

1] (e .

The second step, for the Eq.(5.2), it can be rewritten as

K (r o Zmen) = o2 5T I () 1)

) (5.20)
: 2
~ e exp [—iﬁln ( : Pl . )] {
Ip'|[x| —p"-x
where 8 = MkmM/H|p’| and cos® = p’ - x/|p’||x].
Eventually, from the Eq.(5.1), we obtain
1 —je—iBIEpDgify : ,
Go(p, P p") ~ 370 N f dox g g/
(27Tﬁ’) [P g E(p ) + ZE] (521)
x exp [¢8 In(|p’[|x| — P’ - x)][ d ze2(1+9)
0
And we consider the last term that is z functional, as
foo dzei(l-f-ie)z _ Cé(l_HE)z =
0 i(1 -+ ie)
0
— 1 [llm e‘i(l-}'ie)z _ 1] (522)
i{1 + i) feroo
-1

Tt de)
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where we thank to the epsilon for easiest integration of this case.

The following result is

iBIn2Ip']) 4iBy

d3p eip-x/fiG p’pl; 0 gefx‘p'/h € :
f +P.P5p) [p° — E(p’) +ie] (5.23)

x exp [¢8In(|p'[|x]| — p" - x)],

and, for the asymptotically free Green function, without the x-dependent, it is

finally expressed as
eiﬁ'}f e_i.ﬁ 1n(2|p|)

T Bp) tid’

which is in the term of the encrgy-momentum representation. This Green function

Gly(p) (5.24)

can be plotted as below.

Figure 10 The Asymptotically free Green function of Yukawa scatter-
ing.

5.2 Scattering Amplitude and Cross section
5.2.1 Scattering Amplitude

We recall the Eq.(4.48) again which is

fp,p) = *2,:;2 f &*p"V(p — "G (", P29 " — E(®")] , (5.25)

pO==E(p’)
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and use the Fourier transform for V(p - p”) for an above equation. So, we get

m -
f(papf) = _27rﬁ,2 fdgxfd3p” eiP /hG+(p”,p’;p0)

X & Y ()1 — B(p)

P=E(p’)
After inputting the result from Eq.(5.23), we obtain
f(p,p) = ”27]:‘12 _/dSX e~ AiAIn(pllx]=p' ) pify o~ In(2lp'))
7

and, eventually, by using the Fourier transform for x variables, also get

f(p, p’) - 277;2 Vip— pf)eiﬁ In{|p’|lp—p'i=p"-(p—p")) gif7 o~ 18 In(2lp’|)

Next, for the Yukawa potential in the momentum representation is

N dm A
V) = e M)

so the Eq.(5.28) becomes

_m 47 A
2rh? (p — p')? + (kM)?

fr(p,p) =
 x; flpflle-p'|-p(p=p) giBy —iB1n(2ip'))
p°—E(p')
So, finally, the above equation becomes

f(p,p') = — m 47 A
PP " 2wk (p - P+ (RMY?

% (|pf”p _ P’I —p- (p— pr))fﬂ ey =B 2P|}

which is the Yukawa scattering amplitude.

5.2.2 Cross Section

We have to find the differential cross section that is defined as

D(#) = % =[f(p,P)I*

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.32)
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and calculate the absolute that is

|/ (p,p"))* = (_271:;2)2 ((p Mp’;l;ﬂi (kM)z) _ (5.33)

Where we use the similar condition as Eq.(4.104), (p—p’)? = 4|p’[* sin?(6/2), then

we obtain the differential cross section as

do 4m?2 )2

Pr0)= 30 = wawPsu?(0/2) + (M)

(5.34)

where is the Yukawa differential cross section, is illustrated as below,

A0

D(6)

0.5

T

Figure 11 The Differential Cross section of Yukawa scattering.



CHAPTER VI

CONCLUSION

The conclusion, after we apply the Quantum Dynamical Principle to
the specific case of Yukawa potential where the incident particles are scattered.
Consequently, all details is given and described below.

From many step of mathematical deriving, we obtain the final result of
the Asymptotically Free Green function of this scattering, can be expressed

in term of the energy-momentum representation as

¢i87p—iBn(2lp!)

) [p° — E(p) + ic]’

(6.1)

where f = AkmM/h|p| and E(p) = p?/2m.
For this asymptotically free Green function, we can repeat it in the graph

below, where varying the parameter of mass.

| M=0.510 §

o R N )

ﬁ \\\\ ...................................

( av oL P
5 el
S o s~ _

!

1}

Figure 12 The Asymptotically free Green function of Yukawa scatter-
ing,.

According to this graph, Figure 12, when the incident wave, traveling with the

form of sine, cosine or some kind of periodic waves, is coming to the target and

then it is scattered. The consequent result is when the parameter, mass, of the

Yukawa potentail is increasing cause a range of potential is shorten. Thercfore, for
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the dot-line and dash-line maintain the form of periodic wave in a short range.

In a contrast, for a lowest parameter, M = 0, it seem to be the Coulomb asymptotic
free propagator but it is not, and for a case of parameter M is 1.5, an effect of
this potential, is stronger than others higher values parameters. In particular, the
influence is powerful so the incident wave is lost its periodic.

Next, for the Scattering Amplitude, defined in Eq.(4.48), we obtain

m 47 A if _ipy.—iBIn(2|p’
fY(p:pl) = uzﬁhg (P — p,)g + (kM)g (lp’”X| ny pf ’ X) '88‘673 Ain{Zlp D, (62)

which leads to the Differential Cross section. It is expressed as

> d_o‘ B 4m2)?
dQ RA4|p|2sin?(0/2) + (kM)?)

Dy (0) (6.3)

Finally, we present the graph of the differential cross section again which is given

below.

1.5

D(0)

0.5+

0 20 40 60 80 100 120 140 160 180

0

Figure 13 The Differential Cross section of Yukawa scattering..

According to the graph above, Figure 13, comparing the M mass param-
eters of Yukawa potential, we can say that when the mass parameter is increased
the curves of amplitude arc lowered and more expanded along the angle degrees.
For m — 0, this differential cross section of Yukawa scattering approaches to the

differential cross section of Coulomb potential. A physical meaning of these line is
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a probability of detecting the outgoing particles wave at any angle.

Certainly, this method, quantum dynamical principle, provides the Green
function or transformation functions for the scattering case, which leads to the
theoretical foundation of the particles physics. Especially, the external sources af-
fect the system from the ground-state to the excited states and also generates the
quantum variables. Summary, you will found that this method is very powerful

and useful.
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APPENDIX A COMPLEX ANALYSIS

Recalling Eq.(2.24), as
) = / v g (A1)
(2m)? (k2 —s%) " 7 '
so, we take this integrand in spherical coordinates that the derivative is

d®s = s*sinfdsdf de. (A.2)

Next, we change Eq.(A.1) to become

2 om0
3 gtsr cosf 5
— LA N g” g 4 A,
= Of Of Of ey S 0dsd0ds (A.3)
Considering only integrand that is
BT W00 gisrcosd = o gleisrcosd
/ff Ao sdesdBdgb—Z?rff Gy S 0ds 0 (A.4)
000D 0 0
and changing the integral variable as
w=1tsrcos@ and du=—isrsinddd. (A.5)
Integrating over 6, it is
seior cos? 2s sin(sr)
_ — — = A6
/du 2-32 i?‘(k2—s2)0 r (k%2 — 5%}’ (A.6)
then we get
1 T ssin(sr)ds
- ) A.
Gilx) Arir / (k— s)(k+s) (A7)

—00
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o\
S=-k S=-+k

Figure 14 The contour integral, avoids the poles.

Using the Cauchy’s integral, the determining function as

5{ dz 12;2) (A.8)

which is in Fig.14.

We consider two path integration

f do o kz) 'y ¥, (A.9)

where I is the contour integral. To end this, I; is calculated as

72 / dz kz—z / T A (A.10)

Rrsing’
C
Rze‘

when using z = Re? and dz = iRe® df and let R — oo, we finally get

er cosf?

I = hm z]dﬂ =90 (A.11)
— 2 2220) eRrsma

where exp(Rrsin #) — oco.
For I, we use the residue theorem which the poles are in this contour

integral, zg = k, —k, thus, it is

Io=2w1)  Res{z}. (A.12)
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Where zy = k, its residue is

B zee’zr(z . k) _ e't'kr
RBS{k} = (z . k)(z T k) . -""2—"", (A].S)
and for zg = —k, its residue is
_ zeizr(z -+ k) eﬁt‘kr
Res{—k} = CEYSICES . 5 (A.14)
So, we get
Io=im (eikr + e‘”‘") = i et (A.15)

where 7 — oo lead to exp(—ikr) = 0. Recall Eq.(A.7), for sin function, we want

only an imaginary part, so, we get

Spert? #] se’ds 1 Zq}
G(r) = i Im_[o E_F) T dn Im [me ] ] (A.16)
At last, it becomes .
Glr) = —= (A.17)
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