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ABSTRACT

Let X be a non-empty set, G a group with the identity 1 and let f: X = ¢
be a mapping. Denote the Cayley graph of the group G with respect to f by I'. In

this thesis, we let
IFin(l') « G = {{I",g) : I is a finite subgraph of I' with 1 ¢ V{(I") and g € G}
and GFin(T) » G = {(T",g) : " is a finite subgraph of T with g € V(I')}.
Then IFin(1') x G and GFin(T'} » G are semigroups under the following multiplication
(I, g)(T", k) = (T"Ugl”, gh) wherc gI'" is a subgraph with

V{(gl") = {gk : k € V(I')} and E(gI™) = {(gk,z) : (k,2) € E(I')}. Regularity and
Green’s relations for IFin(I") x ¢ and GFin(I") x (& are investigated. Noreover, we

characterize the natural partial order on IFin(I") » G and GFin(T") x G\
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CHAPTER I

INTRODUCTION

For any semigroup S, the notation S means S itself if S contains the identity
element 1 and we let ST = SU {1} if $ has no identity. Then we define the binary

operation - on ST by
1-1=1,1l-a=a-1l=aand a-b=abfor all a,b & S.

Hence S! becomes a semigroup with the identity element 1.
In 1951, Green [3] defined the relations £, R and J on an arbitrary semigroup

S as follows: for each a,b € 5,

aLb if and only if @ = b, b = ya for some z,y € S,
aRb if and only if a = bz, b = ay for some z,y € S* and

aJb if and only if a = xzby, b = uaw for some z, 3, u,v € S*.
Then he also defined the relations H and D by
HEL R andDys L6 1

These five relations are equivalence relations which are called Green’s relations on a
semigroup 5.

An clement @ of a semigroup S is called regular if @ € aSa, that is, ¢« = aza
for some 2 € 5. A semigroup 5 is called a regular semigroup if every element of .S is
regular. And any regular semigroup S is an inverse semigroup if £(S) is a commutative
subsemigroup of S where the set {z € S : 22 = z} is denoted by F(S).

In 1952, Vagner [13] introduced a natural partial order < on an inverse

semigroup S as follows:

a < b if and only if « = eb for some e € E(S). (1)



Later, Mitsch [10] defined a partial order < on an inverse semigroup S by
a < b if and only if ab ™! = aa™* (2)

where a1, 07! denote the unique inverses of a and b, respectively and showed that the
partial orders (1) and (2) are identical.

In 1980, Nambooripad [11] defined < on a regular semigroup S by
a < bif and only if @ = eb = bf for some e, f € E(S).

Then (S, <) is a partially ordered set. This order equivalent to (1) if .S is an inverse
semigroup.
Later in 1986, Kowol and Mitsch [7] extended the above partial order to any

semigroup S hy defining < on S as follows:
a < bif and only if @ = zb = by and @ = ay for some z,y € S*.

Let X be a non-empty set, let G be a group with identity 1 andlet f: X = G
be a function. By the Cayley graph I’ of G with respect to f, we mean the directed
graph whose vertex set V(I') is G and whose edge set E(I") is G x X, where each
g€ G,z € X, (g,2) denotes an edge with initial vertex g and terminal vertex g(z f).
In 1989, Margolis and Meakin [8] let G be X-generated as a group and dcfined a

semigroup
M(X; f) = {(I",g) : T is a finite connected subgraph of I' with 1, g € V(I")}
under the multiplication
(M @) (1", h) = (1" U g, gh)

for all (I, g), (I, h) € M(X; f) and ¢gI' is a subgraph of I' with V(¢I"") = {gk :
ke V(I} and E(gl”) = {(gk,z) : (k,z) € E(I')}. We call M(X; f) the Margolis-

Meakin expansion of ¢ with respect to f. Green’s relations and some characterizations



on M(X; f) were studied in [8].

Recently, [1] introduced a new semigroup defined as follows: let T be the
Cayley grapl of the group G with vespect to f: X — G. Let Fin(I") be the semigroup
of all finite subgraphs of I' without isolated vertices with # adjoined under union

operation. Let
Fin(T) x G = {(I",g) : I' € Fin(I') and g € G}.
Then Fin(l') x ¢ is a semigroup under the multiplication as follows:
(I, gY(I", h) = (T U g1, gh) for all (I, ¢), (I, h}) € Fin(I") x G.

Clearly, Margolis-Meakin expansion of & with respect to f is a subsemigroup of
Fin(T') x @ for X-generated group G respect to f. [1] gencralized the results of [8] for
Fin(l') = G.

In our work, we define new semigroups which contain Margolis-Meakin ex-
pansion. Let

IFin(T) % G = {(I", g) : T is a finitec subgraph of I' with 1 € V(1) and ¢ € G}

and GFin(l) x ¢ = {{I",g) : I" is a finite subgraph of I with g € V(I'"}}.
Then it is easy to verify that these two sets are semigroups under the above multipli-
cation.

The purpose of this thesis is to increase understanding about some algebraic
structures of IFin(I") x &, GFin(I') % G and some of their subsemigroups. Further-
more, we endow IFin(I") x ¢ and GFin(l'}) x G with the natural partial order and
determine when two elements of these semigroups are related under this order. Also,
their maximal and minimal elements of each semigroup are described.

This thesis is divided into five chapters. Chapter I is an introduction to
research problems. Chapter 11 contains definitions, notations and some useful results
which are often used in this thesis. In chapter III, we characterize regularity and

Green’s relations on IFin({T") x G, GFin(l') x G and their subsemigroups. Chapter IV



contains characterization of the natural partial ovder on IFin(T") » G and GFin(T"} 4 G.

Chapter V, we conclude the results of this thesis.



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, and some useful results

that will be used in the later chapters.

2.1 FElementary Concepts

Definition 2.1.1. Let S be a non-empty sct. By a binary operation on .S, we mean
a function - from S x S into S and we called (S, -) is closed. The image of an element

(@,0) € § x S under - is denoted by @ - b. Frequently, we can write ab for a - b.

Definition 2.1.2. A binary operation on a set S is said to be associative if a(bc) =
(ab)c is satisfied for all @, b, ¢ € S. A set together with an associative binary operation

is called a semigroup.

Definition 2.1.3. A non-empty subset A of a semigroup S is called a subsemigroup

of S if A is closed under the operation, that is, ab € A for every a,b € A.

Definition 2.1.4. An element ¢ of a semigroup S is called an idempotent element

if e? = e. Denote the set of all idempotent clements in S by E(5).

Definition 2.1.5. An element o of a semigroup S is called a regular element if

there is « € S such that @ = aza. Denote Reg(S) = {x € S ¢ is a regular element}.

Definition 2.1.6. A semigroup & is called a regular semigroup if every element of

S is regular.

Definition 2.1.7. Let z and y be clements of a semigroup S. We say that y is an
inverse of z if = ryz and y = yry. We shall denote the set of all inverses of an

element & by V(z).



Definition 2.1.8. A semigroup S is said to be an inverse semigroup if |V (z)| = 1

for all # € . For any element z in an inverse semigroup S, we denote the inverse
¥

element of & by =71,

Theorem 2.1.9. (4] A regular semigroup S is an inverse semigroup if and only if

E(S) is a commutative subsemigroup of S.
Definition 2.1.10. A relation < on a non-empty set P is called a partial order on
P if it is reflexive, anti-symmetric and transitive, i.e., for every «,b,c € P,

(1) a < a (reflexive);

(2} if a < band b < q, then a = b (anti-symmetric);

(3} if @ <band b < ¢, then a < ¢ (transitive).

A set with a partial order is called a partially ordered set.

Definition 2.1.11. Let < be a partial order on a set P and A be a non-empty subset
of P. An element a € A is called the minimum element of A if ¢ < z for all z € A.

Also, an element @ € A is called the maximum element of A if v <« for all z € A.

Definition 2.1.12. Let < be a partial order on a set P and A be a non-empty subset
of P. An clement a € A is called a minimal element of A if there is no element
z € A\ {a} such that @ < a. Also, an element ¢ € A is called a maximal clement

of A if there is no element @ € A\ {a¢} such that ¢ < z.

Definition 2.1.13. Let S be a semigroup. A reclation £ on 5 is said to be left

compatible if

(s,t) € R implies (as,at} € Rforall s,t,a € &
and right compatible if

(s,t) € Rimplies {sa,te) € R for all s,t,a € S.

It is called compatible if it is both left and right compatible.



For any semigroup S, S! is either a semigroup S if S has the identity element

1 or a semigroup S U {1} under the multiplication - defined by
l-1=1,1a=a-1=cand a-b=ab for all a,b € S.
Definition 2.1.14. Let «, b be elements of a semigroup 5. Then we define

alb if and only if « = ab, b = ya for some 2,y € S,
aRb if and only if @ = bz, b = ay for some z,y € §' and

aJb if and only if ¢ = aby, b = wav for some z,y,u,v € S*,

From [3], we know that £, R and J are equivalence relations on S. We also
have that D and H are equivalence relations on S where H = LNR and D = Lo R.
These five equivalence relations are usually called Green’s relations on a semigroup

S.

Mitsch [6] defined the natural partial order < on any semigroup S as follows:

for a,be 5,
a < bif and only if @ = zb = by and o = ay for some z,y € 5.

This order coincides with the natural partial order < for an inverse semigroup S which

defined as follows: for «,b € 5,

a < b if and only if a = eb for some e € £(S5).

2.2  Directed graph and Cayley graph

Definition 2.2.1. A directed graph or digraph D is a non-empty set of objects
called vertices together with (possibly empty) set of ordered pairs of vertices of D
called edges. The vertex set of D is denoted by V(D) and the edge set is denoted by
E(D). For (a,b) € E{D), we say that « is an initial vertex of edge (a,b) and b is a

terminal vertex of (a,b).



Example 2.2.2. A digraph T with V(T') = {a,b,¢} and BT} = {(a,¢),{c,a), (a,b)}
is illustracted in the following figure.

C

a o [

Figure 1 : Digraph I’

Definition 2.2.3. Let D be a directed graph and « € V(D). a is called an isolated
vertex if («,b), (¢,a) & E(D) for each b,c € V(D).

Definition 2.2.4. For directed graphs I'1 and I'y, we say that I'; is a subgraph of
[y and we write ['y C Ty if V(T) € V(T) and B(T') C E(Ty). We define a directed
graph ' UT, by letting V(I UTy) = V(T)) UV (Ly) and E(T,UTy) = B(T) UV ().

Definition 2.2.5. For a group & and a non-empty subset S of G, the Cayley graph

of G relative to S is a directed graph [0 with vertex set &' and
(z,y) € BE(D}if and only if y = sx for some s € 5.

Definition 2.2.6. Let X be a non-empty set, & be a group with the identity 1 and
f: X — G be a function, the Cayley graph of GG with respect to f is denoted by

T{X; [) is a directed graph with vertex set ¢ and edge set is & x X, where
{g,z) denotes an edge with initial vertex g and terminal vertex g(z f)
forall g € G and z € X.

Example 2.2.7. Let G = {1,4,h, gh} be the Klein four-group “an abelian group with
4 elements and a = a™* for all a € G” with identity 1 and let X = {z,y}. Define
fi: X =2 Gbyafi =g andyfi =h. Wedasodefine fo : X = G byxfa=1and
yfs = h. Then the Cayley graphs T'(X; fi) and T(X; fo) are shown in the following

figures.



Y

T

Figure 2 : Digraph T(X; f1) Figure 3 : Digraph (X, f2)

2.3 Some semigroups containing Margolis-Meakin Expansion.

In the rest of this thesis, we let I' be the Cayley graph of group G with
respect to mapping f : X — & where X is a non-empty set. We denote the identity
of G by 1. To define new semigroups containing Margolis-Meakin expansion, we need

the following proposition and lemma.

Proposition 2.83.1. Let I be a finite subgraph of T and g € G. The following

~ statements hold:

1) [V(I) = |[V{gT)| and [E(T)

= [E(gI")].
(2) If gI" C 1V, then gl =T",
(3) IfT" C TV, then g C g1".

(4) gl is a finite subgraph of I'.

Proof. (1) Define ¢ : V(1) — V{¢I") by
he = gh  for all h € V(I'M).
Clearly, ¢ is a bijection. Hence |V(I)| = |V {(gl”)|. Similarly, |E{I")| = |E{gL")|.

(2} Assume that gI” C IV, Then V(gI") C V(I") and E(¢I") C E(I"). From

(1) and T" is a finite subgraph of I', we have gl” =1T".
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(3) is obvious.

(4} From (1), we have gl is a finite graph. Since V{gI") C V(') and FE(¢T"} C

E(T'}), we obtain that gI” is a finite subgraph of T, [
Lemma 2.3.2, Let T'1,Ts and T’y be finite subgraphs of I' and q1,9. € G. Then

U gi(Ta U gel's) = (T U gila) U grgels.

Proof. We consider

V(I U 1Ty U gol's)) = VI U V(g (P2 U gal's))
= V(DU {gh:he V(D) or he V({gly)}
= V(LU V(Do) Ugigeh' 1" € V(I5)})
= (V({I') UV (ul2)) UV (g19215)

= V((P] U _G1F2) U glg2F3)'

Similarly, we have £(1'y U gy (I'e U gol'3)) = E{(T'y Ugi ') U grg21's). We conclude that

TiU (T Ugells) = (L1 Ugils) Ugigal's. O

Now, we consider the following sets:

IFin(T) x G = {(I',¢) : [ is a finite subgraph of ' with 1 € V(I") and g € G},
GFin(l') x» G = {(T",g) : I is a finite subgraph of I with g € V(I")},
IFin*(T) x G = {(I", ¢) € IFin(l") x G : I" has no isolated vertex} and

)

GFin* (') » G = {(I",9) € GFin(["} » G : I has no isolated vertex}.
Theorem 2.3.3. IFin(I'} % G is a semigroup under the multiplication
(I, ) (I, h) = (I" U g™, gh)

where g is a subgraph of T with V(gI'") = {gk : k € V(I'")} and E(gI') = {(gk, ) :
(k,z) € E(I'"}}.
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Proof. Let (U1, q1), (Te, 92), (T, 93) € TFn(I") x &. From Proposition 2.3.1(4), we
have g, 1"y is a finite subgraph of I'. Since 1 € V(I'1), we get that Iy U ¢,y is a finite
subgraph of T and 1 € V{(I'; U ¢1%). Tlence (I'y U g1, g1g2) € TFIn(T) x G. This

means that (I'y, g1)(Ty, g2) € IFIn(I'} x G, It follows [rom Lemma 2.3.2 that

(11, 1) (D2, g2) (T3, 93)) = (L1, 91) (T2 U gol's, g2g3)

(
= (U g1 (Ta U gal's), g1(g293))
(

i

(T U gila) U grgal's, (g192)93)

I

(T U T, 01920 (Ts, g3)
(

= ({T'1, 91){T'2, 92)) (L3, g3)-
Hence IFin(l'} % G is a semigroup. 0

Theorem 2.3.4. GFIn(l') x G is a semigroup under the multiplication
(1, g) (I, h) = (I" U gI"", gh)

where gU” is a subgraph of T with V{(gI™) = {gk : k € V(I'")} and E(gT") = {(gk,2) :
(k, ) € E(I'")}.

Proof. Let (T1,91), (T2, 92), (I'a; 93) € GFin(I") x G. From Proposition 2.3.1(4), we
have ¢, is a finite subgraph of I'. Since g9 € V(g 1'2), we get that I’y U g1’z is a
finite subgraph of I’ and g195 € V(I'1 U ¢ 1g). Hence (I U gL'y, g1g2) € GFin{(I") x G.
This means that (I';, g1)(I's, g2) € GFin(l'} x . Note from the proof of Theorem
2.3.3 that (T, g1)((T2, 92)(I'3, 93)) = (I'1, g1)(I'2, g2)}(L's, g3). Hence GFin{I') x G is

a seiigroup. ]

Lemma 2.3.5. Let IV be a finite subgraph of T' and g € G. If I" has no isolated

vertez, then gl has no isolated vertex.

Proof. Suppose that IV has no isolated vertex. We will show that gI” has no isolated

vertex. Let k € V(gI'). Then k = gh for some 2 € V(I). Thus there exists
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(0, x) € BE(I) such that h = 1/ or h = W'z f. Therefore k = gh! or k = gh'zf. From

(gh', ) € E{gl"), we conclude that ¢I"” has no isolated vertex. l

It is clear that IFin*(T") x G and GFin"(I") » G are subscts of IFin(I") x» G
and GFin(T') % G, respectively. The above lemma verifies that IIFin*(I") » & and

GFin*([') x G are closed.
Now, we will give an example and some characterizations of these semigroups.

Example 2.3.6. Let G = {1,g,h,gh} be the Klein four-group with identity 1 and
X ={z,y}. Define f: X G byaf=gandyf = h. Denote the Cayley graph of G

with respect to f by T'. Then we consider directed graphs I'y and 'y defined as follow:

h 1 gh
Y x
T
1 g

s gh

Figure 4: Digraph I’y Figure 5: Digraph I'y

Then, we have (I'y, ), (Ty, gh) € (IFin*(I) x G) N (GFIn*(T") % G). Note that
(Ty, 1)(Dy, gh) = (I U BT, g) and (g, gh)(F1, k) = (Ta U ghT'y, ¢).

1 gh

g g

Figure 6: Digraph I'y ULl Figure 7: Digraph T's U ghl'y

Since (g,y) € E(T1URT,) and (g,y) ¢ E(L2Ughly), we get that IFin*(I) » &

and GFin*(I') x G are not commutative,
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Proposition 2.3.7. Let (I, g) € IFin(I") x G. Then (I", g} is an idempotent element
if and only if g = 1. In this case, E(IFin(l') x @) is a commutative subsemigroup of

IFin(1"} x G.

Proof. Assume that (I I, ¢) 1s an ilemnpotent element. Then (1 ",_(] = {1 f,g F,,g =
].—ﬂ U (P", (2 . That is FI - FI U (jl—" and g = (2. Since ¢ has Ollly one idClllpOtellt, we
J .J' < J .j

obtain g = 1.
The converse is clear. 0

Proposition 2.3.8. Let (I, g) € GFin(IY %G, Then (I, g) is an idempotent element
if and only if g = 1. In this case, E(GFIn(T") x G) is a commutative subsemigroup of
GFin(I') » G.

Proof. 1t follows from the proot of Proposition 2.3.7. 1



CHAPTER III

REGULARITY AND GREEN’S RELATIONS

In this chapter, we discuss on regularity and Green’s relations for IFin(I') 4 G,

GFin(I') » G and their subsemigroups.

3.1 [IFin(I') » G and it’s subsemigroups

Theorem 3.1.1. Let (IV, g} € IFin(["} » G, Then (I, g) is a regular element if and
only if g € V{I).

Proof. Assune that (I, g) is a regular element. Then there exists (I, h) € IFin(I) »G

such that

(T, g) = (I", g)(T", W)(I", 9)
= (["U gL, gh)(T", 9)

= (I"U gl U ghl", ghy).

Thus IV = TV U gI'" U ghT” and g = ghg. Since G is a group, we conclude 1 = gh.

Thercfore [V = I"U gl and so gI" € T”. This implies that ¢ = g1 € V(gI'") C V(I7).

Assume that g € V(I). Define a subgraph I of I' by V(I') = {1} and E(I) =
@. Clearly, (I, g1} € IFin(I") x G. Then we have

(I, ) (I, g™ (17, 9) = (" U gl Ugg™'T", 997 "g)

= (I"Ugl™, g).
Note that gI'” is a finite subgraph of I' with V (¢I'") = {g} and E{(¢T"") = 0. Therefore
(T, g)(T", g~ (I, gy = (I"U gL, g} = (I, 9)-

We conclude that (17, g) is a regular clement. O



Corollary 3.1.2. Let G be a group. Then IFin(I') x G is not « regular semigroup if

and only if |G| > 1.

Proof. Suppose that |G| > 1. Choose g € G\ {1} and dcfine a subgraph IV of I' by

V(') = {1} and E(1") = 0.

Hence (I, g) € IFin(I) » G but g ¢ V(I'). From Theorem 3.1.1, IFin(I") x G is not

a regular semigroup.

Assume that |G| = 1. To show that IFin(I") » G is a regular semigroup,
let (I",g) € IFin(T'} x G. This means that 1 € V(I'). By assumption, we have
g=1¢ V({"). From Theorem 3.1.1, we have (I",¢) is a regular element. Hence

IFin(I') >« G is a regular semigroup. U

Theorem 3.1.3. Reg(IFin(T") x () is the mazimum regular subsemigroup of IFin(I") 4
G.

Proof. 1t follows from Theorvem 3.1.1 that Reg(IFin(I') G} = {(IV,9) € IFin(I") x G :
g€ V(I Let {T'y, ¢1), (Tg, g2) € Reg(IFin(I"} % G). Then

(T1,91) (L, g2) = (I U 1Ty, hga).

Since g192 € V{g11'3), we conclude that Reg(IFin(I") » &) is closed. Let I be aregular
subsemigroup of IFin(I') x G. Tt is clear that H C Reg(IFin(I') x ). Therefore
Reg{IFin(I"} % G) is the maximwn regular subsemigroup of IFin(I") x G. C
Corollary 3.1.4. Reg(IFin(T)xG) is an inverse semigroup and (1, 9) ' = (¢7'1", ¢ 1)
for all (T', g) € Reg(IFin(I') x G).

Proof. Tt follows from Theorems 3.1.3, 2.1.9 and Proposition 2.3.7 that Reg{IFin(I") %
G} is an inverse semigroup. Let (1Y, ¢) € Reg(IFin(I") % G). Then 1,g € V(I"). We

note that

l=¢glge V(g M and g * = g1 € V(g7'I).
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Therefore (g7, g71) € Reg(IFin(I") x &) by Theorem 3.1.1 and Proposition 2.3.1(4).
Consider
()™, g7 (1", 9) = (T U gg™'1", 997 )(I”, 9)
= (I, (I, 9)
=", 9)
and
(7' T g™ (T, g)g™ ', g7 ) = (g7 U g T g g) (9T, g7
= (g7 (g7, 07
= (g7, g7").
Hence (¢7'I", g7!) is an inverse element of (I", g). O

Theorem 3.1.5. Let (I, g} € IFin™(I") x» G. Then (I", g) is a regular element if and
only if g € V(I').

Proof. Assume that (I, g) is a regular element in IFin*(I') x4 G. Since IFin*(I") © &
is a subsemigroup of IFin(I") x G, we have (I, ¢} is a regular clement in IFin(I') 4 G.

By Theorem 3.1.1, we obtain that g € V(1)

Assume that g € V(I'). Note that 1 = g7lg € V{(g7'I"). We obtain that
("7, ¢g71) € IFin{l’) » G. By Lemma 2.3.5, ¢~ 'I” has no isolated vertex. Thus

(g7, ¢7!) € IFin"(I') x G and then we have

T, g ', g Y1, ) = (" Ugg 'T", g9 NIV, 9)

= (I, 1){I", 9)
= (I, 9).
We conclude that {IV, g} is a regular element. 0

Corollary 3.1.6. Let (I",g) € IFin*(T') x G. Then IFin*(I') x G is not a reqular
semigroup if and only if |G| > 3 or (|G| =2 and 1 € X f).
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Proof. Assume that |G| > 3 or (|G| =2 and 1 € X ).

Case 1 : || » 3. Let w € X. Then zf € G and so G\ {l,zf} # . Let
g€ G\ {l,2f}. Define a subgraph I of I" by V(I') = {1,2f} and E(I") = {(1,2)}.
Thus (I, g) € TFIn*(I") x G and g ¢ V(I). Therefore (I, g) is not a regular element

by Theorem 3.1.1.

Case 2: |[G]=2and 1 € Xf. Let & € X be such that zf = 1 and choose
g € G\ {1}. Define a subgraph I of I by V(I") = {1} and E(1") = {(1,z)}. Then
(T",g) € IFin*(T') » G and g ¢ V(I"). Hence (I',g) is not a regular element by
Theorem 3.1.1.

Assume that (|G| = 2 and 1 ¢ Xf) or |G| = 1. Clearly if |G| = 1, then
[Fin*([') % G is a regular semigroup. Suppose that |G| =2 and 1 € X f. Let (I, g} €
IFin*(I') x G. If ¢ = 1, then g € V(I'}. Suppose that g # 1. Then G = {1, g}. Since
1 e V(I) and IV has no isolated vertex, there exists (h,z} € B(I") such that 1 = h
or 1= nh(zf). Fromaf # 1, weget zf = g. If 1 = h, then g = laf = haf € V(T¥).
If 1 5 h, then g = h € V(I"). By Theovem 3.1.5, we get (I, ¢) is a regular element.

Hence TFin*(I'} % G is a regular semigroup. O

Example 3.1.7. Let I' be a Cayley graph of G = {1, g} with respect to f: {a} = G
where xf = g. It follows from Corollary 3.1.2 that IFin(l) x G is not regular. But

IFin*(T) x4 G is a reqular semigroup since Corollary 3.1.6.
Now, we focus our attention on Green'’s relations for the semigroup IFin{T") x .
Theorem 3.1.8. Let (T1, 1), (T2, g2) € IFin(T") % G. Then (I'1, 1) L2, g2) if and

only if g7'T'y = g3 ' T2,

Proof. Assuine that (T'1, g1)L(T'z, g2). Then we get that (I'y, gv) = (e, g2) or (T, g1} =
(P3> 93)(}:12: 92) &lld (I‘QJ 92) - (P47g4)(1_‘1a ql) for some (F37 93)1 (11‘1194) € IFIH(F) G
If (T, 1) = (U, g2), then 67Ty = g7'Ts. Suppose that (T1, 1) = (Ts, 5)(Ta, 92
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and (s, g2) = (Cay g2) (T, g1) for some (I3, g3), (T, 0a) € IFIn(I) % G. So (D1, g1) =

(T3 U gal'y, gsga) and (Ty, g2) = (Cy U gal'1, gagn). This implies that
L=y U gl and g1 = ¢392

We get g3 = g1g5 . Thus 195 ' Ty = gl € 'y which means ¢;'Iy € gi'1Y by
Proposition 2.3.1(3). Similarly, Ty = Iy U g, and g3 = gag1. So ga = gogy " and

then gog7 'Ty = g4Iy C I'y. We conclude that g7y € g5 'Ty by Proposition 2.3.1(3).

Therefore g, 'y = g, ' 1.

Assume that ¢, ‘T = g, 'Ty. It is clear that (I', g195" ), (I'2, 9297 ) € IFin{I") x
G. Consider

(T, 9195 (T2, 02) = (T1 U 9195 ' T, 0197 ' 92)

= (T1Uqng T, 0) by assumption

= (I'1, 91)
and
(T2s 9291 )(T1s g1) = (L2 U 9297 ' T, 0297 1)
= (T3 U 92952, g2) by assumption
= (I'z, 92)-
Hence (11, g1) 21, g2). O

Theorem 3.1.9. Let (I'1,g1), (U2, ¢2) € IFin(I") x G. Then (I, 1)R(Ts, g2) 4 and

only if Ty =Ty and (g1 = g2 or g1, 92 € V{(I'1)).

Proof. Assume that {I'y, g1 YR (g, g2). Then we get that (I'y, 1) = (T, g2) or {T'1, 1) =
(Dg, g2)(3, g3) and (T2, g2) = (I'1, g1} (T4, g4) for some (s, g3), L'y, g4) € IFin(I") » G.
If (1, 91) = (g, ga), then T’y = 'y and g1 = g2. Suppose that (I'y, g1) = (I's, g2} (L3, g3)
and (T'z, 92) = (T'1,91)(L'y, g4) for some ([z, g3), (I'y, 94) € IFIn(T) ¥ &. Thus I'y =

Ly U golg and Ty = Ty U u'y. It follows that Ty € Ty, 9003 € T, Ty € I’y and



19

g1y € Ty, Hence I'y = I';. We note that gy = gol € V(g2I'y) € V(I'1) and similarly,

we get g1 € V(Ty).

If I') = I'y and g, = g9, then (I'y, 91)R(T2, g2). Suppose that Ty = Ty and
g1, 92 € V(T1)., From g, € V(Ty), we have 1 = g;'g2 € V(g ') and 1 =
97 g1 € V(g7'T2). This means that (g5 ' Ty, 95" g1), (g7 e, 97 g2) € IFin(l') x G by

Proposition 2.3.1(4). Note that

(T, 92){95 ' 01, 95 ) = (T2 U gags ' T1y 9295 " 01) = (Te, ¢1)

and
(T1, 91)(97'Ta, 97 ' g2) = (1 U 197 ' T, 91077 g2) = (T, 92)-
Hence (Pl, gl)R(I‘g, gg). ]
As an immediate consequence of the previous theorems, we get the following
result.

Theorem 3.1.10. Let (T'y, ¢1), (Ta, g2) € [FIn(T) % G. Then (T, g1)H(Ts, g2) if and

only if Tv =T, g7 ' T1 = g5 Ty and (g1 = g5 o7 91,02 € V(T'1)).
Theorem 3.1.11. Let (T'1,01), (2, 92) € IFIn(l') x G. Then (T'y, 31)D(Ta, g2) if and

only ifgflf‘l - g;lI‘g or (g € V(Iy) and g7’ = g 'y for some g € V{I'3)).

Proof. Assume that (I'y, g)D(T2, g2). Then there exists (I's, g3) € IFin(I") x @ such
that (T'1, g1)L(T's, g3) and (', 935)R{L'2, g2). From Theorems 3.1.8 and 3.1.9, we get
that

g7'ry = gglI‘;j, Iy =1 and (g3 = g2 or g3, 92 € V([2).
If g5 = go, then g7y = g5 119, If g3, go € V(T'y), then g7'Ty = g7'Ty = g3 Ty,

If g7'T") = g5 "Iz, then (1, g1)£(Ts, g2) by Theorem 3.1.8. Since £ C D, we

have (I'y, g1)D(Ts, g2). Suppose that g, € V(Ty) and g;'T; = ¢g7'I'y for some ¢ €
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V([y). Then (I'1, ¢1)L{Is,g) by Theorem 3.1.8. Since g,92 € V(I'2), we have
(Ts, 9)R(T2, g2} by Theorem 3.1.9. These imply that (I'y, g1)P(Ty, g2). O

Theorem 3.1.12. Lel (T, 1), (s, 92) € IFin(l) x G. Then (T, g92) € IFin(T) x
G, g ) IFin(T) x G if and only if there exists g € V(I'y) such that gg1 € V(Ty) and
gl’'y € T's. )

Proof. Assume that (I';,g2) € IFin{l) x G(Ty, g1)IFin(T) » . Then (I'y,42) =
(T3, 03)(T1, 91) (T4, ga) for some (I's, g3), (Cayga) € IFin(T) > G. This implies that
(T2,92) = (T3 U gal'y U gagi Ty, g3g1gs). Hence I'y = Ty U 3Ty U gsgi Iy and g2 = g4g194-
Then g3y C I'y. We note that g3 € V(g3T'1) C V(Tg) and gagn € V(gsgil'a) € V(I9).

Assume that there exists g € V(I'y) such that ggy € V' (I'y) and gI'y C I's. Note
that 1 = ¢7'¢ gg1) € V(g7 g 'T). Then (g, ‘97T, 97 g7 g2) € IFin(T) x G by
Proposition 2.3.1(4). Consider

Py, 0)(T1, 900 (67 97 T, 977 g 1 g2) = (Dayg)(T1 Vg7 2, 07 ' g0)
= (I'y Ugly ULy, go)

= (I'g, go) since gI'y C T,

Thus (T2, g2) € IFin(I) x G(I'y, g )IFin(I"} x G. 0

It is well-known that for a finite semigroup, we have D = 7 and we only have
D C 7 in the general case. The following theovem verifies that D and J are identical

on IFin(T") x G although the semigroup is infinite.
Theorem 3.1.13. D and J on IFIn(I"} x G are equal.
Proof. Tet (I't, 1), (2, g2) € IFin(I") % G be such that (T'1, 1) 7 (I's, g2). Then there

exist (T's, 93), (T4, 94}, (Ts, 95)s (s, 96) € (IFIn(') x G)! such that (T'1, g1) = (T3, 93)

(T'g, g2 )(C4, gu) and (T2, g2) == (T, 95)(T'1, 91)(T's, g5). There are 7 cases to consider.



Case 1 : (I, 93), Ty, 9u), (Ts,95) and (T's, gs) are not the identity. Then
(T1 1) = (Ds, 95) (T2, g2)(La, ga) and (Lo, g2) = (T, 95)(T'1, 91){Ts, g6). By Theorem
3.1.12, theve exists by € V(I'1) such that hyge € V(I'y), 1Ty € Iy aud there exists
hy € V(I'y) such that hagy € V(I3), hol'y € I'y. Then hylyily C holy € 'y, From

Proposition 2.3.1(2), we obtian that
]Lghl].—\z = hZFl = I‘g.

Similarly, we get hihel'y = 'y = Ty, Since higa € V(1) = V(h1hTq), we have
higa = hihak for some k£ € V(). Thus go = hok € V(hpl'y) == V(I'y). Similarly, we

have g; € V(I';). This implies that
g{lfg = (hgk)—lrg = k‘lh.g'lth‘l S kﬁll—‘l.
By Theorem 3.1.11, we then have (I'y, g1)DP(I's, g2).

Case 2 : (I's,93) = (Tu,90) = (I's,95) = (I's,g6) is the identity. Then
(T1,91) = (T, g2). Hence (T'1, ¢1)P(T2, g2).

Case 3 : (I'y,94) = (T's, g6) s the identity. Then (I'1, 1) = (I's, g3)(F2, g2) and
(T2, 92) = (U5, 95)(I'1, 01). Hence we obtain that (I'y, g1 )£(I'2, g2). Since £ € D, we
then have (I'y, g1 )D(Ts, g2}

Case 4 : (T3, ¢93) = (I's, g5) is the identity. Then (I'y, ¢1) = (I'z, g2)(T's, g4} and
(T, g2) = (I'1, 01} (D6, gs). Hence we obtain that (I'y, g1)R(I'2, g2). Since R € D, we

then have (', g1)P(Ts, g2).

Case 5: (I'3, g3) = {Ts, gg) is the identity. Then (I'y, g1) = (2, g2) (L', g4) and
(T2, 92) = (Ts,95)(I'1, ¢1). Thus (T, g1} = (T2 U gol's, g2g4) implies Ty = Iz U goly
and ¢ = gags. So 'y € 'y Similarly, we have (I'y, g2) = (F's U g5y, g5g1) implies
Iy = D5 UgsTy and ga = gs¢1. Then g5 = gag; ' We obtain that gag; 'Ty C T'y and so

9297 1"} € Ty € Ty. By Proposition 2.3.1(2}, we have

g29,'T1 =T =Ty,
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Hence g 'T1 = g, 'T'y and then (T}, g.)D(T's, g2) from Theorem 3.1.11.

Case 6 : (T3, g3) is the identity. Then (I'y, g1) = (T2, 92}(T4, g4) and (I'z, g2) =
(Is, 95)(T1, 91){Te, 5)- Thus (Fy, g1} = (T, 1)(Fa, 92) (T4, g4). It follows from Case 1
that (I'y, g1)P(T'q, g2).

Case 7 : (I'y, g4) is the identity. Then (Fl,gl) = (I'3,93) (I, g2) and (I'y, go) =
(Ts, 9501, 1 )(T6, g6). Then (Ty, ;1) = (I's U galz, gage) implies Ty = T3 U galy
and ¢, = gsg2. Therefore g3 = g19," and gy € Iy, Thus g9 Ty = g3y C
Iy, This means that ¢, 'Ty € ¢;'T'y by Proposition 2.3.1(3). Since (I'z,g2) =
(Ts, g5){I'1, 31 ){Ts, g5} and Theorem 3.1.12, there exists ¢ ¢ V(I'2) such that gg; €
V(T3) and gI'y € I's. This implies that g;lgFl C gz"lI‘g @] gl—lI‘l. From Proposition
2.3.1(2), we have g;'gl'; = g; '} = g5'T. Thus g;'T'y = g5 'I's. By Thorem 3.1.11,

we deduce (I'y, g1)D(L', ¢2). (]

Example 3.1.14. RecallT'y and 'y from Ezample 2.3.6. We note that gh € V(I'3) and
RIT = g7 Ty where g € V(I'y). By Theorem 3.1.11, we conclude (Ty, h)D(Tq, gh).
In fact, we can verify that (I'1, h)L(Ts, gYR(I'q, gh). Note that ((T'1, h), (Ta,gh)) ¢ £
and ((I'y, h), (T2, gh)) ¢ R via Theorem 3.1.8 and Theorem 8.1.9, respectively.

From Theorem 3.1.3, we have Reg(IFin(T) x G) = {{I",¢) € IFin(T) x G : g €
V(I")} is a subsemigroup of IFin(I') x G. Then, we now characterize Green’s relations

on Reg(IFin(1"} x &),
Theorem 3.1.15. Let (I', g1), (I's, g2) € Reg(IFIn(I") x G). Then (T'1, g1)L{(Ta, g2) if

and only if g7'Ty = g; 'Ts.

Proof. Assume that (I't, g1} L(T2, g2) on Reg(IFin(T") x G). Since Reg(IFin(I") » G) is
a subsemigroup of IFin(T") x G, we have (I'y, g1)£(T's, g2} on IFin(I") % G. By Theorem
3.1.8, we get that gfll} =g, 1.

Assume that g7'T'y = g5 '['y. Then Ty = 0195 Ty and gog; 'Ty = T, Since
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(T1, 01), (I'a, g2) € IFin(T) x G, we have 1 € V(T'y) and 1 € V(Iy). Thus gig5' =
noyt € V(ggs 'T2) = V(Ih) and gogit = g207" € V{gagy 'Th) = V(I'2). Thercfore
(T, 9195 1), (T, g2gi ') € Reg(IFin() % G). We conclude that

(C1, 9195 1) (Ta, g2) = (T1, g1) and (Ta, 297 M1, 01) = (D2, g2).
Hence (I'1, g1)L£{T2, ga)- 0

Theorem 3.1.16. Let (', g1}, (e, 92) € Reg{(IFin{l') x &), Then (T'1, g1)R(T2, g2)
if and only of I'y = T,

Proof. Assume that (I}, g)R(T'z, g2) on Reg(IFin(T") x G). Since Reg(IFin(T) » G) is
a subsemigroup of IFin(T') x G, we have (I'y, g;)R (', g2) on IFin(I") x G. By Theorem

3.1.9, we get that I'y = I'}.

Suppose that Ty = Iy, Claim that (95" T, 95 01), (97 ' T, 97 "g2) € Reg(IFin(T)
xG). Since gy € V(I'y) and by assumption, we then have g, € V(I'y}). Similarly,
g2 € V(T1). Then 1 = g;'gp € V(g5 1) and 1 = gytg, € V(g; 'Ty). Clearly, g;'qn €
V(gy') and g7'g2 € V(gr'T2). This implies that (g5 ', 05 'g1), (91 'Tay 91 'g0) €
Reg(IFin(T) x G) by Proposition 2.3.1(4). Note that

(T3, 02)(95 T, 97 0} = (1, 91) and (Tq, 1) (g T2, 97 92) = (U2, 92)-

Hence (I'y, g1)R(I's, g2). O

As an immediate consequence of the previous theorems, we get the following

result.

Theorem 3.1.17. Let (T'y, 1), (I'2, g2) € Reg{IFin(T") x G). Then (T'1, ;1) H{T1, g2)

if and only if 'y =Ty and gl‘ll“l = gz"lI‘l.

Theorem 3.1.18. Let (U1, 91), (T2, g2) € Reg(IFin(I') x G). Then (I'1, g1)D(L'y, ga2) if

and only if g7 'T'1 = g~'Ty for some g € V(Iy).
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Proof. Assume that (I'y, g1)D(T2, g2) on Reg(IFin{I"} » &). Since Reg(IFin(I") x G) is
a subsemigroup of IFin(I") x G, we have (I'y, g1)DP(Ty, ¢2) on IFIn(I') x G. By Theorem

3.1.11 and ¢, € V(Ty), we get that g, 'Ty = ¢ 1T for some g € V(I%).

Suppose that g7'T'y = ¢7'Ty for some ¢ € V([;). By Theorem 3.1.15,
(T, g1)L£(Fe, g). Since g € V{I'y}, we have (I'y, g)R(Ts, g2) from Theorems 3.1.1 and
3.1.16. These imply that (I'y, g1)D(I's, go)- |

Theorem 3.1.19. Let (T, g1), (s, 92) € Reg(IFin{l'}xG). Then (I'y, g2) € Reg(IFin(I")
MG(Ty, g1)Reg(IF{T) 1 G) if and only if there exists g € V (I'3) such that gI'y C I's.

Proof. Assumnc that (Uy,q2) € Reg(IFIin(I') » G)(I'y, g1) Reg(IFin(l") « G}. Since
Reg(IFin(I") x ) is a subset of IFin(l') x &, we obtain that (I3, g.) € IFin(I') x
G(Ty, g1 IFin(I") x G. By Theorem 3.1.12, we get that gI'y C 1% for some g € V(T'y).

Assume that there exists g € V(I'3) such that gI'; € T3, Thus gg1 € V(¢'1) C
V{(['y). Note that 1 = g7'g g9, € V(g7 g7 T2} and g7'¢7 g € V{97 97 T'2). Then
we have (g7 ‘g Ty, 91197 g2) € Reg(IFin(T'} x &) by Proposition 2.3.1(4) and Theo-

rem 3.1.1. We note that

(T2, 9)(Tr, 9007 "9~ T2y 979 g2) = (T2, 92).
Thus (I'5, g9) € Reg(IFin(l') x G)(T'1, g1)Reg(IFin(I") » G). 0

Corollary 3.1.20. D and J on Reg(IFin(l') % G) are equal.

Proof. Tt is obvious that D C J. Let (I't, 1), (I'y, g2) € Reg(IFin(l) x &) be such
that (I, g1) T (2, g2} on Reg(IFin(T") x G). Since Reg(IFin(I") x G) is a subsemigroup
of IFin(T") % &, we have {I'1,91) 7 (I's, g2} on IFin(I') x G. By Theorem 3.1.13, we
then have (T, ¢1)D([y, g2) on IFIn(I"}) » G. We conclude that (', g1)D(T'y, g2) on
Reg(IFin(I") x (7) via Theorems 3.1.11 and 3.1.18. 0

Next, we characterize Green's relations for the semigroup IFin*(I") » G.
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Theorem 3.1.21. Let (I'y, ¢1), (D2, ¢2) € IFin*(I") 0 G. Then (I'y, 1) £(Ts, ¢2) if and

only if gy 'y = g3 ' Ta.

Proof. Assume that {I'y, ¢1)L(Fg, g2) on [Fin*(I") » G. Since IFin*(T) % G is a sub-
semigroup of IHin(1") »x G, we have (I'1, g1)£(Ts, g2) on IFin(I') x G. By Theorem

3.1.8, we get gflrl = g{lT‘z.

Assume that g, ') = g5 'Ty. It is clear that (I'y, g195 '), (s, g2957') € IFin*(T)

G. We can verify that

(I, 9195 )Y (P2y g2) = (I, 1) and (Fg,gggfl)(f‘l,gl) = (T2, 92).
Hence (1, g:)L(Te, g2). O
Theorem 3.1.22. Let (T'1, g1), (T2, 92) € IFIn*(I") x G. Then (L'y, ¢1)R(I'2, g2) if and

only if ') = I'y and (g1 = g2 or g1, g2 € V{(I'1)).

Proof. Assume that (I'1, g1}R(I's, g2) on IFIin*(I') » G. Since IFin*(I") x  is a sub-
semigroup of IFin(I") x G, we have (I'y, g1)R(1'3, g2) on IFin{I') x G. By Theorem
3.1.9, Ty =Ty and (g1 = g2 or g1, 2 € V{(I'1)).

If ') = I'y and gy = go, then (I'f, g1)R([, g2}, Suppose that Iy = Ty
and g1, 92 € V(I'y). Note that (g5, 5570 ), (0702, 977 g2) € [Fin(l) » G. By
Lemma 2.3.5, we have gy 'y and ¢; '’y have no isolated vertex. This means that

(95 T1, 9, 01), (g7 Ty, 971 g0) € TFIn*(T) % G We see that
(F2,92)(92_1F1,92_1.0'1) = (Flagl) and (]-\1191)(9‘;1:[‘2:9;19’2) = (PQ,QQ)-

Henee (Pl, gl)R(Pg, gz). il

As an immediate consequence of the previous theorems, we obtain the following

result.
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Theorem 3.1.23. Let (I't, g1}, (I'g, g2) € IFin*(T) x G. Then (I'y, g1 )H{L, g2) if and

only if Ty =1y, gl_lI‘l = _q{lI‘l and (g1 = g2 or g1, 42 € V(I'1)).

Theorem 3.1.24. Let (I'y, 1), (U2, g2) € IF™ (1) 1 G. Then (I'y, 1 )D{[a, g3) if and

only if g7 'T1 = g7' Ty or (g2 € V(Ty) and g7'Ty = g7'T'y for some g € V(I'z)).

Proof. Assume that (T'y, g1)D(T2, 2) on IFin*(I') x G. Since IFin*(T") x ¢ is a sub-
semigroup of IFin(I') x G, we have (L1, g1)DP(I'e, ¢2) on IFIn(I') x G. By Theorem

3.1.11, g7y = g5 'y or (ga € V(D) and g, 'I"), = ¢ Ty for some g € V(['y)).

If g, 'Ty = g5 'Fy, then (I'y, 1) L{(T2, g2) on IFin*(I') % G by Theorem 3.1.21.
Since £ C D, we have (I'1, g1)P(T'2, g2) on IFin* (I} % G. Suppose that gy € V(I'y)
and g7 Ty = ¢!y for some g € V(Ty). Then (I'y, g1)£(Fy, ¢) on IFin*(I') x G from
Theorem 3.1.21. Since g, g2 € V([y), we have (I'y, g} R (2, g2} from Theorem 3.1.22.
These imply that (I'y, g1)D(Fs, g2). O

Theorem 3.1.25. Let (I'1,41), (T2, g2) € IFIin* (1) x G. Then (I's, g2) € IFin*(T")
G(I'y, g)IFIn™(I') x4 G if and only if there exists g € V(I'y) such that ggy € V(I's) and
gl € 1.

Proof. Assume that (', g2) € IFIin*(T") x G(Ty, g )IFin"™(I') » G. Since IFin*(T) x G
is a subset of IFin(L') X G, we get that (T'sy, g2) € IFIn(T) »x G(T'y, g1)IFiIn(T) » G. By

Theorem 3.1.12, gg € V([3) and gy € Ty for some g € V(T'y).

Assume that there exists g € V{I'y} such that gg; € V(I'y) and gI'y C Ty, Note
that (g7 g Ty, 97 ¢ Lg2) € IFin(T) % G. By Lemma 2.3.5, we have g; 'g~'T'y has no

isolated vertex. Thus (g7 g Ty, g7 ¢ Lg2) € IFin"(I") x G. Note that
(T2, )T, 90(91 9 T2, 97 97 g2) = (T2, 92)-
Hence (['y, g2) € IFin*(I') x G(T'1, ¢1)IFin*(T'} » G. o

Theorem 3.1.26. D and J on IFin*(T") X G are equal.
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Proof. Tt is obvious that D C J. Let (I'y, g1), (T, g2) € IFin* (") x G and suppose that
(T'1, g1) T (T3, g2) on [Fin™(T) »« G, Since IFin*(T") % G is a subsemigroup of IFin(I") x G,
we obtain that (I'y, 1) 7 (Tq, g2) on IFin{l’) x G. By Theorem 3.1.13, we then have
(T, 91)P (L2, go) on [Fin(T) x G. We conclude that (T'1, g1)DP(Ta, ¢2) on IFin*(T) » &
via Theorems 3.1.11 and 3.1.24. [

3.2  GFin(l) x ¢ and it’s subsemigroups

Theorem 3.2.1. Let (I",g) € GFin([") x G. Then (1", g) is a reqular element if and
only if 1 ¢ V().

Proof. Assume that (17, g) is a regular element. Then there exists (I, ) € GFin(I') »

(G such that

(FI! g) = (Ff= g)(FH: h‘)(rl: g)
(T U gI™, gh)(1", g)

Il

(I' U gl U ghl”, ghg).

Thus I = IV U ¢ U ghl” and ¢ = ghg. Since G is a group, we conclude 1 = gh.
‘Therefore [V = T" U gl and so g C TV, This implies that 1 = gh € V{(gT"") C V(T).

Assume that 1 € V(IY). Note that g7' = g7 € V(g7'T7). Thus (¢, ¢71) €
GFin(T") x G by Proposition 2.3.1(4). We see that
(o) T g ), g) = (MU gg 1", 997)(1", 9)
= (F,a 1)(Plag)

= (I",9).

Hence we conclude that (17, ¢g) is a regular element. (]

From above theoren, we easily obtain that Reg(GFin(I') xG) = Reg(IFin(T")

() and whence the following corollary is true.
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Corollary 3.2.2. Reg(GTFin(I') x &) = Reg(IFin(I") % G) is the mazimum regular

subsemigroup of GFin(T") x G.

Theorem 3.2.3. Let (17, ) € GFin™(I") » G. Then (1Y, g) is a regular element if and
only if 1 € V(I').

Proof. Assume that (I, g) is a regular element in GFin™(I'} @ G. Since GFin*(T') x &
is a subsemigroup of GFin(I"} 1 ¢, we have (I, g) is a regular element in GFin(T) % G,

By Theorem 3.2.1, 1 € V(I').

Assume that 1 € V(I"). Note that (¢ '1",g 1) € GFin(I') » . By Lemma

2.3.5, ¢ 'T” has no isolated vertex. Thus (¢ 'IV, ¢ ') € GFin*(I') x G and
(T 9} g )T, 9) = (T, 9)-

Hence (I, g) is a regular element. [

Next, we can determine Green’s relations for elements GFin(I') x G.

Theorem 3.2.4. Let (I'y, 1), (I'2, g2) € GFin{T) x G. Then (I'1, ;1) L(s, g2) if and

only if (', g1) = (I'a, 92) or (70 = g5 ' Ty, gyt € V(I')) and gagy' € V().

Proof. Assume that (I'y, g1)L(Fs, g2} and (I'y, ¢1) # (I'z, g2). We get that {T'y, 1) =
(I's, g3)(I'e, g2) and ('3, g2) = (I'y, ga){I'y, g1} for some (T's, g3), (T4, g4) € GFinT) x G,
This implies that 'y = I'3 U g3 and g1 = gzg5. Hence 195! = g3 € V{(I['3) € V(Ty)
and g1g;'Ty = Ty € T} which means ¢;'Ty C g7'T by Proposition 2.3.1(3).
Similarly, Ty = Ty U gTy and g2 = gag1. S0 gogyt = g4 € V() C V(I'y) and
9297 'T1 = gal'y C Ty which means ¢; ‘T C g5 'T's by Proposition 2.3.1(3). Therefore

g Ty = g5 'y,

If (C1,91) = (L, g2), then (I'y, g1}L(L2, g2). Assume that g7'T'; = ¢, 'T'y and
G195 € V([1), gagr' € V(D2). Tt is clear that (1, g195 1), (T2, 9207 ") € GFin(I) x G.
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Consider
(T1, 0195 ) (T, 92) = (Ty U 0195 ' T2, 0105 g2)
=(THu glgflf‘l,gl) by assumption
= (Fl: (h)
anel
(T2, 9201 ) (T1y01) = (F2 U 929, ' Ty, 929, '01)
= (o U g29, ‘T2, g2) by assumption
= (I'y, ga)-
Hence (I'y, g1)£(s, g2). )

Theorem 3.2.5. Let (I'1, ¢1), (I'2, 92) € GFin(T') x G. Then (I'1, ) RA1'2, g2) #f and
only if I'y = T'y.

Proof. Assume that {I'y, g1 )R{(I's, g2} and {I'y, g1) # (I'y, g2). Then there exist (I's, g3),
(T4, g4) € GPIn(T) %G such that (I'y, g1) = (Iz, g2)(Cs, g3) and (e, g2) = (I'1, g1){T, g4).
Thus I'y = Ty Ugel's and I'y = Ty U g1 Ty, It follows that I's C 'y and ') € 'y, Hence
[y =14

Suppose that 'y = Ty, Note that g;lgr € V(gy'Th) and g7 g, € V{(g71Ty).
This means that (g; 'T'1, g5 91), {917 T2, g1 '92) € GFin([") x G via Proposition 2.3.1{4).

We see that
(2, 92) (g7 'T1, 92 91) = (D g} and (U, 90) {97 ' T2, 97 92) = (I, 92)

Henece (F]_, gl)R(Fg, gg) a

As an immediate consequence of the previous theorems, we get the following

result.
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Theorem 3.2.6. Let (T'1, ¢1), (T2, 42) € GEIn(T) x G. Then (I, g )H(T'2, g2) if and

only if ') =1y, gfll"l = g;lfl and (g1 = g2 or gl_qil, .f}2.fjf1 e V().

Theorem 3.2.7. Lel (T, ¢1),(Ts,92) € GEFIn(l) % G.  Then (I'y, 1)YD(1'y, g2) if
and only if I'y = [y or (there exists g € V{([y) such that g7l = g7 'y, g1g7! €
V(T and gg7t € V(19)).

Proof. Assume that ('), g1)D(I'y, g2). Then there exists (I3, g3) € GFin(l") x @ such
that (', 91)L£(I'3, g3} and (s, g3)R(L', g2). From Theorems 3.2.4 and 3.2.5, we get
that ([, g1) = (s, 03) or (g7 ') = ¢33, 01050 € V(I'y) and gagr' € V()] and
[z =1y If (0, 01) = (T'3,93), then I'y = I'; = ['y. Suppose that g;'Ty = g3,

9195 € V([}) and gzg7" € V(I's). Therefore g; 'y = g3’y where g3 € V().

If Ty = Iy, then (I'y, g1)R(Ts, g2) by Theorem 3.2.5. Since R C D, we have
(T1,91)D(T3, g2). Suppose that there exists g € V(I'z} such that g7 = g71Fy,
019" € V(T') and gg7' € V(I'y). Then (I'y,91)£(Ty,g9) by Theorem 3.2.4. From
Theorem 3.2.5, we have (I'y, 9)R(I'y, g2). Hence (T'y, g1)P{Ta, g2} O

Theorem 3.2.8. Let (I't,01), (T2, 92) € GFin(T) x G. Then ([y, g2) € GFin{I"}
G(['1, 1) GFI(D) % G of and only if there exists g € V(I'g) such that g['y C I'y.

Proof. Assume that (T3, g2) € GFin(T") % G(T'y, ¢1)GFin(l) x G. Then (g, g2) =
(3,03 (T1, 01)(T, g4) for some (I's; ¢3), (T'y,94) € GFin(T") x &, This implies that
(T2, 92) = (T3 U gsT1 Ugsgils, g3gig4). Hemee T'y = I'sU gal' U gsgn [y and ga = gagg.
Therefore g3y € Ty and g3 € V(I'y) € V(Ty).

Assume that there exists g € V(') such that gI'y C I'y. Note that g7'g s €
V{gilg™' ). Then (g7 g 1, g7 g 1ge) € GFin(I') x ¢ since Proposition 2.3.1(4).

Cousider

(FZ:g)(l—\hgl)(gflg“l]:‘%gflg"-l.QZ) = (]'—‘219)(]'—‘1 Ug_IPQ;g—IQZ)

= (T2 Ugl't Uy, g2)
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= (I3, g2) since gy C Ty
Thus (I'y, g2) € GFin(T") x G(T'y, g1)GFin(T") » G. ]

Theorem 3.2.9. D and J on GFIn(I') 1 G are equal.

Proof. 1t is obvious that D C 7. Let (I, 1), (L2, g2) € GFin(I") x & be such that
(T1,91)T (T2, g2). There exist (I's, g3), (L', 94), (I's, 95), (Usy g6) € (GFIn(T) x G)! such
that (I'1, ¢1) = (I's, 93)(I'2, g2){L's, g4} and (I'y, g2) = (U's, g5)(I"1, 91)(Ts, g6). There are

7 cases to counsider.

Case 1 : (I's,93),(Cuy04), (I's, g5} and (L's, g6) are not the identity. Then
(T191) = (U3, 93) (L2, 92) (T4, 94) and (T'g, 92) = (s, 95)(I'1, 91)(Ts, g6)- By Theorem

3.2.8, there exists 2y € V(I')) such that h;I'; € I't and there exists hy € V(I'y) such
that A,y C T'y. Then hohil'y € Aol € 'y, From Proposition 2.3.1(2), we obtian

that
/Lghll—‘g = hQPl = Fg.
Similarly, we get hiipl’y =) = I T'y. Since gy € V(') = V(Iul'y), we have gy = hk
for some k& & V(I'y). This implies that
gl =Gy DML SR R D = e, A48T,
Note that gik™! = hkk™ = by € V(T'y) and kgt = E(lk) ™' = kk~ ATt = hTh
Since [y = hyl'y, we have h;ng = ng_ithl =17 Thus 1 = h{lhg € V(hz_lfg) =

V(T)). From '} = Dy, we obtain h]'Ty = Ty. This means that =it oe

V{(h'T'1) = V(I';). By Theorem 3.2.7, we then have (T'y, g1)P(I's, g2).

Case 2 : (I's,03) = (T4, 04) = (Fs,95) = (I's,06) is the identity. Then
(I'1,01) = (T, g2). Hence (T, 1)D(D2, g2}

Case 3 : (I'y, 9a) = (I's, g6) is the identity. Then (I'y, g1} = (I's, g3)(Ty, g2) and
(Ta, g2} = (U5, 53 ("1, g1). We get that (I', 91)L(I, g2). Since £ C D, we obtain that
Iy, g)D(T'a, g2).
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Case 4 ¢ (I's,g3) = (s, gs) is the identity. Then (I'y,g1) = (I'2, g2){Ty, g4)
and (Tg, g2) = (U1, 91){Ts, g6). We get that (I'), ¢1)R(I";, g2). Since R € D, we obtain
that (1‘1, gl)D(Fg,gg).

Case 5 : (I's, g3) = (I's, g6) is the identity. Then (I, g1) = (T2, g2)(T4, 91) and
(T2, 92) = (s, 95) (L', g1}, Then I'y = Ty U gel'y, and I'y =I5 U g5y, Thus T'y C Ty,
gsI'1 © T'y. So g5y € Ty € Iy, Trom Proposition 2.3.1(2), we have gsT'7 = I'1 and

then I, = T'y. By Theorem 3.2.7, we get {I', ;1) D(T2, g2).

Case 6 : (I'y, g,) is the identity. Then (I'y, g1) = (Ty, g3)(T'2, g2) and (I'z, g2) =
(U5, g5)(T'1, 91)(T65 96). Then (I't, g1) = (I3 U gsl, g3g2) so I'y = T3 U gal's and g1 =
g3g2. Thus gs = g1g5° and ¢95 Ty C Ty, This means that 9Ty C gy by
Proposition 2.3.1(3). Since (T, g2) = (I's, g5} (I'1, 91}(Ts, g6) and Theorem 3.2.8, there
exists g € V(I'y) such that gI'; € I';. This implies that g, gy C g5 'Ty C Ty,
From Proposition 2.3.1(2), we have g5 gl = gr'T',. Then ¢7'Ty = ¢5'T. Note
that ¢195' = g3 € V(I'a) € V(I'1). Since g5 gl = g5 '3, we have gI'y = T'y. Then
g € V(Iy) = V(gl')) which implies 1 € V{I';). From gogy'T'y = I'y and 1 € V(Ty), we
get that gyg; " € V(I'y). Hence (I}, g;)D(I'y, g2) by Theorem 3.2.7.

Case 7 : (I's,g5) is the identity. Then (I'y, g1) = (T's, g3} (I'2, 92) (T4, g4) and
(e, 92) = (1,910, 96). Then I'y = 'y U gll's and g2 = g1gs. Since (T, 1) =
(T3, g3)('2, g2)(L'y, g4) and Theorem 3.2.8, there exists ¢ € V(1"}) such that gI'y C T,
We obtain that ¢’y € I'y € I's. From Proposition 2.3.1(2), we have gy = T'.

Therefore I') = I's. We conclude that (1"}, g1)D(Ts, g2) by Theorem 3.2.7. O

Example 3.2.10. Recall the Cayley graph U from Fzample 2.2.7. We let ') and 'y be
subgraphs of T with V(T'1) = {1, h, gh, g}, V(Ta) = {1,h,gh, g}, E(T1) = {(1,2)} and
E(Ty) = {{gh,z)}. Then (T1,9),(Te,h) € GFIn(T') x G. Therefore g 'I'y = h™1Ty
and but gh ¢ V(I'1). Hence ((I'1, g), (I's, ) € £ via Theorem 3.2.4.

Next, we characterize Green’s relations for the semigroup GFin*(I') x G.
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Theorem 3.2.11. Let (', 1), (T, g2} € GFIn™(F) x G. Then (U1, 1) £{Ty, g2) if and

only if (', 1) = (U2, g2) or (97T = g5 ' 12, gyt € V(D) and gag7' € V(T'2)).

Proof. Assume that (I, g1)£{Ts, g2) on GFin*(I") 4 G. Since GFin™(T') % G is a sub-
semigroup of GFin(T") x G, we have (I'y, g1)L£{Ty, g2} on GFin(l') x G. From Theorem

3.2.4, we get (T, 1) = (I'a,92) or (97" T1 = g5 'To, ngy ' € V(') and gogi ! € V(I'y)).

It Ty, ) = (Ts,g2), then (P, 1)£(T,g). Suppose that g;'Ty = g5ITy,
glggl € V(I'y) and gzgfl € V(TI'y). Clearly, (Fl,glgg’i), (I‘Q,ggg{l) e GFn*(I") x G.

Note that

(Fl,glgfl)(rmgz) = (I't, 1) and (F215’291_1)(P1;9‘1) = ('3, g2).
Hence (I'y, 1) £(I's, g2). L]
Theorem 3.2.12. Let (I, g1}, (T2, g2) € GEFn™(I') x G, Then (T'y, g1)R(C2, g2) if and

only if I'y = 1y,

Proof. Assume that (I, g1)R (T2, g2) on GFin*(I"} ¥ G. Since GFin*{I") x G is a
subsemigroup of GIin(T") % G, we have (I'1, g1)R(I'y, g2) on GFin(I") x4 . By Theorem
3.2.5, we have I') = I's.

Suppose that T'y = ['s. We note that (g5 1,05 201), (97T, 91 *92) € GFin(T)
G. By Lemma 2.3.5, we have g;'Ty and g;'Ty have no isolated vertex. Thus

(95 T1, 95 1), (97 T2, g7 g2) € GFn*(T) x G. We see that
(P2, 92)(07 ' T 07 ' 1) = (T, 91) and (U1, 91)(97 T, 91 '92) = (T2, 92).

Hence (I'y, g1)R(Fa, g2). |

As an immcdiate consequence of the previous theorems, we get the following

result.
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Theorem 3.2.13. Let (I'y, g1}, (P, g2) € GFin" (1) xG. Then ('y, g1)H (g, g2) if and

only if Ty =Ty, g7'T1 = g5 ') and (g1 = g2 or a0y, 297t € V().

Theorem 3.2.14. Let (I, g1), (I'z, 92} € GFIn* ()Y x G. Then (I'1, 1 YP(Ly, g2) if and
only if Ty = Ty or (there exists g € V{(['y) such that g7'T'y = g7y, g1g7' € V(T'})

and gg, ' € V(T2)).

Proof. Assume that (I'y, g)DP(I2, g2) on GFIn*(T") x G. Since GFin*(I") % G is a sub-
semigroup of GFin(I') x &, we have (I'1, g1)P(T'g, ¢2) on GFin(l’) 4 G. From Theorem
3.2.7, there exists g € V(I';) such that ¢;'T; = ¢ Ty, qig ! € V(I), gor* €
V([g) and g € V{(1's).

If Ty = I'y, then (T'y, g1)R(Ts, g2) on GFin*(T') % G from Theorem 3.2.12.
Since R € D, we have (I';,;g1)P{I's, g2} on GFin*(T") » G.  Suppose that there
exists ¢ € V(I') such that 7'y = ¢y, gig ! € V(I)) and gg;! € V(I%).
Then (I'1, 1) £(T3, ¢) on GFin™(I") x ¢ by Theorem 3.2.11. ¥From Theorem 3.2.12,
we have (I's, g)R(I'3, g2) on GFin™(I') » G. These imply that (I'y, g1)D(I'e, g2) on
GFin™ (1) » G. M
Theorem 8.2.15. Let (I'y, 1), (T2, g2) € GFin™(I'} 4 G. Then (T3, go) € GFin*(I') »

G(L'y, g1)GFin*(T) x G if and only if there exists g € V(I'a) such that gI'y C I's.

Proof. Assume that {Ty, g5) € GFIn*(T) x G(I'y, g1)GFin*(T') » G. Since GFin*(I') » G
is a subset of GFin{l') x G, we get that (T's, g2) € GFin(I") % G(T'1, g1)GFin(T") x G.
By Theorem 3.2.8, gI'y € I'y for some g € V(I'y).

Assume that there exists ¢ € V(I'y) such that gI'y € I';. We note that
(97 g ' Ty, 97 g Yg2) € GFin(l') » . By Lemma 2.3.5, we have g7'g7'I'; has no

isolated vertex. Then (g, g™ 'T's, 97 g ' g2) € GFin*(I') % . Note that

(T2, ) (1, 00) (g1 9 T 07 9 g2) = (Ta, g2).

Thus (I'z, g2) € GFin*(F') x G(I'y, 91)GFin™(I') x G. O



Theorem 3.2.16. D and J on GFin*(I") x G are equal.

Proof. Let (T'1, 1), (T2, g2) € GFin*(T')x G be such that (I'1, g1) T (T2, g2} on GFin"(T') »
(. Since GFin™(I') » G is a subsemigroup of GFin(l") » G, we have (I'y, 1) 7 (I'2, g2) on
GFin{I') » . By Theorem 3.2.9, we then have (I'1, g1)DP(1', g2) on GFin(I") » G. We
conclude that {I'1, g1)D (T2, g2) on GFin*(I') x & via Theorems 3.2.7 and 3.2.14. [



CHAPTER 1V

THE NATURAL PARTIAL ORDER

In this chapter, we characterize the natural partial order on IFin(I") x G,
GFin(T) » G and Reg(IFin(I') » G).

We begin with the natural partial order on IFin(I') » G.

Theorem 4.1.1. Let (Ui, q1), (T2, g2) € IFIn(I}y x G. Then (U, 01) < (T'a, g2) #f and
only 1f (Plagl) — (Fg,gg) or (I‘g g Fl and g2 = € V(Fl))

Proof. Assume that (I't,g1) < (', g2) and (P, 1) # (T2, 92). Then there exist
(T3, 93), (s g4) € TFIn(I") x G such that (I'r, g1) = (T3, g3) (T2, 92) = (T2, 92)(T'a; 94)
and (I'y, g1) = (U1, 91)(Ds, 94). Thus (T, 1) = (F3U g5, gaga) = (I2U g1y, g2g4) and
(C1, 1) = (T U e1T4, g194). These mean that I'y = Iy U gol'y and g1 = goga = g194.
Thus 'y C Ty, oIy €Ty and go = ¢1. Since 1 € V/(I'y), we have go = gal € V{(gal'y) C

V().

I (", 01) = (Ta,92), then (T'1,91) < (I'g,¢2). Suppose that I'y € I’y and
g2 = g1 € V(I'1). Claim that (g;'T;,1) € IFin(T) x G. Since g1 € V{(T1), we
have 1 = g7 ‘g1 € V(g 'T1). Thus (g7, 1) € TFin(I) x G by Proposition 2.3.1(4).

Consider
(I, 1)(Ig, go) = (T1 Uy, 62) = (T, 1),
(T, g2)(7 'T1,1) = (P2 U gigy ' U1, ) = (01, 91) and
(T1, 90007 ' T1,1) = Ty U g7 T, 1) = (T, 1)
Hence (I'1, g1) < (I'y, ga). 0

Example 4.1.2. Let G be a cyclic group of order 3 generated by g and f: {x} — G be
a mapping defined by xf = g. The following diagram is o Hasse diagram of elements

in IFIn(T") 3 G whose second component is g ordered by the natural partial order.
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Figure 8 : Hasse diagram 1

Theorem 4.1.3. The natural partial ovder on IFin(I") x G is left compatible.

Proof. Let {1, ¢1), (I'y, g2) € IFIn{I")x G be such that (I, g1) < (I'g, g2) and (1, g1) #
(I'2, 92). By Theorem 4.1.1, we have I'y C Ty and g2 = ¢y € V(I'y). Let (I'y,g3) €
IFin(I"} » G. We will show that (I's, g3)(I'y, 91) < (s, 93)(T'2, g2). It suffices to prove
that (I's U g3, g3g1) < ('3 U g3z, gage). Note that g3y € g3 by Proposition
2.3.1(3). Thus Py U gal'y € Ty U 1"y and gsg1 = ¢sge. Since g1 € V(I'y), we have
gsgn € V{I's U gsI'1). Hence (T3, g3)(T, 1) < (I3, 93)(Dg, g2} via Theorem 4.1.1.

Therefore < is left compatible. I
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Theorem 4.1.4. Let g € G and B, be o digraph with V() = {1} and E(@,) = §.

Then the following stutements are hold:

(1) (B1,9) is a mazimal element under the natural partial order on IFin(T) x &,

(2} If T is finite, then (I, g) is a minimal element under the natural partial order

on IF(T) ¥ G.

(3) If T is infinite, then IFIn(I') % G has no minimal element under the natural

partial order.

Proof. (1) and (2) are obvious.

(3) Assume that T is infinite and let (I, ¢) € IFin(I"} x G. Since IV # T, we
have V(I} # V(") or E(I") # E(T).

Case 1 : V(I') # V(I'). Choose h € V(I') \ V(I). Definc I'" by V (I} =
V(I U{g, h} and E(I') = E(I"). From (I", g) € [FIn(I') x G, we then have (T, g) €
IFin(I') x G. It follows from Theorem 4.1.1 that (I, g) < (I, g) and clearly that
(I, 9) # (I, ).

Case 2 : E(I") # E(I). Choose (h,z) € E(I')\ E(I'). Define I' by V(I') =
V(I U {g,h, haf} and E(T") = E(I") U {{h,z)}. From (I',g) ¢ IFin(T") x G, we
then have (I, ¢} € IFin(T") » G. It follows from Theorem 4.1.1 that (T, g) < (IV, g)
and clearly that (I', ¢) + (1", ¢).

Hence IFin(I') x G has no minimal element under the natural partial order. O

Corollary 4.1.5. Let (I, g1), (Ta, 92} € Reg(IFIn(T") x G). Then (T1, q1) < (I, g2)
if and only if (1, 01) = (Do, g2) or (T2 C Ty and g1y = ¢a).

Theorem 4.1.6. Let g € G and 9, be a digraph with V{(B,) = {1, g} and E(B,) = 0.

Then the following statements are hold:

(1) (04, 9) is @ mazimal element under the natural partial order on Reg(IFin(I') x ).
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(2} If U is finite, then (T, yg) is a minimal element under the natural partial order

on Reg(IFin(I') x G).

(3) IfU is infinite, then Reg(IFin(I") % G) has no mindmal element under the natural

partial order.

Proof. (1) and (2) are obvious.

(3) Assume that I' is infinite and let (I, g) € Reg(IFin(I") x ). Since IV # T,
we have V{I'") £ V(') or E(1") # £(T).

Case 1 : V(I}) # V(I'). Choose h € V(I') \ V(IV). Define I' by V{I'"") =
V() U {h} and ET") = E(I"). Trom (I',g) € Reg{IFin(I') x ), we then have
(', g) € Reg(IFin(T") x G). It follows from Corollary 4.1.5 that (I, g) < (I", g} and
clearly that (T, g) # (17, g).

Case 2 : E(IV) # E(I'). Choose (h,z) ¢ B(I'}\ E(I). Define I' by V(I') =
V(YU {h,ha f} and E(I") = E(T") U {(h,2)}. From (I, ¢) € Reg(IFin(I") ¥ G), we
then have (I, g) € Reg(IFin(I") x G). It follows from Corollary 4.1.5 that (I, g} <
(I, g) and clearly that (I, g} # (I, g).

Hence Reg(IFin(I') x ) has no minimal element under the natural partial order. I

Theorem 4.1.7. Let (U1, ¢1), (T2, 92) € GFin(T) % G. Then (T1, 1) < (T2, ¢2) if and
only if (U1, 1) = (Ta,92) or {T2 C T, g1 = g and 1 € V(T'y)).

Proof. Assume that (I'1,g1) < (I'y,¢2) and (I, ¢1) # (Te,92). Then there exist
(T3, 93), (T4, 94) € GFin(I") % & such that (I'y, g1) = (I's, 93)(T'2, g2) = (T2, 92)(T's, )
and ([, 1) = (T, 01) (T, g4). Thus (T, 01) = (D3 U g3l g3ge) = (T U 9oy, g2a)
and (T'y,91) = (It U gly, 0194}, This means that Ty = Ty U gy = Ty U goI'y
and g1 = gaga = Gags = G1ga. SO G = go which implics g5 = 1. We get that

1 == g3 € V([3} € V([). Clearly, I'y C Iy,
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If (T1,31) = (T2, g2), then (I't, g1) < (T2, 92). Suppose that T'y € Ty, g1 = g2
and 1 € V(I))., Then 1 = g5'g € V(gy'T"). Thus {g,'T1,1) € GFin(T) » G by
Proposition 2.3.1(4). Consicer

(Fl, 1)(F2}02) = (Fl UPQ).‘]Z) = (Fl)gl):
(Ta, g2)(g5 T, 1) = (Do UT, 91) = (T, 1) and

(T, o) (05 T3, 1) = (T U geg5 Ty, an) = (T, 0.
Hence (I, g1) < (I'z, g2). O

Theorem 4.1.8. The natural partial order on GFin(T') x4 G is right compatible.

Proof. Let (I'1,01), (T2, 42) € GFin(I") x ¢ be such that (I'y,g91) < (2, ¢42) and
Ty, 01} # (03, 92). By Theorem 4.1.7, we have T'y C I', g, = g and 1 € V(I').
Let (T'y,g3) € GFin{l’) x G. We will show that (I, g1)(I's, 93) < (T2, 92)(I's, g3).
It suffices to prove that (I'y U g1l's, g193) < (T2 U ¢al's, gags). Since I'y; C I't, ¢n =
g2 and 1 € V(I')), we have Iy U gol's CTiU Dy, g1g3 = gogs and 1 € V(I U 1 Ts}.
Thus (T, g1} (T3, 93) < (I'g, ¢2)(I's, 93) by Theorem 4.1.7. We conclude that < is right

compatible, O

Example 4.1.9. Recoll the Cayley graph T from Lzample 2.2.7. Consider subgraphs
', Ty and Ty of T defined as follow: V{I'1) = {1,g9,9h}, E(T) = {{1,2),(g,1)},
V(Ts) = {g,gh}, E(%)={(9,9)}, V(I's) = {h,gh} and E(I's) = {(gh,x)}. Clearly
that (1I'y,9) < (Ua,g) via Theovem J.1.7. Since 1 ¢ V(I's ULLy), we obtain that
(Ta, h) (I, 9) & (T3, h}(Ta, g). Hence the natural partial order on GFin(I') x G is not

left compatible.

Theorem 4.1.10. Let g € G and B, be a digraph with V (8,) = {g} and E(B,) = 0.

Then the following statements are hold:

(1) (9,,9) is a mazimal element under the natural partial order on GFin{I') x G.
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(2} If T is finite, then (U, g) is a minimal element under the natural partial order

on GFin(I") x G.

(3) If T is infinite, then GFin(l') x G has no minimal element under the natural

partial order.

Proof. (1) and (2) are obvious.

(3) Assume that I' is infinite and let (T, g) € GTFin(I") x GG. Since 1Y £ T, we
have V(1) £ V(') or E(I"} # E(T).

Case 1 : V(I') 4 V(). Choose h € V(T'} \ V({IV). Define ['V by V(I'") =
V(IYy U {1,h} and E(T) = E(I"). From (I',g) € GFin(l') % ¢, we then have
(I, g) ¢ GFin(l') x» G. It follows from Theorem 4.1.7 that (I, g) < (I”,g) and
clearly that (I, g) # (17, g).

Case 2 : E(I") # E(I"). Choose {h,z) € BE(I')\ E(I"). Define IV by V(I') =
V(I U {1, hhaf} and E(T") = E(I) U {{h,2)}. From (I",g) € GFin(T") x G, we
then have (I'”, g) € GFin(T") x . It follows from Theorem 4.1.7 that (I'", ¢) < (I, g)
and clearly that (I', ¢) # (17, g).

Hence GFin(T') x G has no minimal element under the natural partial order. O

Example 4.1.11. Let (¢ be a cyclic group of order 3 generated by g and f : {z} = G
be a mapping defined by xf = g. The following diagram is a Hasse diagram of elements

in GFIn(T) x G whose second component is g ordered by the natural partial order.
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Figure 9 : Hasse diagram 2



CHAPTER V

CONCLUSION

In this thesis, we found that:

Theorem 3.1.1. Let (I, g) € IFin(T") x G. Then (1", g) is a regular element if and
only if g € V(L).

Corollary 3.1.2. Let g € (. Then IFIn(I") x G is not a regular semigroup if and
only if |G| > 1.

Theorem 3.1.3. Reg{IFin{l") x G} is the mazimal regular subsemigroup of IFIn(I')
G.
Corollary 3.1.4. Reg{IFin(T") %) is an inverse semigroup and (I",g)~' = (711", ¢71)

for all (17, g) € Reg(IFin(I") x G).

Theorem 3.1.5. Let (I, g} € IF*(T') x» G. Then (I, ¢) is a reqular element if and
only if g € V(I').

Corollary 3.1.G6. Let (IV,g) € 1IFIn"(I') » G. Then IFin*(I") % G is not a regular
semigroup if and only if |G| > 3 or (|G| =2 and 1 € X f).

Theorem 3.1.8. Let (I'1,¢1), (T2, 42) € IFin(T) x G. Then (T'1,91)L(Ts, g2) #f and

only if g7 ' = g5 ' 1.

Theorem 3.1.9. Let (T1, 1), (T2, g2} € IFIn(I") x G. Then (I'y, 91)R(Fa, g2) of and

ondy if Uy =Ty and (g1 = g2 or g1, 92 € V(I'1)).

Theorem 3.1.10. Let (T4, g1), (T2, g2) € IFIn(T") x . Then (T'1, 1) H (T2, g2} if and

only if T'y = I'y, gl"II‘l = g;lI‘l and (g1 = g2 or g1, 92 € V{(['1)).

Theorem 3.1.11. Let (I'1, g1}, (T2, 92) € IFIn(T") x G. Then (T'y, g1)D(Us, ¢2) if and
only if g, 1 = g5 T or (g2 € V(T'a) and g7y = ¢7'Ty for some g € V().
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Theorem 3.1.12. Let (I'y, 1), (U, 92) € IFIn(I") x G. Then (Fa, ga) € Fin(l") x
Gy, g)IF(D) % G if and only if there exists g € V{(I'y) such that ggy € V{(I'y} and

g’y € [,
Theorem 3.1.13. D and J on IFin(I") x & are equal.

Theorem 3.1.15. Let (I, 91), (T2, g2) € Reg(IFn(I') 0 G). Then (I, g1) £(Ls, g2) if

and only if g7'T) = g7 ' Ty

Theorem 3.1.16. Let (T'1,¢1), (Ua, 92) € Reg(IFin(I") x &), Then (I'1, ¢1)R{T2, ¢2)
tf and only if 1) =15,

Theorem 3.1.17. Let (I, g1), (I'2, 92) € Reg(IFin(I") x G). Then (I'y, g1)H (T2, g2)

if and only if Ty =Ty and g7'Ty = g5 'T1.

Theorem 3.1.18. Let (', 91), (U2, 92) € Reg(IFin(I") x G). Then (I, g1)D(Ta, g2) if

and only if g7y = g7y for some g € V(I'y).

Theorem 3.1.19. Let (T'y, g1), (T2, g2} € Reg(IFIn(I")xG). Then (I'g, g2) € Reg{(IFin(T")
XG) (T, g1) Reg{IFin(T) x &) if and only if there exists g € V(T'y) such that gI'y C Ts.

Corollary 3.1.20. D aend J on Reg(IFin(I') x G) are equal.

Theorem 3.1.21. Let (I'y, 1), (I'z, g2} € [Fin*(I") 0 G, Then (I'1, 91)£(T2, g2) #f and

only if g7'T'1 = g5 ' Ty,

Theorem 3.1.22. Let (I'y, g1), (T2, g2) € IFIn*(I) 3 G, Then (y, g1)R(Uz, g2) if and

ondy if I'y =Ty and (g1 = g2 0r 1,92 € V(I'1)).

Theorem 3.1.23. Let (T'1,g1), (T2, 92) € IFIn*(T') x G. Then (I'y, g1)H(T2, g2) if and

only if T1 =T, g, 'T1 = g5 'T1 and (51 = g2 or g1,92 € V(I'1)).

Theorem 3.1.24. Let (I'y, ¢1), (T, g2) € IFIn™ (') % G. Then (I'1, 91)D(Ts, g2) if and
only if g7y = g3 Ty or (g2 € V(I'3) and g7y = g Ty for some g € V(I'y)).



Theorem 3.1.25. Let (T'y, g1), (T2, g2) € IFin*(T") 3 . Then (T2, g2) € IFin*(I")
G(Ty, g)IFIin™ () x G if and only if there exists g € V(I'y) such that gg1 € V(I'y) and

gl'y € Ty,
Theorem 3.1.26. D and J on IFIn*(T") x G wre equal.

Theorem 3.2.1. Let (IV, g} € GFin{l") x G. Then (I, g) is « regular element if and
only if 1 < V(I
Corollary 3.2.2. Reg(GFin(T") 3 G) = Reg(IFin(T") x &) is the mazimal regular

subsemigroup of GFIn{I') x G.

Theorem 3.2.3. Let (I, g} € GFin*(T') x G. Then (1", ¢) is a regular element if and
only if 1 € V(IV).

Theorem 3.2.4. Let ([, 1), (T2, g2) € GFIn(T) x G. Then (I'y, 1) L2, ga) if and

only if (', 1)} = (I'2, go) or (9:'T1 = g5 'T2, ugat € V(I') and 9291"1 € V(I'y)).

Theorem 3.2.5. Let (I', 1), (T2, g2) € GFin(') x G. Then (T'1, g1)R(I'2, g2) if and
only if 'y = ['y.

Theorem 8.2.6. Let (I',g1), (T2, 92) € GFIn(T) » G. Then (T'y, g1)H(T'2, g2) if and

only if 'y = Iy, gflf\ = gg‘lf‘l and {gy = go or glggl,gggfl e V{I'h)).

Theorem 3.2.7. Let (T'1,¢1),(T2,92) € GFin(I") x G.  Then (I't, 1) P2, g2) if
and only if ['1 = Ty or (there exists g € V(I'y) such that g7'T') = g7y, g™ €
V(T1) and gg; ' € V(L))

Theorem 3.2.8. Let (I'1,¢1), (s, g2} € GFin(T") x G. Then (T'y,g2) € GFin(I')
G(U'1, 1) GFIn(T) % G if and only if there ewists g € V(I'y) such that gT'y €T,

Theorem 3.2.9. D and J on GFin(I') x G are equal.

Theorem 3.2.11. Let (T'1,q1), (Ta, g2) € GFin*(T) » G. Then (I'1, ¢1)L(T2, g2) #f and

only if (I'1, 1) = (Tq, g2) or (gflI‘I = gz_lI‘g, glgz—l € V(Ty) and gog7* € V(I9)).
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Theorem 3.2.12. Let (I'y, g1), (g, g2) € GFIN(TYx G, Then (T'y, g1 )YR(Tz, g2) if and
only if I'y =T,

Theorem 3.2.13. Let (', g1), (I'y, g2) € GFIn (D) xG. Then (T'y, 1)H(Ta, gs) if and

only if Ty =Ty, g7'T1 = g5 'T1 and (g1 = g2 or 195, 021" € V(I')).

Theorem 3.2.14. Let (I, g1), (T2, 92) € GFin™(I') x G. Then (1, g1)D(L'y, ¢o) if
and only if Ty = Ty or (there exists g € V(I's} such that g7y = g7 and g1g™! €
V(T1), g9, ' € V(Ia)).

Theorem 3.2.15. Let (T}, 91), (T, g2) € GFin*(I') x G. Then (I'z, g2) € GFin*(I") »
G(I'y, g1)GFin* (1) x G if and only if there exists g € V(I'y) such that gI'y C T'y.

Theorem 8.2.16. D and J on GFin*(I') x G are equal.

Theorem 4.1.1. Let (T, 91),(I'z, ¢2) € IFin(T) X G. Then (I, g1} < (T2, g2) #f and
only if (T, ) = (T2, 92) or (2 C€ Ty and gy = gp € V(I')).

Theorem 4.1.3. The natural partial order on IFin{l'} x G is left compatible.
Theorem 4.1.4, Let ¢ € G and B, be a digraph with V(1) = {1} aend E{@,) = 0.
Then the following statements are hold:

(1) (91,9} is @ mazimal element under the natural partial order on IFin(I') x G.

(2} If T is finite, then (', g) is @ minimal element under the naturel partial order

on IFn(T"} x G

(3} If ' is infinite, then IFIn(I') % G has no minimal element under the natural

parlial order.

Corollary 4.1.5. Let (U1, q1), (T'z, ¢2) € Reg(IFin(T") % G). Then (', 1) < Dy, g2)
if and only if (T'1, m) = (Fa, g2} or (L2 €T and g1 = ga).

Theorem 4.1.6. Let g € G and O, be a digraph with V(8,) = {1, ¢} and E{§,) = 0.

Then the following statements are hold:
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(1) (B, 9) is @ mazimal element under the natural partiel order on Reg(IFin(T) X G).

(2} If T is finite, then (I',g) is a minimal element under the natural partial order

on Reg(IFin(I"} x &).

(3) IfI is infinite, then Reg(IFin(I') x G) has no minimal element under the natural

partial order.

Theorem 4.1.7. Let (I, 91), (I'g, g2) € GFIn(1) x G Then (', 1) < (T, go) if and
only if (T'1,g1) = T, g2) or (T2 C Ty, 91 = g2 and 1 € V{(I')).

Theorem 4.1.8. The naturel partial order on GFin(I') » G is right compatible.
Theorem 4.1.10. Let g € G and @, be a digraph with V(,) = {g} and E(B,) = 0.
Then the following statements are hold:

(1) (9y, 9) is a mazimal element under the natural partial order on GFin(T) x G.

(2) IfT is finite, then (', g) is a minimal element under the natural partial order

on GFin(I') x G.

(3) If T is infinite, then GFin{L) x G has no minimal element under the natural

partial order.
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