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ABSTRACT

The objective of this study were to investigate the occurrence and fate of
selected veterinary antibiotics and antibiotic resistance genes in the two swine farming
systems in Phitsanulok province, Thailand. The samples including feeds, water supply,
flush water, effluent, sediment, feces and sludge were collected from typical and
commercial swine farms. Soil samples were collected from agricultural field near the
two swine farms. The liquid samples were extracted with solid phase extraction (SPE),
while the solid samples were extracted with ultrasonic-assisted coupled with SPE. The
target antibiotics were analyzed by rapid tesolution liquid chromatography-
electrospray ionization tandem mass spectrometry (RRLC-MS/MS). The results
showed that 7 antibiotics were found in feeds, aqueous and suspended solids of water
supply at maximum concentrations of 11,695.81+16,38 ng kg (lincomycin),
11,575.57+0.81 ng 1! (ciprofloxacin) and 461,942.13+12.40 pg kg (Ilincomycin),
respectively. Six antibiotics were found in aqueous and suspended solids of flush
water and fresh feces at maximum concentrations of 598.34+17.27 ng [’
(sulfamethazine), 62,918.29+8.96 pg kg (lincomyein) and 40,229.15+19.71 pg kg’
(lincomycin), respectively, Erythromycin was found in aqueous, suspended solids and

sediment of effluent at maximum concentrations of 9,614.56+1.46 ng 1'1,



154,500.08%12.05 pg kg™ and 71,123.61£23.28 ug kg'', respectively. Six antibiotics
were found in dried feces, dried sludge and agricultural field soil at maximum
concentiations of 26,614.38+21.47 pg kg (lincomycin), 14,353.39+1.5 ng kg
(ciprofloxacin) and 28,909.29+2.73 ng kg (trimethoprim). Veterinary antibiotics
using in the two swine farming systems resulted in the contamination of veterinary
antibiotics in waste, treated waste and utilization applying to agricultural field.
Furthermore, tetQ were found in soil samples from the two swine farms, while fefM
was found in soil samples from commercial swine farm. Consequently, to reducing
contamination of antibiotics fiom swine farms in the environment should be paid

altention.
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CHAPTER 1

INTRODUCTION

State of problem

The discovery of antibiotics has been recognized as one of the greatest
advances in the history of medicine, which began the era of antibiotics. Antibiotics are
compounds produced by bacteria and fungi which are capable of killing, or inhibiting,
competing microbial species. They have long been considered the “miracle drugs” that
would end infectious disease. Penicillin was the first true antibiotic. It discovered by
Alexander Fleming, Professor of Bacteriology at St. Mary's Hospital in London in
1928, In 1940, several years before the introduction of penicillin as a therapeutic, a
bacterial penicillinase was identified by two members of the penicillin discovery team
(Abraham, & Chain, 1998). Since then, antibiotics have played a critical role in
protecting the public’s health, and are responsible for saving millions of human lives.
Moreover, since 1946, the studies found that they caused animals to grow faster and
put on weight more efficiently, thus leading to add antibiotics to livestock feed in
industrial farms (Boyd, 2001). Today, antibiotics are routinely fed to livestock, swine,
dairy, fish and cattle on industrial farms to prevent disease and promote growth in
various regions of the world (Emanuele, 2010),

Antibiotics are widely used in veterinary medicine to treat and prevent health
problem from infectious disease in animals. In addition, in many countries they are
often added to animal feeds as antibiotic growth promoters in order to increase
productivity (Page, & Gautier, 2012). During the year 1953s, The United states Food
and Drug Administration (FDA) endorsed chlortetracycline and oxytetracycline as
animal feed additives (Swartz, 2002) then they are widely accepted around the world.
However, most antibiotics are poorly absorbed by animals (Zhu et al., 2013) and
subsequently excreted with the animal wastes, resulting in as much as 30-90% of the
parent compound or its metabolites being excreted in feces, urine (Sarmah et al., 2006)
and ending up in manure storage tanks or lagoons (Lee et al., 2007). Antibiotics can

therefore either leave the wastewater treatment plant in treated water entering rivers,



stream (Zhou et al., 2013) or become part of the sewage sludge. These compounds
may be transported info the environment via surface runoff, wastewater discharge,
leaching, application of manure onto agricultural fields as fertilizer (Zhou et al., 2013;
Kiimmerer, 2009), plant uptake (Boxall et al, 2006) and leach into groundwater,
(Boxall et al., 2002; Thiele-Bruhn, 2003; Sukul, & Spiteller, 2006). In addition, swine
wastewater is an important antibiotic resistance genes (ARGs) reservoir, which
reflected veterinary antibiotic usage status (Sui et al,, 2016). Koike et al. (2007)
detected fe/M encoding ribosomal protection protein with relative abundance of 16S
tRNA in swine wastewater. McKinney et al. (2010) reported that the su/1 and sul2
encoding modified dihydropteroate synthase enzyme in resistant to sulfonamides.
Jindal et al. (2006) found a high level of resistant IRNA encoded by the erm gene
causing resistance to macrolides, lincosamides, and streptogramin B (MLSB) in swine
wastewater,

Thailand is one of ASEAN country which is a major source of swine
production in the world after China, EU and U.S. For Thailand, modern intensive
swine production began in 1973 with the importation of breeding stock from the
United Kingdom and the United States (Beeghly, 1989). Commercial development of
this sector is fostered by a small number of feed mill companies which provide piglets,
feeds, drugs, veterinary setvices and farm management expertise to contracted pig
producers. Therefore, this contract system plays an important role in development of
Thai commercial swine industry. In parallel with this rapid development, antibiotics
are increasingly used for both treatment and growth promotion in Thailand’s swine
production, In addition, the typical swine farms are distributed in every region of the
country. The treatment of swine disease has been not necessarily under veterinary
control but the farmers have decision based on their experience and economic situation
(Suriyasathaporn et al., 2012) and most of these farms lacked of the good waste
management. Thus, both commercial and typical swine farms could be source of
antibiotics contamination in the environment.

Therefore, this study aimed to have a screening investigation of the
occurrence and fate of 41 antibiotics in in feeds, feces, flush water, effluent, sediment,
sludge, water supply, agricultural soil and antibiotic resistance genes (ARGs) in

agricultural soil samples from different swine farming systems in Phitsanulok



province, Thailand. The results of this study are expected to improve the
understanding of the occurrence, fate and ARGs from the two swine farming systems

and can be used to improve the waste management from livestock in Thailand.

Objectives of the study

1. To investigate the concentration of antibiotics in feeds, feces, flush water,
effluent, sediment, sludge, water supply, agricultural soil from the two swine farming
systems in Phitsanulok provinee, Thailand.

2. To study the fate of antibiotics from the two swine farming systems in
Phitsanulok province, Thailand.

3. To investigate ARGs in agricultural soil application with swine wastewater

from the two swine farming systems in Phitsanulok, Thailand.

Scope of study

This study is a survey research. Forty-one antibiotics of six classes and six
ARGs were selected for this study were included;

1. The type of antibiotic

1.1 Lincosamides: lincomycin (LIN)

1.2 Diaminopytimidines: trimethoprim (TMP)

1.3 Sulfonamides: sulfamerazine (SMR), sulfameter (SM), sﬁlfamethazine
(SMZ), sulfacetamide (SCM), sulfaguanidine (SG), sulfanilamide (SA), sulfapyridine
(SPD), sulfamonomethoxine (SMM), sulfachloropyridazine (SCP), sulfadiazine
(SDZ), sulfathiazole (STZ), sulfamethoxazole (SMX), sulfadimethoxine (SDM),
sulfadoxine (SDO), sulfisoxazole (SX), and sulfaquinoxaline (SQX)

1.4 Fluoroquinolones: ciprofloxacin (CFX), marbofloxacin (MAR),
fleroxacin (FL), norfloxacin (NFX), carbadox (CAR), offoxacin (OFX), ormetoprim
(OMP), pefloxacin (PEF), lomefloxacin (LFX), danofloxacin (DAN), enrofloxacin
(EFX), sarafloxacin (SAR), and difloxacin (DIF)

1.5 Macrolides: anhydro erythomycin (ETM), clatithromycin (CRM),
leucomyein (LCM), roxithromyein (RTM), troleandomycin (TAO), and tylosin (TYL)

1.6 Tetracycline: tetracycline (TC), methacycline (MC), narasin (NRS),
and monensin (MNS)



2. The type of ARGs
2.1 Tetracycline resistance genes; fe/O and fetM
2.2 Macrolide, Lincosamides and Streptogramin B (MLSB) resistance
genes: ermA and ermB

2.3 Fluoroquinolones resistance genes: gnrA and gnrB

Scope of study areas

The study areas of this study were onc typical and one commercial swine
farms with different wastewater management systems in Phitsanulok province,
Thailand.

Scope of sample analysis

Samples analysis methods of this study were chemical and molecular
analysis.

1. Chemical analysis of wastewater characteristics, soil properties, heavy
metal in soil and antibiotics concentration.

1.1 Wastewater characteristics analyzes in parameters as temperature, pH,
temperature, chemical oxygen demand (COD), biological oxygen demand (BOD),
total kjeldah!l nitrogen (TKN), total suspended solid (TSS) with standard methods
for analysis of wastewater parameters,

1.2 Soil propetties analyzes in parameters as soil texture, pH, organic
matter (OM), total nitrogen (TN), available phosphorus (P), available potassium (K)
with standard methods for analysis of soil properties.

1.3 Heavy metal in soil analyzes as Zn, Cu, Pb, and Cd, followed the
standard methods for analysis of heavy metal in soil,

1.4 Antibiotic concentrations analysis method comprised of two steps,
followed Zhou et al., 2012 methods for sample preparation procedure were described
in Chapter 111

1.4.1 Sample extraction and clean up with Solid Phase Extraction
(SPE).
1.4.2 Antibiotic concentrations were determined by using rapid

resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS) (Zhou



et al., 2014). The target compounds were forty-one antibiotics of six classes, showed
in the type of antibiotics.

2. Molecular analysis of ARGs in soil samples as tefO, fefM, ermA, ermB,
gnrA and grrB comprised of two steps;

2.1 DNA extraction by using a GenElute™ Soil DNA Isolation Kit
(Sigma-Aldrich, USA). The DNA extraction steps followed the protocol provided by
the manufacturer were described in Index.

2.2 DNA detection of ARGs genes by Polymerase Chain Reaction
(PCR) technique. The methods for detection procedure were described in Chapter IIL.



CHAPTER 11

LITERATURE REVIEW

This chapter described contents which relating this study included
1. Pig production in Thailand
2. The impact of swine wastewater to environment and waste management in
Thailand
Antibiotics and veterinary antibiotics
Classification of commonly used veterinary antibiotics

Characteristics of antibiotics

3

4

§

6. Mechanism of action
7. Veterinary antibiotic consumption in livestock

8. Veterinary antibiotics in swine production

9. Occurrence of veterinary antibiotics in the environment
10. Fate of veterinary antibiotics in the environment

11. Antibiotic resistance in the environment

12. Mechanism of ARGs transfer in the environment

13. ARGs in soil

14. Target antibiotics and target ARGs in this study

Pig production in Thailand

In the past, more than 70% of total pig population was kept in backyard farm
and pig farming mainly produced pork to meet demand inside the country
(Tantasuparuk, & Kunavongkrit, 2014). In the recent decades, changes in the pig
production sector have occurred in many countries, enabling increases in production of
pig meat per capita and per farm (Robinson et al,, 2011; Poapongsakorn, & NaRanong,
2014). The changes to the production systems included a shift from extensive, small-
scale, subsistence, mixed production systems towards more intensive, large-scale,
geographically-concentrated, commercially-oriented and specialized production

(Robinson et al., 2011). In Thailand, modern swine breeds was first introduced in the



1960s when the first commercial pig breeds were imported from the United Kingdom
by the Department of Livestock Development (DLD) and then from the United States
by Kasetsart University (Robinson et al,, 2011). Since then, smallholders who raise
indigenous native pig breeds for both personal consumption and as a supplementary
source of income have been gradually replaced by large-scale farming of improved pig
breeds (Cameron, 2000). The pig tevolution in Thailand corresponds to the
introduction of modern technologies and farm management, The introduction of
modern technology include the use of evaporated cooling housing, which provides
temperatures ranging between 25 and 27 °C artificial insemination, and optimized feed
ingredients and additives. These combined factors have allowed commercial farmers
to raise more pigs per square meter with faster production cycles (Robinson et al.,
2011), These production systems are referred to as ‘intensive’ in the sense that a high
amount of infrastructure, technology, health care and feeds are used to increase the
productivity of high-yielding animals on the farm, resulting in increased outputs
(Svendsen, & Svendsen, 1997). In the pig sector, intensive production systems
characterized by high input/output ratios generally, also correspond to large farm size.
Consequently, in Thailand, pig production systems are classified by their farm size,
expressed as number of head per farm, Less than 50 pigs being considered as
smallholders (<5 pigs per holder for backyard and 5-50 pigs per holder for smaliholder
commercial) and holders with 50or more pigs considered as large-scale farming
system (50-500 pigs per holder for small, 500-5,000 pigs per holder for moderate, and
>5000 pigs per holder for large) (Ministry of Natural Resources and Environment
(MONRE)).

In Thailand, pig farming systems can be categorized into three groups: i) the
farrow-to-finish production system, which includes breeding pigs, producing piglets
and fattening pigs in the same farm; ii) the nursery system, which only raises breeding
pigs to produce piglets; and iii) the finishing system, which raises weaners until they
reach market weight (Aksornphan, & Isvilanonda, 2009; Sakpuaram et al., 2002).
Nowadays, two groups of pig breeds are used in Thailand: the native breeds such as
Raad or Ka Done, Puang, Hailum, Kwai, and wild pigs (Rattanaronchart, 1994;
Charoensook et al., 2013) and the main commercial breeds, including the Large White,

Landrace, Duroc, and crosses of these (Sakpuaram et al., 2002).



The statistics of pig number in Thailand recorded from 1995-2015 showed

that number of pig varied from 6-11 million pigs/year as showed in Figure 1.

£, 10000
19.001 - 50000
50,001 - 100,000
100,001 - 1.000.000
> £.000.000

Figure 1 Pig Density in Thailand

Source: FAO, LEAD Project and OAE



The impact of swine wastewater to environment and waste management in
Thailand

The Thailand Pollution Control Department (PCD) reported that the high
concentration of pig farms in the central plain caused significant water pollution in
rivers. The main water sources impacted by wastewater from pig farms including, Tha
Chin River Shade, Chao Phraya River Shade, Bang Pakong River Shade and Songkhla
Lake Shade. The impact of swine wastewater to environment such as water fouling;
unusable for crop land, fishery farm and water supply, eutrophication or algae boom
and lead to fouling, bad smell and also created air pollution and economic and social
issues (Nintaphan, 2016). Usually, wastewater form pig farm is varied on
characteristic of farming style. Characteristic of the wastewater is widely depended on
farm operation (Chao, 2016). Consequently, Pollution Control Department (PCD)
added pig farming to the list of regulated activities in 2001 (Poapongsakorn, &
NaRanong, 20.03; Tapinta et al., 2014). In order to reduce the adverse impacts of
intensive pig farming, both in epidemiological and environmental terms, the
Agricultural Standard Committee (Ministry of Agriculture and Cooperatives MOAC,
Thailand), established the “Standard for Good Agricultural Practices for Pig Farms”,
which aimed to provide guidance to pig farmers and promote healthy and hygienic pig
farming practices (Viriyapak et al., 2015). This document provides recommendations
relating to eight topics: i) farming conditions (location, farm layout, and housing), ii)
use of feed, iii) management of water, iv) overall farm management, v} animal health,
vi) animal welfare, vii) the environment (in relation to proper disposal of refuse,
manure, discarded carcasses, and water treatment) and viii) the keeping of records
allowing tracing of animals, The standards outlined in the document are also used as
guidelines for responsible agencies such as the Provincial and Regional DLD
Livestock Offices to accredit and monitor pig farms (Viriyapak et al., 2008). In
addition, PCD announced the standards for the discharge wastewater from the pig

farms in Thailand as showed in Table 1.
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Table 1 Standards for the discharge wastewater from the pig farms in Thailand

Maximum permitted value

Parameters (Unit) Large farm Medium and Small farm
pH 5.5-9.0 5.5-9.0
BOD (mg/L) 60 100
COD (mg/L) 300 400
SS (mg/L) 150 200
TKN (mg/L) 120 200

Source: Announcement from Ministry of Natural Resources and Environment
(MONRE)

Antibiotics and veterinary antibiotics

Antibiotics are chemical substances, produced by micro-organisms, nowadays
antibiotics are not only produced naturally by microorganisms, but they can also be
synthetic or semi-synthetic. (Kiimmerer, 2009), which have the ability to kill or inhibit
the growth of microorganisms (Sanchez, & Demain, 2015) whereas, antimicrobial is a
broad term refers to antibiotic which acts against variety of microorganisms.

According to a team of American scientists had discovered in 1950s (Ogle,
2013) that adding antibiotics to livestock feed as feed-additive increased the growth
rate and cost less than general feed supplement (Ogle, 2013). The extensive use of
veterinary antibiotics to treat, prevent and control disease from infectious disease in
animals (Chen et al., 2012), Veterinary antibiotics are often added in animal feeds as
growth promoters (Landers et al., 2012), which they play a major role in livestock
production and their use has been increasing globally (Chen et al., 2012). Although
veterinary antibiotics usage has become necessary because worldwide growing animal
food industry (Kim et al., 2008). However, after use they are excreted and could be
enter into the soil (Heise et al., 2006) through wastewater and fertilization with manure
(Kitmmerer, 2003) or waterways and possibly pose environmental challenges (Kumar
etal., 2012).
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Classification of commonly used veterinary antibiotics
1. Aminoglycosides

Streptomycin was a first antibiotic to be discovered of this class in 1943
(Mahajan, & Balachandran, 2012). The compound of usually aminoglycosides class,
including three amino sugars connected with glycosidic bonds as show in Figure 2.
These compounds are capable of the inhibition protein synthesis in bacteria that
binding to ribosomal subunits, lastly leading to cell death (Peterson, 2008). The
effectiveness of aminoglycoside activitics are not only capable against gram negative
bacterial and some gram positive bacterial but also these compounds must be injected
because they are not absorbed during digestion. Nowadays, aminoglycosides use is

limited due to issues with toxic problem (Modongo et al., 2014)

OH
OH HzN
CHy
HN o
He Hol MR NH; H C
3
vy : % )
N NHQ OHC NH»

Gentamycin Streptomycin

Figure 2 Structure of aminoglycosides
Source: Samanidou, & Evaggelopoulou, 2007

2, [-lactams
fi-lactams are an extensive range, penicillin was the first to be discovered
by Alexander Fleming. The structure of all antibiotics in this class include a four-
membered cyclic amide or B-lactam (Frangoise et al.,, 2017) as show in Figure 3. The
interference proteins essential for the synthesis of peptidoglycan that is a main work of

these class. Lastly, leading to cell death or inhibits their growth.
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Figure 3 Structure of a -lactam ring

_ Source: Tidwell, 2008

3, Chloramphenicols
The chemical structure are compounds of ring bonded with non-ionic
chlorine, It consists of two unusual components-one nitro group and a dichloroacety!
group, show in Figure 4. The molecule possesses two asymmetric carbon atoms. As a
result, four optical isomers of chloramphenicol are possible. Of these isomers, only D

(-) threo isomer is antibiotic ally active (Garg, 2011).

Cl
HO ;~H H
\". H \‘(l\c‘
\ 0
OsN OH

Figure 4 Structure of chloramphenicol

Source: Dasgupta, 2012

4, Diaminopyrimidines (trimethoprim)
The chemical structure are compounds of two amine groups on a
pytimidine ring which include various dihydrofolate reductase inhibitor as show in
Figure 5. The activity of these compound are inhibited folic acid synthesis.

(Esfahanizadeh et al., 2015),
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Figure 5 Structure of diaminepyrimidines

Source: Hammer et al., 2016

5. Glycopeptides
The first glycopeptide are isolated from soil which include the drug
vancomyein, {(Henson et al., 2015). Glycopeptides are glycosylated cyclic or
polycyclic nonribosomal peptides produced from many filamentous actinomycetes
group, show in Figure 6. They have been shown to inhibit gram positive bacterial cell

wall synthesis by binding to the acyl-D-Ala-D-Ala peptide (Binda et al., 2014).

Figure 6 Structure of vancomycin

Source: Edmondson et al., 2014
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6. Fluoroquinolones
The fluoroquinclones class are a large group of antibiotic synthetic
antimicrobial agents that are used to treat the bacterial infections (Rubinstein, &
Philippe, 2017). They contain a fluorine molecule at the 6-position of the basic

quinolone nucleus (Martinez et al., 2007), show in Figure 7

R R
| ;
HO '
F
o) 0 R

Figure 7 Structures of quinolones
Source; Maslinska, 2013

7. Lincosamides
Lincosamides from natural are produced from many Streptomyces
species, For semisynthetic derivatives included clindamycin and pirlimycin. The
chemical structure of lincosamides are consisted amino acid and sugar moieties, show
in Figure 8. Their mode of action of lincosamides are inhibited protein synthesis
(Spizek, & Rezanka, 2004)

Cl

OH @

LA A
HOW_ N

Hol H
HO\\\\ %
s \\
Figure 8 Structures of lincosamides

Source: Maslinska, 2013
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8. Macrolides
The first, macrolides are discovered and isolated by McGuire in 1952,
The chemical structure of these are include 14-, 15-, or 16-membered macrocyclic
lactose rings with unusual deoxy sugars L-cladinose and D-desosamine attached
(Moore, 2015), show in Figure 9.

Figure 9 Structure of macrolide

Source: Seki et al., 2015

9. Tetracyclines
Tetracyclines are broad-spectrum antibiotics. Both gram-positive and
negative bacterial were inhibit by these compounds. The structure of this class have

four hydrocarbon rings as show in Figure 10,

CH; CH,
N/
CH; OH H N
I OH
l CONH,
o O on " o

Figure 10 Structure of tetracycline

Source: Maslinska, 2013
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10. Sulfonamides
Sulfonamides are the first class of antibiotic use in therapeutic and they
are a major important role in medicine and veterinary practice (Smith, & Powell,
2000). The compounds which contain this functional group are called as sulfonamides,
show in Figure 11. The general formula of sulfonamides RSO,NH, (Lavanya, 2017).
This group act by interfering with folic acid synthesis because the structure similar to

para-aminobenzoic acid (PABA) of bacterial cells (Padberg, 2015).

W

H
H,N

Figure 11 Structure of sulfonamide
Source: Samanidou, & Evaggelopoulou, 2007

11, Oxazolidinones
Oxazolidinones are a group of synthetic antibiotics that are containing 2-
oxazolidone with a 4-substituted phenyl ring in the 3 position, show in Figure 12.
They are active inhibit the gram positive bacteria and protein synthesis (Bozdogan, &
Appelbaum, 2004),

0

A

@) NH

\/

Figure 12 Structure of oxazolidinone

Source: Pandit et al,, 2012
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Characteristics of antibiotics

The half-life of the antibiotics in days is indicator of the degradation rate. The
degradation rate is defined 10 days or less for high degradation, 10- 50 days for
mediate degradation and > 50 days for low degradation. For water solubility is defined
>200 mg/L for high solubility, 5-200 mg/L for mediate solubility and 0-20 mg/L for
low solubility. For the K4 value is the adsorption-desorption distribution coefficient
(Kg). Kq value is an important parameter for considering and understanding the
mobility of the antibiotics in the environment and their distribution between aqueous
phase and solids phase. The Kq value is defined >200 L/kg for high sorption, 5 to 200
L/kg for mediate sorption, and 0 to 5 L/kg for low sorption (OECD, 2000). The
examples of commonly used these compounds in livestock production and important

physicochemical properties (Sarmah et al., 2006) as show in Table 1.

Mechanism of action

There are several major classes of antibiotics that can be classified based on
their mode of antibiotic action. In general mechanism of action for antibiotics are
inhibition of cell wall synthesis, inhibition of cell membrane function, inhibition of
protein synthesis, inhibition of nucleic acid synthesis, and inhibition of other metabolic
activity (Serrano, 2005), The detail as show in below and figure 16 and Table 6. See
table 6 for a summary of the major antibiotic classes. The selective toxicity of
antibiotics lies in the differences in cellular structures between ecukaryotic and
prokaryotic cells. However, differences in cellular structure among bacterial species
can lead to resistance to cettain antibiotics,

1. Inhibition of cell wall synthesis

The bacterial cell wall has porous to allow transport across the cell

membrane but also strong to prevent cell lysis and swelling of bacteria. Cell wall of
gram negative bacterial have more complex and stronger than gram positive bacterial,
resulting in gram negative bacterial cell wall are more difficult to destroy from

antimicrobial agents than gram positive bacterial (Brown et al., 2015).
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2, Inhibition of cell membrane function
Bacterial cell membrane is an important batriers that an inner membrane
layer and extracellular flow of substances. They are composed of protein and fat. The
action of this class of antibiotic can often be damage for systemic use in the
mammalian host and are often pootly selective. Examples: polymixin B, amphotericin
B and colistin (Thenmozhi et al., 2014).
3. Inhibition of protein synthesis
This group are interfered the bacterial protein synthesis and inhibit the
ribosomes in bacterial cell by binding to either the 30S or 50S subunits of the
intracetlular ribosomes. Thus, they can disrupt normal cellular metabolism of bacteria,
lead to cell death or growth inhibit of bacteria. Examples: aminoglycosides,
macrolides, lincosamides, chloramphenicol, and tetracyclines (Tenson, & Mankin,
20006).
4, Inhibitors of nucleic acid synthesis
Groups of antibiotic are effect to nucleic acid synthesis which causes
interference of the DNA or RNA replication, This drug inhibits the growth of bacteria,
Examples: quinolones, fluoroquinolones, and rifampin,
5. Inhibitors of other metabolic processes
Groups of antibiotic are inhibit the metabolism of bacteria or interfere the
folic acid pathway, which is an important step for produce precursors by bacteria and

important for DNA synthesis. This drug in the group inhibits the growth of bacteria.
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Figure 13 Antibiotics Mechanisms of action
Source: Johnson, 2011

Veterinary antibiotic consumption in livestock

Veterinary antibiotics were used in livestock adjacently parallels their
discovery and usage for treatment and prevent health problem in humans. The first of
antibiotic is sulfonamide that to be recommend to use in food animal in 1940s. After
that in the early 50’s, the newer antibiotics were discovered and available quickly led
to their extensive therapeutic usage in virtually all feeds. The production and use of
antibiotics increased rapidly worldwide over the last several decades since 1940s and
1950s (Hume, 2011; Fair et al, 2014). Numerous pharma- cologically active
substances are used as human and animal medicines annually for treating and
preventing diseases. Approximately 3,000 compounds are used as medicine (Diaz-
Cruz et al., 2003) and 100,000-200,000 tons year-1 are used globally (Wise, 2002).
However, the release of antibiotics into the environment has received attention in

recent years (Kumar, 2012). In 2013, 73% of all antibiotics sold on earth were used in
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animals, mostly as growth promoters, or as surrogates for good hygiene measures (van
Boeckel, 2017). Presently, there are around 250 different chemical entities registered
and currently being used as human and veterinary antibiotics (Kitmmerer, 2009). The
amount of all veterinary antibiotics used globally has been estimated to be 63 thousand
tons per year, expected that in the next few years will continue to increase of them
(van Boeckel et al. 2015).

Veterinary antibiotic consumption in the animal industry no clear information
is available on the total amount of vetetinary antibiotics used worldwide. Based on the
amount sold in each country, the amount used is estimated, and the use may difference
in each country depend on the number of livestock (Kumar et al., 2012). In the USA,
antibiotics were use as feed additive is estimated around ~80% of the total amount
consumption in each year. European countries (Norway, Sweden, Denmark, Austria,
Switzerland, The Netherlands, and Belgium) showed a strong correlation between
consumption levels for eight classes of antibiotics (Chantziaras et al., 2014) and the
prevalence of antibiotic-resistant commensal Escherichia coli in pigs, poultry, and
cattle (Kirchner et al., 2017). Since 1989, feed-additive antibiotic usage has been
regulated and only non-medicated antibiotics are allowed to use in China (Zhang et al.,
2015; Sarmah et al., 2006). Eight categories and a total of 56 drugs use in animal
farms in China, such as Beta-Lactams, aminoglycosides, tetracyclines, and so on
(Zeng ct al,, 2017). The scientists from Chinese Academy of Sciences (CAS) cited
estimates that half the antibiotics consumed in China from the total of 150,000 to
200,000 metric tons in each year is used in livestock, especially in pig production
systems (Larson, 2015). Moreover, Thailand, India and Indonesia which are examples
of developing countries, thete are no data at all types and amounts used of veterinary
antibiotics in livestock and also lack of control the antibiotic usage as feed-additive
(Sarmah et al., 2006). Whereas the Food and Agriculture Organization of the United
Nations projects (FAQ) estimates that the developing countries will increase in
antibiotic consumption in animal products more than 70 % within 2050. Trade is also
growing quickly that extended use them increases to antibiotics use and distribute

antibiotic resistance globally (Elliott, 2015).
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Veterinary antibiotics in swine production

Since antibiotics were first discovered, they have been widely used in swine
production in many countries around the wotld, except European country. Veterinary
antibiotics were used for swine production in several route of administration (FDA,
2014). The vast majority of veterinary antibiotics were used in feed. In swine feed,
veterinary antibiotics are non-nutritive feed additives that are used for therapeutic
potential at low concentrations for long time as well as capacity to growth promotion
in pigs (Jacela et al., 2009; Cox et al., 2010). The use of veterinary antibiotics are also
given through water at low concentration which improve the weight benefit and feed
efficiency through alterations in digestion and disease protection (MacDonald, 2011).
Some of the considering possible mechanisms from these compounds as growth
promoter, including inhibiting the pathogens of bacteria, microbial metabolism, reduce
and inhibiting the growth of bacteria, thus increase the nutrient availability for pig and
increase the nutrients utilization and uptake through pig's intestinal walls (Gaskins
et al,, 2002). FDA approved the feed-additive antibiotic for add in swine feed, show in
Table 2. Antibiotic growth promoters (AGP) have widely been used in pig diefs,
especially in nursery diets, to control incidences of post-weaning diarrhea and to
improve growth performance (Omonijo et al., 2017),

Veterinary antibiotics can be divided into different groups or classes
(Kummerer, 2009). They have been classified earlier in several ways, subdivided
according to their mechanisms of action, chemical structure (Serrano, 2005;
Kiimmerer, 2009) and spectrum of antibiotic activity (Calderon, & Sabundayo, 2007).
Antibiotic grouping by their chemical structure and mechanism of action are
commonly used in the most common classification (Botelho et al., 2015). Thus, the
patterns of antibiotic activity, effectiveness, toxicity and allergic potential are show in
the same or similar chemical structure (Ngan, & Writer, 2005). The major classes of

veterinary antibiotic were shown below.
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Table 4 Antibiotics approved for use in swine feed

Antibiotic

Indication

Bacitracin methylene
disalicylate (BMD)

BMD + Chlortetracycline

Bacitracin zinc, Bambermycin

Carbadox

Chlortetracycline

Chlortetracycline + sulfathiazole

+ penicillin

Florfenicol

Lincomycin

Neomycin

Neomycin/oxytetracycline

Oxytetracycline

Oxytetracycline + carbadox

Increased ADG and feed efficiency

Control of dysentery in growing to finishing and
control of clostridial enteritis in suckling piglets
Increased ADG and feed efficiency

Treatinent of bacterial enteritis and bacterial
pneumonia

Increased ADG and feed efficiency

Increased ADG and feed efficiency and control
of swine dysentery and salmonellosis

Increased ADG and feed efficiency, reduction of
jowl abscesses, control of leptospirosis in sows
and control of ileitis

Reduction of abscesses; treatment of bacterial
enteritis; maintenance of weight gain in the
presence of rhinitis

Control of bacterial respiratory disease
Increased ADG and feed efficiency, control of
swine dysentery and ileitis and reduce severity
of mycoplasmal pneumonia

Treatment and control of bacterial enteritis
Increased ADG and feed efficiency and
treatment of bacterial enteritis and pneumonia
and control, treatment of leptospirosis in
breeders

Increased ADG and feed efficiency

Treatment of bacterial enteritis and pneumonia
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Table 4 (cont.)

Antibiotic Indication

Oxytetracycline + neomycin Prevention or treatment of bacterial enteritis and
dysentery; maintenance of weight gain in the
presence of atrophic rhinitis

Tiamulin Control of dysentery and ileitis and treatment
of swine dysentery

Tiamulin + Chlortetracycline Control of dysentery; treatment of bacterial
enteritis and bacterial pneumonia

Tilmicosin Control of bacterial respiratory disease

Tylosin Increased ADG and feed efficiency in finishers,
growers and nursery pigs, control of swine
dysentery, control of dysentery and ileitis

Virginiamycin Increased ADG and feed efficiency, control of

swine dysentery and treatment of swine

dysentery

Note: ADG, Average daily gain
Source: Adapted from Jacela et al., 2009

Occurrence of veterinary antibiotics in the environment

The presence of antibiotics in environment is first detected three decades ago
in a UK river (Watts et al., 1982). This initiated monitoring for antibiotics in the
environment and studies of their environmental impact in many countries (Sarmah et
al., 2006). Among the antibiotic release sources, veterinary antibiotics appear to be the
most potent source as they are released into the environment through animal manure
(Baguer et al,, 2000), surface water, groundwater and agricultural soil has drawn the
interest of researchers around the world (Kumar et al., 2012).

Veterinary antibiotics can enter the environment through application
agriculture fields with manure, livestock production, wastewater, runoff, groundwater,

and through leaky waste storage manure (Figure 13 and 14), The type of antibiotic
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used, manure/slurry storage and waste application practices are impottant factors for
pathways of antibiotics into the environment. USEPA, 2000 reported that 80% of
antibiotics consumption in animal through livestock production and into bacteria-rich
waste lagoons after that they will be spread onto the agricultural field by manure
application as fertilizer. Consequently, antibiotic residues and antibiotic resistant
bacteria could be easily available for transport into the environment such as
agricultural soil and aquatic environment.

Amount of antibiotics are excreted with several types and dosage levels of
antibiotic, animal species and age (Katz, 1980). The animal excretion of 95% could be
back in active forms to the environment. Examples, chlortetracycline was used in
cattle feed as growth promoter and treatment at 70 mg/head/day. It was found in fresh
feces at 14 pg/g (Elmund et al., 1971). The excretion of feces and urine could be
contain with veterinary antibiotics in unchanged and metabolite form and end up in the
manure. So, manure usage in agriculture field as bio-fertilizer, leading to the
distribution of their metabolite and parent compounds are directly exposed to the
environment.

For current study on occurrence, fate, and transport of antibiotic have not
only been found in wastewater, surface water and groundwater as well as in drinking
water but these compounds are also reported to be detected in matine sediments too
(Kiimmerer, 2004).

Table 5 Concentrations of some antibiotics in swine waste

Antibiotic Concentration Reference

Swine feces

Lincomycin 164 -17,000 pg/kg Zhou et al., 2013
Trimethoprim 4.44 - 246 ng/kg

Sulfamethazine 6.75 - 250 ug/kg

Ciprofloxacin 9.08 ng/kg
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Antibiotic Concentration Reference
Swine manure
Lincomycin ND Zhou et al., 2012
Trimethoptim 0.00626 ng/kg
Sulfamethazine NR Martinez-Carballo et al., 2007
Ciprofloxacin ND Zhou et al., 2012
10,800 pg/kg - Dolliver et al., 2008
Erythomycin 43 ng/kg Motoyama et al., 2011
<MQL Zhou et al., 2012
20,000 pg/kg Motoyama et al., 2011
Tylosin 10 mg/kg Joy et al., 2014
Chlortetracycline 300 mg/kg
Sugarcane/Vegetable land
Lincomyein ND Zhou et al., 2013
Trimethoprim <MQL
Sulfamethazine <MQL Zhou et al., 2012
3.69 nglkg Zhou et al., 2013
NR Wang et al., 2014
Ciprofloxacin 4.94 ng/kg Zhou et al., 2013
14,0 ug/kg
Erythomycin ND Zhou et al., 2012
Soil near the effluent discharge
Lincomycin 92.3 pglkeg Zhou et al., 2013
Trimethoprim 3.20 pg/kg
Ciprofloxacin 5.37 ng/kg
Surface soil
Sulfamethazine ND-321.6 pg/kg Li et al., 2009
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Table S (cont.)
Antibiotic Concentration Reference
Wastewater (Matrix)
Lincomycin 1420 - 166,000 ng/L (aqueous) Zhou et al., 2013
106 ng/L (influent) Zhou et al., 2012
Trimethoprim ND (effluent) Zhou et al., 2013
250 - 600 ng/L(aqueous) Zhou et al., 2012
Sulfamethazine 162 ng/L (influent) Zhou et al., 2013
64.0 ng/L (effluent) Zhou et al., 2012
13.7 - 600 ng/L (aqueous) Managaki, S et al., 2007
19.3 ng/L (influent) Wang, N et al., 2014
9.3 ng/L (effluent) Zhou et al., 2013
Erythomycin 18.5-19.2 ng/LL (river water) Zhou et al., 2012
Ciprofloxacin 89.15 ng/L (river sediment) Zhou et al,, 2013
ND (suspended)
22,5 ng/L (aqueous)
888 ng/L (influent)
695 ng/L (effluent)

664 ng/L (digester sludge)

Fate of veterinary antibiotic in the environment

The potential for fate of veterinary antibiotics in the environment is depends
on excretion (metabolism) by livestock production, the interaction with various solid
matrices in the environment and the existence of the compounds in various
environment matrices (transformation). The figure of Potential pathways for veterinary
antibiotics in soil and water show in figure 14 and the detail of environment processes

as below.
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Source: Boxall et al., 2003

1. Excretion

Veterinary antibiotics are excreted by livestock production is estimated to
be 75% (Sarmah, 2006) or 30-90% (Du, & Liu, 2012) of the consumed amounts that
environmental exposure of antibiotic residues mainly through animal urine and faeces
with metabolized and uninetabolized forms (Kaczala, & Blum, 2016). The absorption
of all antibiotics after administration by animal body, the animal cannot absorbed the
total amount of antibiotics, resulting they are excreted the urine and/or feces
(Pikkemaat et al., 2016). The boundary of antibiotic metabolism in vivo depends on
mode of application, species of animal, and age of animal (Toutain, 2010). The
metabolite of antibiotics is an important factor in environmental exposure that show
reduced or no antibacterial activity with compounds of them and the metabolites of
some antibiotics. In addition, they could be also revert back to the parent form and

active again when contaminate in the environment, Example, sulfonamides class could
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be revert back to their parent compounds (Boxall, 2002; Heuer, 2008) while, they will
be excreted partially as acetic acid conjugates. The contamination of antibiotics into
the environment by animal excreted through a many mechanisms of the transportation
that is a serious environmental threat with the emergence and development of
antibiotic-resistant bacteria (Tao et al., 2010). Environment processes are responsible
for antibiotics moving through livestock production into the environment by sorption,
degradation and leaching processes that are an imporfant processes between soil and
water phase. However, these processes are driven with their properties such as soil
texture, pH value, temperature value, organic matter value, minerals, and flow rate
(Sarmah, 2006).
2. Sorption

Veterinary antibiotics relate with the sorption and desorption reactions soil
solid phase (Figure 16). The sorption and desorption behavior are an important process
for the fate of antibiotics in solid phase and the environment behaviors including, soil,
sediment, sludge, manure and bioavailability for microorganisms (Subbiah et al.
2011).

The fates of the antibiotics solid phase in the environment is driven by the
adsorption process, estimate their behaviors in the environment. However, the
physicochemical properties of antibiotics effect on their adsorption behaviors with the
large variations. In addition, the environment factors of solid such as the organic
matter value, pH, ionic strength, metal ions also strongly impact the antibiotic
adsorption processes (Wang, 2015).

The mobility antibiotics in the solid phase with the sorption process lead to
distribute of antibiotics to ground water, surface water and soil. The sorption process
of antibiotics is usually estimated between the soil and water distribution (Wegst-
Uhrich, 2014). The important factors of parameters in soil or solid samples
characteristic for adsorption are organic carbon value, clay value, soil texture, pH
(OECD, 2000), ionic strength and metal ions (Wang, 2015). Moreover, the most of
antibiotic sorption studies that these compounds are strongly sorbed to clay particles
and soil (Table 4), whether they could still be biologically active and antibiotic

resistant bacteria occur in the environment (Sarmah, 2006).



3. Degradation (transformation)

The veterinary antibiotic degradation process in environment could be
found through a biotic and an abiotic processes such as biodegradation, photo-

degradation and hydrolysis. These processes often play an important part in the overall

distribution and elimination of veterinary antibiotics (Sarmah et al., 2006).
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operating at high temperatures and pressures (residual fraction). These
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irreversible intercalation of antibiotics in nanopores as well as the formation of

covalent bonds leads to the formation of non-extractable residues (C).

Source: Jechalke et al., 2014
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3.1 Photodegradation
The photodegradation process is one an important of the major
transformation processes affecting the antibiotic distribution in the environment, In
several reports have found that many antibiotics can be degraded with sunlight, UV,
ozone, and other advanced oxidation conditions (Fernando et al., 2008). Photodegradable,
water-soluble, and nonvolatile substances are particularly susceptible to photodegradation
on soil surfaces (Miller, & Donaldson, 1994), and most antibiotics possess these three
properties (Thiele-Bruhn, 2003). Bio-fertilizers are often distribute on soil surfaces;
thus antibiotics are exposed with the ultraviolet and sunlight. However,
photodegradation of antibiotics is difficult when the compounds are mixed in the
turbid water of a small stream, river, soil, and sewage pipes, due to poor light
penetration. The photodegradation process may differ based on the environmental
conditions (Wu et al., 2010). Boreen ¢t al., 2005 report that tetracyclines, sulfonamides
and fluoroquinolones classes are eliminated in liquid phase with the photodegradation
(Thiele-Brun, & Peters, 2007).
3.2 Hydrolysis
The hydrolysis process is a chemical reaction in the water which is
split into hydrogen ions and hydroxide. This reaction is used to break down certain
polymers, particularly those made by condensation polymerization. Such polymer
degradation is usually catalyzed by either an acid, e.g., concentrated sulfuric acid, or
alkali such as sodium hydroxide, A study by Paesen et al. (1995) showed that tylosin
A hydrolyses into tylosin B under acidic condition, while in neutral and alkaline
medium, the compound produces tylosin A-aldol on several soils (Table 10), along
with number of other relatively polar decomposition products. Given the high values
of pH in swine manure, understanding the hydrolysis behavior of the compound under
alkaline conditions is an important (Sarmah et al., 2006). Hydrolysis and photolysis
may be the major degradation processes of antibiotics in water environment (Xuan
et al., 2010).
3.3 Advanced oxidation processes (AOP)
Removal of veterinary antibiotics from the environment (aqueous
phase) is possible by different processes. Advanced oxidation processes (AOP) are

efficient methods to degrade antibiotics. AOPs apply radicals as oxidants, which can
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destroy the molecular structure of antibiotics directly. Meanwhile, ozone (O3),
hydrogen peroxide (H,0;) and persulfates play important roles (Guo et al.,, 2016).
AOPs are designed to remove organic and inorganic compounds in the wastewater
with oxidation process (Suzuki et al., 2016).

3.4 Biodegradation

Biodegradation of veterinary antibiotics can be achieved through
various methods such as activated sludge systems, aerobic granules, bacteria, and
fungi.

Biodegradation of sulfamethoxazole, sulfamonomethoxine, and
sulfadimethoxine occurs within 36 h by activated sludge of wastewater treatment plant
and results in reductions of 76, 81, and 70%, respectively (Yang et al., 2011).
Membrane bioreactor-derived activated sludge has higher resistance and degrades 89%
of TC (Prado et al., 2009), Comparing with the activated sludge, acrobic granules yield
high biomass concentrations and sludge retention times that are very important of
biodegradation (Shi et al,, 2011). Some microorganism from aquatic environment
exposed to antibiotics the white rot fungus Phanerochaete chrysoporium is promising
for degrading SMX (Rodarte-Morales et al., 2011) could be potential develop to
degrade antibiotics. Biodegradation of the common veterinary antibiotics in various

environment properties show in Table 6.
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Antibiotic resistance in the environment

Antibiotics have long been considered the “miracle drug” that can be used to
kill or inhibit bacterial growth and are used to treat bacterial infections in both humans
and animals, However, bacteria can be adapted by themselves to survive in natural
environment as the consequence of mutation (Martinez, & Baquero, 2000) or inherent
resistance and they can be adapted under antibiotic conditions with the horizontal gene
transfer (Davies, 1994) as acquired resistance, even as the scientist develop new
antibiotics. In recent years, much attention has been given to the increase in antibiotic
resistance. As more microbial species and sirains become resistant, antibiotic resistant
bacteria are now found in large numbers in virtually every ecosystem on earth.

In recent years, antibiotic resistant bacteria have been isolated from virtually
every environment on earth, even the areas have never used antibiotics before.
Moreover, tesistance genes can be spread far wider than once believed and a pool of
resistance is developing in non-pathogenic organisms found in humans, animals, and
the environment. These non-pathogenic organisms serve as a source from which
pathogens can acquire genes conferring resistance, and in turn, they can become
resistant by acquiring genes from pathogens discharged into the environment via
sewage or agricultural runoff, Thus, dissemination of resistant bacteria is not only a
problem of the resistant pathogens themselves, but also availability of resistance genes

to pathogens via gene transfer,

Mechanism of ARGs transfer in the environment

Resistance in bacterial populations in the environment is not new, but
understanding the potential for the development of resistant bacteria from the use of
antibiotics as growth promoters is beginning to be examined (Hirsch et al,, 1999;
Kiimmerer, 2009). The development of resistance in bacteria occurs primarily through
two mechanisms, “inherited” and secondary resistance. Inherited resistance occurs
through bacterial cell division, while secondary resistance involves the transfer of
plasmids between microorganisms. The origin of the genes is link between ARGs in
human pathogens and those found in commensal microorganisms, with several
common bacteria resistance taxa such as Staphylococcus aureus, Pseudomonas

aeruginosa and Klebsiella pneumoniae coming from the natural environment (Wright,
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2010). Generally, bacterial resistance to antibiotics can be acquired by horizontal gene
transfer (HGT) or by spontaneous mutation in target gene (Hassan et al, 2012). In fact,
ARGs could be associated with a transposable element. The mobility of ARGs
involves the transference of genetic material to other bacteria of the same or different
species (Thomas, & Nielsen, 2005). Antibiotic resistance is everywhere, and consequently
efforts are being devoted to understanding the origin of resistance genes, particularly
among the vast majority of not-yet-culturable environmental bacteria. For instance, the
close association between people, animals, and the environment can be responsible for
the evolution and spread of antibiotic resistance (Gautam, & Morten, 2014).

Genetic mechanisms involved in lateral exchange of ARGs are driven by the
three main mechanism: 1) Conjugative transfer (e.g., via plasmids, transposons, and
integrons), 2) Transduction by bacteriophage and 3) Transformation which is
dependent on the native competent state of bacteria as well as cells acquiring induced
competency. More recently, novel phage-like gene transfer agents (GTA) have been
reported in diverse environmental isolates (Stanton, 2007), suggesting additional
mechanisms of gene transfer that may also be significant in soil systems (Chee-
Sanford et al., 2009). Thus, these mechanisms of horizontal gene transfer focuses on
the mechanisms of gene transfer in the context of soil environmental conditions in this
literature.

1. Conjugation

Conjugation is the transfer of DNA through a multi-step process requiting
cell to cell contact via cell surface pili or adhesins, It is facilitated by the conjugative
machinery which is encoded either by genes on autonomously replicating plasmids or
by integrative conjugative elements in the chromosome (Smillie et al., 2010; Wozniak,
& Waldor, 2010). Additionally, this conjugative machinery may enable the
mobilization of plasmids that are non-conjugative, as obsetved for e.g., the
exceptionally broad host range IncQ plasmids (Meyer, 2009). Because conjugation is
dependent on direct cell contact, cell densities and the environment in which the
bacteria reside plays a large role in the outcome frequency of conjugation events. In
general, it is thought that conjugative mechanisms of gene transfer in the environment
are important in the spread of genetic information, occurring over a broad host range

of genera and species, and explains incidences of similar DNA sequences found



42

among distantly related bacterial species. It is facilitated by the conjugative machinery
which is encoded either by genes on autonomously replicating plasmids or by
integrative conjugative elements in the chromosome (Smillie et al., 2010; Wozniak, &
Waldor, 2010). Triparental mobilization of DNA can occur when a conjugative
plasmid is transferred from a parent cell to a recipient containing a nonconjugative
plasmid, and both plasmids may be subsequently transferred to a recipient containing
neither plasmid, While such triparental matings oceur at lower fiequencies than
biparental matings, such a mechanism of DNA transfer has been shown to occur in soil
bacteria (Trevors, 1999; Lesicka-Hupkovd et al., 1996).

Many ARGs are harbored on mobile genetic elements (MGEs) such as
transposons, integrons, or plasmids and can be readily transferred between members of
the same species, and between bacteria. Several microcosm studies have documented
plasmid transfer in soil environments, and plasmid transfer from introduced bacteria to
soil native bacteria (Andrews et al.,, 2004; Heuer et al., 2002; Lee, & Stotzky, 1999;
DiGiovanni et al., 1996, Wellington ¢t al., 1992).

2. Transformation

Transformation is a way in which MGEs move around to different
positions within the genome of a single cell, Transposons ate sequences of DNA, also
called jumping genes or transposable genetic elements that move directly from one
position to another within the genome. During transformation, the insertion of
sequences can both cause mutation and change the amount of DNA in the genome.
Bacteria multiply by binary fission. The rate of bacterial growth is dependent upon the
specific organism; Escherichia coli in nuirient broth will replicate in 20 minutes,
whereas Mycobacterium tuberculosis has a doubling time of 28 to 34 hours. Initiation
of replication begins at a unique genetic site, referred to as the origin of replication.
Chain elongation occurs in a bidirectional mode. The addition of nucleotides occurs in
the 5' to 3' direction; one strand is rapidly copied (the leading strand) while the other
(the lagging strand) is discontinuously copied as small fragments that are
enzymatically linked by way of ligases and DNA polymerases. As the circular
chromosome unwinds, topoisomerases, or DNA gyrases, function to relax the

supercoiling that occurs, Finally, termination and segregation of newly replicated
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genetic material takes place, linked to cellular division, so that each daughter cell
obtains a full complement of genetic material (Actor, 2012).
3. Transduction

Bacteriophages play an important role in shaping the bacterial microbiome
in any environment. Through specialized or generalized transduction, bacteriophages
can transfer genes that are advantageous to their microbial hosts, in turn promoting
their own survival and dissemination (Modi et al., 2013). The transferable DNA
sequences range from chromosomal DNA to MGEs (plasmids, transposons and
genomic islands) (Brown-Jaque et al., 2015). The mobilization or transfer of ARGs by
bacteriophages has been documented for various bacterial species: the transduction of
erythromycin (Hyder, & Streitfeld, 1978), tetracycline or multiple resistances between
strains of Streptococcus pyogenes (Ubukata et al., 1975); the transfer of tetracycline
and gentamicin resistance between enterococei (Mazaheri Nezhad Fard et al,, 2011);
the carriage of [-lactamase genes by bacteriophages in Escherichia coli (Billard-
Pomares et al.,, 2014) and Salmonella (Schmieger , & Schicklmaier, 1999); or the
transfer of antibiotic resistance plasmids in MRSA (Varga et al,, 2012),

Several studies have used qPCR to detect ARGs in bacteriophages from
wastewater samples (Colomer-Lluch et al., 2014a, 2014b), wastewater and sludge
derived from wastewater treatment plants (Calero-Caceres et al.,, 2014), and hospital
and wastewater treatment plant effluents (Marti et al, 2014), indicating that
bacteriophages are significant reservoirs of ARGs).

Considering certain bacteriophages have been reported to have a wide host
range that crosses between different species (Mazaheri Nezhad Fard et al,, 2011) or
even different taxonomic classes (Jensen et al., 1998), the observation of the plethora
of ARGs carried by bacteriophages in various bacterial communities and environments
provides renewed insights into the role of transduction in the dissemination of ARGs

in microbial ecosystems.

Antibiotics Resistance in soil
Soil samples, which are characterized as a complex and dynamic environmental
system, comprising higher microbial diversity of bacteria, archaea, fungi, viruses, and

protozoa (Young, & Crawford, 2004), when compared to other natural environments
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such as freshwater or extreme habitats (Sleator et al., 2008). The ecology and activity
of soil microbial communities depend on biotic or/and abiotic factors such as soil pH,
nuirient availability, water availability, and vegetation cover above ground (Fierer
et al, 2007), Various microorganisms inhabit the water, soil and sediment
environments, but variability exists due to physiochemical properties, pH, moisture,
nutrients, light, and temperature present in each niche (Kiimmerer, 2009). Bacteria are
important to invertebrates as nutrients and symbionts within their gut (Wetzel, 2001).
Recently, the detection of antibiotics have occurred in the environment and
natural soils (Kiimmerer, 2013) and the entry of these compounds could affect the
population dynamics of microorganism and alier their ecological functions in water,
sediment and soil. The additional influx of antibioties into the environment has raised
concerns that they could cause antibiotic resistant strains of bactetial populations to
increase, leading to adverse effects in ecosystem. For the agricultural part, animal
manure is an important reservoir of antibiotic-resistant bacteria, antibiotic-resistance
genes (collectively known as the “resistome™), and pathogens (Zhou et al., 2012; Zhu
et al,, 2013). Although antibiotic use increases antibiotic-resistance genes and resistant
bacteria in manure (Looft et al., 2012), antibiotic-resistant bacteria are also abundant
in manure from animals with no history of antibiotic treatment, indicating the natural
presence of bacteria intrinsically resistant to antibiotics in animal gastrointestinal tracts
(Stanton et al,, 2011). Antibiotics are a natural mechanism used by microbes in their
natural ecology for millions of years, the abundance of natural antibiotics seem to be
low on average and scems to be restricted to the nearest surroundings, i.e. the
microenvironment of the bacteria (Kiimmerer, 2013). Antibiotics have been detected
in soil in concentrations in the mg kg-1 range (Kilmmerer, 2013) that they may
influence cell function and genetic expression of antibiotic resistance (Salyers, 2002),
Antibiotic-resistant bacteria and antibiotic-resistant genes found in soils where manure
has been added by animals or by spreading (Avant, 2016), tylosin disappeared soon
after the application of manure (Kiimmerer, 2013). Three potential streams of concern
related to antibiotic use in agriculture and specifically manure management including,
1) animals excrete antibiotics or their metabolites that may favor selection of antibiotic
resistant organisms in the soil or receiving environment, 2) manure may contain

potentially pathogenic organisms that are resistant to antibiotics, and 3) manure may
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contain antibiotic resistant genes, which may be transferred to other organisms in the

receiving environment.,
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Figure 16 Schematic of the hot-spots and drivers of antimicrobial resistance

Note: The environmental compartments that are currently monitored or regulated
by the Environment Agency (EA; England) are denoted by an asterisk in red.
WTD, Water Framework Directive.

Source: Singer et al., 2016

Target antibiotics and target ARGs in this study
1. Target antibiotics
The antibiotic compounds in this study include forty-one antibiotics
belonging to eight groups, including
1.1 Sulfonamides class: sulfamerazine (SMR), sulfameter (SM), sulfamethazine
(SMZ), sulfacetamide (SCM), sulfaguanidine (SG), sulfanilamide (SA), sulfadiazine
(SDZ), sulfathiazole (STZ), sulfapyridine (SPD), sulfamonomethoxine (SMM),
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sulfachloropyridazine (SCP), sulfamethoxazole (SMX), sulfadimethoxine (SDM),
sulfadoxine (SDO), sulfisoxazole (SX), and sulfaquinoxaline (SQX)

1.2 Tetracyclines class: tetracycline (TC) and methacycline (MC)

1.3 Lincosamides class: lincomycin (LLIN)

1.4 Macrolides class: erythromycin (ETM), clarithromycin (CRM),
leucomycin (LCM), roxithromycin (RTM), Oleandomycin (ODM), tylosin (TYL)

1.5 Fluoroginolones class: ciprofloxacin (CFX), marbofloxacin (MAR),
fleroxacin (FL), norfloxacin (NFX), carbadox (CAR), ofloxacin (OFX), pefloxacin
(PEF), lomefloxacin (LFX), danoftoxacin (DAN), enrofloxacin (EFX), sarafloxacin
(SAR), and difloxacin (DIF)

1.6 Diaminopyrimidines: trimethoprim (TMP), ormetoprim (OMP)

1.7 Tonophores class: narasin (NRS)

1.8 Other class: and monensin (MNS).

These compounds were selected as they have different classes as widely
used for human and swine production. Selection was also based on the detection in
wastewater reported by other studies. The chemical structure and physicochemical

properties of the antibiotic are shown in Table 8.
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2. Target of ARGs
2.1 Tetracycline resistance genes: fefQ and fertM
The translational apparatus represents one of the major targets within
the bacterial cell for antibiotic treatment (Wilson, 2009). Tetracyclines are broad-
spectrum antibiotic agents that bind to elongating ribosomes and inhibit delivery of the
ternary complex EF-Tu, GTP and aminoacylated-tRNA (EF-TusGTPsaa-tRNA) to the
A-site (Wilson, 2009). Consistently, crystal structures of the small (308) ribosomal
subunit in complex with tetracycline reveal the primary binding site to be located in
helix 34 (h34) of the 16S rRNA, in a position overlapping with the anticodon stem-
loop of A-site tRNA (A-tRNA) (Brodersen, 2000; Pioletti, 2001). The widespread use
of tetracyclines during the past 60 years has led to an increase in acquired tetracycline
resistance determinants among clinically important pathogenic bacteria, limiting the
utility of many members of this class (Roberts, 2005). Of the variety of tetracycline-
specific resistance mechanisms, efflux and ribosome-protection are the most common,
The third generation of tetracycline derivatives, such as tigecycline (Tge), display
enhanced antimicrobial activity, overcoming efflux and ribosome protection
mechanisms (Chopra, 2002; Grossman et al., 2012).
2.2 Macrolide, Lincosamides and Streptogramin B (MLSB) resistance
genes: ermA and ermB
Erythromyein resistance genes are widely disseminated among many
species of bacteria; over a dozen resistance determinants have been described
(Weisblum, 1995). In Staphylococcus aureus, erythromycin resistance is usually due
either to ribosomal modification by 23S 1RNA methylases mediated primarily by
ermA, ermB, or ermC or to active efflux of the antimicrobial agent by an ATP-
dependent pump mediated by msrA. ermA is most often harbored on the transposon
Tn554, which also encodes spectinomycin resistance, while ermB is often associated
with transposon Tn551 and the penicillinase plasmid, pI258 (Mitsuhashi, 1963;
Novick et al., 1979). All of the erm determinants confer cross-resistance to macrolides,
lincosamides, and streptogramin B agents (MLSBphenotype) (Hays et al., 2014).
2.3 TFluoroquinolones resistance genes: gnrA and gurB
Since the first plasmid-mediated quinolone resistance (PMQR) was

reported in 1998 for a Kiebsiella pneumoniae isolate from the United States (Martinez
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et al, 1998), three PMQR mechanisms have been discovered. The first PMQR
mechanism involves gnr genes that have been reported worldwide in various
enterobacterial species (Wang et al,, 2003; Wang et al., 2004). The second consists of
the AAC(6")-Ib-cr gene, which encodes a new variant of the common aminoglycoside
acetyltransferase that is capable of acetylating the piperazinyl substituent of some
fluoroquinolones (Robicsek et al., 2006) and theteby reducing their activities. A novel
plasmid-mediated fluoroquinolone efflux pump protein, QepA, has recently been
reported simultaneously from Japan (Yamane et al,, 2007) and Europe (Périchon et al.,
2006) as the third PMQR mechanism, A strong association of quinolone resistance
with the production of extended-spectrum B-lactamases (ESBLs) or plasmid-mediated
AmpC B-lactamases (pACBLs) has been observed (Jacoby et al., 2006; Li et al., 2005;
Wang et al., 2003). The association between gnrA and ESBL determinants for SHV-3
(Nazic et al., 2005; Wang et al., 2003), SHV-7, CTX-M-9, CTX-M-14 , CTX-M-15
(Jacoby et al., 2006), and VEB-1 or pACBL determinants for DHA-1 and FOX-5 has
been reported repeatedly. Similarly, gnrB has been reported to be located on plasmids
carrying bla genes for CTX-M-15, SHV-12 (Jacoby et al., 2006), or SHV-30 (Gay
et al., 2006) ESBLs,



CHAPTER II1I

METHOD

This chapter described the materials and methods of this study, the details of

each part is described below.

Overall process of the study

This study, the samples were collected from typical swine farm and
commetcial swine farms with different farming systems in July, 2016 as water supply
in swine farm, flush water, effluent, swine feed, feces, sediment from an oxidation
pond and lagoon sediment, sludge and drained agricultural soil receiving swine
wastewater. All samples were quantified by rapid resolution liquid chromatography-
electrospray ionization tandem mass spectrometry (RRLC-MS/MS) and were analyze
environment parameter and were detected ARGs in soil samples by PCR. The results
of this study can explain antibiotics contamination status that help we understand
occutrence, fate, and their resistance gene from the two swine farming system

(Figure 17).
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Figure 17 Overall process of the study

Materials and Tools
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Qasis HLB cartridge 6cc, 500 mg
SAX cartridges 6cc, 500 mg
SEP-PAK reservoir adaptor
Male/Male luer fitting 100/BX
SPE tube adaptor

Vacuum pump

Erlenmeyer flask (1000 mL)
Centrifuge and rotors

Freeze-dryer

. Nitrogen gas

. Ultrasonicator

Evaporator

. Refrigerator and freezer (-20 °C)

GF/F paper (0.22 m)

. Vortex
. Amber vial (2 mL)
. Vial rack for 2 mL

* Antibiotics analysis =
RRLC-MS/MS
+ ARGs in soil = PCR
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18. Syringe filler (0.22 m)
19. Parafilm

20, Foil paper

21. Centrifuge tube (30 mL)
22. Glass tube (30 mL)

Samples and sampling methods

Various samples were collected in July, 2016 from the two swine farms. On
the two farms, the collected samples included water supply from storage tank, fresh
feces and flush water from swine houses, effluent and sediment from the oxidation
pond and lagoon, dried feces or dried sludge from stockpiles, and soil from
agricultural fields. Fresh feces samples from typical farm were taken by randomly
collecting from different swine houses and then combining into one composite sample.
For commercial farm, fresh feces were composited from 5 to 6 grab samples and then
combining into one composite sample, The flush waters were sampled at washing
time, composited from 5 to 6 grab samples and then combining into one composite
sample, The effluent samples were composited fiom 5 to 6 grab samples. Dried feces
and dried sludge were collected from stockpile and soil samples were collected at a
depth of 20 ¢m below the surface soil. Ten discrete subsamples were collected, and
composite samples were prepared by mixing equal quantities of subsamples and
selected by the quadripartite method. The swine layout of the two swine farms and the
sampling site were shown in Figure 18. |

1,000 mL of water supply, 200 mL of flush water, and 500 mL of effluent
were collected using the brown amber bottles which were rinsed with sample water
before collection. All the water samples collected were adjusted to pH 3 using 4 M
H,S04, added with methanol (5% v/v) to inhibit microbial activity and then
transported to the laboratory in a cooler. 500 g of feed, feces, sludge, sediment, and
soil samples were collected and stored in 1 L brown glass bottles and preserved by
adding with 2 g of sodium azide. Upon arrival at the laboratory, the samples were
immediately stored at 4 °C, Before being analyzed, the solid samples were freeze-
dried, sieved through a 0.5 mm pore size and then kept at -18 °C in the dark until
extraction (Zhou et al., 2012).
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Figure 18 Layout and sampling site of the two swine farms



62

Analytical methods

Analytical methods of the samples from the two swine farms were analyzed
using chemical methods for wastewater characteristics, soil properties, heavy metal in
soil, and antibiotic concentrations. The details as below.

1. Analysis of wastewater characteristics

The parameters of wastewater analysis were temperature, pH, total

suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand
(BOD) and total kjeldahl nitrogen (TKN) that followed Thailand's swine wastewater
parameters. These parameters were detected using equipment or method as showed in
Table 9.

Table 9 Wastewater characteristics parameters for swine farm in Thailand

Parameters Equipment/method

pH pH meter

Temperature' Thermometer

TSS Glass Fiber Filter Disc at 103°C - 105°C
CODb Potassium Dichromate Digestion

BOD Azide Modification

TKN Kjeldahl

2. Soil property analysis
The parameters of soil property amalysis were soil texture, pH value,
organic matter (OM) value, total nitrogen (N) content, available phosphorus (P)
content, and available potassium (K) content, These parameters were detected using

equipment or method as showed in Table 10.
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Table 10 Soil propertics parameters and method

Parameters Equipment/method

Soil texture Hydrometer method

pH pH meter

oM Walkley-Black

Total N Kjeldahl method

Available P Bray-11

Available K Extracted by ammonium acetate

3. Antibiotics analysis
In this study, the method was used following the laboratory direction of
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry
(GI@), Chinese Academy of Sciences, Guangzhou, China, The details as below.
3.1 Sample extraction
3.1.1 Liquid samples
The collected liquid samples (1,000 mL of water supply, 200
mL of flush water, and 500 mL of effluent) were extracted by solid phase extraction
(SPE), show in Figure 20, The liquid samples were filtered through glass fiber filters
to remove suspended solids (SS) and then filtered liquid samples were spiked with
100 ulL of the internal standards (IS) for chemical analysis. The IS were showed in
table 11,
The liquid samples were passed through Oasis HLB cartridges
(6 mkL, 500 mg) under vacuum at a flow rate of 5-10 ml/min. The target compounds
were eluted with 12 mL methanol and then the eluates were evaporated to near dryness
under a gentle stream of nitrogen and redissolved in 1 mI. of methanol. After filtration
through a 0.22 m membrane to remove particles, the final extract was transferred to a 2
mL amber vial and stored at -18 °C until RRLC-MS/MS analysis. Just prior to the
RRIC-MS/MS analysis, 100 pL aliquot of each sample extract was evaporated and
reconstituted in a mixed solvent (methanol: 0.2% formic acid and 2 mM ammonium

acetate, 30:70, v/v) (Zhou et al., 2012).
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3.1.2 Solid samples

The solid samples (0.5 g of freeze-dried feces, sludge, 2 g of
freeze-dried sediment, soil, feed, and all of each SS) were extracted by ultrasonication,
show in Figure 19. The solid samples were weighted into a 30 mL glass tube, followed
by addition of 100 pL of the IS for chemical analysis. Then the samples were mixed
and placed in a refrigerator at 4 °C overnight, The samples were extracted with 10 mL
acetonitrile and 10 mL citric acid was added into glass tube followed by mixing on a
vortex mixer for 1 min, ultrasonicated for 15 min and centrifuged at 3,500 rpm for 10
min. The supernatant was piped into a 200 mL round-bottom flask. The extraction
process was repeated twice and the supernatants from the three extractions were
combined. The extract in the round-bottom flask was evaporated at 50 °C, and diluted
to 200 mL with MilliQ water. The extracts were purified by passing through tandem
SAX cartridges (6 mL, 500 mg) and HLB cartridges (6 mI, 200 mg) under vacuum at
a flow rate of 5-10 mL/min. The elution and reconstitution conditions were the same

as those described in Section 3.1.1.
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Water sample Freeze-dried of solid samples
pH 3 l Add IS
- — Ultrasonic extraction by 10 mL ACN
GI/F filtration and 10 mL citric acid buffer (pH 3)
AddISand 0.2 g
v NazEDTA J Add 0.2 NﬂgEDTA
Entichment by IIBL Enrichment and clean up by
SAX-HLB
Remove SAX cartridge

Y

Eluted from HLB by 12 mI, methanol

Y

Evaporation, dissolved in 1 mL methanol, RRL.C-MS/MS

Figure 19 Sample preparation procedure diagram

Source: Zhou et al., 2012

3.1.3 Chemical

The chemicals in this study included 41 antibiotics belonging to
eight groups of widely used in swine production of Thailand, comprising: lincomyein
(LIN), trimethoprim (TMP), sulfamerazine (SMR), sulfameter (SM), sulfamethazine
(SMZ), sulfacetamide (SCM), sulfaguanidine (SG), sulfanilamide (SA), sulfadiazine
(SDZ), sulfathiazole (STZ), sulfapyridine (SPD), sulfamonomethoxine (SMM),
sulfachloropyridazine (SCP), sulfamethoxazole (SMX), sulfadimethoxine (SDM),
sulfadoxine (SDO), sulfisoxazole (SX), sulfaquinoxaline (SQX), ciprofloxacin (CFX),
marbofloxacin (MAR), fleroxacin (FL), norfloxacin (NFX), carbadox (CAR),
ofloxacin (OFX), ormetoprim (OMP), pefloxacin (PEF), lomefloxacin (LFX),
danofloxacin (DAN), enrofloxacin (EFX), sarafloxacin (SAR), difloxacin (DIF),
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erythomycin (ETM), clarithromycin (CRM), leucomycin (LCM), roxithromycin
(RTM), Oleandomycin (ODM), tylosin (TYL), tetracycline (TC), methacycline (MC),
narasin (NRS) and monensin (MNS) being selected as the target analytes.

The target antibiotics were analyzed using RRLC-MS/MS,
Agilent Liquid Chromatography 1200 series RRLC system coupled to an Agilent 6460
triple quadrupole MS equipped with an electrospray ionization (ESI) source (Agilent,
Palo Alto, CA, USA) in multiple-reaction monitoring (MRIM) mode. Nitrogen gas was
used as the drying and collision gas. LC and MS parameters were measured using an
Agilent Eclipse Plus-C18 (100 mmx2.1 mm, 1.8 m) column with its corresponding
pre-column filter (2.1 mm, 0.2 m). The column temperature was set at 40 °C, Gas
temperature and gas flow were set at 325 °C and 6 L/min, respectively. Sheath gas
flow and sheath gas temperature were set at 11 L/min and 350 °C. The injection

volume for each sample was 5 pL.

Table 11 Detail of antibiotics and Internal Standard (IS) chemieals

No.  Antibiotics IS M.W. R.T.

Sulfonamides

1 Sulfamerazine Sulfamerazine-D4 26431 3.860
2 Sulfachlorpyridazine ~ Sulfamerazine-D4 284.72 7.826
3 Sulfameter Sulfamethazine-13C6 280.30 5.618
4 Sulfamethazine Sulfamethazine-13C6 27833 5.272
5 Sulfacetamide Sulfamethazine-13C6 214,24 2.203
6 Sulfaguanidine Sulfamethazine-13C6 214,24 1.098
7 Sulfanilamide Sulfamethazine-13C6 172.20 1.283
8 Sulfadiazine Sulfamethazine-13C6 250.28 2.582
9 Sulfathiazole Sulfamethazine-13C6 255.32 3.093
10 Sulfapyridine Sulfamethazine-13Co6 249.29 3.361
11 Sulfamonomethoxine  Sulfamethoxazole-d4 280.30 7.457
12 Sulfamethoxazole Sulfamethoxazole-d4 253.28 8.903
13 Sulfadimethoxine Sulfamethoxazole-d4 310.33 11.33
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No.  Antibiotics IS M.W, R.T.
14 Sulfadoxine Sulfamethoxazole-d4 31033 9.006
15 Sulfisoxazole Sulfamethoxazole-d4 267.30 9.903
16 Sulfaquinoxaline Sulfamethoxazole-d4 300,37 11.420
Tetracyclines
17 Tetracycline Thiabendazole-d4 444,44 6.054
18 Methacycline Meclocycline 442,42 10,017
Lincosamides _

19 Lincomycin Lincomycin-3D 406.54 2.964
Macrolides

20 Erythomycin-H,O Erythromycin-13C-d3 ~ 733.94 12,976
21 Leucomycin Erythromycin-13C-d3  686.81 13.147
22 Roxithromyecin Erythromycin-13C-d3  837.05 13.577
23 Oleandomycin Erythromyein-13C-d3  687.83 13.662
24 Clarithromycin Erythromycin-13C-d3 = 747.95 15.333
25 Tylosin Sulfamethazine-13C6 916.10 12.609
Fluoroquinolones

26 Ciprofloxacin Ciprofloxacin-d8 B3N #5 5.738
27 Marbofloxacin Ciprofloxacin-d8 370.41 4.510
28 Norfloxacin Ciprofloxacin-d8 319.34 5252
29 Danofloxacin Ciprofloxacin-d8 357.37 10.360
30 Difloxacin Ciprofloxacin-d§ 399.39 8.718
31 Enrofloxacin Ciprofloxacin-d8 359.40 7.237
32 Fleroxacin Ciprofloxacin-d8 369.34 5.103
33 Ofloxacin Ciprofloxacin-d8 361.37 5.334
34 Pefloxacin Ciprofloxacin-d8 333.36 5.573
35 Sarafloxacin Ciprofloxacin-d8 385.40 8.514
36 Lomefloxacin Ciprofloxacin-d3 351.35 6.426
37 Carbadox Thiabendazole-d4 262,22 5.046
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Table 11 (cont.)

No.  Antibiotics IS M.V, R.T.
Tonophores
38 Narasin Thiabendazole-d4 765.04 19.130
Diaminopyrimidines
39 Trimethoprim Trimethoprim-3d 290.32 4,143
40 Ormetoprim Thiabendazole-d4 274,32 5.251
Other
41 Monensin Thiabendazole-d4 670.88 21,879

Note: IS = Internal standard; M. W. = Molecular weight; R, T, = Retention time;
Source: U.S. National library of medicine chemidplus advanced.

(http://chem.sis.nlm.nih.gov/chemidplus/), 28 September, 2017

3.1.4 Quantification and validation
The internal standard method were used to determine antibiotic
concentrations in the samples for this study. The strict quality control procedures were
important and necessary. For each a set of samples to be analyzed, a solvent blank, a
procedure blank and an independent check standard (100 pg/L standard solution) were
run in sequence to check for carry-over, background contamination, and system
performance (Zhou et al., 2012). The quantitative values of each target compound
were reported with the same retention time as its calibration standard (within +5%)
and the same ion ratios (within ::20%). Approximately every twenty injections have
must to check for independent standard. The measurement of antibiotic concentrations
was required to be within 20% of the expected value (Monteiro et al. 2015). The
minimum detectable amount of an analytes from the environmental matrix were
determined with limits of detection (LOD) and of quantification (LLOQ) in MRM mode
with a signal-to-noise (S/N ratios) of 3 and 10, respectively. (Zhou et al., 2012).
3.1.5 Calibration
Calibration curves were constructed with standard concentration

levels at 1.0, 5.0, 10, 50, 100, 200 pg/l and excellent linearity was achieved in the
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concentration ranges with cotrelation coefficients higher than 0.99 (R? > 0.99) for all
validation batches (Liu et al., 2011), The recovery (%), limit of detection (LOD), and

limit of quantitation (LLOQ) were shown in Table 12.

Table 12 % Recovery, LOD, and LOQ

Spiked concentrations (ng/L) LOD LOQ
Antibiotics

10 50 100 200 ng/L ng/L
Lincomycin 82.5 bl 103 98.6 0.14 0.41
Trimethoprim 1024 102 96.8 100.7 0.06 (.18
Sulfamerazine 102.1  101.8  96.7 100.7 0.06 0.18
Sulfameter 1142 94.3 912  102.5 0.08 0.25
Sulfamethazine 99.9 1029  96.8 100.6 0.06 0.002
Ciprofloxacin 11258 43 X/ 97.5 101 0.18 0.56
Erythromycin-H,O ~ 91.7 1046 959 100.8 0.08 0.25

Note: LOD = Limit of detection, and LOQ = Limit of quantitation

Fate of antibiotics from traditional and commercial swine farms

Partitioning coefficient (Kg) is the sorptive exchange of chemicals between two

phase such as a water phase and a solid phase (sediments or suspended solid)

Sediment/aqueous partition coefficient (Kg) for each chemical were calculated

using the relationship:

Where C;

Caq

Kd = Cs/Caq

M

is the concentration of veterinary antibiotics adsorbed by

sediments or suspended solid in ng/g,

is the concentration of veterinary antibiotics in aqueous

phase in ng/L.
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In addition, Kd depends on fraction of organic carbon (foc) then Kd related
to normalized organic carbon content (Koc) with relationship according to equation 2:

The Koc values were calculated by using the expression in equation
Koo = Kgx 100/%TOC (2)
Octanol-water partition coefficient (Koy), and distribution ratio (Dow)
The mobility of antibiotics in soil was determined with octanol-water

partition coefficient (Koy), as show in equation

Kow'™ = (Solute) octanol

(Solute) water

Antibiotic Resistance Genes (ARGs)
1. Samples collection
The collected samples including, surface soil samples (0-20 cm) of
agricultural fields from typical farm and commercial farm were taken by randomly
collecting soil sample. After that combining into one composite sample. Five
composite samples were collected in each separate area from commercial farm. In
addition, the control samples from each farm were collected from agricultural soil
without manure application nearby. Each composite sample was placed in a one plastic
bag and transported back to Naresuan University Phitsanulok, Thailand in coolers
containing ice. The final samples about 1 kg in each composite sample were used for
antibiotic resistant genes analysis. Prior to analysis, all samples were air dried at
ambient temperature in the dark, ground and homogenized by sieving through a 2 mm
of stainless steel sieve after removing stones and residual roots for DNA extraction,
the remaining soils were frozen at -20 °C within three months.
2. DNA extraction
DNA samples were extracted from 250 mg of soil with a commercial kit
(GenElute™ Soil DNA Isolation Kit product from Sigma-Aldrich, Thailand), The
extraction method was conducted following the manufacturer's protocol. Finally, DNA

bands were checked on agarose gel electrophoresis.



2.1 Materials, Chemicals and Tools
2.1.1 GenElute™ Soil DNA Isolation Kit
2.1.2 Soil samples
2.1.3 Microcenrifuge
2.1.4 Flat-bed vortexer
2.1.5 Parafilm
2.1.6 Erlenmeyer flask (500 mL)
2.1.7 Micro centrifuge tubes (1.7 ml)
2.1.8 DNase-free water
2.1.9 Flatbed vortex
2.1.10 96-100% ethanol
2.1.11 Ice
2.1.12 Ice box
2.1.13 Agarose
2.1.14 0.5 M EDTA
2.1.15 TAE (1X)
2.1.16 Orange loading dye
2.1.17 Pipettes (1000, 20-200 and 1-10 pL)
2.1.18 Pipette tips
2.1.19 Gel electrophoresis
2.1.20 Gel tray and comb
2.1.21 Microwave
2.1.22 Plastic containers with lids
2.1.23 Refrigerator and freezer (-20°C)
2.1,24 Latex or nitrile gloves
2.1,25 Microcentrifuge tube rack

3. Polymerase chain reaction (PCR)

3.1 Materials, Chemicals and Tools
3.1.1 Primers (fefM, tetO, ermA, ermB, qnrA and, gnrB)
3.1.2 Template (extracted DNA from sample)
3.1.3 PCR master mix (GeneDireX)
3.1.4 DNase RNase free water
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3.1.5 DNA template (The extracted DNA from 2.)
3.1.6 Thermo Cycler

3.1.7 PCR microcenrifuge

3.1.8 Flat-bed vortexer

3.1.9 Parafilm

3.1.10 Centrifuge

3.1.11 Tee and ice box

3.1.12 Erlenmeyer flask (500 mL)
3.1.13 1.7 mL DNase free microcentiifuge tube
3.1.14 DNAse-free microcentrifuge tube
3.1.15 96-100% ethanol

3.1.16 Agarose

3.1.17 0.5 M EDTA

3.1.18 TAE (1X)

3.1.19 Orange loading dye

3.1.20 Pipette

3.1.21 Pipette tip

3.1.22 Gel electrophoresis units

3.1.23 Gel tray and comb

3.1.24 Microwave

3.1.25 Refrigerator and freezer (-20°C)
3,1.26 PCR microcentrifuge tube rack
Primes

Primers for PCR amplification of six different genes were either

selected based on the published sequences available in Genbank. The target genes

included tetracycline resistance genes (fefM and fetO), erythromycin resistance genes

conferring resistances to macrolide-lincosamides-streptogramin (MLS genes: ermA

and ermB) and quinolone resistance genes (garA and gnrB). The specific primer pair

and sequences were listed in Table 14, Working solution stocks of primer were

prepared by combining 198 pL of molecular grade water with 2 uL of the designated

primer in a sterile 0.5 mL microcentrifuge tube. They can be made ahead and stored in

the freezer.



3.3 PCR reactions

DNA of soil samples was amplified using thermo cycler PCR machine
in a 25 pL reaction volume. Quantities given were for one reaction tube, 12.5 pL. of
PCR master mix, 1 pL of each primer, 1 pL, of DNA template and 9.5 pL. DNase
RNase free water, with the following PCR cycling conditions. Multiply amount

needed for one reaction tube by the number of samples to be run. Add one negative

control for each gel.

3.4 PCR cycling conditions

Before setting up the PCR reaction must turn on the thermal cycler.

Then put the PCR reaction tubes in the wells of thermal cycler and close the lid. Start

program, with the following PCR conditions as show in Table 13,

Table 13 PCR ¢ycling conditions

Step/Target genes tetO, M, ermA, B OrnA, B
Pre-denaturing 94°C/5 min 94°C for 2 min
Step 1 94°C/1.5 min 94°C/45 sec
Step 2 55°C/1 min, 53°C/45 sec
Step 3 72 °C/1 min 72°C/1 min
Final extension 72°C/S min 72°C/5 min
Cycles 35 30

Hold 4°Clinfinity 4°C/infinity
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3.5 Agal'ose gel electrophoresis

The PCR products were electrophoresed on TAE agarose gel buffer.
Agarose gels were prepared by adding 0.4 g agarose powder to 40 ml of 1x TBE (Tris-
Borate-EDTA) buffer (Lee et al., 2012). The powder solution was boil in a microwave
oven until the agar solution was completely dissolved, and then carefully remove it
from microwave oven. The solution was cooled down to 55°C, add 0.5 pl of ethidium
bromides and mixed gently. The solution was poured into a casting tray and comb.
The gel solution was set, carefully pull out the combs and remove the tape and then
were moved in the electrophoresis chamber., 10 pl volume of each sample were loaded
onto a gel. Orange DNA loading dye was loaded in the first well of the gel as marker.
However, the distil water was loaded into the gel as negative control, then the gel was
run at 100 V for 35 minute. The DNA bands were checked under UV light. The photos
were taken from the gels in a datk room by using digital camera (Wang, & Wen, 2010).

3.6 Gel purification and sequence analysis

Gel purification, the target DNA bands were cut out from the TAE
agarose gel and purified them using a HiYield™ Gel/PCR fragments extraction kit
(RBCBioscience) following manufacturer’s instructions (Jantafong et al., 2015). All
purify DNA bands of melting gel were directly sequenced and measured of DNA
concentration using a NanoDrop™ spectrophotometer prior to sequence analysis, The
results were compared sequence analysis in the BLAST databases available from
NCBI.



CHAPTER 1V

RESULTS

The study of occurrence and fate of antibiotics and antibiotic resistance genes
(ARGs) from typical and commercial swine farm was determined wastewater
characteristics, soil properties, heavy metal in soils, antibiotic concentrations in
various samples and ARGs in agricultural soils. Water supply in swine farm, flush
water, effluent, (aqueous, suspended solids phase), sediment from an oxidation pond
and lagoon, sludge from a biogas system, swine feeds, fresh feces, dried feces or dried
sludge and agricultural soil samples were collected from one typical swine farm and
one commercial swine farm in Phitsanulok province, Thailand. The chemical analysis
was used to determine effluent characteristics, soil properties, heavy metal in soils and
antibiotic concentrations, Molecular analysis was used to determine ARGs in

agricultural soils. The results of this study were shown as below.

Site and system description

One typical and one commercial farms with different wastewater
management systems were selected for this study. The two swine farms, representing
typical swine feeding operations in Phitsanulok province, are located in Mueang and
Bang Rakam district. The typical farm consists of several buildings for piglets,
growing and finishing pigs and sows. This farm accommodated 150-pigs small scale,
including 40 piglets, 100 growing and finishing and 10 sows. The swine houses were
flushed daily with water supply and the mixed flush water was directly discharged into
an oxidation pond. Wastewater in the pond was partially applied onto grass field
nearby the farm. For commercial farm, it was designed for 750-pigs medium scale
with evaporative cooling system, The swine houses were flushed daily with water
supply and the flush water was treated in a biogas system followed by a lagoon. The
lagoon wastewater was pattially applied onto the sugarcane and banana fields nearby

the farm.
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Wastewater characteristic

Wastewater characteristic of two swine farms were measured the parameter,
namely pH, Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD),
Total Suspended Solid (TSS), Total Kjeldahl Nitrogen (TKN) and Total Organic
Carbon in sediment (TOC), The results were shown as below.

1. pH

pH values of water supply, flush water and effluent from typical swine
farm and commercial swine farm are shown in Table 15. Water supply, pH values
were found of 7.9540,01 from typical farm and 7.95£0.03 from commercial farm,
Flush water, pH values were found of 6.73+0.17 from typical farm and 8.68:+0.03
from commercial farm. For the effluent, pH values were found of 7.53+0.05 from
typical farm and 8.08+0.03 from commercial farm. In addition, the pIl values in both
typical farm and commercial farm were within the ctiteria of Thailand's standard.

2, Temperature

Temperature of effluent from typical and commercial swine farm are
shown in Table 15, Water supply, temperatures were found of 29.5+0.50 °C from
typical farm and 30.04:1.2° °C from commercial farm. For flush water, temperatures
were found of 31.0+0.80 °C from typical farm and 32.5+1.40 °C from commercial
farm. Effluent, the temperatures were found of 32,0+1.50 °C from ftypical farm and
32.5+0,02 °C from commercial farm.

3. Chemical Oxygen Demand (COD)

COD of flush water and effluent from typical swine farm and commercial
swine farm are shown in Table 15, Flush water, the average COD were found of
1,038.33440.72 mg L™ from typical farm and 1,576.00+5.29 mg 1! from commercial
which were over the criteria of Thailand's standard. For effluent, they were found of
237.67+2.52 mg L' from typical farm and 386.67+4.16 mg L from commercial farm
which were within the criteria of Thailand's standard. In addition, the average COD
from commetrcial farm were higher than those from typical farm.

4. Biological Oxygen Demand (BOD)

BOD of flush water and effluent from typical swine farm and commercial

swine farm are shown in Table 15. Flush water, the average BOD were found of

597.00+1.73 mg L. from typical farm and 1,035+21.79 mg L from commercial farm
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which were over the criteria of Thailand's standard. For effluent, the average BOD
were found of 122.83+2.57 mg " from typical farm which were over the criteria of
Thailand's standard. Moreover, the average BOD in the lagoon effluent from
commercial farm were found of 33.83+1.61 mg L' which were within the criteria of
Thailand's standard.

5. Total Suspended Solid (T'SS)

TSS of water supply, flush water and effluent from typical swine farm and
commercial swine farm are shown in Table 15, water supply, the average TSS were
found of 38.17+£0.29 g I”! from typical farm and 27.50+0.50 g L from commercial
farm which were within the criteria of Thailand's standard. Flush water, the average
TSS were found of 364.33+21.57 g L™ from typical farm and 542.33+5.86 g L' from
commercial farm which were over the criteria of Thailand's standard. For effluent, the
average TSS were found 46.67+4.16 g L' from typical farm and 36.23+1.74 g L
from commereial farm which were within the criteria of Thailand's standard.

6. TDS (Total Dissolve Solid)

TDS of water supply, flush water and effluent from typical swine farm and
commercial swine farm are shown in Table 15. Water supply, the average TDS were
found of 0.28+0.01 g L' from typical farm and 2.52+0.02 g L from commercial
farm, Flush water, the average TDS were found of 8.93+0.02 g L from typical farm
and 11.14%0.14 g L' from commercial farm. For effluent, the average TDS were
found 4.52:+0,03 g/L from typical farm and 3.89+£0.02 g L7 from commercial farm.

7. Total Kjeldahl Nitrogen (TKN)

TKN of water supply, flush water and effluent from typical swine farm and
commercial swine farm are shown in Table 15. Water supply, the average TKN were
found of 0.57+0.04 mg "' from typical farm and 0.53::0,10 mg L7 from commercial
farm which were within the criteria of Thailand's standard, Flush water, the average
TKN were found of 180.38::1.13 mg L™ from typical farm which were within the
criteria of Thailand's standard. For commercial farm, the average TKN in flush water
were found of 752.00+1.73 mg L from which were over the criteria of Thailand's
standard. For effluent, the average TKN were found of 56.66+1.26 mg L} from typical

farm, which were within the criteria of Thailand's standard. Furthermore, the average
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TKN in the effluent from commercial farm were found of 204.83:£0.76 mg L™ which
were over the criteria of Thailand's standard.
8. Total Organic Carbon (TOC) in sediment
TOC of sediment in an oxidation pond from typical swine farm and TOC
of lagoon sediment from commercial farm are shown in Table 16. The average TOC
were found of 24.67+0.47 % from typical farm and 13.35+4.64 % from commercial
farm, In addition, the average TOC from typical farm were higher than those from

commercial farm.
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Seil properties
Soil properties of agricultural soil samples from the two swine farms were
measured the parameter, namely soil texture, soil pH, Organic Matter (OM), Nitrogen
(N), Phosphorus (P} and Potassium (K), The results were shown as below and Table 17.
1. Soil texture

Soil textures were sandy clay loam from typical swine farm and silty clay
from commercial swine farm. The particle size distributions were found 63% sand,
70% silt and 30% clay from typical swine farm and 50% sand, 50% silt and 55% clay
from commercial swine farm.

2. Soil pH

Soil pH values of agricultural soil from typical and commercial swine farm
are shown in Table 17. The pH value from S1, S2, S3, 84 and S5 samples were found
of 6.84+0.01, 8.01:£0.01, 8.05:0.01, 7.98+0.04 and 8.01£0.01, respectively.

3, Organic Matter (OM)

OM levels of agricultural soil from typical and commercial swine farm are
shown in Table 17. The average OM from S1, S2, S3, S4 and S5 samples were found
of 42.53+0.82, 40.80£0.44, 51.85+0.59, 41,79+0.28 and 42.32+0.45%, respectively.

4, Nitrogen (N)

N levels of agricultural soil from typical and commercial swine farm are
shown in Table 17. The average N from S1, 82, 83, 84 and 55 samples were found of,
2.13+0.04, 2,31+ 0.02, 2.33+0.06, 2.28+0.03 and 2.26+0.13 mg kg'l, respectively.

5. Phosphorus (P)

P levels of agricultural soil from typical and commercial swine farm are
shown in Table 17, The average P from S1, S2, $3, S4 and S5 samples were found of
4.47+0,58, 5.82:+ 0,02, 5.510.05, 5.50+0.02 and 5.29+0.08 mg kg, respectively.

6. Potassium (K) |

K levels of agricultural soil from typical and commercial swine farm are
shown in Table 17. The average K from S1, S2, $3, 84 and S5 samples were found of,
17.0741.10, 28.42:4124, 53.8842.62, 40.93+23.62 and 40.67+2.49 mg kg,

respectively.
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Heavy metal in soil

Zn, Cu, Pb and Cd levels of agricultural soil from typical and commercial
swine farm are shown in Table 18. The average of Zn from control 1, control 2, S1,
S2, 83, S4 and S5 samples were found of 0.150+0.02, 0.183+0.03, 0.160+0.04,
0.1724£0.07, 0.879+0.50, 0.226+0.01 and 0.253+0.03 mg kg, respectively with
statistically significant differences (p < 0.05). The average of Cu from control 1,
control 2, S1, 82, S3, S4 and S5 samples were found of 0.133+0.02, (.483+0.58,
0.138+£0.01, 0.138+£0.01, 0.153+0.01, 0.153+0.01 and 0.160+0.03 mg kg,
respectively. The average of Cd from control [, control 2, S1, 82, S3, §4 and S5
samples were found of 0.052+0.04, 0.067+0.02, 0.012+0.02, 3.184+0.08, 0.608+0.12,
0.453+0,06 and 0.027+0.03 mg kg™, respectively. For Pb was not found in all the soil

samples.

Table 18 Heavy metal in soil samples (ppm)

Sample Soil sample Zn Cu Cd Pb
Control 1  Grass field 0.15+0,02 0.13+£0.02 0.05+0.04 0.00
Control 2 Sugarcane field 0.18+0.03 0.48+0.58 (.07+0.02 0.00
Si Grass field 0.16+0,04 0.14£0.01 0.01+0.02  0.00
S2 Sugarcane field  0.17+0.07 0.14+0.01 3.18+0.08 0.00
S3 Sugarcane field  0.88+0.50 0.15+0.01 0.68+0.12 0.00
S4 Sugarcane field  0.23+0.01 0.15+0.01 0.4520.06 0.00
S5 Banana field 0.25+0.03 0.16+0.03 0.34+0.03 0.00
.
Note: Mean : standard deviation (n=3). S1, grass field soil from typical farm; S2,

S3 and S4 sugarcane field soil from commercial farm and S5, banana field soil

from commercial farm; Zn, zinc; Cu, copper; Cd, cadmium and Pb, lead;

Heavy metal concentration; n=3
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Occurrence of antibiotics
1. Concentrations of antibiotics in swine feed samples

Seven antibiotics including, lincomycin, sulfamerazine, sulfamethazine,
sulfameter, ciprofloxacin, erythromyein, and trimethoprim were found in feed from
typical swine farm with mean concentrations of 9,191.72+1.15, 1,369.18+1.60,
5,970.40+ 2.21, 1,802.84+3.31, 2,782.72+0,01, 825.44+0.05, and 1,712.14 £1.55 ng
kg, respectively. Six antibiotics lincomycin, sulfamerazine, sulfamethazine,
ciprofloxacin, erythromycin, and trimethoprim were found in feed from commercial
swine farm with mean concentrations of 11,695.81+16.38, 502.73+0.09, 535.64+0.05,
1,102.210.07, 1,570.48+0.03, and 474.63:£0.91 pg kg™, respectively (Figure 20).
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Figure 20 Concentrations of antibiofics in swine feed samples from typical and
commercial swine farms, LIN, lincomycin; SMR, sulfamerazine; SM,
sulfameter; SMZ, sulfamethazine; CPX, ciprofloxacin; ETM,

erythromycin and TMP, trimethoprim
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2. Concentrations of antibiotics in fresh feces samples
Lincomycin, sulfamerazine, sulfamethazine, erythromycin, and trimethoprim
were found in firesh feces from typical swine farm with mean concentrations of
40,229.15+ 19.71, 3,158.36%0.19, 11,803.98::1.20, 24,594.8+5.65, and 4,833.13+0.87
ng kg, respectively. For commercial swine farm, lincomycin, sulfamerazine,
sulfamethazine, ciprofloxacin, erythromycin, and trimethoprim were found in firesh
feces with mean concentrations of 22,524.32+1.78, 3,242.96+0.66, 2,349.33+0.44,
11,575.57+£0.81, 1,328.08+0.36, and 1,911.87+0.03 pg kg‘l, respectively (Figure 21),
3. Concentrations of antibiotics in dried feces and dried sludge samples
Lincomycin, sulfamerazine, sulfamethazine, erythromycin, and trimethoprim
were found in dried feces from typical swine farm with mean concentrations of
26,614.38:: 21,47, 5,858.58+2 .41, 7,658.73£0.61, 21,911,02+4,80, and 6,586.56+2.67
pg kg, respectively. For commercial swine farm, lincomycin, sulfamerazine,
sulfamethazine, ciprofloxacin, erythromycin, and trimethoptim were found in dried
sludge which was ftreated by a biogas system with mean concentrations of
4,090.424:1,94, 1,987.7+0.12, 2,292.66+0.31, 14,353.39%1.55, 4,522.49+0.76, and
1,887.45:t0.33ugkg'1, respectively (Figure 21).
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Fresh feces, dried feces/dried sludge samples
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Figure 21 Concentrations of antibiotics in fresh feces, dried feces/dried sludge
samples from typical and commercial swine farms, LIN, lincomycin;
SMR, sulfamerazine; SM, sulfameter; SMZ, sulfamethazine; CPX,
ciprofloxaciny ETM, erythromyein and TMP, trimethoprim

4. Concentration of antibiotics in flush water samples

Lincomycin, sulfamerazine, sulfameter, sulfamethazine, erythromycin, and
trimethoprim were found in aqueous of the flush water from typical swine farm with
mean concentrations of 74.224:11.02, 4.424: 0.01, 51.03+0.60, 21.904:0.23, 54.94+2.72,
and 2.44+0.42 ng I'', respectively. Lincomycin, sulfamerazine, sulfamethazine,
ciprofloxacin, erythromycin, and trimethoprim were found in SS of the flush water
with mean concentrations of 62,918.29+8.96, 5,556.01+0.13, 9,296.18+0.85,
17,472.79+0.69, 3,602.91+0.84, and 4,620.62+0.12 pg kg, respectively. For
commercial swine farms, lincomyein, sulfamerazine, sulfamethazine, erythromycin,
and trimethoprim were found in aqueous of the flush water with mean concentrations
of 351.24+40.56, 0.92+0.04, 598.34+17.27, 64.25+1.04, and 286.34+0.53 ng I,
respectively. Lincomycin, sulfamerazine, sulfamethazine, ciprofloxacin, erythromyein,
and trimethoprim were found in SS of the flush water with mean concentrations of
9,395.90+16.67, 788.32::0.05, 865.03+0.73, 3,334.30+ 0.95, 5,452.01:£1.61, and
1,061.89+0.52 pg kg™, respectively (Figure 22).
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Figure 22 Concenirations of antibiotics in flush water samples from typical
and commercial swine farms. LIN, lincomycin; SMR,
sulfamerazine; SM, sulfameter; SMZ, sulfamethazine; CPX,

ciprofloxacin; ETM, erythromycin and TMP, trimethoprim
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5, Concentrations of antibiotics in effluent samples

Lincomycin, sulfamerazine, sulfameter, sulfamethazine, erythromycin, and
trimethoprim were found in aqueous phase of effluent from typical swine farm with
mean concentrations of 120.03+0.05, 1,79+0.25, 51.13+0.03, 773.12+1.82,
9,614,56+£1.46, and 1.47+0.05 ng 17, respectively. Sulfamerazine, sulfameter,
sulfamethazine, ciprofloxacin, erythromycin, and trimethoprim were found in SS with
mean  concentrations of  7,594.17+0.06, 31,972.81+0.49, 102,747.26+0.77,
24,553.764:0.56, 154,500,08+12.05, and 8,128,14+0.34 pg kg", respectively.
Lincomyecin, sulfamerazine, sulfameter, sulfamethazine, ciprofloxacin, erythromyecin,
and trimethoprim were found in sediment with mean concentrations of |
29,624.0443.12, 518.79+0.12, 3,001.58+0.50, 24,562.79+ 1.65, 14,641.29+4.19,
71,123.61£23 .28, and 514.69+0.06 pg kg™, respectively, For commercial swine farm,
lincomycin, sulfamerazine, sulfamethazine, and erythromyein were found in aqueous
phase of effluent with mean concentrations of 734.46+4.35, 7.26+3.42, 3.724:0.02, and
3.0740.0t ng 1!, respectively, Lincomyein, sulfamerazine, sulfamethazine,
erythromycin, and trimethoprim were found in SS with mean concentrations of
17,275.33+£0.20, 1,462.5340.01, 36,986.96+0.36, 2,997.80+£2.53, and 1,540.20+0.36
ng kg'l, respectively. In addition, lincomycin, sulfamethazine, ciprofloxacin,
erythromycin, and ftrimethoprim were found in lagoon sediment with mean
concentrations of 11,751.66+ 0.05, 595.48+1.83, 2,350.70+1.57, 1,677.83+£0.13 and
634.66+0.05 pg kg'!, respectively (Figure 23).



Typical farm
400,000 -
—_ aTMP
= 300,000 - @ ETM
\E, B CFX
=] "
§ 200,000 - 1 SMZ
‘E B SM
g & SMR
8 ! 00’000 i B LIN
0 i &
Aqueous  Suspended  Sediment
solids
Commercial farm
60,000 1 ¥
N # SMR
3 7 SM
%I:]
= 40,000 A v SMZ
§ CFX
g ETM
% 20,000 - 8 TMP
)
0 i
Aqueous Suspended Sediment

solids

Figure 23 Concentrations of antibiotics in effluent samples from typical and

‘commercial swine farms. LIN, lincomycin; SMR, sulfamerazine;
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6. Concentrations of antibiotics in the agricultural soil samples

Lincomycin, sulfamerazine, sulfamethazine, ciprofloxacin, erythromycin
and trimethoprim were found in S1 from traditional farm with mean concentration of
4,466.82+11.28, 751.76+0.17, 1,665.75+7.81, 3,593.42+0.05, 5,245.68+1.24 and
1,100.09+0.69 ng/kg, respectively. In commercial farm, lincomycin, sulfamerazine,
sulfamethazine, erythromycin and trimethoprim were found in S2 sample with mean
concentration of 14,671.65+11.28, 565.39+0.17, 3,903.23+7.81, 137.18+1.24 and
871.17£0.69 png/kg, respectively. In addition lincomycin, sulfamerazine,
sulfamethazine, ciprofloxacin, erythromyein and trimethoprim were found at mean
concentration of 18,217.49415.46, 7,733.69+20.34, 19,372.86+38.75, 1,560.33::0.05,
2,945.1541.40 and 85,363.39+4.85 pg/kg in S3, 14,134.49+£36.97, 626.01+0.38,
3,315.07£6.47, 1,927.07:1.84, 8,066.50+0.27 and 493.342.65 pgkg in S4 and
10,809.474+24.44, 885.26+0.97, 870.4£0.99, 2,961.2540.45, 405.87+0.48 and
693.86+0.31 pg/ke in SS. (Figure 24).
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Figure 24 Concentrations of antibiotics in the agricultural soil samples from
typical and commercial swine farms, LIN, lincomycin; SMR,
sulfamerazine; SM, sulfameter; SMZ, sulfamethazine; CPX,

ciprofloxacin; ETM, erythromycin and TMP, trimethoprim
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Correlation between antibiotic concentrations and flush water characteristic
parameters

The correlation between antibiotic concentrations and flush water characteristic
parameters, including pH, COD, BOD and TSS were observed in aqueous and
suspended solids samples of flush water from typical and commercial swine farms and
tested with Pearson’s correlation.

1. Agqueous samples

The correlation between antibiotics and aqueous phase of flush water

characteristic parameters from typical and commereial swine farm (Table 19) showed
that the concentrations of lincomycin, sulfamethazine and trimethoprim were high
positive cotrelated to pH with 0.998, 0.994 and 0.995, COD with 0.989, 0.995 and
0.994, BOD with 0.998, 1.000 and 1.000, TSS with 0.979, 0.988 and 0.986 of
Pearson’s values, respectively. Sulfamerazine and sulfameter were high negative
correlated to pH with - 0.989 and -0.995, COD with -0.997 and -0.990, BOD with -
1.000 and -0.997, TSS with -0.992 and -0.978 of Pearson’s values, respectively. For
erythomycin was not correlated to pH, COD, BOD and TSS of Pearson’s values.

2. Suspended solids samples

The correlation between antibiotics and suspended solids phase of flush

water characteristic parameters from typical and commercial swine farm (Table 20)
showed that the concentrations of lincomycin was high positive correlated to pH,
COD, BOD and TSS with 0.964, 0.965, 0.968 and 0.957 of Pearson’s values,
respectively. Sulfamethazine was high negative correlated to TSS with -0.997 of
Pearson’s values. Erythomyein was high positive correlated to pH with 0.952 of
Pearson’s values. For sulfamerazine, ciprofloxacin and erythomycin were not

correlated to pH, COD, BOD and TSS of Pearson’s values.
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Correlation between antibiotic concentrations and effluent characteristic parameters
The correlation between antibiotic concentrations and effluent characteristic
parameters such as pH, COD, BOD, TSS and TOC were observed in effluent and
sediment samples from typical and commercial swine farms with Pearson’s
correlation.
1. Aqueous samples
The correlation between antibiotics and aqueous of effluent characteristic
parameters from typical and commercial swine farm (Table 21) showed that the
concentrations of lincomycin and sulfamerazine were high positive correlated to pH
with 0.992 and 0.993, COD with 0.999 and 0.999 of Pearson’s values while, they were
high negative correlated to BOD and TSS with -0.999 and -0.895, Sulfameter,
sulfamethazine, erythomycin and trimethoprim were high negative correlated to pH
with -0.985, -0.992, -0.992 and -0.993 while, they were high positive correlated to
BOD with 0.999 in these and TSS with 0.920, 0.895, 0.895 and 0.894 of Pearson’s
values in these, respectively.
2. Suspended solids samples
The correlation between antibiotics and suspended solids of effluent
characteristic parameters from typical and commercial swine farm (Table 22) showed
that the concentrations of sulfameter was high correlated to pH, COD, BOD and TSS
with -0.987, -0.991, 0.993 and 0.926 of Pearson’s values. Sulfamethazine and
trimethoprim were high correlated to pH with -0.994 and -0.927, COD with -0.988 and
-0.894, BOD with 0.984 and 0.886 of Pearson’s values.
3. Sediment samples
The correlation between antibiotics and sediment samples of effluent
characteristic parameters from typical and commercial swine farm (Table 23) showed
that the concentrations of lincomycin, sulfamerazine, sulfameter, sulfamethazine,
erythomyein and trimethoprim were high correlated to TOC with 0.941, 0.997, 1.000,
-0.997, 0.988, 0.980 and -0.955 of Pearson’s values, respectively.
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Correlation between antibiotic concentrations and soil property parameters

The correlation between antibiotic concentrations and soil properties
parameters such as pH, cations exchange capacities (CEC), organic matter (OM),
nitrogen (N) phosphorus (P) and potassium (K) were observed in soil samples from the
typical and commercial swine farms with Pearson’s correlation.

The correlation between antibiotics and agricultural seil property parameters
from typical and commetrcial swine farms (Table 24) showed that the concentrations of
sulfamethazine was very high negative correlated to OM, N and P with -(.564, -0.672
and -0.623, respectively. Moreover, the concentrations of trimethoprim was high

positive correlated to K with 0.594 of Pearson’s values.
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Fate of antibiotics in the effluent from typical and commercial swine farms

The main aims of the oxidation pond from typical swine farm and a biogas
system and lagoon from commercial swine farm as wastewater treatment process can
be reduced the organic content of effluent including toxic or trace organic compounds,
reduce suspended solids, reduce or inactivate pathogenic bacteria and reduce the
nuirient loads discharged to receiving surface waters, However, many antibiotics
cannot be removed completely in wastewater treatment processes that are often
detected in receiving environment in several reported (Lundborg and Tamhankar,
2017).

The Fate of antibiotics in the effluent may be effected by several factors, such
as: effluent characteristics, type of biological process (convectional activated sludge,
presence/absence of nitrification and denitrification step, type of biological
technology, presence and type of advanced treatment and disinfection (Luigi, & Rizzo,
2012). Antibiotics are released to the environment with leaching of swine effluent and
waste utilization as fertilizer applying to agricultural field in unchanged parent form
and their metabolites. The metabolites of antibiotics can be transformed back to the
parent compound with different pathways such as sorption, adsorption and degradation
process depend on their physical properties and environment process (Mojica, & Aga,
2011; Behera et al,, 2011; Wegst-Uhrich et al., 2014). This study reported the fate of
antibiotics in topic as physical properties of antibiotics, sorption and adsorption and
degradation, the detail as below:

1. Physicochemical properties of antibiotics studied

Forty-one antibiotics were target compounds of this study, including
sulfamerazine, sulfameter, sulfamethazine, sulfacetamide, sulfaguanidine, sulfanilamide,
sulfadiazine, sulfathiazole, sulfapyridine, sulfamonomethoxine, sulfachloropyridazine,
sulfamethoxazole, sulfadimethoxine, sulfadoxine, sulfisoxazole, sulfaquinoxaline,
tetracycline, methacycline, lincomycin, erythromycin, clarithromycin, lencomycin,
roxithromycin, Oleandomycin, tylosin, ciprofloxacin, marbofloxacin, fleroxacin,
norfloxacin, carbadox, ofloxacin, pefloxacin, lomefloxacin, danofloxacin,
enrofloxacin, sarafloxacin, difloxacin, trimethoprim, ormetoprim, narasin and
monensin but the results showed that lincomycin, sulfamerazine, sulfameter,

sulfamethazine, erythromycin, ciprofloxacin and trimethoprim were detected in the
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samples. The physicochemical properties of the antibiotic studied are shown in
Chapter 11.
2. Sorption

The distribution of antibiotics between aqueous phase, suspended solids
phase, and sediment phase in the effluent depends on natural sorbents (particles,
sediments, humic materials and dissolved organic matters) and their sorption
coefficients. The distribution coefficient (Kq) is defined as the ratio of antibiotics in a
solid phase and aqueous phase. Kq value can vary with sorbent coefficients (log Ka)
and organic carbon sorption coefficients (log Koo are organized together with
characteristics of sorbent (Site, 2001). Then antibiotics will adsorb on patticles or
sediments/sludge produced as Kqg and Ko values.

3, Partitioning of antibiotics between aqueous phase and suspended solid
phase of the effluent

Typical swine farm, antibiotics sorption onto suspended solids, sorption
coefficients reported in Table 25 show the antibiotics adsorb to solid phase. The
partitioning of detected antibiotics, sulfamerazine, sulfameter, sulfamethazine,
erythomycin and trimethoprim were showed with K, values of 8,437.97, 625.32,
132.90, 16,07 and 5,529.35, respectively, K, values of sullamerazine, sulfameter,
sulfamethazine, etythomycin and trimethoprim were found of 34,203.35, 2,534.75,
538.71, 65.14 and 22,413,24, respectively. This result indicated that sulfamerazine
sorption to suspended solid phase of the cffluent was greater than trimethoprim,
sulfameter, sulfamethazine and erythomycin. Log K, of sulfamerazine, sulfameter,
sulfamethazine, erythomycin and trimethoprim of swine cffluent from typical swine
farm were found of 3.93, 2.80, 2.12, 1.21 and 3.74, respectively. Log Koo of
sulfamerazine, sulfameter, sulfamethazine, erythomycin and trimethoprim were found
of 4.53, 3.40, 2,73, 1.81 and 4.35, respectively (Table 26).

For commercial swine farm, antibiotics sorption onto suspended solids,
sorption coefficients reported in Table 26 show the antibiotics adsorb to solid phase.
The partitioning of detected antibiotics, lincomycin, sulfamerazine, sulfamethazine
and erythomycin were showed with Ky values of 23.52, 201.45, 9,942.73 and 976.48,

respectively, K, values of lincomycin, sulfamerazine, sulfamethazine and erythomycin
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were found of 176.19, 1,508.99, 74,477.39 and 7,314.47, respectively. This result

indicated that sulfamethazine sorption to suspended solid phase of the effluent was

greater than erythomycin, sulfamerazine and lincomycin, Log Ky values of lincomycin,

sulfamerazine, sulfamethazine and erythomycin of swine effluent from commercial

swine farm were found of 1.37, 2.30, 4.00 and 2.99, respectively. Log K, values of

lincomyein, sulfamerazine, sulfamethazine and erythomycin were found of 2.25, 3.18,
4,87 and 3.86, respectively (Table 26).

Table 25 Partitioning coefficients of antibiotics (g and K,) in aqueous-

suspended solid from the effluent

Typical farm (L kg™ Commercial farm (L kg™
Compounds ~ Kd Koce Kd Koc
Lincomyein ND ND 23.52 176.19
Sulfamerazine 8,437.97 34,203.35 201.45 1,508.99
Sulfameter 625.32 2,534.75 ND ND
Sulfamethazine 132,90 538.71 9,942.73 74,477.39
Erythomycin 16.07 65.14 976.48 7,314.47
Trimethoprim 5,529.35 22,413.24 ND ND

Table 26 Partitioning coefficients of antibiotics (Log K, and Log K,) in aqueous-

suspended solid phase of effluent from the two swine farms

Traditional farm (L kg™

Commercial farm (L kg™

Compounds
Log Ky Log Ko Log K4 Log Ko

Lincomycin ND ND 1.37 2.25
Sulfamerazine 3.03 4.53 2.30 3.18
Sulfameter 2.80 3.40 ND ND
Sulfamethazine 2.12 2.73 4,00 4.87
Erythomycin 1.21 1.81 2.99 3.86
Trimethoprim 3.74 4.35 ND ND




104

Partitioning of antibiotics between aqueous phase and sediment phase of the
effluent

Adsorption onto sediments, the Ky and K, values of effluent (Table 27)
showed that partitioning of antibiotics to sediment from oxidation pond of typical
swine farm with K values of lincomycin, sulfamerazine, sulfameter, sulfamethazine,
erythomycin and trimethoprim at 246.81, 576.43, 58.70, 31.77, 7.40 and 350.13,
respectively, K . values of lincomycin, sulfamerazine, sulfameter, sulfamethazine,
erythomycin and trimethoprim were found at 1,000.43, 2,336.58, 237.96, 128.78,
29.99 and 1,419.25, respectively. This result indicated that sulfamerazine sorption to
sediment phase of the effluent was greater than trimethoprim, lincomycin, sulfameter,
sulfamethazine and erythomycin.

Log K, values of lincomycin, sulfamerazine, sulfameter, sulfamethazine,
erythomycin and trimethoprim from typical swine farm were found at 2.39, 2.76, 1.77,
1.50, 0.87 and 2.54, respectively.

Log K, values of lincomyecin, sulfamerazine, sulfameter, sulfamethazine,
erythomycin and trimethoprim were found at 3.00, 3.37, 2.38, 2,11, 1.48 and 3.15,
respectively (Table 28).

For the partitioning of antibiotics to lagoon sediment from commercial swine
farm (Table 27) were found the K, values of lincomycin, sulfamethazine and
etythomycin at 16.00, 9,942.73 and 546.52, respectively. K. values of lincomyecin,
sulfamethazine and erythomycin were found at 119.85, 74,477.40 and 4,093.82,
respectively. This result indicated that sulfamethazine sorption to sediment phase of
the effluent was greater than erythomyein and lincomycin,

Log Ky values of lincormyein, sulfamethazine and erythomycin were found at
1.20, 4.00 and 2.74, respectively. Log K, values of lincomycin, sulfamethazine and

erythomycin were found at 2.08, 4.87 and 3.61, respectively (Table 28).
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Table 27 Partitioning coefficients of antibiotics (Kq and K) in aqueous-sediment

phase of effluent from the two swine farms

Typical farm (L kg'l) Commercial farm (L kg™
Compounds

Kq Ko Ky Koe
Lincomycin 246.81 1,000.43 16.00 119.85
Sulfamerazine 576.43 2,336.58 ND ND
Sulfameter 58.70 237.96 ND ND
Sulfamethazine 3177 128.78 9,942.73 7447740
Erythomyein 7.40 il g0 546.52 4,093.82
Trimethoprim 350.13 1,419.25 ND ND

Table 28 Partitioning coefficients of antibioties (Log Ky and Log Ky} in aqueous-

suspended solid phase of effluent from the two swine farms

Typical farm (L kg']) Commercial farm (L ke
Compounds

Log K4 Log K. Log K4 Log Ko
Lincomycin 2.39 3.00 1.20 2.08
Sulfamerazine 2.76 3.37 ND ND
Sulfameter 1.77 2.38 ND ND
Sulfamethazine 1.50 I 4.00 4,87
Erythomycin 0.87 1.48 2.74 3.61
Trimethoprim 2.54 3.15 ND ND




Partitioning of antibiotics between aqueous from effluent and agricultural soil
samples with swine wastewater

Antibiotics sorption into agricultural soil from typical swine farm and
commetcial swine farms, sorption coefficients reported in Table 29 show the
antibiotics adsorb significantly to the soil samples. The partitioning of detected
antibiotics, lincomycin, sulfamerazine, sulfamethazine, erythomycin and trimethoprim
were showed with K, values ranging from 14.72-37.21, 77.88-1,065.25, 2.15-
5,207.76, 0.55- 2,627.52 and ND-748.36 respectively, K., values of lincomycin,
sulfamerazine, sulfamethazine, erythomycin and trimethoprim were found ranging
from 110.24- 185.80, 583.35-7,979.37, 8.73-39,009.42, 2.21-19,681.83 and ND-
3,033.48, respectively. This result indicated that sulfamerazine sorption to agricultural
soil was greater than lincomycin, sulfamethazine, erythomycin and trimethoprim,
respectively.

Log K4 of lincomycin, sulfamerazine, sulfamethazine, erythomycin and
trimethoprim in agricultural soil from typical and commercial swine farms were found
ranging from 1,17-1.57, 1.89-2.92, 0.33-3.72, -0.26-3.42 and ND-2.87, respectively.
Log K, of lincomycin, sulfamerazine, sulfamethazine, erythomycin and trimethoprim
were found ranging from 2.04-2.27, 2.77-3.90, 0.94-4.59, 0.34-4.29 and ND-3.48,
respectively (Table 30).
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Partitioning of antibiotics

The soil and groundwater nearby the swine farms receives antibiotics from
wastewater and manure as fertilization. Moreover they could distributed in various
phase such as aqueous, suspended solids, sludge, sediment from flush water,
wastewater and biogas system. The result in this study found that the concentrations of
lincomycin, sulfamerazine, sulfameter, sulfamethazine, ciprofloxacin, erythomycin-
H,O and trimethoprim in agueous and suspended solids in flush water samples,
aqueous, suspended solids and sludge or sediments in wastewater samples, aqueous
and suspended solids in groundwater samples, soil samples and fresh and dried feces

samples as showed in Table 31-34,
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Antibiotic resistance genes in agricultural soil samples

The retO genes were detected in S1 soil sample from traditional swine farm,
S3 and S5 soil sample from commercial swine farm. For fefM was detected in S3 soil
sample from commercial swine farm, However, fefO and fefM were not detected in
control soil samples in this study (Table 35).

In addition, fefO and re/M genes were showed in an agarose gels of PCR
products as expected genes (Figure 25). The data for the similarity DNA analysis were
obtained from sequences contained in the BLAST databases available from NCBI, The
result showed rerO gene sequence were found 100% similar to Streptococcus suis
BM407 and YMI12 strains. For tetM gene sequence were found 100% similar to
Streptococeus salivarius FDAARGOS, S, agalactiae C001, Sagl58, H002, 2603V/R
strains, S. phage IPP61, S. parauberis NUF1049, S, epidermidis pSWS47 (plasmid), S.
constellatus C1050, S, pneumoniae ICE (transposon), Staphylococeus rostri tn916
(transposon), RSTI11, Sraphylococcus pseudintermedius HKU10-03, Mycoplasma
mycoides YCp235-1 and GM12, Aerococcus christensenii CCUG28831, Clostridium
difficile ORF1 and Tn916-like transposon, Escherichia coli HS13-1, §Y, M160133,
EC1515, EC974, CY4, pSJ]_255, E. coli pTW4, p41-3 DNA, pl5 DNA (plasmid),
Enterococcus faecalis DENGI, E. faecalis pCF10 (plasmid) as showed in Table 36.
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Figure 25 Agarose gels of PCR products stained with ethidium bromide for (A)
tetQ and (B) fefM. (A) and (B) Lanes: M, 100 bp DNA ladder; N,
negative control; SC1, soil control from traditional farm; SC2, soil
control from commercial farm; S1, grass field soil from traditional
farm; S2, S3 and S4, sugarcane field soils from commercial farm and

S5, banana field soil from commercial farm
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Table 35 The detection of ARGs in agricultural soil samples from traditional and

commetrcial swine farm by PCR

Presence of gene

Sample tefM tetO ermA ermB gnrA qniB
SC1 - - - - - -
SC2 - - - - - -

S1 - + - - - -
S2 - . B . - -
53 Y- + 4 - - .
S4 { : . : : .
53 - + - - : -

Note: SC1, soil contro! from traditional swine farm; SC2, soil control from
commercial swine; S1, grass field soil from traditional farm; S2, S3 and S4,
sugarcane field soils from commercial farm and S5, banana field soil from

commercial farm

Table 36 £efO and fefM genes sequence similarity (100%)

Genes Strain name

tetQ Streptococcus suis BM407
Streptococcus suis YM12

feivi Streptococcus salivarius FDAARGOS
Streptococcus agalactiae C001
Streptococcus agalactiae Sagl58
Streptococcus agalactiage HO02
Streptococcus agalactiae 2603V/R
Streptococcus phage IPP61
Streptococcus parauberis NUF1049
Streptococcus epidermidis pSWS47




Table 36 (cont.)
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Genes

Strain name

Streptococcus constellatus C1050
Streptococcus pneumoniae ICE (iransposon)
Staphylococcus rostri tn916 (transposon)
Staphylococcus rostri RST11
Staphylococcus pseudintermedius HKU10-03
Mycoplasma mycoides YCp2335-1
Mycoplasma mycoides GM12
Aerococcus christensenii CCUG28831
Clostridium difficile ORF1

Clostridium difficile Tn916 (transposon)
Escherichia coli HS13-1

Escherichia coli 5Y

Lscherichia coli M160133

Escherichia coli EC1515

Escherichia coli EC974

FEscherichia coli CY4

Escherichia coli pSI_255

Escherichia coli pTW4

FEscherichia coli p41-3 DNA
Escherichia coli p15 DNA

Enterococcus faecalis DENG1

Enterococcus faecalis pCF10




CHAPTER V

CONCLUSION AND DISCUSSION

Conclusion

The study of occutrence of selected antibiotics from traditional and
commercial swine farms revealed that lincomycin, sulfamerazine, sulfameter,
sulfamethazine, ciprofloxacin, erythromycin and trimethoprim were found in swine
feeds, flush water, wastewater, groundwater, fresh feces, dried feces and agricultural
soil, except sulfameter that not found in all samples from commercial farm. In
addition, fesO and fefM genes were found in agricultural soil near the two swine farms,
The present study also indicated that antibiotic from swine farms could enter the
environment with direct leaching of swine wastewater and waste utilization as
fertilizer applying to agricultural field. As a result of different farm managements,
especially wastewater treatment process, antibiotic concentrations in the samples from
traditional farm were higher than those from commercial farm, Consequently, to
reduce contamination of antibiotics from swine farm to the environment should be

paid attention.

Discussion
1. Occurrence of antibiotics in swine feed samples

In this study, lincomycin, sulfamerazine, sulfameter, sulfamethazine,
ciprofloxacin, erythromycin and trimethoprim were found in feeds from traditional
and commercial swine farms, except sulfameter that not found in samples from
commercial farm. Based on interview with farmers, these antibiotics were commonly
used in feed for growth promotion and disease prevention, In fact, all the antibiotics
were detected in feed which were mixed on the typical farm by farmer under the
experience and decision. For commercial farm, antibiotics were used and mixed in
feed on the farm under the control and supervision of farm veterinarians that were
conducted on Good Agricultural Practices for pig farm in Thailand. Many antibiotics

are not completely absorbed in the gut, resulting in the excretion of the parent
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compound and its breakdown metabolites (Boxall et al., 2004). Most antibiotics
concentrations in feed samples from typical farm were higher than those from
commercial farm. These were due to pigs in typical farm found in different growth
stages of swine, including piglets, growing and finishing, and sows; especially, newly
weaned piglets, were often fed with various antibiotics with high dosage to prevent
and treat diseases.

Lincomycin was found at highest concentrations in feed samples from the
two farms. It is commonly used for growth promotion enhanced pig productivity
(Pollman et al., 1980) as well as disease treatment and control (Raji¢ et al., 2006). It is
effective in reducing the Clostridium spp. infection (diarrheal disease) in all ages of
pigs (Silva et al., 2015). Besides, the other antibiotics, including sulfonamides groups,
ciprofloxacin, trimethoprim and erythomycin were found in feed samples that are
often detected in swine feeds as Zhao et al. (2013, Chen et al,, 2012) repotted.
Furthermore, FDA (2015) reported lincomyein, sulfamerazine, sulfamethazine and
erythromycin are approved for use in food-producing animals.

2. Occurrence of antibiotics in fresh feces and flush water samples

Lincomycin, sulfamerazine, sulfameter, sulfamethazine, ciprofloxacin,
erythromycin and trimethoprim were found in aqueous and suspended solids samples
of flush water, from the two farms, except sulfameter in commercial farm, which were
reflected dosage and frequency of antibiotics in swine feeds in farm samples, Most
antibiotics concentrations in aqueous samples from commercial farm were higher
those from traditional farm. All the antibiotics were detected in fresh feces and flush
water which were reflected the dosage and frequency of antibiotics used in farms.
These data demonstrated that swine farms are considered as an important pollution
source of various antibiotics to the receiving environments (Qiao et al., 2012). Most
antibiotics concentrations in aqueous phase of flush water from commercial farm were
higher those from typical farm, while antibiotics concentrations in S8 from typical
farm were higher than those from commercial farm. This may due to pigs in
commercial farm were found older age and more number of pigs than typical farm.
Therefore, pigs in commercial farm consume and excrete more than typical farm.
Thus, the antibiotics and their metabolites were excreted via feces and urine and

contaminated in flush water. Animals consume antibiotics as much as 30 to 90% that
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is released into the manure and urine (Sarmah et al., 2006). Moreover, typical farm
was operated with open system; the floor was easy to be dirty from sturry, dust and
soil around the swine houses and it was not separated between dry and wet area, Thus,
the swine houses were flushed with water supply that was contaminated with high
antibiotics which may cause of antibiotic increasing in the flush water.
3. Occurrence of antibiotics in dried feces and dried sludge samples

Lincomycin, sulfamerazine, sulfamethazine, erythromycin, and trimethoprim
were found in dried feces from typical farm, For commercial farm, lincomycin,
sulfamerazine, sulfamethazine, ciprofloxacin, erythromycin, and trimethoprim were
found in dried sludge which was treated by a biogas system. The concentrations of
lincomyein, sulfamethazine and erythromycin were lower in dried feces than in fresh
feces. Lincomycin, sulfamerazine, sulfamethazine and trimethoprim were also lower
in dried sludge than in fresh feces. Sulfamethazine was found in dried feces and dried
sludge reported by Zhang et al., 2015. These suggest that these antibiotics might be
degraded or evaporated during the drying process under sunlight and biogas system,
Thus, the drying process may be a better way to degrade excessive antibiotics in feces.

4. Occurrence of antibiotics in the effluent samples

Lincomycin, sulfamerazine, sulfameter, sulfamethazine, erythromyein, and
trimethoprim were found in aqueous phase of effluent from typical farm. Sulfamerazine,
sulfameter, sulfamethazine, ciprofloxacin, erythromycin, and trimethoprim were found
in SS. For commercial farm, lincomycin, sulfamerazine, sulfamethazine, and
erythromycin were found in aqueous phase of effluent. Lincomycin, sulfamerazine,
sulfamethazine, erythromycin, and trimethoprim were found in SS. In addition,
lincomycin, sulfamethazine, ciprofloxacin, erythromycin, and trimethoprim were
found in lagoon sediment. Most antibiotic concentrations in wastewater from typical
farm were higher than those from commercial farm. These results suggest that
different antibiotic removal efficiencies from wastewater depend on wastewater
freatment process cortesponding to Gulkowska et al., 2008. The results from the
present study demonstrated that sulfamerazine, trimethoprim in aqueous and
lincomycin in S8 were decreased from flush water by an oxidation pond. In addition,
sulfamethazine, erythromycin, trimethoprim in aqueous, ciprofloxacin and

erythromycin in SS were decreased from flush water by a biogas system.
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Lincomycin, sulfamerazine, sulfameter, sulfamethazine, ciprofloxacin,
erythromycin and trimethoprim were found in sediment from oxidation pond.
Erythromycin was found at highest concentrations and trimethoprim was found at
lowest concentrations in sediment samples from typical farm. For commercial farm,
lincomycin, sulfamethazine, ciprofloxacin, erythromycin and trimethoprim were found
in lagoon sediment. Lincomycin was found at highest concentrations and
sulfamethazine was found at lowest concentrations. Most antibiotic concentrations in
aqueous phase, SS and sediment from typical farm were higher than those from
commercial farm, These indicated that antibiotic concentrations in wastewater from
commercial farm were decreased by the biogas system corresponding to Zhao et al.
(2013). These may depend on wastewater treatment methods, In fact, swine
wastewater from typical farm was stored in an oxidation pond and drained onto
agricultural field, while wastewater from commercial farm was already treated with a
biogas system before it was drained onto agricultural field, Thus, antibiotic in the
effluent of typical farm were higher than those in commercial farm. However, the
antibiotics could not be treated by these wastewater treatment methods. In addition,
most antibiotic concentrations in wastewater from the two farms were found in SS
higher than sediments and aqueous phase. These suggest that most antibiotics were
transferred into the solid phase via sorption as well as eliminated from liquid phase by
photodegradation. Such high concentrations in SS would have negative impacts on soil
if wastewater and sludge are applied on agricultural field such as effects on soil
microbial diversity (Chander ct al., 2005). Thus, sorption of antibiotics in solid phase
can reduce their mobility, reactivity, and bioavailability for microbial degradation
(Hatzinger, & Alexander, 1997).

5. Occurrence of antibiotics in the water supply samples

Lincomycin, sulfamerazine, sulfameter, sulfamethazine, and trimethoprim
were found in aqueous phase of water supply from typical farm. Lincomycin,
sulfamerazine, sulfamethazine, ciprofloxacin, erythromycin, and trimethoprim were
found in SS of water supply from typical farm. For commercial farm, lincomycin,
sulfamerazine, sulfamethazine, ciprofloxacin, erythromycin, and trimethoprim were
found in aqueous phase of water supply. Lincomycin, sulfamerazine, sulfamethazine,

ciprofloxacin, erythromycin, and trimethoprim were found in SS of water supply.
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These antibiotics were found in water supply corresponding with Zhao et al. (2013)
and Yao et al. (2017). Base on the farms survey and interview with the farmers, water
from the shallow wells farms was pumped and kept in the storage tanks in each farm
as water supplies. Water supplies were used for watering pigs and flush manure from
swine houses. From this study, antibiotics were found in the effluent samples which
were drained on soil in these farms, These suggest that antibiotics might be reach the
shallow wells by different pathways (Carvalho, & Santos, 2016). The contamination of
antibiotics in the subsoil depends on the frequency of wastewater discharge,
physicochemical properties and processes of each compound such as solubility,
sorption, degradation as well as soil properties (Boy-Roura et al., 2018).
6. Antibiotics in the agricultural soil samples

Lincomyein, sulfamerazine, sulfamethazine, ciprofloxacin, erythromyecin,
and trimethoprim were found in grass field soil from typical farm. For commetcial
farm, lincomyein, sulfamerazine, sulfamethazine, ciprofloxacin, erythromycin, and
trimethoprim were found in sugarcane field soil. In addition, lincomyein,
sulfamerazine, sulfamethazine, ciprofloxacin, erythromycin and trimethoprim were
found in banana field scil. Most antibiotic concentrations in sugarcane field soil were
higher than those the other soil samples, The present study also showed that the soil
nearby swine farms was contaminated with various antibiotics. Ciprofloxacin and
erythomycin were found at high concentrations in grass soil of the typical farm which
directly received the effluent from oxidation pond, On the other hand, lincomyecin,
sulfamerazine, and sulfamethazine were found at high concentrations in agricultural
soil from commercial farm, The antibiotic residue in soils was reported in many
studies (Boxall, 2004; Hamscher et al., 2005; Martinez-Carballo et al,, 2007).
Ciprofloxacin, sulfonamides, and tetracyclines could persist in soils a long time
(Zuccato et al,, 2000), and only a moderate degradation of various tetracyclines
occurred within 180 days (Hamscher et al., 2002), while soil without antibiotics used
find them due to a habitat of indigenous antibiotics produced by soil microorganisms
(Gottlieb, 1976). Thus, soil nearby the swine farms risked for antibiotics accumulated
higher than soil without waste from swine farms, However, the occurrence of
veterinary antibiotics in the environment matrices from the swine farms depend on

breeding, pig age, farm size and farm management.
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7. Correlation between antibiotic concentrations and wastewater characteristic

The correlation between antibiotic concenirations and aqueous of flush
water characteristic parameters from traditional found that lincomycin was strong
negative correlated to TSS when it was tested with Pearson’s correlation. For
commercial swine farm, lincomycin was strong positive correlated to pH, COD, BOD
and TSS, sulfameter was high positive correlated to BOD and trimethoprim was high
positive correlated to pH of Pearson’s values when they were tested with Pearson’s
correlation, For suspended solids, sulfamerazine, sulfamethazine, ciprofloxacin,
erythromycin and trimethoprim were high negative correlated to pH. Sulfamerazine,
sulfamethazine and trimethoprim were high negative correlated to COD. Ciproftoxacin
and erythromycin were high negative correlated to BOD and TSS. Ciprofloxacin and
erythromycin were high positive correlated to COD., Sulfamerazine, sulfamethazine
and trimethoprim were high positive correlated to BOD and TSS. In commercial
swine, Lincomycin, sulfamerazine, sulfamethazine and ciprofloxacin were high
positive correlated to flush water quality parameters.

For the wastewater, the correlation between antibiotic concentrations and
aqueous of wastewater characteristic parameters from oxidation pond (traditional
farm) found that only lincomycin high positive correlated to BOD, Lagoon wastewater
from commercial swine farm, lincomycin and sulfamerazine were high negative
correlated to pH only. In suspended solids, sulfamerazine and ciprofloxacin were high
positive correlated to pH, BOD and TSS and these compounds were high negative
correlated to COD. Sulfamethazine and erythromycin were high negative correlated to
pH, BOD and TSS. For commercial swine, lincomyein was high positive correlated to
pH and TSS. Sulfamerazine, sulfamethazine, erythromycin and trimethoprim were
high negative correlated to pH and BOD while they were high positive correlated to
COD and TSS. In addition, the correlation between antibiotics and oxidation pond or
lagoon sediment of wastewater characteristic parameters found that the concentrations
of lincomycin, sulfamethazine, ciprofloxacin, erythromycin and trimethoprim were
high negative correlated to TOC in commercial swine farm while traditional swine

farm were not correlated.
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For soil samples, the correlation between antibiotics concentrations and
soil property parameters from traditional swine farm found that lincomycin,
sulfamerazine, sulfamethazine and erythromycin-H,O were high negative correlated to
K. Sulfamethazine was high negative cottelated to pH, OM, N and high positive
correlate to P. Ciprofloxacin was high positive cotrelated to pH, OM, N, K and high
negative correlated to P, Trimethoprim was high positive correlated to OM, N and K.
In commercial swine farm, sulfamethazine was high positive correlated to OM and
erythromycin was high positive correlated to N,

In general, the potential degradation and removal efficiencies of antibiotics
in wastewater and soil depends on their physicochemical properties and the process of
wastewater treatment (Gulkowska et al.,, 2008). Generally, antibiotic residue are
slowly degraded in the wastewater under normal operating conditions of the treatment
plants (Abbassi et al., 2016). Thus, these process was one of the great contributing
factors to antibiotic concentration in the environment (Rizzo et al.,, 2013). For the
biological wastewater treatment process had not been designed to remove the
antibiotics. Especially, swine wastewater was not easily treated with this (Park and
Choung, 2007). In various studies were reported that the antibiotic removal from the
wastewater treatment plants with different rates (Shokoohi et al., 2017) during 0%
(Zuccato et al,, 2010), and up to 80% (Li et al,, 2011). For the concentration of
antibiotics in surface soil were degraded with the abiotic and biotic processes such as
hydrolysis and photodegradation (Pikkemaat et al., 2016). However, rate of
degradation depends on the type of antibiotics, chemical soil properties, and soil
management (Jayanta et al., 2017).

8. Fate of antibiotics in wastewater

The overuse of antibiotics is the primary cause of high concentrations in
the slurry sent to wastewater treatment plants. A second factor is the quantity of water
and methods used to clean out pig houses (Lallai et al, 2002). Although, the
wastewater treatment plants could be remove the suspended solids, nutrients, organic
matter, and some pathogens. However, the wastewater treatment plants were not
designed for the removal of antibiotics (Pruden et al., 2013). Because of antibiotic
compounds are not fully degraded during treatment with the anaerobic digestion and

biological processes (Feng et al., 2017 and Shokoohi et al., 2017). Therefore,
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antibiotics could be released into the environment via wastewater discharges. In the
swine wastewater, the residence time of antibiotics and their distribution between
aqueous phase, suspended solid phase and sediment phase from an oxidation pond and
a lagoon depends on their physicochemical properties and treatment conditions (Luo
et al., 2014) or their capacity to bind to suspended solids and adsorb on sediments.

Antibiotics could be remove during wastewater treatment processes with
the adsorption, degradation, disinfection as well as membrane separation (Zhang,
2016). The removal refers to the parent compounds were loss with the degradation
process and transformation mechanisms, except their sorption to sludge (Zhou et al.
2013). In addition, the removal of antibiotics in aqueous refers to the parent
compounds were loss from aqueous phase during treatment processes (Zhou et al.
2013). However, these parent compounds could be accumulate in suspended solids or
sludge phases.

Antibiotics were investigated in the wastewater in this study include
lincomycin, sulfamerazine, sulfameter, sulfamethazine, erythromycin, ciprofloxacin
and trimethoprim, the water solubility of these compounds were showed of 927, 202,
730, 1,500, 1.44, 30,000 and 400 mg/L, respectively (The range of the water solubility
is >200 mg/L for high, 5-200 mg/L for mediate and < 5 mg/L for low solubility),
indicated that they are a very soluble and they have low tendencies to sorp to the solid
phases, except erythromycin, This probably antibiotics concentrations were removed
from aqueous phase with the degradation process (Zhou et al, 2013). For erythromycin
has solubility of 1.44 mg/L, indicated that it is very low soluble and high tendency
sorption onto the sludge. This probably reduces antibiotics concentration in aqueous
phase. In addition, many researches were repoited that the adsorption process was an
important pathway for antibiotic removal from aqueous phase (Kim et al., 2005).

Distribution of antibiotics between aqueous and sludge from a biogas
system in this study, Ky values of antibiotics indicating sulfamethazine and
erythromycin were adsorbed by sludge phase at 4.01 and 3.50 of log Ky, those with a
high log K4 (The log K4 values for low around < 2.6 and high around > 3.6 (Berthod,
2014)). From this study, although sulfamethazine is good binding capacity for water as
shown in previous result at the same time, it could good adsorbed by sludge phase.

This probably sulfamethazine could be transform with an anaerobic sludge digestion
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(Gobel et al,, 2005). In this case, precautions may be required for the disposal of
sludge to agricultural land, as there are potential risks associated with leaching of
desorbed chemicals and the movement of these chemicals into agricultural area
(Berthod et al.,, 2014). For, lincomycin was low adsorbed by sludge phase at 1.80 of
log Kg4, will temain mainly in the aqueous wastewater.

Distribution of antibiotics between aqueous and suspended solids phases
from an oxidation pond and lagoon in this study, Ky values of antibiotics indicating
most of antibiotics were stronger sorption from traditional than commercial swine
farm. This probably due to result in several factors such as organic carbon and
treatment process (Grady et al., 1999). In traditional swine farm, log Ky of lincomycin,
sulfamerazine, sulfameter, sulfamethazine, erythromycin and trimethoprim were ND,
3.93, 2.80, 2.12, 1.21 and 3.74, respectively. Log Ko of sulfamerazine, sulfameter,
sulfamethazine, erythromycin and trimethoprim were ND, 4.53, 3.40, 2.73, ND, 1.81
and 4.35, respectively. For commercial swine farm, log K4 of lincomycin,
sulfamerazine, sulfamethazine, erythromyein and trimethoprim were 1.37, 2.30, 4.00,
3.00 and ND, respectively. Log Kq of lincomycin, sulfametrazine, sulfamethazine,
erythromycin and trimethoprim were 2.25, 3.18, 4,87, 3.86 and ND, respectively, This
suggested that these compounds tendencies to bind to suspended solids and
lincomyecin, sulfamethazine and erythromycin were good sorption in sludge of biogas
from commercial swine farm while, sulfamerazine was strong sorption in suspended
solids phase of wastewater from traditional swine farm.

Distribution of antibiotics between aqueous and sediment phase in this
study, K4 values of antibiotics indicating lincomycin, sulfamerazine, sulfameter and
trimethoprim were strong sorption in traditional swine farm, while sulfamethazine and
erythromycin were strong sorption in commetrcial swine farm. This probably due to in
traditional swine farm these was high organic carbon in sediment that is an important
factor for sorption, In the traditional swine farm, log K4 of lincomyein, sulfamerazine,
sulfameter, sulfamethazine, erythromycin and trimethoprim were 2.39, 2.76, 1.77,
1.50, 0.87 and 2.54, respectively. Log Kq; of these were 3.00, 3.37, 2,38, 2.11, 1.48
and 3.15, respectively. For commercial swine farm, log K4 of lincomycin,
sulfamethazine and erythromycin were 1,20, 2,20 and 2.74, respectively, while log Ko
of these were 2.08, 3.08 and 3.61, respectively. This suggested that these compounds
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tendencies to adsorb to sediments, Moreover, lincomycin, sulfamerazine, sulfameter
and trimethoprim adsorptions in traditional swine farm were stronger than those in
commercial swine farm. This probably due to biogas system in commercial swine
farm was adsorbed the contaminants during the treatment process (Grady et al., 1999),

However, antibiotic residues are still present in treated swine wastewater
in various phases (aqueous, suspended and sediment), indicating that the various
matrices of swine wastewater may not be ignored.

9. Fate of antibiotics in agricultural soil

Distribution of antibiotics between aqueous and soil patticles in this study,
log Kq of lincomycin, sulfamerazine, sulfameter, sulfamethazine, erythromyecin,
ciprofloxacin and trimethoprim were 1.57, 2.92, ND, 0.33, -0.26, ND and 2.87,
respectively, while log K. of these were 2.18, 3.53, ND, 0.94, 0.34, ND and 3.48,
respectively from traditional swine farm. For commercial swine farm, log K4 of
lincomycin, sulfamerazine, sulfamethazine, erythromycin, ciprofloxacin and
trimethoprim were ranging from 1.17 to 1,39, 1.89 to 3.03, 2.37 to 3.72, 1.65 to 3.42,
ND and ND, respectively, while log K, of these were ranging from 2.04 to 2.27, 2.77
to 3.90, 3.24 to0 4.59, 2.52 to 4.29, ND and ND, respectively. From the result found
that most of antibiotics were stronger sorption in sei! sample from commercial farm
than traditional farm. This probably due to the soil samples from commercial farm
were higher organic matter than traditional farm that is an important factor for
sorption. This suggested that these compounds tendencies to adsorb to soils.

In addition, soil propertics also strongly affect the behaviors and fates of
antibiotics in soil, especially to clay minerals (Stevens, 2009), From this study was
found the clay mineral of 30% from traditional farm and 55% from commercial farm.
This probably the clay mineral in soil samples from commercial farm was higher than
those from traditional farm that is an important.

10. Partitioning of antibiotics
Partitioning of antibiotics was considered in the distribution of each
compound or classification between aqueous and solid phases (suspended solid, sludge
and soil) in the final effluent, Traditional swine farm, the results found that the
concentration of lincomycin in sediment was highest, followed by in soil and lastly in

aqueous as Zhang et al., 2013. For commercial swine farm, the concentration of
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lincomycin in sludge from biogas system was highest, followed by in suspended solid,
soil, sediment and lastly in agueous. These probably its physicochemical properties
and properties of adsorbents (Zhang et al., 2013; Sarmah et al., 2006).

Sulfamerazine, sulfameter, and sulfamethazine concentrations in both
traditional farm and commercial farm were found in solid phase more than in aqueous
phase. These probably due to low water solubility and high K4 values of sulfonamides
which showed in previous chapter. In addition, the final effluents could contain high
suspended solids or soils usually contain high levels of suspended solids, indicated
that the soil could serve as reservoir for sulfanamides that depends on soil properties
(OECD, 2000).

Ciprofloxacin concentrations from traditional swine farm was found in
suspended solids with the highest concentration followed by in sediment and soil,
respectively. For commercial swine farm, these antibiotic was found in soil with the
highest concentration followed by in sludge and sediment, respectively as Dolliver
et al,, 2008; Zhou et al., 2013, These probably due to ciprofloxacin could degrade with
photodegradation process in aqueous and sorbs to particulate organic material (Belden
et al,, 2007). Moreover, the biogas system in commercial farm could reduce
ciprofloxacin, adsorbed to sludge during treatment (Olofsson, 2004).

The concentrations of erythromycin in both traditional farm and
commercial farm were found in solid phase more than in aqueous phase as Giger et al.
(2003; McArdell et al., 2003), In traditional swine farm was found in suspended solids
with the highest concentration followed by in sediment, aqueous and lastly in soil. For
commercial swine farm, these antibiotic was found in soil with the highest
conceniration followed by in sludge, suspended solids, sediment, and aqueous phase,
respectively. These probably due to erythromycin tendency to adsorb onto suspended
solid which associated with organic carbon on suspended particulate (Martinez-
Carballo et al., 2007). However, results from the present study demonstrated that
erythromycin was removed from wastewater by a biogas system.

The concentrations of trimethoprim in both traditional farm and
commercial farm were found in solid phase more than in aqueous phase, These
compound was found in suspended solids with highest concentration, while these

compound was found at lowest concentration in aqueous phase. These probably due to
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trimethoprim tendency to adsorb onto suspended solid which associated with organic
carbon on suspended particulate. In addition, trimethoprim was very low Kgy values
which showed in previous chapter, indicated that it could high remove from
wastewater and adsorb onto soils and sludge (Martinez-Carballo et al., 2007).
11, Occurrence of ARGs in agricultural soils

Antibiotics are extensively used to treat disease and prevent bacterial
infection, and also as feed additives to promote growth of animals (Sarmah et al.,
2006; Kiimmerer, 2009). However, most antibiotics are poorly absorbed with animal
body (Zhu et al.,, 2013) and subsequently excreted in the manure and urine (Sarmah
et al., 2006; Berendsen et al, 2015). Moreover, antibiotics were not removed
completely with wastewater treatment process (Pruden et al., 2013), resulting in the
concentrations of antibiotic residues were found in agricultural soil received
wastewater,

Soil contamination with antibiotic residues are a one factor in the
selection and dissemination of antibiotic resistant bacteria (Chee-Sanford et al., 2009).
Bacterial communities in soil can resist to antibiotics residues, where antibiotics lose
their effectiveness and ability to control or kill bacteria growth. Resistant bacteria have
a greater chance of survival than those that are susceptible via evolved mechanisms for
their self-protection (Alonso et al., 2001) while susceptible bacteria are killed or
inhibited by antibiotics (Prestinaci et al., 2015), However, antibiotic resistant bacteria
has been reported that it is a natural phenomenon and it can happen everywhere, even
without antibiotic contamination with the adaptation and development of bacteria to
better survive in their environment conditions in order to thrive and multiply (Brooks
et al.,, 2011). Further, bacteria spread their resistance information beyond the initial
organisms. Populations in far-flung regions of the world, who have never known or
been treated with antibiotics, or been in contact with people who had been treated with
antibiotics, were found to have antibiotics resistance. This demonstrates that resistance
is a natural part of the genetic makeup of microbial communities (Fymat, 2017).
Moreover, that some antibiotic resistant genes has been found significantly correlate
with heavy metals (e.g., Cu, Zn, and as with fexA, fexB, cfi-, sull, tetW, tetO and ferS).
(He et al., 2014).
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General resistance mechanisms include alterations of target sites, limited
diffusions or impermeabilities, enzymatic modifications, efflux pumps and genetic
adaptations (Blair et al., 2015; Gootz, 2005). For the gene transfer mechanisms of soil
bacterial are respond genetically by mutating existing genes (vertical gene transfer)
(Sharma et al., 2016) which are naturally present in the chromosomes of bacteria, or
by acquiring new genes from other strains or species (horizontal gene transfer) (Von
Wintersdorff et al., 2016; Sharma et al., 2016) with the mobile genetic elements
include phages, plasmids and transposons mediate this transfer. However, in some
circumstances the presence of low levels of the antibiotic in the environment can be
the key signal that promotes gene transfer, The movement of genes between bacteria,
and even between species by horizontal gene transfer can oceur with three main
mechanisms include conjugation transduction by bacteriophage and transformation,
which is dependent on the native competent state of bacteria as well as cells acquiring
induced competency (e.g., the presence of calcium, lightning event) (Chee-Sanford et
al., 2009). Thus, antibiotic resistance bacteria can accumulate on mobile genetic
element which may facilitate spreading of resistance genes between bacteria of
different species and environment by horizontal gene transfer (Roberts, 2005).

In this study, fefM, retO (tetracycline resistance genes), ermA, ermB
(macrolides-lincosamide-streptogramin  (MLS) resistance genes), gnrA and gnrB
(quinolone resistance genes) were investigated. Several studies showed that rerM,
fetO, ermA and ermB are common resistance genes in the soil application with swine
wastewater (Zhu et al., 2013, Auerbach et al.,, 2007; Chen et al., 2007). In addition,
numerous studies such as Robicsek et al., 2006, Forcella et al., 2010; Cummings et al.,
2011 have been reported the isolation of gnrA and gmrB from the environment source
and wastewater effluent in many region. The result in this study showed that re/M and
retO were found while ermA, ermB, gnrA and gnrB were not found in grass field soil
from traditional swine farm and sugarcane field soil from commercial swine farms.

The result from this study indicated that fefQ were found in soil samples
from both traditional and commercial swine farms. For fetM was detected in soil
samples from commercial swine farm. However, the tesult from analytical of
tetracyclines in soil samples from agricultural area near the farm were not found.

These may due to, from the interview with owner of traditional swine farm,
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tetracyclines were occasionally for the individual pigs and they have excellent
absorption by pig’s body after injection, these may resulted in low concentration of
tetracyclines in wastewater and agricultural soil applied with wastewater. For
commercial swine farm, tetracyclines have not been used for 2 years, resulting in that
were not found in all samples from these farm, However, fefM and refO were detected
in the soil samples from traditional and commercial swine farm. These probably due
to, tetracycline resistance genes are the most common resistance genes in natural soil
(Zhu et al., 2013). The soil is a natural reservoir of antibiotic-producing bacteria
containing both intrinsic resistance genes and transferable resistance genes (Popowska
et al., 2012). Furthermore, sometime tetracycline resistance genes were found in soil at
depths of >30 cm. (Chee-Sanford et al., 2009), In general soil bacteria can be mutated,
adapted and developed within their species or between species and species under
natural conditions and selection stress in the environment by themselves to survive in
their environment, finally they became antibiotic resistance bacteria. Moreover,
antibiotic resistance bacteria were encoded by resistance genes that may transfer
between pathogens and non~pathogens under selection pressure in the environment
(Kruse, & Sorum, 1994) through vertical gene transfer (generation) or horizontal gene
transfer mechanism (conjugation, transduction and transformation). The tetracycline
resistance via three general mechanisms which included ribosomal protection by large
cytoplasmic proteins (e.g., fefM, tetO, (efBP, tetQ, terS, fefW, tefT, ofrA, tef32 and
fer36), energy-dependent efflux pump (e.g., fefA, fetB, 1efC, teiD, tefE, tetG, fefH, teil,
fet] and fetY) and enzymatic inactivation (ferX) (Jones et al., 2006 and Kobayashi
et al., 2007). The retM and fefO, the resistance mechanism is protection of the
ribosome at plasmid located (Patterson et al., 2007) that is a major target for
tetracyclines resistance (Munita, & Arias, 2016). This suggests that the resistance was
linked to plasmids, which theoretically have transfer potential (Aminov, 2011, Gootz,
2010, & Hulscher et al.,, 2010). In addition, the information and result from this study
indicated that metals were added to swine feed for growth promotion and disease
control and also found in soil samples. These metals may provide a long-term co-
selective pressure for tetracycline resistance which can be encoded on plasmids
(Falkow, 1975). Moreover, the result from this study indicated that Streprococcus

phage were found in soil samples. This phage harboured the genes that confer
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tetracycline resistance which may be the source of tetracycline resistance genes (fefM)
in agricultural soil.

For the data of DNA similarity analysis, target genes were obtained from
sequences contained in the BLAST databases available from NCBI. The result showed
tetO and fefM genes sequence were found 100% similar to many strains such as
Staphylococcus strain, Streptococcus strain, E. coli strain and Streptococcus phage
corresponding with Comeau et al.,, 2007. These suggest that antibiotics from swine
farm may have been found to influence on these bacteria community and resulted in
host to acquired antibiotic resistance gene in these bacteria. Furthermore, Wang et al.,
2018 reported that bacteriophage DNA contained the several ARGs. These may affect
to the contribution of bacteriophages to the dissemination of resistance genes in soil
via runoff, leaching and fertilization.

In addition, ciprofloxacin resistance genes including gnrA and gquB
genes and erythromycin and lincomycin resistance genes including ermA and ermB
genes were investigated in this study. However, the result showed that garA, qrurB,
ermA and ermB genes were not found in soil samples collected from agricultural area
which were applied with wastewater from swine farms. Although, ciprofloxacin,
erythromycin and lincomycin were used in these farms and contaminated in soil
samples.

In general, the plasmid carrying gurA and gmrB genes provided
resistance to quinolone class (Jacoby et al., 2014). Resistance to quinolones is
generally caused by two main mechanisms which included alteration of target
enzymes caused by chromosomal mutations in encoded genes (gyr and par genes),
leading to decreased affinity for the drug and reduced intercellular accumulation due
to increased efflux of the drug (Oh and Edlund, 2003), encoding by gnr gene, which
blocks the action of quinolones on the DNA gyrase and topoisomerase 1V (Fabrega
et al., 2009). Over 76% of the quinolones (e.g., ciprofloxacin) resistance was shown to
be mediated by efflux (Walsh, & Duffy, 2013). For the plasmid carrying ermA and
ermB genes provided resistance to erythromycin and lincomycin. Erythromycin and
lincomycin are effect to inhibit protein synthesis in Gram-positive and Gram-negative
bacteria by binding to either the 308 or 508 subunits (Tenson, & Mankin, 2006). There

are three different mechanisms of resistance including, the use of an energy-dependent
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efflux encoded by msr gene, production of inactivating enzymes encoded by /un gene
and alteration of 23S rRNA methylases encoded by erm genes (Wang et al., 2008).
However, several studies reported that significant increases resistance
gene abundances in agricultural soils receiving wastewater from swine production at
low antibiotic residues (ng to mg/kg soil) (Li et al,, 2012; Marti et al., 2014; Scott
et al., 2018). However, gnrA, gnrB, ermA and ermB were not found. These may due
to the agricultural practices like field burning of crop and tillage. In this study area,
sugarcane field were burned between rotations of sugarcane plantation. This may
cause to negative effect to soil bacterial community and assisting of antibiotic
resistance genes in agricultural soil (Pinheiro et al., 2010, Souza et al., 2012, Rachid et
al., 2012 and 2013). Dunivin and Shade, 2018 reported that the soil temperatures
increased can reduce soil antibiotic resistance genes in community-level diversity, For
traditional swine, the grass field applied with wastewater from this swine farm were
tillage once per year after harvest (personal interview). Tillage can effect to soil
microbial community (Wang et al., 2012) and substantially reduce the accumulating of

antibiotic resistance genes in soil (Dolliver, & Gupta, 2008; Kay et al., 2005),

Recommendation

The results from this rescarch could be benefit to the public, swine farmer,
relevant organization and those persons interested. The policy recommendations will
lead to the good practices of swine farm owners for both typical and commercial swine
farms and those who are manufacturer, supplier and importer antibiotics. The relevant
organization should have policies to encourage farmers, raise awareness of the farmer
for proper use of antibiotic to improve their understanding and help swine farm owner
to produce high quality pig products and safety for consumers and environment.
In addition, the relevant organization should determine the laws and guidelines to
control the usage of antibiotic according to the veterinary prescription in swine farms
or other livestock. Providing the veterinary services, diagnosis, technical suppot,
guidance and farm management, according to the good agricultural practices, should
be supported to swine farm especially typical swine farm. Moreover, continuously

monitors the antibiotic usage in swine farms should be conducted by the relevant
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organization, All these public policies will lead to green and clean environment, safety
product and good health of consumer,

Moreover, in order to understanding of contamination of antibiotics from
swine farm in environment, further research is needed to done in various aspects
including the fate and transportation of antibiotics in environment, occurrence of
antibiotic bacteria and gene in environment. Besides, distribution and existing of
antibiotic resistant gene in ecosystem should be investigated and risk assessment in
both ecological and human health level also be paid attention.

For further work, quantitative real-time-PCR method which was a suitable
method for quantifying the copy nwmbers or analyzing the abundances of ARGs ot

other genes of interest may be adopted to use for analysis of resistance genes.
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MRM Chromatogram of RRLC-MS/MS spectrum of selected antibiotics
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Manufacturer's protocol of GenElute™ Seil DNA Isolation Kit product
Reagents to be prepared

Reagents to be prepared following product description of Sigma-Aldrich as
show in the index II. Prepare the following before beginning this procedure:

1. Prepare a working concentration of Wash Solution A by adding 42 mL of
96 - 100 % ethanol to the supplied bottle containing the concentrated Wash Solution
A. This will give a final volume of 60 mI,. The label on the bottle has a box that may
be checked to indicate that the ethanol has been added.

2. This kit is provided with 2 separate columns, humic acid removal columns;
column has white contents with a blue plastic o-ring and spin columns; column has
white contents with a grey plastic o-ring. Storage/Stability all solutions should be kept

tightly sealed and stored at room temperature. The detail of procedure as below.

Procedure for purifying total DNA
Lysate Preparation

1. 250 mg of soil was added to a bead tube, and add 750 pL of lysis buffer G
briefly to mix soil and lysis buffer G.

2. Add 100 uL of Lysis additive A, and vortex briefly.

3.  Secure tube horizontally on a flat-bed vortex pad with tape, or secure the
tube in any commercially available bead beater equipment, Vortex for 5 minutes using
a flat-bed vortexer at maximum speed.

4. Centrifuge for 2 minutes, at 14,000 rpm.

5. Transfer up to 450 ul of supernatant into a DNase-fiee microcentrifuge tube.

6. Add 100 pL of binding buffer I, mix by inverting the tube for a few times,
and incubate for 5 minutes on ice. ‘

7. Spin the lysate for 2 minutes at 14,000 rpm to pellet any protein and soil
patticles.

8. Transfer up to 450 pl, of supernatant to a DNase-fiee microcentrifuge tube
using a pipette. Then, OSR solution 50 pl wete add and inverting the tube at a few
times for mix, after that incubate the tubes for 5 minutes on ice. Spin the lysate for 2

minutes at 14,000 rpm to pellet any protein and soil particles.
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9. Transfer up to 450 pl. of supernatant into a blue o-ring column using a
pipette. Spin the column at 8,000 rpm for 1 minute. Don’t discard the flow through that
contains DNA.

10. Lastly, 230 uL of 96-100% ethanol were add directly to the flow through.

Binding to Column

1. Using a pipette, gently mix the lysate and ethanol and then apply all of
the clarificd lysate with ethanol (approximately 630 pL) to the grey o-ring column and
centrifuge for 1 minute at 8,000 rpm.

2. Leave the flowthrough and reassemble the spin column using by the

collection tube,

Column Wash

1. 500 pL of buffer SK were applied into the column and centrifuge for 1
minute at 8,000 rpm,

2. Leave the flowthrough and reassemble the spin column with its
collection tube.

3. 500 uL of wash solution A were applied into the column and centrifuge
for 1 minute at 8,000 rpm.

4, Leave the flowthrough and reassemble the spin column with its
collection tube,

5. Finally, spin the column for 2 minutes at 14,000 rpm in order to

thoroughly dry the resin and leave the collection tube.

DNA Elution

1. Put the column into a fresh 1.7 mL elution tube.

2. 100 uL of clution buffer B were add into the column and incubate for 1
minute at room temperature.

3. Centrifuge for 1 minute at 8,000 rpm.
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4. If desired, additional elution may be performed with repeating steps 4.2 and
4,3 using 50 pL of elution buffer in a different elution tube. The total yield can be

improved by an additional 20-30% when this second elution is performed.

Storage of DNA
For a few days, the purified genomic DNA can be stored at 4°C while it
storage at -20°C is recommended for longer term, The DNA was determined using the

spectrophotometer and agarose gel electrophoresis.
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