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ABSTRACT

We study theory of modified gravity, namely disformal gravity, which is
constructed from disformal metric. We derive the action for disformal gravity from
general purely disformal transformation. Then we find the equations of motion
for the background universe and find that the disformal gravity does not provide
the kinetic driven for cosmic acceleration as usually expected from Galilean-like

theories,
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CHAPTER I

INTRODUCTION

1.1 Introduction

In this thesis we study the modified gravity theory and their late-time cos-
mological consequences. We concentrate on the disformal gravity theory. We also
investigate and review some of the related theories.

The modified gravity theories are still alive. It is alternative descriptions
of gravity to the standard Einstein’s General Relativity (GR). The latter is very
beautiful theory that is based on minimal assumptions and fits perfectly to the
experimental data [1]. There arc still some good reasons in studying the modified
gravity such as the dark sector of universe e.g. darlk matters and dark energy, the
cosmological constant problems , etc. Furthermore, modified gravity models with
non-minimal coupling hetween sealar matter and gravitygains recent observational
support (2, 3].

1.2 Cosmology from General Relativity

In General Relativity(GR) the dynamics of the gravitational field g,.(z)
in the presence of matter-energy contents are governed by the Einstein’s field
equation(EFE)(See appendix C)

R#U '} (1/2)Rg,lw + Ag;w = 87TG71,111}- (1.1)

This equation can be derived from applying Hamilton principle to the Einstein-
Hilbert action plus the matter action

1 "
e Tore fcl 2v/—g(R —2A) + Sp. (1.2)

The cosmological constant, A, is typically omitted from equations before the
discovery of the cosmic speed-up in 1998. The cosmological considerations based
on GR. can be started by Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric

dr?

1—kr?

ds? = —dt? + a*(t) [ + d-rzdﬂ] , (1.3)

where & = +1, 1,0 for closed, open, and flat universe, respectively, dQ2 = db? +

sin® d?, ¢ is the cosmic time. The scale factor, a(t) is an only dynamical vari-
able in this metric. By direct calculations we then obtain the Einstein tensor,

G, (C.14)
L\ 2
{ k
G = 3((£) +§) ; (1.4)



26 (a\* &k _
G = —9 (';;Jf(a) +'a—2) : (1.5)

By using EFE (1.1) with the matter described by the perfect fluid e.g. the energy-
momentum tensor

-0 2] (1.6)

0 gyp

where p and p are the energy density and pressure of the matter. The energy-
momentum tensor obeys the covariant conservation law

V™ =0, (1.7)
I

The equations (1.4),(1.5) and (1.7) respectively give us the three fundamental equa-~
tions of cosmology

N 2

& 8rG y p—

Sl E e = (18)
7} 47 A
i f LAY 8 — 1.
s gl t3p)+g (1.9)
b+ 3H(p+p)=0 , (1.10)

They are the Friedmann equation, Raychaudhuri equation and conservation equa-
tion, respectively. We will always set & = 0. This is according Lo observations and
inflationary model, and H = g = 49({—‘15. There are only two independent equations
from the three. In order to solved the three unknowns a(t), p(t), and p(t) we need

another independent equation namely the equation of state

p=wp (1.11)

where w is called the equation of state parameter. It has different value for
different type of matter content. For dust or non-relativistic matter their pressure
is very small compared to their energy density (p) so we have w = 0. For relativistic
particles, it move with velocity (v) closed to the speed of light (v ~ 1) or radiation
we can think of them as electromagnetic field so describe by the encergy-momentum
tensor

o\ ‘ 1 ‘
q}}i"\l = gaﬁFayFﬁu - ZQquaﬁFﬁﬁ, (1.12)
which is traceless, g#NT"[}IZ‘.J\-I = 0 (we use the unit gg = 1). From the traceless

property of energy-momentum tensor for radiations if we cast it as the perfect fluid
this condition reads —p -+ 3p = 0, so for radiations w = 1/3.

1.3 Dark Energy

The present standard model for the universe is ACDM model. I this model



the universe contains a cosmological constant { associated with dark energy), and
cold dark matter. To describe the acceleration expansion the present epoch of the
universe must be dominated by the cosmological constant [4, 5], by equation (1.9)
the universe will expand with acceleration at late time as required by observational
data . The another view is that A is an effective quantity for describing accelerated
universe. The underlying quantity describes this phenomenon is another form
of matter content called the dark energy. The dynamics of the universe that
describes by equation(1.9) in this setiing becomes

b 4mG (L4 3w)> 0, (1.13)

a 3
Therefore, the dark energy can be described by perfect fluid with w < :3l (not need
to be a constant). The special case when w = —1 is corresponds for A, because
from equations(1.8)and (1.9) we can deduce that py = 25 = —pa, We can also see
another fact that dark energy has negative pressure confrary to the ordinary (and
dark) matter and radiation( p is always > 0).

Describing cosmic acceleration with A has some issues mainly the observed
and theoretical calculated value is very different in this scenario (~ 120 order of
magnitude)[6]. This is the cosmological constant problem. Another issue with
the constant A is the coincidence problem, why we live in a special time which
the energy density of matter and dark encrgy are in the same order of magnitude
(~ O(1)). This is because the very small value of A. Since pa is constant and
time-independent so at the very early time of the universe this is unnaturally very
small compare to the density of the other type of matter.

To this end the dynamical dark energy models (for example quintessence,
three-form etc) has been proposed to try to solve these problems. The dark energy

is described by the scalar field , ¢ , adding to the model by modifying the action
(1)

o 1_61;5 fd%‘/"_g (B—(1/2)V,pV"¢ = V($)) + Sin. (1.14)

with equation of state

F_ v

1U=P¢/P¢::}(ﬁ% .

T aA0) (119
1+ vig)y

where X = —8,00%/2. The observed quantities predicted by this model are very
sensitive with a potentials and many forms of the potential have been studied.
Many of them are good for describing dynamies of the universe in inflationary
phase and late time acceleration. But they still have internal problems such as
fine-tuning and coincidence problem. So far we do not have completely consistent
theory of this kind.



Instead of using the canonical form of the Lagrangian for the scalar field,
one may consider the general form

4 2
5= m%‘/d4m\/m_gR+f(l418v“g(P(¢,JY) +£m(9aﬁ51r’f)))} (116)

where mp; is a reduced Planck mass {A.4). This model is called the k-essence
and may give the solution to the coincidence problem [7].

1.4 Modified Gravity & Scalar-Tensor Theories

From the previous section the another way to describe the cosmic accelera-
tion is modifying Einstein’s general relativity. The main paradigm is that GR may
be the only an approximately correct limit of the more fundamental theory.

Studying modified gravity theories may be leads to more natural explana-
tions for the early universe, the cosmic acceleration, dark sector of the universe,
and may be suit for setting up to quantum theory of gravity.

In GR the action of the theory is the Einstein-Hilbert with cosmological
constant plus the matter action

a P 1 d,. _
Scr=Sg.H+Sn= IGTFG/d zv/—g(R — 2A) + 5. (1.17)

By varying an action with respect to the metric field{d¢g*’) and by using Hamilton
principie(§Sgr = 0) lead us to the Einstein field equation{EFE)

1 il
R,uu -y 'é!};mR i Ag;w L5 SWGT}w: (1'18)
1 Mg
Ry — 59#[,1% = 8rG(Thw + swg)’
= 8rG(Tw+Tp,), (1.19)
where T}, 1= 7"—_2—3351’; The Einstein-Hilbert action is not the only one that can

describe the geometric and kinematic part according to the available experimental
data. It is the simplest one. For more general f(R)-gravity the action can be
expressed as

1 4
= — a/—qgf(} . 1.20
Sy 16'11’G/_,14d L gf (1) + S (1.20)

The variation of this action yields the equation of motion

! ]' T
F (B R = 56100 (R) + 9"V Vo [ (R) = V¥ [ (R) = 871G T, (1.21)



which equivalent to

1 o Tw L1 - ,
R = o= 816 155 = | L (R = £() + (000 = 9,9.) £(R)] )

=: 8w (ﬁw + T

By

(1.22)

The equation {1.22) gives the correct limit to EFE(1.18){with A = 0) when f(R) —
R, and we call T the curvature fluid energy-momentum tensor. Hence, by
generalizing the Einstein-Hilbert action we obtain the field’s equation that can be
recasts as Einstein-Hilbert action plus dark-energy-like fluid. This type of modified
gravity is called f(R)-gravity .

Instead of generalized the form of an action, we can modified Einstein’s
gravity by adding special degrees of freedom . The simplest one is a scalar field
and the simplest model of this kind is the Brans-Dicke theory

a0 = 1o [ AV [¢R - SV 49,0~ V()| + 5,

(1.23)

= ]d4w\/—_g[£BD + ﬁm] s
where w is the free parameter of theory. We can drop out G and adopt 1/¢ as a
varying gravitational constant. This action is in Jordan frame (the frame which
the energy-momentum tensor covariantly conserved, V, 7" =0, so, the particles
follow the geodesics. In this frame the Riccl scalar in the Lagrangian density can
be multiplied by some function of the degrees of freedom. In contrary the Einstein
frame is the frame which the action is linear in Ricci scalar). In Jordan frame
we can view a scalar field as a field coupling with gravity not the matter fields.
Transforming this action to Einstein frame can he done by a suitable conformal
transformation( precisely, Weyl transformation, for this case

G — .a,uu = qbgpu- (1'24)

The formula for conformal transformations between the metric can transform the
action in eq. {1.23) to Einstein’s frame

, (R 1. - 3 .
Spp = /dia:\/-—g (m*ngv”w—U(@)ﬂLﬁm) ;o (1.29)

where @ = f‘gjﬁ In . We can interpret this result that Brans-Dicke theory with

un-coupled matter is equivalent to GR with a scalar field coupling to the matter
(a coupling term is in Lp,) modulo some suitable conformal mapping of the metric.

Furthermore, It can be shown that f({R)-gravity conformally equivalent to



Brans-Dicke theory , and so GR coupling minimally with a scalar field by suitable
conformal mapping and redefinition of a scalar field.

These are the prototype of modified gravity theories. Many forms of the
functions f have been studied. Nevertheless non of them is physically or math-
ematically complete, mainly, because the feld’s equation(1.21) is fourth order in
the metric, this leading to the Ostrogradsky instability. This instability oceurs
in the model which contains the terms with more than second order in time deriva-
tives of the degrees of freedom { in this case g,,,). Indeed, by Lovelock theorem
in 4-dimensional space-time the Finstein-Hilbert lagrangian of GR (f(R) = R) is
the only a non-degenerated ' one that can gives equation of motion with the order
Jess than or equal to 2. To aveid the Ostrogradsky instability the Lagrangian of
f(R) gravity must be degenerated one.

As we have shown by examples above, the conformal transformation is im-
portants in scalar-tensor theory. Jacob Bekenstein|[13] suggests that the most gen-
eral mapping between the metric involving one scalar field and preserve diffeomor-
phisms is the disformal transformations

G +—> G, X) g + D($, X)Pphw (1.26)

where ¢, = ¢, = 6—‘1‘%, X = —¢"8,¢8,¢/2. The functions C(¢, X) andD(¢, X)
are the arbitrary functions of ¢ and X. Study disformal related theories might
gives us insights into gravitational theory. We will discuss this topic in Chapter 3

1.5 Outline & Motivations of this Thesis

The most general scalar-tensor theory which provides equations of motion
up to second order and hence free from Ostrogradsky instability is Horndeski theory.
In the modern approach, the Horndeski theory can be viewed as the generalized
Galileon. By generalizing the Galileon theory to the curved space-time we obtain
the equivalent theory of Horndeski theory which is the most general scalar-tensor
theory with one scalar field in four dimensions which provides the second-order
equations of motion.

The Galileon theory[15, 16] is the most general theory of one scalar field
that provides at most second order in the equations of motion[14, 12]. The gener-
alization of such model to the curved spacetime leads to the generalized galileon or
the Horndeski theory [10]. Recently, It has been found that there are a class of
theories of extend Horndeski which is a larger class of scalar-tensor theory which
the equations of motion possess higher-order derivatives but still free from Ostro-

IPhe non-degenerated (or non-singular) Lagrangian means the Hessian matrix, Wep {For
example, in a case of £ = L[@] we have Wep = a(aﬂgaﬂa;ét?:(ao.;.b) = a(gs.;o)) is invertible, or det Wy, #£

(. For more details see [8, 9]




gradski instability. This follows from Hamiltonian analysis and counting degrees
of freedom (dof)[52, 34, 35]. This so-called the beyond Horndeski theory or
GLPYV theory[l1, 23, 24] or the doubly generalized Galileon{G?) has the same
number of dof of the original Horndeski theory (3 dof). The even further general-
ization called XG? theory and spatially covariant theory of gravity are also exist

(9.

These generalized class of the scalar-tensor theories up to X3 are related by
the generalized version of the conformal transformation called the disformal trans-
formation|13]. The class of Horndeski theories is closed under g,, — C{¢)gu +
D($)¢ ... The class of GLPV theories is closed under gy, — ¢ () gD, X)udu.
The class of X3 theories also closed under such transformation in the unitary
gauge[19]. For the class of spatially covariant theory of gravity it is still unknown.

However, the study in [22] has shown that the Generalization of Horn-
deski theoty by the transformations g — C{¢, X)gu or g —> C($, X Y +
D(¢, X)pu¢w can also provide the second order equations of mmotion in the proper
way. So the result theories are free from Ostrogradski instability. But it is still
not clear that these transformations will lead us to mare general theory than those
we have discussed above or how to relate them together. The meaning of these
ghost-freeness in general context are also not clear and the further investigations
is still needed.

In our work we discuss the disformal transformation in the form

G — G + D(d, X)pthy- (1.27)

By apply this transformation to the gravity part of the action (1.16) we obtain
(3.32)

Laiet = Galp, X) + Calgh, X)R + G ((O9)? — ™)
(1.28)

+ 4D x X((0¢)* - dud™) + 2XV* (VD) + 8"V (V.. D)

Since the GLPV theory is closed under this transformation then the above action
still belongs to the GLPV class. This ensures us that our result action not prop-
agates any ghost degrees of freedom . But we still need to check it by explicitly
caleulation and match the extra terms in the second line of the above action to the
beyond Horndeski terms in the GLPV action. In the worse case, if these terms is
beyond GLPV we need to check that they are still belong to the XG? class, We
will analyze these extra terms as far as possible to understand them exactly.

Next, we will study the evolution of background universe to see whether or
not the purely kinetic part of the disformal scalar field can driven the cosmic accel-
eration as one might expected from the Galileon-like theories. This investigation
will be done in chapter 4



CHAPTER 11

HORNDESKI, AND GLPV

2.1 Introduction

The accelerating expansion of the universe in the carly time and today
stimulates the study of modified gravity with contains more degrees of freedom
additional to the standard general relativity. By investigated such theories lead
us to further general models, which have their own interesting. In theoretical side,
these studies can be done in their own right as the investigations on the structure
of the scalar-tensor and the related theories.

2.2 Galileon

Galileon field theory inspired by the decoupling limit of DGP theory can
provide cosmic aceeleration. This is because in such limit the theory has the galileon
symmetry. The galileon field theory is the most general theory of a scalar field in
flat spacetime thal contains such symmetry [15, 16].

The Lagrangian is generally given by

E(n) — Tﬂlo--.l-'fn i 1 . 2 3 (21)

#y T Ve

where T = T (¢, 8¢) and Tra-sovetn — Tlvwpmbbrnl)  completely anti-symmetric
in {jt1...pn} and {pg ... v} and symmetric under p; <=> v;) . The action is in-
variant under the Galileon symmetry

¢,u — qﬁﬁt + b;n 915 i ¢ H® (22)

in the curved space-time which is the Generalization from the Galileon symmetry
in flat Minkowskian space-time

p—r bt +ec . (2.3)
The first example of the Galileon theory in flat space-time is given by the Lagrangian{17]

Gal,1 1 ST RN P P, |2 15 1
£ Ve —_— 1 16 n-41 1 . n
N (D —_n — 1)[ 1’1-'-f’n+10'1m01)7n—1gb Q‘l).lln-{—l ¢Hl ¢yna

(2.4)
where N is a number of the scalar fields in the action. In any particular dimension,
the maximum possible values of n is restricted by Nmax + 1 = D = the number of

the indices of the Levi-Civita tensor,c and N = n + 2. For example, in four-
dimensional space-time the possible value of n are 0,1,2,3 (N = 2,3,4,5) and the
possible Lagrangians can be written as

Gal,l 1 11816283 11
£2 = 7t 51/15152(53@5 ¢,u1

= , (2.5)



1 .
T jigéride N /2 v1
€ EV1V201'52¢ ¢,u2 w0

Gal,l

L&M=

8 2!

Gal,l 1 Hipapad Vg v A !
Esi - ﬂ EU1U2U35¢ ¢.us w1 Pus
Gal,l

L7 =

il

1
 HIH2H3HY Py V) A2 AV3
€ PPN S IR Y

(2.6)
(2.7)

(2.8)

We can obtain the equations of motion from the Lagrangians £ = L(¢, 8¢, 00¢)

by Euler-Lagrange equations

OL N OLNn OLyN
En= — -8,  ~+ 0,0, — =
This gives us the equations of motion
Ev = Nnlgln . gival=o
explicitly,
Ey = 2D¢1
& = 3(O¢ —¢7,),
& = 404 30647, +24},),
65 = 5(D¢)4 N 6D¢2 ,(211) 4 3¢iu¢3ﬁ + 8D¢¢iu N 6¢fw

p.

(2.9)

(2.10)

(2.11)
(2.12)
(2.13)
(2.14)

Thus we obtain the second order equations of motion. To generalize the flat space-

time galileon to the curved space-time we will use the Generalization 7, — guw
and 8, — V,, to the Lagrangians and the Euler-Lagrange ‘equations. Irom the

Lagsrangian £°8: in four dimensional curved space-time we can calculate the equa-
(o}

tions of motion by using the Fuler-Lagrange equations. For example, starting with

Gal,1
L%, we can calculate

8['4 0Ly i V3 L1 i
0 oy, T R i
a£'4 V3 LY ; v 1
o 08 - B - L
8[14 N 4 1 i 1
3_¢,\ = *20}!&.‘::1{12?5 3¢#3 .\15?:1 ;4225
Y
A af‘ﬂl _ [IAPNIE 23 v sy} A vaA
= V"r'v (W - ___25“1.“#3 [2¢ T¢ﬂ3 ()\()p,lqspl +2¢ ‘xb.us‘r
¥
+26" SN By + D003 S
8 D dGONE + O B BREN AN
Hence
ALy 0Ly OL4
g = v (S v, oNE),
a¢ v E‘)gbﬂf) it BQ‘):;‘
= Al g + 10900 g, 1 32 — 200 0 1R

LK

(2.15)
(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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ot

J ’ .
= (09" — 3005, +26) — 5 Rt 8" 06 + 2Rpuand’ ¢/
/ 1 1378 1 e
+2R;W¢M¢J ﬁ¢ﬁ + 'Q—JQ,!WQZSIl ¢ﬂ¢ﬁ + ZV#R‘f)pruqs
1 3 o
*avaﬁ;gvéa(ﬁ“(ﬁ' ) =0, . (2_21)

where [...| = n![...]. In this case the equations of motion is third order in the metric
field due to the covariant differentiation of the Ricei tensor and scalar (the last two
terms). To remove these third order terms one may try to integrating by part these
third order terms

giH = V#quﬂﬁbvﬁby -~ Zva leqﬁaqb‘“qﬁ“,

the boundary term the second order part

— TV (Capd® D) RObbnd” + 20,8 o) 4 2 (202877 + D).
(2.22)

If we do not want to ignore the boundary term we must add the extra term to the
original action to cancele this boundary part of the equations of motion (the same
strategy of adding the Gibbons—Hawking—York boundary term to Einstein-Hilbert
action). After calculating the equations of motion this new extra term in the action
must yields the quantity

+ 2V, (Gupd* D). (2.23)
So we can see that
aﬁiz{tra ¢ Ax
= V() = V(a9 (2:24)
]
This implies
! sztra L —Gu,ggb“qb‘gqﬁ”qﬁﬂ . (2.25)

o > Calpr=
Hence the covariantization version of £;°" is given by

Sfal,l — fd4fﬁ /—mgﬁ”;}al,l _ /d4$ /__g (6#1#2#3661/]Wl}a&qﬁvsqs”aﬁg }1:; _ Gaﬁqﬁ“qﬁ%”ﬁf’y) ,
(2.26)
and the final second order equations of motion of £ then reads (2.21),(2.22)

& = A(O0° — 304, + 205,) — 2t BTG + 8RS
1
RSP by + LR S by — SROGA = 20,0™9,))
-0 (2.27)

The method of adding the suitable counter term to the aclion can be considered in
more general setting[11, 12, 14]. Such method leads us to the conclusion that the
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covariant Galilean is equivalent to the Horndeski theory.

2.3 Horndeski

According to covariantization of Galileon theory considered in the previous
section, we then obtain the Horndeski action then consists of the following action

B
H _ /d%\#gZﬁi, (2.28)
i=2

where
'CH F G2(¢5y)1 (229)
Ly = Gs(¢,Y)Od, (2.30)
L — Gal, Y )R — 2Gar (9, VYO — 82,), (2.31)

LE = G5(4,Y)Cud!™ + (1/3)Gev (6, Y)(Og* — 30065, + 2(¢)*)(2.32)

Note that theses Lagrangians are in the form of the coefficient functions of (¢,Y)
multiply with the second derivative of the scalar field, (VV¢), and/or multiply
with the gencral covariant quantities G, R. it anti-symmetric fashion, they are

L3 =Gy, Y), (2.33)
L3 = Gy(9, Y)Y, (2.34)
L = G, V)(1/2)8h5 Roll — 2Cay (6, Y )3h560 40, (2.35)
LE = Gy(, V)(=1/4)8457 Rl -+ (1/3)Csv (¢, Y )Sagoddleh, (2.30)

where 5“1 “#n js o generalized Kronecker delta (A.62). This form is more compact
wln

than the previous form since we use only %7, ¢4, 7, 8 ¢*, in the construction.
This action is equivalents to many gravitational theories [39] depends on the func-

tions Ga(¢, V), G3(9,Y), Ga(d, Y), and Gs(¢,Y).

2.3.1 Horndeski theory in ADM formalism

The Lagrangian density of Horndeski theory in ADM variables and in the
unitary gauge fixing condition can be constructed by setting

¢ = $(t), and choosing n, = —yV,¢, where y = (2.37)

-V

In ADM formalism, we foliate the spacetime continuum{M) to the equal-time space-
like hypersurfaces (%) that change with time parameter. To do so, we write the
line element as

ds® = (=N%4 NONy)dt? + qudada®, (2.38)
~ N%dt? + gup(da® + N°dt)(dx® + N°dt). (2.39)



12

where N is a lapse function and N¢ is a shift vector. The spacetime metric and its
inverse can be represents as

—N? + N°N, N,

-1 %
G = , gt =N N 2.40
HY Ny QGJ g g—? (]ab - NNIZVb ( )

For the free particles free-falling in the spacetime (following the geodesic) their

Figure 1 Space-time foliation.

world-lines define the time flows. We call a vector tangents to this flow at each
point a time-flow vector, (#. In their free-falling franes at particular point in the
space-time the metric field for deseribing the particle motion is the flat Minkowsian
metric adapted from metric for curved metric at that point space-time metric . The
observer in such frame may expect that a particle will follow the geodesic defined
by the flat Minkowsian metric since she don’t feel gravitation, but, indeed the shift
in position occurs since a particle really follows the geodesic defined by general
space-time metxic. Such shifts occur when the gravity is not uniform distribution,
equivalently we can say such free falling fraine has inertia . Imagine that we are
live inside the falling elevator in uniform gravitational ficld and place the ball at
some height above the foor of this elevator. The deviation of path of such ball will
not be detected, but if so, the non-uniformity of gravitational field was detected
so the shifts in position of this ball occurred. Such shifts are describe by the shift
vector N#(x2). At each infinitesimal region the shift vector is a projection of the time
vector as shown in figure 1. Therefore we can associate the vector perpendicular
to the hypersurface with the time-flow and the shift vectors

Np#t =t — N# | (2.41)
where n# is a unit vector orthogonal to the hypersurface(%;)

Gun'n’ = -1, (2.42)
G NY =0, (2.43)

and we call N(z) the lapse function. It is dynamical and captures the deviation of
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speed of the clock from the local Minkowsian sense cause hy non-uniformity of the
gravitational field. The vector n# can be interpreted as the gradient of some scalar
function that constant on each hypersurface. Such time function, T'(z), is usually
defined via

o = —NV,T. (2.44)

2.3.1.1 The Extrinsic Curvature. Any vector field in space-time can be
decomposes in to the spatial and temporal part by the heip of the vector field, n*

v=—glu,n)n + @+ g(v,n)n). (2.45)
L l

(This equation using coordinate-free nonation. See appendix 77 ). We call the
vector with g(v,n) = 0 spatial. For the covariant derivative this space-time decom-
position reads

Vo = —g(Vuu,n)n + (Ve + g(Vav,nn). (2.46)

=K(u,u)n =Dy

We call K(-,) (or K,,) the eztrinsic curvature and D, (or D)) the spatial covariant
derivative

K{u,v) = —g(Vyu,n), (2.47)
Dy = Vv + g(Vuu,nin, (2.48)
S Ve = Dy + K{u,vn. (2.49)

Note that the projection of any vector to the hypersurface is given by

vy = vtglv,n)n, (2.50)
= () = (& + )0, (2.51)
A (2.52)
where
g = (88 + n,nt). (2.53)

We call ¢# the projection operator. By lowering the contravariant index we obtain
Guv = Guv + NN - (2.54)

This is the induced metric on the hypersurface. It is a spatial object which we
need only three-dimensional coordinate for deseribe it. By appropriate coordinate
transformation, one can use only the spatial indices to describe it and we can write
it as gy which will be turned out to be equals to ges. Note also that from (2.42)

g(n,n) = n,n* = —1, (2.55)
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we obtain the useful identity for ADM analysis reads

Vug(n,n) =0 = g(Vyn,n) =0, (2.56)
n*Vgne = 0. (2.57)

by applying the above identity (2.56) to the relation (2.48), one has
Vun = Dyn. (2.58)

This means V. n(= (u*Vang)dz?) is a spatial object. In the coordinate basis, the
equation {2.58) means

utV,n, = goutVn,, (2.59)
= (62 4 n®n,)ukV ng, (2.60)
= u'V,n, 40, (2.61)

the projection of this object is equals to itself so it is spatial and from (2.49) we
also have
K(u,n) = K(n,u)=0, or K,n"=0,K,n"=0. (2.62)

This is because in the case of torsion-free, K, is symmetric. Therefore, both slots
of K(-,-) deal only with the spatial part of the vectors. Hence,

K(u,v) = Kuyp,v) = —g(Vuop,n), (2.63)
= =V gl n) + gly, Vunl, (2.64)
0

= g{v+(v-n)n, V(e (umyn)t) (2.65)
= g(v, Vs wmnt) -+ (v )g(n, Vi (un)ant) , (2.66)

= g(v,Vun) + (u- n)g(v, Vnn) + (v- n)g(n, Vun)

0
+{v-n)(u - n)g(n, Van), {2.67)
0

K(u,v) = g{v,Vun) + (u-n)g(v, Van). (2.68)

In the coorditate hasis we have

Ky = K(848,) = g(8,, Vun® 85) + nug(0, n*Van? 8p) (2.69)

= Vlgug+n,n Vg, {2.70)
= V,n, +n,n'Van, (2.71)
Ky = Vyn,+nua,, (2.72)

where aﬁ,(z n’V,a,) is a acceleration vector? which is related Lo the lapse function,

2Note that the acceleration vector is a spatial object. Tt is in the form of Vyn(=
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N(z), by the help of (2.44)

a, = n'V,ng (2.73)
= —nHV,(NV,T) (2.74)
= WV NVLT —~ No'V,(V,T) (2.75)
VaVuT
1 o u 1
= Fhalt VN — Nn Va.(—-ﬁn#) (2.76)
1 1
_— Wnﬂn“VﬂN — iV, + Nn"nﬂva(ﬁ) (2.77)
0
A /L
= Flal \ YR L 1y ValN (2.78)
1
= l(V N+ n 'V, N) = -LD N (2.79)
- N o o i = N o .
an = Dyln . (2.80)

The temporal and spatial part of V,n, in (2.72) can be inspected by the fivst index

u
Ve = Ky — it = (Vi )y (V)1 (2.81)
The equation {2.72) obviously equivalents to
Ky = ¢, Valu. (2.82)

Since the above quantity is spatial object then alternatively we can write it with
the additional projective operator

Ky = q395Vang. (2.83)

From this expression the geometric interpretation can he readily understood. The
extrinsic curvature tells us that how »* or how the orientations of the global hy-
persurface change as they are embedded in the space-time. Computing the Lie
derivative of the induced metric

£nq_tw = Nudy + N,y + v#ﬂy + V,,‘n,u = 2]{#1} , (284)

leads us to the another form of the extrinsic curvature [40]

1
I(,U,V = §£nq;u/ ) (285)
1
= W(-ftq - °€Nq)}l-l/' (286)

(1@ V grrg)daf) (2.58).
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In ADM coordinate in which the metric is given by equation(2.40)

.
I(a‘b é“ﬁr"(q - °€NQ)aba (28?)
1
= ﬁ(@“b — Dy Ny — DyNy), (2.88)

where D, is covariant derivative on the hypersurface, indices a,b,--- = 1,2,3 are
for the spatial coordinate on the hypersurface .

2.3.1.2 ADM formalism. In this formalism we parametrize the spacetime to
the space and time such that

2 = {mo,ml,m2,$3} — {.’Eo,i:l,ﬁz,.%g'} = {t,:s“}, (2.89)
or simply
W = {L, ;sa}, (2.90)
which “= " actually means “equals fo ... in ADM coordinate”. Tt is clearly that

d;'; = {1,000} =, N ={o,n}. (2.91)

Consequently, by {2.41) we have
= —1—{1 —N“}. (2.92)
N7

We list here some useful identities,

o
Q’,u:,t’ = g,u,u'aif:b‘"é}ﬁ = Y00, (293)

Gun'n” = guehey =np = —1. (2.94)
Where ¢}, is a frame field (A.31), the last line e5 = 7/ because in Minkowskian

s¢nse
n' = {1,0,0,0}, (2.95)

where the index [ runs for {0,1,2,3} is the Minkowskian index. Therefore in
general space-time view, we write

nt = einl, (2.96)
= & m - (2.97)
From (2.93)
goo = Gu(Nnt+ NF)(Nn” + NY), (2.98)
~N% 4 N N# = N?>+ N,N¢, (2.99)

gut'N¥ = gu(Nn* + N¥)N”, (2.100)
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Ot
G amgN® = 0+ NN°, (2.101)

Sogoy = Ny, (2.102)
These give us the form of the metric in ADM coordinate represents as (2.40)

_ —N? + Afﬂl\la ]\Tb
T = IVa Gab .

In order to find the inverse of this metric, we represent. the relevant vectors by the
column vector

1 1 0 .
, pii= - [—N“] , VWA= [N“] , (2.103)

fome S o B o

The equation (2.40),{2.103) allow us to write

I 1 1 b
e = — {_NG} ey (2.104)
1 1 —N? ,
— N_2 [_lva ]\ra]\fb:| 1 (2105)
gt o= ¢ -t @nY (2.106)
b [1— 190 NE
= ¢+ — 2.1
e L\Ia —NaNb} ) (2.107)
~N24+ NN, N} [1 —N? + N N
— = 2.1
t# |: ]Va Gab | 0 jVa ' ( 08)
~NZLNeN, N 1] 1 - N
— e == 2.1
& { N, G| N |—N? 0] (2.109)
N, N9
N, & tﬂ—j\fn.ux[ RT , {2.110)
a
N2 0
men = | o]’ (2.111)
G = G + Ny (2112)
[N, N® N,
= ) 2.113
L j\[ﬂ (Ia.b:| ( )

From (2.107) we need to know ¢** for computing the inverse metric. This is can
be done from the requirement that

Ny

G e = ( =0, —0f ® (50.), (2.114)

o o o O
O D e D
e T s B e )
= o O O
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and by observation that

N,Ne NP1 [o 0] _[o O . o
|: 1?\]’(1 qab:| [0 qbc:| - [O 6:1;[ 1 \Vheleqabq = 5(1, (2.115)
one can realize that
" 0 0
QU = {0 qab:I . (2116)

Applying this result to (2.107), one obtains

o 0] 1 [=t N
o [0 qab}+m[1\,a _NEN,J}, (2.117)

then the inverse metric in ADM coordinate reads

-1 gl

gpv . N2 N2
e gl v
NE 4 “wNZ

The important part of ADM analysis is the Gaufi-Codazzi equation which is re-
lated the four-dimensional curvature to the three-dimensional one. The Riemann
(intrinsic) curvature tensor on the hypersurface is defined by

—SR% g An = (DD, — D,Dg)A, (2.118)
where A, is a covariant vector field. This directly implies

DyDgAy = Pl sV Ay — Ko KG A+ qa5q5 N4V o Aa, (2.119)

= (DD = DDAy = (—IKuaKG + Kgak))Ax + 010500V V, — V, Vo) Agy
= SR Ay = (KK + KpoO)AN — Q505 R opp A, (2.120)

= 3R=SR B = K KM — K? 4 qlq R o, (2.121)

but
R= g 8) R gnp = (¢ q) — 20°0°q)) R syp (2.122)

S0

SR = KpK"™ — K+ R+ 20°0°q] R oy, (2.123)
= K, K" — K*+ R+ 20°q}[V,, V,n', (2.124)
KK — K2 4+ R+ 2(V, (0" Vo) — K K — V,(nPK) + K2)]25)
= =3R4 K, K" — K? — 2V, (a* — n*K) . (2.126)

This equation is useful for expressing the Einstein-Hilbert action to the ADM vari-
ables. Considering equation {2.123), it can be recast as
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SR = K, K" — K>+ R+ 2n7n(8] + Ny ) R oep,
= K K" — K*+ R+ 2n'nf Ry, + 2n°nPrYny R 5yp,
0

1
Runtn? = o (R~ KuK™ + K*—R), (2.127)

where we have used the symmetric property for the last term in second line. Then

1
Gnt'n’ = Rynfn’ — -2—gy,,n“n"R,
1 1
r s CR - Ko K" + K>~ R) + 5B
1
Gunn” = 3 (R — KK+ K?). (2.128)

This identity will be used later. The equation (2.120) also gives us the relation for
Riemann curvature tensor

PR s = KoK+ KoK — G aha5 R oy (2.129)
SR/\QV{B‘ - ]{vu1<)\ﬁ - I(u-ﬁf{,\v + qinggqgﬁRgmp. (2130)

The equation (2.130) is called the Gouf-Codazzi equation. Starting from this equa-
tion we can also derive the relation for Ricci tensor

—PRep = —0 R s, (2.131)
= CKaKh o+ KoK = (85 + nna) a5l R oy (2.132)

[+

The second term in the parentheses then vanishes due to n”gy = 0, which yields

SRap = KaKj — KKap + GJa500R" 5p (2.133)
= KanKj — KKop + (87 +07m,)q500 R ovp (2.134)
= KI5 — KKap+ 4300 Hap + 45600 10 R 5yp (2.135)
SRap = KarnKj — KEKop+ (Raply + (00 R ayg)y- (2.136)

2.3.1.3 In the unitary gauge. In this gauge

$(t,2%) = ¢(2), (2.137)
1

Ny = —7‘}511: Y= _\/T—Y

The minus sign in front of ¥ appears because ¢, is time-like. Therefore ¢,¢" <
0. Let us find the spatially geometric deseription corresponding for the second

(2.138)



derivatives of the scalar field

v,u'n-y = _vp'ﬂbv - ’}'(,b.uy-
3
Vuy= 7 Y.
,.Y3
L. any = _E}/‘UQSU - /YQS,L!V'

From (2.72)

V,,n,, e W

—_}/1¢V

Ny,

"f@,uu =3 I(,uu = Ny,

1
¢’pu = ; (I<;w

—nua,) — %311451,

From (2.141) :

V1, = a, =

But

73
?'“S/ngu + Y QS ¢’,uu-

Yy = 20"

thevefore we have

2

AN = —%n)‘Y,\qﬁy + 5 o
3 3
W u%nf\y)\gbﬁn,, - %ngby.
Finally, we have
,.Y2

- =Y, *ln @ -|—£¢AY'H n
2,111/*71:;.1 9 Afbyiiy.

Substituting of this result to (2.144) gives

1

b= U =~ aum) 4

2
% qﬁ)‘Y AT

We also obtain
1

O = —~K — ﬁgb’\Y,\
Y 277

and by contracting both side of {2.150) we obtain

_75’51]45#11 =

a, =

(:/—” + gn)‘n,ﬂ Y,

.
E(Y" + n’\nFYA),

20

(2.139)

(2.140)

(2.141)

(2.142)
(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)
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g

56 (2.152)

CL'H =

which means that %a# is a spatial part of ¥,,. Indeed, from (2.147) we can notice
that ¥, can be decomposed in to (3+4-1)-style as

2
Y, = St Y Yoy, (2.153)

where the first term is spatial part and the second term is temporal part.

The goal of the next derivation is to rewrite the Horndeski action in terms of
the functions of (q‘;, Y(= qﬁugb“)) and the spatial quantities such as ® Roped, ® Raps * B, Kaby Gab-
It is useful to see how the basic building blocks of ADM formalism look like in this
galuge

&= o) = ¢, = {$,0,0,0},

~¢ ¢

g {m\/j_};,o,o,o} = -5 (2.154)

Comparing equation (2.154) with (2.109) we obtain

?ond 03 B ) 5
_YN—l, orTEN (2.155)
Rearranging it to the another form
1

N dt = ——d¢, (2.156)

AR
which means that at each point in configuration space (¢, Y) we can find corre-
sponding point in (N, ?)
(6, ¥ )= (N, 1). (2.157)

We can write coefficient functions of Horndeski Lagrangians as a functions of (N, t).
Note also that

o= =Y =gV V=Y (2.158)
9"p/V=Y, (2.159)
$  —N
{ T _}_f_}. (2.160)
Back to the Horndeski Lagrangian, we classify it to £, 28 £F L by the power
of VV¢ in each Lagrangian. Transforming these Lagrangian in to the spatial geo-

metric term may be mixed the power of VV¢. In such case we call the Lagrangians
are in the mézed-form. If we rearrange the term with the same number of power
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together in the same Lagrangian, we call the Lagrangians are in the pure-form. The
number of power of VV ¢ is dimensionally equivalent to the main spatial geometric
guantities as the following

K, Ky ~ VVG=> V=1, (2.161)
% Rabea, *Rap, R~ VV$VV = #VVé =2, (2.162)

the first line concludes from (2.150), while the second line concludes from {2.130).
Therefore, our requirementis is the new form of Lagrangians will be consist of the
quantities with dimensionally equivalent to (VV¢)", and does not cousist of n, ~

Vo or a, ~ VopVVaor ¥y ~ VoV Vo,

Let us consider the Horndeski Lagrangians. Since (2.29)

Iy

LH = Cy(¢,Y) = Ga(o(2), \i ) = A(N, 1) = Ga2(N, 1),
is a fanction of (N, t) by default, so nothing to do with it. The next piece is (2.30)
Ly = Gy(N, 1)U,
by using (2.151) we obtain
LH = _%ng{ - 3;G3¢"YA, (2.163)

which the first term fits into the requirements but not for the second term because
the terms in the dimension of V¢ appeare. Replacing the term ¢V by using
(2.151) cannot fixed this situation. We can try to integrate by parts

ﬁf B F(Gsﬁb ) o v,uGB ¢H,

= Vu(Gsg) — (Captut” + Gar Yo" ),

= Vu(Gag) — ( f3pY -+ Gay Y, ¢ )
Mg 2K

_ m N it Al

= V,(Gad") ~ (GagY + Gov | & 1)

2Y
= V,(Gag") — (G3¢Y + Gy YT o+ =Gy K)
At this stage we have
y 2y
£ = =GV~ -Gy I — Gay2Y U+ VB, (2.164)

where the boundary term

VB =V, (Gag?). (2.165)
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Therefore, up to the boundary terms

2Y
L =Gy — —GgyK Gay2Y ¢, (2.166)
The first two terms are in the requived form but the last term is not ((¢ = ——K —

1’;@‘;"){\). The strategy for getting rid of the last term is redefine the function to be
the another function plus the extra term

G = Fy+ the extra term,
= F3 1 As. {2.167)
We add the extra term because we hope that it may help in canceling the unwanted
piece. The Lagrangian then reads
Y . 2Y 2Y
L3 = —IyY — —,?FWK AzpY — —.AgyK (F5+ A3)y2Y 0. (2.168)

We expect that these bad terms will be canceled out (or, at least, becomme another
good terms). If we guess that

AMY+3§AWKA%EHn%hﬂYD¢=O, (2.169)
then we have
N\NT 5 ?XAWK (P + As)ﬂy( . % L Qqaf\y,\),
:f%y+§4wx_”Wﬂy~ﬂwwwn—%¥mK—fr%mwx

2Y K
= AsY — Fay + Fay 'Yy + Agyd?Ya,
g
(V#Ag) Pt = 71}1'1( oy ¢*¥y,
= _9V R ,(_ I__}__st\ )
5y vty
K 2
= —ovmy (- =T,
Y

= —2Y F3y U9,
= Vu (ZYFSY) ¢ + VB,

where the boundary term given by
v,BL =Y, ( _oy nggb”). (2.170)

Finally, we obtain
Az =2V Igy. (2.171)
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If we redefine,

|Gs = F3 +2Y Fyy (2.172)

then the Lagrangian, £, (2.168) becomes

2Y

L = —FaY — TFWK, (2.173)
up to the boundary terms (2.165),(2.170)
VBl =Y, (F3¢w). (2.174)

We are guite lucky because, indeed, there is no proper method for solving
these kind of prohlems, but integrating by parts and using (the trial) auxiliary
functions are the effective tools. We may observe that the redefinition of the
coefficient function in the term that contains Yy by ~ A(d, V) + 2V Ay (¢, V), where
A(9,Y) is some quziliary function tends to stmplify the problems. This is because

I
(A+2Y Ay) Y, = VH(¢,A) + ;(.A — AyY. (2.175)

The Lagrangian now follows our requirements. But, the dimensions of VV¢ of
both terms are not the same such that the first term is zero, (#VV¢ = 0), while
the second is one, (#V V¢ = 1), so this Lagrangian is in the mized-form. Next,
consider

£y = Gy R—-2Gsy (O¢* — 47,). (2.176)

By using (2.126), (2.151), (2.150)
1 y 3 1 2 1 ¥ 1{2 A
L cni( R+ K K" — K2 — 2V, (o — -n“K)) = zog{(;g— A PY

T v a8 1 2 T v 8
+ 9 Vg Yﬁ) - (;KWKW = ?ana" TP Yﬁ)},

= G (*R+ Ky kO — K* = 29, (" - 'K )
K? 1 2
_2945,( T KBV = g I :}Eaﬂa#),

= Ga (PR KK — K229, (o nK))
2
OV Gy (1(2 . K,n,f(ﬂ”) — Gy (qff(qsm + ?aﬂaﬂ),
= G (*R =29, (" — i)
Y Gy — o) (K2 — KK, K™Y — 20 1Yy 4 2 (L v
+( Ty — 14)( — - 14)'( — Kn"Yy -+ E(Eq'” vat),
=GR+ (2 Gay — Ga) (K® - KK ) = 2G4V, (@ = n'K)
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—2G4}»YA( — Knt + qﬁa“),
=GR+ (2 Gay = Gu) (P - I K) = 9,(2Ga(a" — ')

L_g(;"lyYA( — Kn? + qﬁa“ —a -t K’) + 2Gypdy (a.“ —nH K),

where we have used (2.152) for the term g,¢*. The form of this Lagrangian now
becomes

L =GR+ (Y Gay — Ga) (K7 - KWKW) /Y Gk + VB, (2.177)
where the boundary term
V,BE = =V, (2G(a” — 0 K)). (2.178)
Next, consider the last piece, £, and will follow closely Ref [41]
LE = G5(,Y) G + (1/3)Gsy (6, Y )(O¢® — 3094, + 2w )°)-
Consider the first term, using the integration by parts gives

Gl G = VH(Gs G ") — Gay G YH” — Gssgy 2 Guntn?, (2.179)

2 v'u(GE) G#v ¢y) i GﬁYGp.uY"uqﬁy

J (2.180)
| v 2

b WG5¢( R - Ko K"+ K )

where in the third line we have used the identity {2.128). Then, let us transform

the quantities inside the second term in the Lagrangian. These can be done by the
using of (2.150) and {2.151)

0¢® = (K—l— ¢)\y)

3
K® 3 1
= -3 K%*Y S ITE(@YS)! - gvﬁ(qﬁ*Yx)S- (2.181)
) K \ s 2 SPIIRY
O (7 gl Y){?ng](& - o+ ) b
1 2 3 1
_ {FK Kagl(®® — K+ 34_1( (¢"Y5)" + 5 Kap K7,
6
= —aad' ¢+ 18-((;5'\13)3}. (2.182)
1 3 °
Bl = _¥{K5K;;K;; — 3K atat |+ gVt ~ L (9N (2.189)
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From (2.181), (2.182), and (2.183), we obtain

06 = 3042, + 2 )? = o — 2

3
A a o
el 1 n(f('z — KopK ﬁ) + 5K KagK #

2 13 6 L
- KUIGKE + ;(K;ja oy K auat)

(2.184)
Then, at this step we have

1
£ = ~GorGuY"§ =5 ;Cay (R~ k™ + i)

, K® 3., = N I R
+a /3)(,5,,{ G5 e A(KZ — KoK f’) 3K Kol g SHLKIC

+% (Kffa”a,ﬂ K a,,a,#) } + VB

where the boundary term

(2.185)

quga = V'U(G;; G#[; QBV)- (2.186)
Note that, the bad terms are the terms that contain Y, ¢#(or »#), and o*(=

2 » » . .
L-q)Yy). As we have observed in the case of L the coeflicient function in front of
the ¥, term will be redefined. In this case we try

7

= (2.187)

Applying this only for the bad terms, the Lagrangian then looks like (up to the
boundary term)

Gy = st’ +

7= ﬁ‘f) » 1 1w
£ = (P b )G 550 (PR Kk + K7)

O 3 G
+(1/3) Py + 50 = SOV (K~ Kap i) + 3 (Ktara, — K ayer) )

K3 P R
+(1 /3)G5y{ = o e - K KPKH} .

(2.188)
We need to manipulate only the bad term, so we write
LE = eRpHyBepld (2.189)
1 Ll 17
LY = gt (3R KK+ )
K3 3 of 2 v
+(1/3)G5Y{ e + $K Kag K — ﬁf(fj[(p[{ﬁ}, (2.190)

Fy ., . I
ooy ﬁ)GpuY% + (1/3)(Fy +

. 3 |
(B + 2y){ -5 (1(2 - Ka.ﬁf{aﬁ)
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6
o (Ktata, - K aa) ),
Y

7, , B3 »
= —(Foy + 52)Gu V"9 + (1/3)(Fry + 2}5,){ - Eqa*m(f(? ~ Kapk®?)
0 '7 Ay g1y 1
g (KVa Ka)},
" 2 v F5 3 A 2 af
= (B + )G+ (1/3) (For 1 o {— =4 V(K2 — KK )

+% Yy (Kja” K a.*) }

7 (K,,,,a?’ ~ Kay) } (2.191)
By using
(Ay + %)w (D= VH(ACD) + Mw@ ATy —DApH, (2.192)

whete [J = ‘something’. In this case A = 5‘5 and [7 = —FE,G’#,,qS %‘— B2 —
K. pK°8) + %(Kw,a“ — K a,). The equation (2.191) now becomes

. . 7
iy A\ vrf( — PGl — %ﬂﬁg(K2 — Ko I + -;YE(K,,U&” -K a,,))
25 3

—% Fﬁ( G’ VH — ﬂg_(m — Ko %) %Y#(r{,wa,“ - Ka,,))

1 0
—F5( ~ G — 3?(1*{2 — KopK*F) = %ﬁv#u{? — KoK

1 Y
+;V“(Kwa” — Ka,) — sl (Kw,a Ka#))

_( G Ty %d)"ﬁw (J? — KuﬁK&‘ﬁ)) , (2.193)
= VB - A+B+C, (2.194)

where the boundary terms
VB = V“( PGt - 2 PRI — KoplK™) + (Km,a K a,#)), (2.195)
while A = AV+(D, B = —A(CD)#, and C = —[DA4¢#. Consider
c = - ( G Ty — %ﬂgbﬂﬁw(f{? - KaﬁKﬂﬁ)), (2.196)
= %(Gﬁwn“n” — %(K2 - KaﬁK“ﬂ)) ﬁ5¢,,

1 - /1 1 1
- (— SR K, K™ 4+ K?) — K+ 2K, K“ﬂ)
72 %ol 2( R 22 + I ) 2 + 2 15’ H
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1 -
Fyy®R 1
9y2 g s (2.197)

C

which is in a good form. Next, we will consider the more complicate piece of the
Lagrangian

a2 2
A+B = I (%qus”w + 3L = KapKO) =3V H(K 0" = K a,)
+e7
v D¢ 2 off qb.u i 2 af
F Gt + (I = KapK ™) + ZEVH(K? = Kog )
1 L
~ V(K - K ay) F 2 (I a” Ka,“)d). (2.198)
—&&

In the first term, we will use(2.147), 3;}"” =at + 3;71)‘}’ o, then

r 3 2
A+B = Fj ({G'u + %?IAYAQ#I}G#V‘?V + (’buy!t%(f(? o ]{aﬂf{aﬁ)
+G P+ Ué 2 A\ Beeadl | ﬁv“ K% K, g 2P
_1vrK,,at - Kay)), (2.199)
¥
i _% . i :f‘i At MooV T /#12 2 _ aff
£ A VG - 5 ¢ Y\Gpntn¥ + Gn’e + nyd 3 (I — KaplK°F)
[l . ‘
—779’5(1(2 — s + %‘—V“((Kz — KapK8))
VK . — Ka#)). (2.200)

The first three terms look similar to G, K", (2.150). Therefore, we may need
some relations around this quantity. From equation (2.13G), we have

SR KM = Ry d"™ + 10P0° Rypyo K — K K2, + K, (2.201)
which implies
GuK"™ = Ru,K™ - %K R
= SR KM — 00’ Rype K" + K K2, — k5, — %K R.

Replacing the extrinsic curvature on the left-hand side of the above equation by
(2.150 )

3
Ky = =y + %gb)‘Y,\n“n” + nfa” -+ n"a". (2.202)
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Finally, we obtain

3
VG + Izugb)‘}’AG’w,n“n" + Gunte” + Gy.afn”

1 (2.203)
= AR K — Ry K'Y + KK2 I3 — KR,
Use this identity for the first three terms and use (2.151)
3
g = K+ s, (2.204)

for the ¢ term of the equation (2.200). I now becomes

A+B =

Iy

1
z (—Gﬂ_,,n“a“ F R K" — Rypoen®n® K* + KK?, — K3 — ~KR

0y fiy 2
—Rypnta”

1 1
‘+nﬂY“343(K? — K, 5K (51{3 - —1{1{2}3)+§¢*YA(K? - KagK®?)

2
& —-&
+%V“(K2 — Ko KoP) + V(K 0 — Kaﬂ)) , (2.205)
By Ryunfa” + 3R K" — R, ponfn’ K" Yrrr g
5 L iy pprg T T + 2 pr T Sy
1 1 ,
+5 K = S KPR K K = K = 2V (o = 0 K))
FEEVH(K® ~ Kag ) + V(K = Ka,)), (2.206)
F 5 v P T oy 4 3 ny 3 3 i 2
N ( = Rt a” = Ryp a0 KM 4 3G, K~ I3 4 K + KV, (a* — n* K)
FEEVIC - Kopic ) + VA — Ka”)) (2.207)

where °(¢ ay = 3R,W— %q#,,SR. Next, we will take care about the terms with covariant

derivative

A+ B

- _% (3Gm,f(ﬂ" — Ryn'a” — Rupenn” K — K

N _% (SGJJVI(#V - R#un#av - R:quanpn“K“" - K3 + K3

Hy

+KVMQ'” - Kn"VHK — szpnl‘ + 12“ . Q{I(V“K — I(“ﬁV“KQﬁ}
K3

AV + K, VRa” — KVFa, — a#V“K), (2.208)

uy

KT o+ T Ky + [ V0 — 0, VK ) (2.200)

We will try to modify the second and the third terms in more simple form. For the
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second term, we consider
Ry = R¥ont = VoV,n® =V, Vn®,

= Vu(KJ —ne®)—V,K,
VK2 —n,Vaa® — 0V, — V, K. (2.210)

I

Therefore,
Rnfa” = o’V K] —a%"Van, — a"V, K,
= "V, K, — Kpaya® — a"V, K. (2.211)
For the third term, we have

Rumoent = V,Ven, —V,V,n,,
= Vu(Hop — neay) — Vo (Kuy —may),
= VKo~ 0,Von, —n,Vot, — VoK + 1,V 00, + 0,V 142.212)

Then

Rypwent®n? = 0V, Koy — 007V g + Vit — 1V Ky + 00,V a0, +0° 0,V s10.
0

(2.213)
Henee, the third term reads

Ry K = n? KWV, K, , + K"V, — n° K¥'V K, + n? K" a,Vn,,
1p H 1 u !

KM apay
= V(K"K ) — VK0 Ky =~V s KK,
0 0 — I
+K*V a, — 0" KMV K + K aya,,
Ryposnfn? K1 = <K3, 4 KM, ), — n® KM o M, + K™ a0, (2.214)
Inserting (2.211) and (2.214) into (2.209) yields
ﬁ'ﬁ 3 v v o o v
A+B = ﬁ{( Co I + [ = Vo KE + Kopaya® + 0"V, K]

HED, — K"V a, +n° KMV Ky, — K aya,]

nv

— K3, — KBV K o + 0V VF K + K VP a? — a, 7 1()(,2.215)

i
A+B = —75 e Cd (2.216)

From the equations (2.186), (2.189), (2.190), (2.194), {2.195), (2.197) and (2.216),



31

we can conclude that

y 1 1 1 -
L= /Y E 1("”(31%,1], -~ iq,,,,‘?R) — S (YK Y (Gag — o) °R
1
+ EYG5¢( K* — K, K"+ V.85,
(2.217)
where
K =K% =M KhKEKP = K* — 3K K2, 4 2K, (2.218)

and the boundary terms

- C o B
V,Bi =V, B AV,BE = V" ((GE,—FE,)GW(;)”—%Fﬁ(ffz—fgﬁfcﬁﬁyrf(K,wa,“—K aﬂ)).

(2.219)
In ADM coordinate and up to the boundary terms
~ 1 1 1 ~
Ll = /T 1(“-"(31?(1,, 3 —Q—qab3R) ~ S(Y) PGy K +5Y (Goy - Fap) R
1
+ 5V Gyl K% — KK,
(2.220)

We will denote Horndeski Lagrangians in the final spatially covariant form different
from their original form to remark that they are in ADM variables and in unitary
gauge. We list them below in the mixed-form

E;f?,;tied  \Ve (2.221)
Lhmess = Ly = Q—j—FSYK + VB, (2.222)
Ll = Gy R (Y Gy — Ga) (I = Ky 10V ) = 2/~ Gu K + VB, (2:223)
RS Y U %QWS R) - %(4)3/2@5},& + %Y (Gog = Fsp) R

+%YG‘5¢( K* — K KMy + Y ,85, (2.224)

where Gy, G, Gy, and Gy are the coefficient functions of the general covariant
Horndeski action, /4 and Fy are given by

Gy = Fy+2V Fyy,
Fy
2Y

Coy = Fyy +
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The total boundary terms now becomes
VB =V, (Bl + B + B,

1 1 ~ .
= V#( — ;Fm" — 2G4{(a* — "' K) — ;(G5 — I5)Gn” + ;iﬂ,(l(2 — K“ﬁK"‘ﬁ)
it

i
+ 75 (K = K 2,)).

(2.225)

Then the Horndeski Lagrangians in the pure-form{up to the boundary terms) read

LESFL = A2, N, (2.226)

)

ﬁéi,S-H = At N)E, (2.227)

£4H’3+1 = A4 i ]\T) (} K#VKW) + f34(L,j\.f)3R, (2.228)
)

L = Ag(t, N) (KO — 2K K 4 31, 1))
1-Bs(t, N)K*”’( By (1/2)g°R), (2.229)

which are equivalents to the form written in ADM coordinate

LEAY = A, N, (2.230)
2R RO, A, (2.231)
£ = A, N (K2 - KaK®) + By, N) 'R, (2.232)

LS = A4, ) (1(3 KK K - 3Kab1<b61{g)
+Bs(t, M) (* Ry~ (1/2)gu ° ). (2.233)

where the coefficient functions are given by

Ay =Gy =Y Fay, (2.234)
Ag = 2(=Y )Py — 2(-Y) Gy (2.235)
1
f14 = 2YG4Y — G,_; + §YG5¢, s (2236)
L./, =
By=Gs+ Y (G5¢ - Fsé) , (2.237)
2
1
Ag = —5(—Y)3/2G5y (2.238)
= (=) (2.239)

Please note that these six functions are not linearly independent. They are depend
on four independent functions Gs, G3, Gy, andGh.

2.4 Gleyzes-Langlois-Piazza-Vernizzi Theories (GLPV)
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Relaxing of the conditions (2.234), (2.235), (2.236), (2.237), (2.238), and
(2.239), and respect A2, A3, A4, As, By, and Bs as the independent functions gives
us a larger class of the healthy scalar-tensor theories called GLPV theory. The
Lagrangians then read

LWV = g N, (2.240)
LEMPYAT = At N)K, (2.241)
LEHEVI = (1 NY (K2 = K K™ 4 Bt NYPR, (2.242)

LOMPYAHL = 4z N) (K3 KKK + 3f(abf<bcf{g)

+Bs(t, N)K“b(3Hab - (1/2)ges 3R), (2.243)

Therefore, this theory emerges from the generalisation of Horndeski theory in ADM
variables with unitary gauge fixing. The general covariance version of the theories
in this class can be recovered by using the so called the Stueckelberg trick which
gives us the covariant version of GLPV.

The counting of degrees of freedom for GLPV theory has been done in [34].
In contrary to the standard GR, The Hamiltonian analysis for GLPV theory gives
us fourteen second class constraints. Therefore the number of phase space degrees
of freedom becomes 20 — 14 = 6 implies the number of physical dof is 3. two of
them describe gravity and the another one describes a scalar field. This scalar dof
can appears explicitly in the formulation by means of the Stueckelberg trick as we
will be shown below.

Since unitary gauge fixing condition breaks general covariance by introduc-
ing time using the scalar field. To recover the full spacetime general covariance
back, one must do the reverse, introducing the scalar field (the Stueckelberg field)
by the helps of time parameter. Then, the Stueckelberg trick in our case is induced
by the mapping

it g (2.244)
Therefore . o4
b= 55= 1) (2.245)
and from (2.155), one has
Ne—~vy . (2.246)

Furthermore, for the tensorial quantities we deselected the preferred ADM coordi-
nate back to the general spacetime coordinate and the scalar quantities then threat
as the quantities associated to the scalar field induced by the mapping (2.244).
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For example,

nf ot =yt (2.247)

Qab ¥ G = Guw + 7 Sudu, (2.248)

= Guw — %Wby, (2.249)

DNy DN = qV,N, (2.250)

= (6 + 7P )V s (2.251)

V. _2\/1_}/[(111 V)= ‘?/;f’f‘ (In¥)y , (2.252)

Kap 3 Ky = qpVanw = (8 + Y $,)Val(—v9s) (2.253)

_ \/_{gbw, V,ynY + --—¢ $uuV In Y} (2.254)

K = 0% /g K = g% Kp (2.255)

-1
£ gfﬂ’[ — {‘lb,uv — ¢, ViylnY + 2Y¢’\¢p¢y In Y}@ZQJG)

3
= —yl$ — %ﬂq‘f‘Y,\ , (2.257)
-1 1, .
= \/?Y(Elgb - 5(;5 {ln ¥ )A) ) (2.258)
g ay = n'Vyny, (2.259)
= zyqb ¢ VylnY — —V Yy, (2.260)

where thie more complicate quantities in the GLPV Lagrangian 3R and 3 R,g
can be computed by using these quantities. By (2.244) and (2.246). Now, we can
proceeding in calculate the covariant form of the GLPV Lagrangians

LGFEVIT = At Ny e Ag(g,Y) . (2.261)
By using (2.254), one has

LOPPYA — _ paOp — AL qb’\Y (2.262)
Observing that
Cy Y, =V ($'C) — CTlg — G4Y (2.263)
we can redefine the second term in (2.262) as /lgj; = Chy. Then we can write
LTI = —Ayg — Car ™V, (2.264)
= —Agyp — V(¢ Cy) + Cs Tgp + CayY (2.265)
(—Agy + C3)0¢ + CapY — V. (¢Cs) . (2.266)

I
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Ignoring the boundary term and using

3 ~
Ag% = Cay = —Ay =2V Cy, (2.267)
we obtain
LGPV (Cy 4 2Y Cay )0 + Cag Y. (2.268)

For f.4, by using (2.127)

LPPVI (K = K I) + By (K K* = K24 R+ 2000 Ry, )
~ ByR+ (A — 34)(1(2 - KWK’“’) OB Ry, . (2.260)

We will calculate the necessary quantities as the following

K = (—ams- T,

6

= ,Y2D¢2 +T4D¢¢)\}f)\ 4 (Yz(jé)\y‘\d)wyw (2270)
= {0@+2706 8 6+ 4" (0 9P (2.271)

) (a) , ) ,_4__5%
I('UUJK,uu ~ {stw By 27 ¢(,u¢u),ﬂ¢ﬂ + ¥ ¢A¢p¢7u¢,\ﬁ¢ﬁ} (2272)

S S 4
) { @7 + 2720097 1 Y P 88 ) (2.273)
ad ae af bd
= AP0+ 2R R PB P A E (2270
be bf cd

IV A (B D) = 2D P + (A - ) (2.275)
ce cf
S VNI LA CIVNPIL (2.276)
= a2 s B+ (29, (2.217)
(2.278)

where we have introduced a shorthand notation for using between the calculations
such that

Au = ‘;f).uvq!)va (2279)
O = ¢upd® . (2.280)
(2.281)
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Note also that, 2A - ¢ = V¢ and 4 A - A = Y, Y. Therefore

LOEPY = By R4 AR (Ag — B4){(III¢2 F27 B A -+ A - $)2)(2.282)
(B + 290 D+ (AP + 297 B R
= ByR+(Ag - B‘i){{jqbz + 24206 A - ¢ (2.283)
B2 = 2D DY 2 Bag R

For the last term

’Y? 84(;5#(;5”]%#!} = 72 B4¢y[v;u V]/]Qﬁ'u ) (2284)
= o BV, V¢ — 4 Bad*V. V9", (2.285)
= A-B. (2.2806)
A = BV, V8 =V, [7 Bad' V9" | — V(v Bsg")Vud" (2.287)

V[ Bid" Vg = (Vur®) Ba¢"dhs — v (Y, Ba)$ ¢l — v* Balygl,

V- [* BiA] — Bay'Y," ¢l — +? (ByY, + Buyg (,?5#) PP - v Byt
= V- [/ BA] = Bey*' (Y - A) = VB (Y - A) = ¥ By(D - 8) — ¥ Badl,
= V[ BA] - 2B A A) = 27 Biy (A D) = 7 Bug{A - ) — 1 B &,

t“l *

(2.288)
Similarly, for the term B
B = 4'Bi¢"V,(0¢}, (2.289)
= . (2.290)
= V. [¥2Bi0¢ ¢] = 2y Bi(A - $)0¢ — 2¥*Bay (A - $)0¢ — v* By YO — v* B,O4” .
(2.201)

Then the equation {2.269) becomes
L9777 = ByR+~? (A= B){O8 +24 004 - ¢ — ¢, =27 A - A
+2+* { — BN A = 2By (A - D) = Big(D - ¢) — Bad, + 29 By(D - ¢)0¢

2By (A - $)0¢ + By YO + B4IZI¢52} .

(2.292)
By comparing with the CGalileon Lagrangian (2.8)
1 L fippad v, 2R
Cfal,l = ﬂel LH24 3a€ulu-)_u3§¢ 3¢#3 #11 #22
= —Y(ngg - ;2111) -2 gb‘uqb“l’(ﬁyaqﬁ“ + 200¢ Qﬁpuqﬁyﬁby )
= —Y(O¢* — ¢2,) —2(A- D)+ 209 (A -4) (2.293)

We con observe that the first bracket of (2.292) proportional to the the £

may use this clue to simplify our equation into the terms of galileon. The equation

, wWe
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(2.292) becomes so far

GLPV
L

By R++" (Ag — BLE +2 74{34 LI 49V By (A - ) — 2Y By (A - 9)00g

Y Bug(A - ) — BMYQI:Igb} , (2.204)
Bs R+ 7 (Ag — B)LS + 274{34 LEM — ¥ By £ — (O¢% — ¢2,)Y By
+Y Big(A - ¢) — B4¢YZD¢} ) (2.295)
A+ By —2Y Biy) a
By R+ ( 4 4Y2 4§)Lg 1’1“2B4Y(D¢2* ﬁy)"272B4¢(A¢)
—2By,¢ . (2.296)
The last two terms then read
—292Bys(A - @) — 2By0¢ = —29*Bydudt'd’ — 2Baglld ,  (2.297)
= —v2ByY,¢” — 2By0¢ . (2.298)

For the first term we will use the trick (2.263). Therefore, we must define

C,_ly = ’Yz B4¢,, or 04 = /72 B4¢ d}/, (2299)

which implies (up to the boundary term)

—29" Big(A - ¢) = 2Bd = —Cuy Yt — 284,04,

= —{~Cy0¢ — Cyy Y} — 29 *Cay U
= OV + (Cy+ 2Y Cy)¢ (2.300)

Substitute this last picce into the equation (2.296), we have

oY = pRy

Ayt By —2YB
LA 2B s g (0 - )

This is the covariant form of the Lagrangian L§XPY, Next, we will consider £L§LFY
in the covariant form, stari with the spatially covariant form (2.243) in the general

coordinate

£8PV = g (K = 2K K I 4 81, KPP K )

+ Bg K (BR#V - (1/2)(1}1:/ SR) .

We will calculate the covariant form of the first three terms as the following

K3

= (06 +22(0 ) (08 + 29008 - 6) + (L - 9
= - (qu3 + 3Y20HA - @) + 3y 0(A - ) + (A - ¢)3) . (2.302)

KKpK® s KEKYK,,,
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= (08P 8) (B + 20D D) 4B 9
= = (092, +29°09(D - ) +7'0HA - ) + 7 G (D - 9)

1298 (A - A)A - ) + 5 (A - ¢)3) . (2.303)
= (" + AL AT+ (D O+ 10 67D )
P BB OF + 79 B(A - A) 22,87 (A - 4 + 45, A - 9))
(2.304)
K™ ih = —73{q5§ + Voo N+ } :

e (T TR S CHONEE L VSIS ERAINE Y R
(2.305)

Then the combination of the first three terms in term of the scalar field reads

Ls

K3 — 9K K, K™ 4 31, K iY = [K]° — 2[K] [K*] +38[K%]
= —*(O¢° + 37 TF(A - 9) +37' Tp(A - @) +9°(A - ) — 304 45

uv

6P LIHA - A) = 37 TR(A P =39 BB §) < 67 DA - 9)
YA 4 2]+ 6981 O A) + 67D B)D - )+ 1A 9))

(2.306)
= (YD¢3 —3YOg g2, +2Y 8, — 3(A - 9)09
F3(A - $)  6(6- O L) +6TIB (A A) ), (2.307)
= P = AP e g5 b, LB (2.308)
As (Kf” 3K KM + ngK;K;;)
+B; (K“”'RW - %K"*R) , (2.300)

As (1(3 3K KM+ zK;jK;Kg)
| 1
+Bs (K““Kﬁ‘]{m, K Ry o+ K Ry + Ky g R o = 51 K

50 - %RK - K RH,,nﬂn") , (2.310)

a'tp

= Ay (1(3 — 3K, KWK + 21(51(”;{0) (= )
| 1
+Bs (K K %K KK 4 1) (= A)

+ By (K p,,,7a“'7LﬂRﬁ pov — IS Hﬂun*‘n”) (= &%)
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By KM Gy (= 2) (2.311)

P = By({~ K&+ K"V, 0 KPV oK + Koy}

~{K nVPK,, + KV, — Kn'V, K + K n'n'Va,
+K 7L”a#V071."‘}) , (2.312)

3
= - Byy9uG" + Bsnyua, G* 4 Bsn,a,GM + B5%¢A}’Anﬂan“” ,
(2.313)

4 1
= —-]35’}’¢}1UG}1V + QB5RIH,?1-“Q,V -+ BS%QSA}/)\{RIW”“HV - ER} y (2314)

2 3
= —Bgyd, G + 2B R0/ :y—-Y” — fy—n)‘Y)\qb"
i [l ] D)

2
% 1
+B5E¢>’\YA{R#VH"?L” + 5R} , (2.315)
1
== (Bﬁq‘,(;b‘u + BsyY#)"Y(,byG’w =+ §B573}/1¢)VG'UV + Y Bs R#VR#Y

3 3
—Bs%qBAYARWn*‘n" + %B@"YAR , (2.316)

o 1
Bm,yﬂfr(pugﬂu L4 ’YB5¢>¢,u¢uG“V 4 851 (R,uyY”fi)v - iRYvAQSA)

B
—4* By Ruy"Y” = B gﬁ\} Rymn” 4 =L 5"’ 2T 2R, (2.317)
3
Bsy Y, ry$uG*™ + ¥Bspppy G* = 3533#,,1%" qm Rantn”
Bsy Y vduG* + ¥ Bsppph, G** — BsyRa'¢” (2.318)
where we have used
’72 3 Ay
ay = ?Y# — —n Yy, . (2.319)
Then, we will define
Gsy = —Bgyy - (2.320)

Hence, we have so far

oy Y GF — GigVup G1 -+ Goybupy G

+vBsg@* ¢ G + By Rt n” (2.321)

—Vu(G3) G + G Grudd” + ¥BsgGuwd”¢” + Bs Ryain”

Gyt G + (Gog + v Bog) Gt ¢’ + Bs(a" Vo K — Kya'a® — a"V, K)
(2.322)



P+9 =
Q"FQ u_._ib
N+ P+ 2

40

35( K3, KV 0y — 0 KV K+ K ata?

—Kn'V'K,, — KV, + Kn°V,K — Kn"n'Vsa, ~ Kn?a,V.n"
AV KE — Ky’ a® — a"Vl,K) + CosG o™

+(Gsg + ¥Bsg) Gt $” (2.323)

—inTV (KFKy) KK, Vin®
/—'—"”“""””A S - ~
B5( K 4 V(KM a) KN Ky —KnoVEK,,

(I ay) + KnoVoK —Kn 'V 0, — Kn"a,#v‘,n“)
sV K? 0

FGs Gt + (Gsy + ¥ Bsg) Grud"d” (2.324)

1 1
Bs(—1G,) | = Vo By K" ay + 5V Bs n” K Ky | 5 Bs K K K

1 1

+Bs K Koy K7 |+ V" Bs Ky, — 5V, Bsn® K* —5 1% Ko

+Ciag G’ + (Gsg + 1B30) Gud” (2.325)
1 1

= A =V Bs Ky, + 5V, B n® KM Ky, + VFBs Kay, = 5V, Bsn? K*

Qs Crud™™ -+ (Glsg + vBss) G " (2.326)

1 1
= —V,B; K"™a, — EVUBsn"K"”K#,, + V#BsKa, — EV,,Bgn”Kz
FGssC ™ +(Gsg + yBsg)C " (2.327)

0
— 1
= —ByyY,K*a, — By K" a, + §B5y1’gn"K’”’Kw,

0
—— 1
+%Bﬁ¢¢gna K" Ky -+ Boy Y a, I + Bog®a, I — 5 Boy Yon” I

1 - N
~ 5 Bsppon® K* + GogGrud™ + (G +1Bog) Crnd"d” . (2:328)

. Bsy(—Kﬂ,,aFYV + LYo KW Ky + YPa, K — 1Y, n? 1(2)
=5

+Bs4 (-;—(;')a??.o K"K, — %gbg-n,"ffz)
+ GGt + (Gsg + Y Bss) G ¢ | (2.329)
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using the Stueckelberg’s trick for this part

S

Ka,Y, — éan"K"”KW —Yta, K + %an“KQ , (2.330)
— (@ + 4D - )P + VP G (PO D - D)) 20,
+2(2000) 7 (#2298 - D) 74D ¢)?)

—2AF (PP AL+ YA - 9) g) (— 708 — (A - ¢))

~2(28,)4° (v0b + (A - ) (2.331)
272 ((0- O D)+ L - DHA - DY+ 1L - 9D - 8) +1°(L - Y (L - ¢)
PP DAY A7HA QY (B A) 4 XD B)(D D)+ (A 4)(D - ¢)?)
(0 ) (8 + 295 - A) + A 82)

12 (A 8) + 20 7) (D8 + 174 - 9)

(A 8) (DF +22 DA - 4 + 4B 8)) (2.332)

Py {((qﬁ O D) 2B YA A) + 24BN 9))

H(= 50 9~ 7D BB )~ 57D - 4))
H{ = (B 2)D8 = (A AYD - 9) = 7DD - 9) =744 - 4))

1 1
+(5(0 O+ (D 90+ 5708 ) | (2.333)
1 1 .
~27((8:0 - A) = 58§k~ (8- 2D+ (8- $)0F) (2.334)
= M+ N+ P+ 2, (2.335)
= 7 A5 P a5t udl b e
| 1
29 By (8- O+ 8) = 5(8 - ), — (A~ 2) g+ 5(A - 4) OF)
1
- v 2
t5 Bao(K# Ky — K°)
+G5¢G;w¢'uu + (é5¢ + 7}35¢)G;LU¢H¢'V 3 (2336)
3
— A ,,}}5 ﬁgal,l — By %{ o Egal,l -V DQB'?' + 3y ng ¢fw —9Y ¢il/}
B . )
+2—f’j (K"“‘Kw - 1(2) + GsaCud™ + (G + ¥Bse) G’ . (2.337)

1 a ,
(= as® + 5" Bov ) £ =gy (09— 309 65, +240,)

|-
7G5y
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Bs, w v
+2—(Kﬂ,,,m - K?) f BsygydY + f 7 (YBss)AY ) Gt
Gy G ™ | (2.338)

_ _3A5 + (_Y)B5Y gal,1 1~ 3 2 3
= ( e VL4 2 Gay (D6 — 300 67, + 24, )
2 (K,wf(w - K?) + S G2 Bsg)dY G
=J
+G5G ™ . (2.339)
;o Bse (K i< - 1{2) o ! / (v° Bsg)dY Guntn” (2.340)
2y 27 \ Y
4 ‘254‘ (K,H,KF‘” K?) + ( f 7335,;,)01)’) {R-+ 2B nn¥} (2.341)
1
Cs = 77| Barav, (2.342)
J = CsR+ ‘3:;* (K - 1(2) +2C5 Runn (2.343)

d
— 4¥2Cs = +°B
4{7405 + ¥ Csy} = 4°Bsg,
2 Bsg
205 el ':}72‘05}' F— g y
Bsg

= 205 — 2Y Cyy ,
2y

J = CsR+ (205 — 2 Cyy) (KH,,K‘“’ - 1(2) + 205 Ryynin’ | (2.344)

L5V By R (Ba = Ad) (K K KP) 1 2Bantn’ Ry

3 LGV = By R 2By (08 — ¢,) + (Ci 4 2¥ Cer)Ig

B Ay~ 2Y By
VY C,;(;,-{- 4+ 4Y2 4y Eﬂymﬁpﬁrya‘@@‘sﬁﬁz :5,, (2.345)

(2.346)

where Cy = [ Bygy?dY . Therefore



43

B4 ~ CS 3
By— Ay ~ 205 —2YCqy ,
SAy ~ =05+ 2Y Oy
Ag+ By —2Y By ~ (=C5+2YCsy) + Cs —2Y Chy
= 0,

J o J=Cs R 205(08" = ¢g,) + (Ds + 2Y Dsy )T + Y Def 2.847)

where

f Cogy>dY . (2.348)

’ > =1
LS = GoCuud” + 50ov (04" 3094, + 200, )+ G R

=205y(1¢” — ¢},,) -+ (D5 +2Y Dy )U¢p

Y B5Y =+ 3A5 Voo o
+Y Dgy — W P g5 (,zsyqsﬁ(pp (2.349)

We have demonstrate the examples of derivations for the covariant form of
LGPV LEIPY and LGPV using the Stueckelberg trick. The covariant form of
LELPY can be found in [24], it reads

LYY = A(hY), (2.350)
LY = (Cy+2Y Cay)g + ¥ iy (2.351)

LSEPY = By R— 2By (D¢% = ¢%,) + (O + 2 Cay) g
By + A4 — 2Y Byy s

+Y C4¢ + 3/'2 1375(}3,,(}5’8@57@53 E (2352)
= By R—2By(0¢" — ¢2,) + (Ca + 2Y Cyy )0
+Y Cip + Fue"? 0,50, 3705 (2.353)

o 1~
LEEPY = Gy G + Cur (6" — 80 4%, + 245, ) - Cs R = 200 (04" — 67)

+(Ds + 2Y Dgy )¢
Y ]35) + 3f15 VS

o 8
+Y D5y — & €apys®  DuBi B} | (2.354)
. 1.
= GGt + 50 (0" =306 ¢, +26%) + G R 205 (04" — 47,
+(Ds + 2V Dsy )Og
Y Dsg + Fa ™ copmst® b 858160 (2.355)
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« 1
Cy = 5 f Y AsdY | (2.356)
Cy = f Byy*dy | (2.357)
— 1 3
Cs = poes Bsgy*dY (2.358)
Dy = _/ CsgydY (2.359)
Gs = - / BsyydY (2.360)
By+ Ay — 2Y By
T SN s (2.361)
YB5Y+3145
Fy = ——2 __—2 362
5 3(_};)5/2 ) (2 36 )
and
— e psbd? 8T8 = 85’1

= Y(D‘?ﬁz ¥ ,.21;;) T 2‘35;1@5“!}?51"&@6& L" QDQ() Qs,twqf"lqby ’
= V(O§" — ¢2,) +2(AA) =209 (A - @) .
_Eﬂypofaﬁfyﬁqﬁjifi)aqégqlbqug = 5§;2§¢#¢a¢5¢g¢g )
= YO¢* —3YOp g%, + 2Y 65, — 3¢ e[
300" Y D2 — 60 Puud” bapd” + 6010 ¢ " P .
= +YOg® — 3YUg ¢7, +2V ¢, —3(4 - )¢
+3(A - P)pls — 6(¢p - O A)+ 600 (A - A)

2.5 The Overall Constructions up to GLPV

In this section we will sum up the construction of the Scalar-Tensor theories
up to GLPV. We start with Horndeski theory which contains 4 arbitrary functions
Gy, G, (1 and Gy then we perform ADM analysis. We found that the set of
relations f ={(2.234),(2.235),(2.236),(2.237),(2.238),(2.239)} maps the Horndeski
coeflicients to the coefficients Aq, Az, A4, A, By and By of ADM-Horndeski action
(represented by the green arrows in Figure 2 ). This set of relations will no longer be
important at the later stage as we have relaxed it keep only the form of the resulting
action and it is now the GLPV action which is not fully in a covariant form. We
called it GLPV as the relaved ADM-Horndeski, technically, the coefficients of this
action are differ from that of ADM-Horndeski althoigh we still manage to use the
same names for them but keep in mind that they are not related to (g, G'3, G4 and
(5 anymore since we have thrown away f. We show this structure in Figure 2.

Since GLPV action obtained from decomposition of the Horndeski action
into (8-+1)-style with the unitary gauge they contain solely the non-covariant terms.
By the Stueckelberg’s trick we can obtain the covariantized GLPV. Now, the set of



Horndeski |

Relaxing f/

ADM-Horndeski

Figure 2 The mapping of coefficients between Horndeski and ADM-

Horndeski Lagrangian.

relations ¢ = {( 2.356),(2.357),(2.358),(2.359),(2.360),(4.26),(2.362)} (represented
by orange arrows in Figure 3) is the transformations between the coefficients of the
both relevant forms of GLPV.

Consider equations (2.351),(2.351),(2.353) and (2.355) , by interchanging

their terms we then obtained the new form

GLPV
£2,M

GLPV
EB,]‘J

GLPV
L4,M

GLPV
Len

Ao(¢,Y) + Y (Cs + Ca+Ds)

([Cs + Cu+ Dg) +2Y [Ca+ Ci+ D5, )08,
(B4 Cs) R—2(Bs -+ C5) , (Lg* — 62,)
+F4E#upaeﬂﬁ75¢u¢ﬂ¢g g ,

v

& e,
Go Gt + 5 Gy (O =809 47, 12

+ ];156,uvpcr Caﬁwdqsaqs# ¢)§¢z¢g :

Tt is more natural to rewrite

pv

03563—}—044—}95.

3

izl

)

(2.363)
(2.364)

(2.365)

(2.366)

(2.367)

especially when we start from the GLPV action in the forn of Horndeski action

plus the extra terms. Then the mappings from the original covariant form to the

form of Horndeski are

Ay +Y Cay
Cy + 2V Cyy
Cs + By
Gs
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GLFV

somrey IR snid NEOPUIIOH

Covariant GLPVY The compact form of Covariant GLPV

Figure 3 The mappings between a certain forms of GLPV theories.

F4 N F4) (2372)
Iy o= Fy. (2.373)

Therefore rearranging the terms of this covariant form we will obtain another co-
variant forms. We ean rearrange the terms to obtain GLPV action in the form
of Horndeski action plus another extra covariant terms. It can be done by the
transformation g3 o g (mapping by the yellow arrows follow by the blue arrows
in Figure 3 ) where go = { (2.367) } and g3 = { (2.368), (2.369), (2.370), (2.371),
(2.372), (2.373) }

In order to transform back from GLPV as the Horndeski plus extra terms
to the covariantized GLPV, it is more natural to see the coefficients C’g + Oy + Dy
as the single function 3. This process is equivalents to performing gy ' and the
resulting action is the covariantized GLPV in the compact form.



CHAPTER III

DISFORMAL GRAVITY

3.1 Introduction

A certain class of scalar-tensor theories can be obtained by conformally
transform the metric in Einstein-Hilbert action. Therefore we can start from GR
and go to such scalar-tensor theories by conformal transformations. If there is no
ghost in such theories we may have some viable ST theories. Using the ghost-free
condition as a guiding principle Horndeski have shown that the most general scalar-
tensor action provides up to second-order equations of motion can be ohtained,
the Horndeski theory. It turned out that this theory cannot be obtained from
Einstein-Hilbert action by means of conformal transformation but the disformal
one. The second-order equations of motion of theory guarantee the ghost-free
property but not vise-versa, the counter examples exist. Therefore in this chapter
we will transform the Einstein-Hilbert action by the disformal transformation. We
set the conformal factor equals to unity for simplicity. Then the disformal metric
reacls

G = v + D@, X)dudhu, (3.1)

3.2 Basic Quantities in Disformal Gravity

The disformal gravity is a theory of two metrics. In this section we will
compute some of the basic quantities in the form of the disformal metric. Firstly,
we will compute the volume element of the disformal metric

-~ = 1 vyl _afpo s o e
g = det g, = ZTE# R4 Gualvalypdso, (3.2)
1 vyd afpor
= EE# TOE P (Ag,m + B¢p¢oa) (Agvﬁ + ]3¢v¢ﬁ)(Ag'Yp + B¢'}‘¢P) (Agﬁa + B‘;btqua)a

1 , .
— :l—]'E'HVTaEQﬂPa [A4gp.agyﬁgypgda + 4A38¢#-¢aguﬁg’ypgo‘a] )

1
= A4g + 4ASBEeﬂlwgsaﬁpagbpﬁbagy,ﬁg'ypgﬁaa

1 N ‘
i A4g + 4/'1383(_ \% ﬁgﬁﬁ'uw)(“ \Y _geaﬁpo)gbuqbagvﬁg'ypgém

1 s
= Alg+ zlASB(—g)If“””"’e“lwg%qﬁa,

1
= Alg 44 By (~3l9" )y,
= A'g+ A*Bgdt, (3.3)
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In a more compact form of the volume element

B
Vgl = A2/ Zgy /1 - 2:4—)((549:. (3.4)
We note that d*z = d'& because 2# is only a frame which contains no physical

data.

The next quantity we want is the inverse of the disformal metric, 7. By
varying the determinant of the disformal metric we obtain the identity

65 = §5" 56 (3.5)

= =430g". (3.6)

These identities also hold for the untilde metric. The the inverse metric can be
computed by

gaﬂ il 16.{7 _i 5.6 591111

ST = o e 3.7
G03ap  GOG* 8Gagp (37)
_ 18(A%9 + A*Bgg” $,4,) 1 dg™
g dg!w A(Sgaﬂ’
i s B (o™ 95 ) o]
| 5 A + A*B Pl bpts|
A " 8gas 59aﬂg 59aﬁ !
_ qap o
A | 1~ [/l4gg“ﬁ 4+ AR (ggaﬁgpa +QM) ¢p¢a} .
A 59'&,6‘
2 A” [A99°? + A*B (—29¢*" X — g¢°97)] ,
1 A%gg™ o ABB(-2g9%7 X — g4°9F)
U A4 —2A3BXg '
1
b, " af a0
A [9 A— QB\’Q‘) ¢ ] (3:8)

Riemann tensor can straightforwardly be computed. Starting by compute the
connection( defined by V., = 0)

~ 1 5 N N
L% = 50°7 (Oulius + Ouliup — Opiiw),

= %ﬁaﬁ((vyﬁuﬁ + T drs + U sdup) + (Vo + Tifiag -+ TEa80,)
—~ (Vi + U3 + Do dp)),
= I+ %gaﬁ(vpguﬁ + VoGus — Vi) - (3.9)
For the sake of computations, we define
o, =T, + K5, (3.10)
Then by definition

Rap = Oally, — 0510, + T4\, ~ P12, (3.11)
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= Riap +2V[Q By + EKK[ KB]V (3.12)
The Ricel tensor
Rgy = Rpy + 2V K5, + 2K3,Kp,, (3.13)
and the Ricei scalar
R = §Rga,, 3.14
B
1
_ A v o o A
= 1" -7 BY¢ #°| (R, + 2V K5, +2K5,K7,] . (3.15)

3.3 Derivation of the Einstein-Hilbert Lagrangian from Purely Disformal
Metric Transformation

If we begin with the metric in the form of the purely disformal metrie (3.1)

, the inverse metric reads

1
g =g" — P DY with o = 1—2DX’ (3.16)
and we have introduced (3.10)
o3 = - 1 -
j(ﬁv = qu - F — ga/\(v(ugu)}\ - §v/\g,uu) . (317)
Then, we can write the Riemannian tensor as (3.12)
B = 20T5p+ 21“1[;”] >
= R + 2V, K + 2K5, 1 ]ﬁ , (3.18)
and the Ricei scalar as
R = (¢% — ¥ D¢’ Rp, + 2V, K", 1o T 200, KD ),
R = R ~’Dé’¢"Rp, + QGﬁ”V[ﬂK“} +29™ kY KD,
297’ D N I — 2y “DPY KN K, (3.19)

By substituting g, from (3.16) into K7,

o, in (3.17) and after straigthforward caleu-
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lations we can obtain that

. 1 o N
k 35 = _Q(v D)¢,ﬁ¢,z» + ’Yz(V(ﬁD)gb,V)QS’

’YgD Fegrm. 2 oY
+T(VAD)¢ P pby A+ v Déddig (3.20)

From appendix D, we list here again the 3rd - 6th terms of (3.19) which are
the results from (D.5}(D.15){D.9) and(D.17), respectively. We will subtract the

possible terms at this step before adding to the remaining terms of i

207Vl = (1 +7)(OD)X + (VD) (V¥ X + 42 D(O4)" — v DY P
59 {14 VA9, D + (7,D)(V1)}
1
H@uOp -~ g ){5(VFD)OS(L + 37") + D(V*y)Le}

~V DR, " . (3.21)

W
3{1

= (1= ALDED,$ud” + (1 —42)X2D,DF
2
N 1
TOuOB DA (- (1= ) + Gt D' (51 - 37" + 20))

& d

VDG Go(10) — T DPE S Gyhy?

VBt FoY
207K, K e

%
+:Y4D2XD)\¢A¢H¢U¢;M: . (322)
2y DYV I g = —y2D{-2(ODYX?% — (VAV,D)¢" ¢, X

+pu8 (14 72) (VD)X |
+HOR) [297(VaD)X (DX - 1)

&

VED0gad P~ PDP dpd 0} . (3.23)




—2* D P Kl KDy = YADX2DID, 4" + 2y DX3 DD,
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A DX DR, byad” ¢ — 2y DX DR, 008 (3.24)

We comeback to the Ricei scalar with the above results

R = (¢ — ¥ D¢?¢" ) Ry, + 2V, K5

b b 2K I

e v]ﬁ)’

R = R—9"D¢?¢"Rp, + 207V K} + ZQﬁ"Kﬁlu

—2v°Df ¢V, Kl — 2721)@%“1(,';[“1(;3 £

= R—2VDRg,¢¢" + ¥V D((O¢) ~ ¢, ™)
212
HODYX L+ 42 +2DX4%) + X (V, D) (VA

212

1 ) ~ .1
45008 (V'V, DYLF 47 + 2DX4) + 508" (V)Y D)

=0
+X2D,D¥(y* = 4* + 7'2DX)

1
+, 0 [5‘(1 + 3924927 ' DX(DX — 1)) D* + D(V“fy?)]

dvy?

.
P

(3.25)

(3.26)

1
_qb,uvﬁév [511 + 372 -1+ 3’}'2 - 2”}/4 + AY]LDQ_Xer‘l + QD}{,Y2(1 + ,YZ))‘D;[

472

+D(V“72)] ,

R = R-2y"DRg,¢%¢" + ¥ DU{0$)* — due™) + 2¢* X (ID)

+X(V,D)(V*) + %géﬂqs” [Wv#v,,,o + BV(V"qr)(V;,D)]

6, (0p) [272 DF 4 m(v#ﬂ]

(3.27)
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g’ | 297D + 27 D(V*9)| (3.28)

Lop = “R= %R ~ 29DRa ¢ + Y DO ~ bt

1
Y
129X (TD) + 23X (VuD)(V*7) + 29,8 [21(V49,D) + 2(V)(9,.D)

2VH(yD)

~ =

+6,(04) [230% = 2D(VH)]

AVH (D)

N

—425,;”45”([2@” + 2D(V“'y)]‘, (3.29)

where GF' denotes the Galileon frame. By using the relation

vv(Z'YD(QJ’VDQB - 925;1915#”)) = 2V, (yD)(¢"0O¢ ¢1L¢W) + 2’YD((D¢)2 - Qb,uvd)w)

—~2yDRg.¢" ¢, (3.30)

We obtain the more compact form of the action

1

Lo = R =qD(Q8) - ™) + 2 X(0D) + 2X (VuD)(7"7)

4,8 (VYLD + (VAT D)) (3.31)

or even more compact
. .
Lor = ZR=yD(O4) - Budt) +2XV*09,D)
(3.32)

+dud”"VH(yV., D).
By using integration by parts with the last two terms one obtains

£=2 = D(OF — 4.u8") +9|V,Dgd™ ~ VDO gﬂ . (339)
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3.4 Disformal Action in Covariant GLPV form  We will consider the

disformal gravity Lagrangian (3.33) (we set 167G = 1 in this section)

£ =T = D(OF = ) 47|V, Dbot™ ~ V.00 | . (354

It is a covariant action so we will compare it with covariant GLPV action (2.363),(2.364),

(2.365),(2.366), and (2.367)

Eg = Ag(t;f),Y) =+ Y03¢ ) (335)
Ly = (Cs+2Y Cay)lg, (3.36)

Ly = (Bi+Gs) R—2(Bi+Cs)y (04" = 4,)

+F4€}vacr£#575¢v¢ﬁ¢z¢g ) (337)
- 1S

L5 = Gy G + 5Gsy (08 — 300942, + 245, )
P57 e apysd Bl )05 - (3.38)

Counsider the case of L5 = (5 = 0. In this case

Ly = ByBR—2By(U¢* — ¢%,)
By+ Ay — 2Y Byy - N .
_|_( 4 4y2 4Y ) ( — Y(D¢2 = fw) e 2%&1 Cﬁméb + 2|:|¢¢W¢J ng ) ,

_ fipe
= ByR- L};mi(mgbkqbiy)

+“&+%gﬂmﬂﬁw%wwﬁ%wmmﬂ- (3.89)

We then expand our disformal action

R
L = :Y— - ’YD(DQS2 - ¢pu¢w})
oy [D(ﬁqb#gb&qba'” + Dy Y, pad™ — Dy Dp ¢ — Dy¥, Ogp qi)”:| o (3.40)
= % - 'YJD(DQSQ - prwgbiw)

+qpmmww+m»@m%m%—DWwa—Mh%mﬁwwy



- % A D(OF — ™)

~2vDy | ¢and® 0P ¢" — $5,0°dod™

—yDgY O -+ yDyuda ™ . (3.41)

The last term is not seenis to match to any terms in covariant GLPV action (3.35),

(3.36) and (3.39), but one can see that
By=1/7. (3.42)

From (3.39) and (3.41) one may expect that

By + Ay 0 U
which consequently implies
1
Ay =~yDY — = (3.44)
i
From (3.42) and (3.44) one obtains
By Ay —2Y By = —4Y?Dy . (3.45)

Therefore the third terms of (3.39) and (3.41) are consistence with each others then
the last term of (3.41) should contribute to £2 and L3. To deal with it we define

an auxiliary function

YDy = B4+ Y Iy . (3.46)
Then we have
yDgV, ¢t = —DyY? - EYDOg,

= —DyY?—[§ f vDydY . (3.47)



up to the boundary term. equation (3.41) now becomes

L= %D¢Y2 — (yDgY + % f YDydY) U
R y
+ ; - ’YD(D¢2 — P )

2Dy [awﬁ g4 ¢ﬂu¢3¢a¢aﬁ]

It is clear that

1 1
03 T ﬁ-é- f’YD,;;,dY s Ag = “§D¢Y2 = Y03¢ .

35

(3.48)

(3.49)

Now one can see that the disformal gravity action is in the class of GLPV theories.



CHAPTER 1V

BACKGROUND EVOLUTION

4.1 Introduction

In order to investigate the situations in which the gravity theory in the
previous chapter can drive accelerated expansion of the late-time universe, we study
the evolution of the FLRW universe for this theory of gravity. The evolution

equations can be obtained using the FLRW metric given by
ds® = —=N*(1)di® + a®(t)b;daida? (4.1)

where 4;; is the Kronecker delta, and we will work in the time gauge, i.e., ¢ = ¢(t).
We work with the action from the previous chapter (3.35),(3.36),(3.37) including

 the matter action

4
1 1
S = Z_fc,/d a.\/—ggﬁg +Sn, (4.2)

where

Lo = Ay Y)Y Cyy, (4.3)

f,a - (03 + 2y Ogy)l—_—lq,') y (44)
By + Ay

Li = ByR— == (D¢2 - f)

2O A B0 (B4 — bt - (45)

with B4 = 1/’Y, 03 = *é I’YD¢dY ,AQ = *%Ds{,YQ — YC3¢,, A,1 = "YDY - %, and
#x = 8x(i. In the case of GR we have D =0,v=1,C3 =0,B; = 1,4, = 0,4, =
—1.

4.2 Equations of Motion



57

The equations of motion can be derived from [77] (Sce also {11])

En + 6H?Y2 (5F, + 2Y Fyy) = — 260 {4.6)

Py + 2Y [f (312 + QH) Y Fy — 4HY Fy — 2HYY Fyy = 2HY $Fiy| = —2pnA7)

P and p,, are the energy density and pressure of matter respectively, and the

equation of motion for the sealar field reads

with

J+3HI =P (4.8)

J = Ju— 24H?Y $Fy — 12H?*Y2 ) Fyy (4.9)

Py = Pug 4+ 6H>Y?F14(4.10)

4 a
&y = ZSG, Py = ZPQ, (4.11)
a=2 n=2

Ju 1= —¢Gay — 6HY Gy — 290Gy — SH2(Cay + 2Y Gayy) — 12HY Gayg

where

&

Es

P2
Ps

P

(4.12)
Y Goy — Gy, (4.13)
—GHY ¢Gly — Y Clay, (4.14)

CGHRG 4 24H2Y (Gay + Y Gayy) — 12HY $Guy s — 6H Gy, (4.15)
Gy, (4.16)
~Y (Gay — 26Gay), (4.17)
A + 2H) Gy — 4BH?Y + HY + 2HY )Gy — 8HYY Guyy

4V (¢ — 2HP)Clay g + 2(d + 2HP)Gag — 2Y Gugg. (4.18)
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Pug = Clag — YV (Gagp — 206Gy ) + 6(2H? + H)Gug + 6H(Y + 2HY )Gayg. (4.19)

In this case we have the arbitrary functions As, C5, By, Ay. We can recast

our action in Horndeski form plus extra term (£3) by using

Bs+ Ay — 2Y Byy
Y? '
Gy = A+ YO3¢, .

Fy =

Gz = C3+2YCyy,

G,; = B4.

The first-order differentiation for the (5 term reads

Cor = —1Dy,
Cag = —l(A +1D V'?)
3 = vzt 5t .
We then have
F4 — —’YDy
| 9 ! g
Gg = Cg ﬁ’}’YDqg
1
Gy = —.
I‘Y
Reeall that
_ 1
Y= TR DY
We then have
3
I‘Y
Yo = _EDéy

73
W o= 5 (D+YDy)

(4.20)
(4.21)
(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
(4.27)
(4.28)

(4.29)

(4.30)

(4.31)

(4.32)



2
Coy = —Y?]),;,y —YD,.

Therefore from (4.13), (4.27) and (4.33) we have

£y = 2VCay — G,

1
= =YDy —2Y?D, + —2—D¢Y2
Next, consider (4.28)

G3 — 03—“{}/D¢

3 3

Gay = —27Ds+ LY Dy(D+YDy) =Y Dyy
Yy ~4®

G3¢ = 3 T §D¢Y - 'yYD¢¢. + EDE,YE .

We then have (4.14) as

2 ) ¢ 3
& = “SHY$(— Dy + 324/ Dy(D +Y Dy) ~ Y Dyy)
1 -2 2 7 27,3
+A2 o §D¢,} —+ ’Y} D¢,¢ — ?Dqﬁ} ;
Next, consider (4.29)
Ga = V14+ DY
G4¢ == %}/Dé
Gy = %(YDY + D)
7° ¥
G4y¢ = *E-DQJ,Y(D “+ DyY) -+ E(YDY(ﬁ + D¢)
7’ ¥
G4)’)’ o= ——"é"(D + YDY)2 + "2"'(2DY "i"‘ YDYY)

‘We then obtain

6H?

59

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)
(4.40)

(4.41)
(4.42)

(4.43)

3 Vv
& = T 24}I2Y(%YDY + %D — %Y(D +YDy)? + 72 2Dy + DyyY))
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LA ¥ 61
- - — v = ¥ Ry » L4
12HY¢>( 3 DyY(D+YDy)+ 2(YD ¢+D¢)) 5 YD, , (4.44)
we also have

3
Pay = T-Dy(D+YDy)+vDyy . (4.45)

Therefore, from (4.13),(4.14),{4.15),(4.26) and (4.45) the equations of motion Eq.{4.6)

hecomes

1 = g
( ~Y3Dyy — 22Dy + §D¢,Y2 —6HY ¢( - 5Ds + Ly Dy(D+Y Dy) =Y Dyy)

2
1 3 612
Az + DY + YDy - %Dgyi" -+ 24H2Y(%Y Dy + %D

g s 1Y i v
—~4—Y(D +Y Dy + T(QDY + DyyY)) — 12HY $( — ZD¢Y(D + ¥V Dy)
Hy . , 3
+%(YDY¢ e -6—21¢Yp¢) 3017V 2y Dy + 12H2Y3{%DY (D +YDy)

—’YDW} = —2Kpy . (4.46)
After simplification, it yields a modified Friedmann equation:
0 = (dy—2YAyy) — 26pm +6H>Y (1=Y*Dy) , (4.47)

it is an equivalent equation of the one which derived from vary an action with
respect to the shift V. We can use the same method to obtain other equations of

motion, for Eq.{(4.7) we obtain

0 = —2Hv¢(DgY —2(D+YDy)d) +2y(2H + 3H?) + Ay + 2sp,(1.48)

where a dot denotes a derivative with respect to time, H = a/a is the Hubble

parameter.

Since the disformal graviiy considered in this work is a sub class of the GLPV
theory which is the covariantized Galileon theory [78], we first check whether the

acceleration of the universe can be driven by the kinetic terms of scalar field as in the
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Galileon theory[79, 80]. In the flat FLRW background, we have v =1/4/1 — Dq.BQ,
so that D¢.2 should lie within the range (—o00,1). In addition, it follows from the
above equations that - should be unity (D ~ 0) during matter dominated epoch
(This condition is needed for the structure formation) and should be larger than
unity during the acceleration of the universe. Hence, 0 < Dgf:z < 1 throughout the
evolution of the universe. Therefore, our equations of motion now approximately

reduce to

1
3H* = k(pm — :?—H(A2 —2Y Agy)} (4.49)

. 1
—2H —3H* = k(pm -+ 5EAQ) : (4.50)

In this sense we can deduce that

1
Py = *EE(AQ T ZYAQy) i (451)
1
Py = §EA2 ; (4.52)
e B v = 25 4.53
1‘12

and aceceleration equation for the dust-filled background (p,, = 0) then reads

a 21 . 3 .
42 = (A =2V Aar) + oy — puf (4.55)

the main contribution in the above equation that can make ¢ > 0 is propor-
tional to —pg/3 + pg. From this rough analysis, we expect that for the disformal
gravity considered here, the accelerated expansion of the universe cannot be driven
by kinetic terms of the scalar field. We will check this analysis using numerical

integration below. An equation of motion from variation of the action with respect
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to ¢ (4.8) becomes

0 = ¢ [AQ,Y 4+ 2Y Aoy +3H* A [D(1—Y?Dy +2Y°Dyy) — 2}!92]]

+2Y (5D, — 3Y2D% + 2V Dyy) + 3H¢ (AQ,Y — 29V (D+YDy) (%HZ + H))

1
+5 (Aw = 2 Apyys + SH 397V 2D (D + Y Dy) = 2Dy — YD,¢J> .

{4.56)
For conereteness, we choose the disformal coupling of the form
D= M e Moy (4.57)
and choose Ay as
Ay = MEI(=Y)Ye — 2Mte™™% (4.58)

Here, M, M;, and M, are the constant parameters with dimension of mass and in the
case of flat FLRW universe they are all equal to zero, while A;, Ag, A3 and A, are the
dimensionless constant parameters. For the homogeneous and isotropic universe,
Y = ﬁqﬁg, and therefore the field ¢ may be classified as a phantom field when the
kinetic term in A, is proportional to Y2, We choose the above form of A, because
this form can be easily reduced to the canonical form, and as discussed above, the
potential term of the scalar field is needed to drive an accelerated expansion of the
universe. The above form of the disformal coeflicient D is chosen because this form
is the simplest form that can be used to study the influence of the kinetic-dependent

disformal coefficient. For this choice of 1) and Ag, the equations of motion become

0 = GH2(y* 4+ Xa(r® — 7)) + M8 ) e (1 2Xg) — 2MEe M9 - 26p,,,

0 = 47% - 27311’&(,\1 —2D (/\2 + 1) ¢) +2vH (H + m'ﬁ) + M ()2

—2M2e ™ L 2kp

(4.59)

(4.60)

0 = +<}3(M£‘4"3)\3(2)\3 — 1)($)? — 3y DH? (,\2 + 1)1/ (,\2 (3721_)1’ - 2) + 342 DY — 1))

FIHME*3)03(d) 26 + Y Mhge %+ % [ - 373DH(HA1Y(,\2(372DY —2)
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+3v2DY —1) — 2002 + 1) (3H% + 2}'1)45)} : (4.61)

4.3 Evolution of Background Universe

We briefly study the evolution of the universe at late time by solving the

above equations numerically. Substituting M2e ¢ from eq. (4.59) into eq. (4.61),

we can write eq. {4.61) as

¢'ﬂ —

¥
%gﬁ’ 2007 (7 = 1) Qo t D 437 (1 = 1) x (Do + 1) Vg + 1) = 2050 + Aa)]

! 3 o f ' il . ! '
x 9 (377 (22227 + 20/ + Mg +3) + 4 +5x6 + 208 +6)
7

H' H
- 39 ()\2 (4E + Mg+ 2040 +6) + dorr ok 221 + 6) + Ag (O = 60) ¢/ (4.62)

= 2230 (Mg’ +3) — 99° M1 (Ao + 1) ¢') \

where a prime denotes a derivative with respect to Ina

Oy, = M (HQ) [ H?, Qpy = kippn 3117 = Q0e3N /(112 /112), 11y and QF, are

the present value of the Hubble parameter and €, respectively. The function H'/H

can be computed by combining eq. (4.60) with eq. (4.59) and setting p,, = 0, so

that we obtain

i’
H

- {27(375 Oa+1)2 =393 Do +1) — 3yde (Ao + 1) + (1 — 22s) Agﬂk)} X

[2778 De+ D2 =9 Mo+ D2 (A +6) + 99 Qo+ 1) 2 (BAz 4 3) — 92 (N2 + 1) 2
9% (Mo 4+ 1) (A3 + 3Qw) +37° Q2 + 1) x (2 (222 — As +2) As + 3 (4Xg + 5) )
=3y (A2 + 1) (D2 — 2203 + 1) A3 + 3 (A2 + 2) Q) + Az (2A3 — 1) Qk (AsQy, + 30)

4+ (¥ - 1) v¢' x ()\1 (1= 228) A3 + (A2 + 1) Mg [67° 46 (v* — 1) yAa

—22a + O — Gﬂm])] . (4.63)

Setting 9, = 0.3, wr = —0.97(1 — Q%) = —0.68 at present and #? = M2 =
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M2 = M,Hy, where we have restored M, in this relation to avoid confusion and
wr = —2H /(3H?) — 1, we numerically solve egs. (4.62) and {4.63) by making an
integration from the present to the past of the universe, and plot the evolution
of AQp = (O — QA)/Q% and wr in figs. (4) and (5). Here, Q% is the density

parameter of matter computed from ACDM model by setting 2} = 0.3 at present.

0.025 - . 1 '
o e
0.015 | “\

0.01 | \

Figure 4 The different density parameter AQ,, as a function of log;a
for various values of Ay, Ag, A3 and A,

—-0.1

—-0.2

—0.3 ¢

W

0.4 |

—0.5 }

—0.6

=0.7

Figure 5 The equation of state parameter wr as a function of log,,a for
various values of A, Ay, Az and )\,

It follows from the plots that the evolution of €, and w, for the disformal
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model closely mimies that of evolution for ACDM model. In the numerical inte-
gration, < is larger than unity at late time because —DY = D¢? is close to one,
while v — 1 when —DY becomes much smaller than unity during matter domi-
nated epoch. Thus — DY is always smaller than unity throughout the evolution of
the universe. Based on the value of the parameters chosen above, DY < 1 which
implies that QS/H < 1, i.e., the field slowly evolves in time compared with the
expansion rate of the universe. From our mumeriecal integration, we find that the
accelerated expansion of the universe can be achieved if the form of A, can satisfy
Ag/(2Y Agy — Ag) < —1/3,e.8. Ay = (—Y)* where X3 < 1/2, Ay = Y/2— Mle=24¢
which corresponds to phantom case (a potential driven, not kinetic driven), ete.

This is in agreement with the above rough analysis.



CHAPTER V

CONCLUSION

In this thesis, we investigate disformal gravity theory which is in the class
of Beyond Horndeski theories. We have reviewed the overall structure of beyond
Horndeski up to GLPV in Chapter 2. Then we concentrate our study to the theory
generated by purely general disformal transformation g, 1+ gu+ D(¢, Y )¢,é, in
Chapter 3. We have obtained the disformal action and have shown that it contains

in the class of GLPV theories.

In Chapter 4 we studied the evolution of background universe in a general
purely disformal gravity theory in which the gravity action results from purely dis-
formal transformation on the Einstein-Hilbert action. We wrote the gravity action
in the forim of the covariant GLPV theory and find their equations of motions.We
discussed the cosmic evolution for this model , and found that the accelerated ex-
pansion of the universe cannot be driven by kinetic terms of the scalar field from
the disformal coefficient function D{¢, X) as in the Galileon theory. The acceler-
ated expansion of the late-time universe can be achieved if the Lagrangian of the
scalar field As (the potential terms) satisfies wy = Ag/(2Y Azy — Ag) < —1/3 which

corresponds to the case of potential driven.
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APPENDIX A TECHNICAL SUPPLEMENTARY

A.1 Notation with details Throughout the thesis we use the notations such

that the local Minkowskian metric at every points in the space-time is given by

=1 ~.0~0-0
o P e S

0 0 0 1
where the lowercase greek indices s, v, = 0,1,2,3 are the 4-dimensional space-
time indices. We use the unit where ¢ = 1,69 = 180 j19 = 1 (by ¢ = \/ﬂl)w) This

nmake the length and time the same unit and reduce the number of fundamental
{dimensions of) unit into two : mass{or energy) and length{or time). We use
h = 2x( or A = 1). By E = he/A, the fundamental unit is remains only one the
energy( or mass) unit. We can indicate the dimensions of any quantities by the
exponent of energy and this number is called the canonical dimensions. In this unit
the Newton constant is write explicitly and sometimes in the form of the reduced

Planck unit.

In SI unit, the Planck mass

[ he
Mp; = —C—;- (A2)

1
[ —— A3
TR (A.3)

In the natural unit

and the Newton constant in the form of reduced Planck units ( we us the subscript

Pl for both Planck and reduced Planck unit)

o
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these are the same thing in the natuval unit. We also notice that the canonical

dimension of ¢ is -2.

A.2 Coordinate-free notation In section 2.3.1.1 we have used the coordinate-

free notation. The vector, v, in this notation can be translated to the coordinate
based notation as

v=10"d, . (A.5)

The scalar product, u - v or g(u,v), can be translated to the coordinate based

notation as
g{u,v) = g(u#8,,v78,) = u*v"g(8,, 0,) = v*v" g, . (A.6)

The covariant derivative with respect to vector u can be translated to the coordinate

based notation as

V= Vi, = u'Vo =0V ;. (A.7)

For example, we can write equation (2.45) as

v = —gagvinl nt 4 (0¥ -+ gagrnfnl). (A.8)
dh l

For more details see [81, 82]

A.3 Some geometric objects We us symmetrized and anti-symmetrized

bracket defined as

1
Ayt = ﬁzAa(m)---a(#r}a (A.9)

i o
A[#l...,u;}: = 'ﬂZ(_l) Aa(,m)...o(,uz)p (AIO)
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where ¢ is a permutations mapping.

1  if & is a even mapping
(=1)7 = (A.11)

—1 if ¢ is a odd mapping

Note that (—1)? = (=1)7, if D is the number of exchanges of indices re-

quired to transform {o{p1),...,o(m)} 6o {1, . pu}-

The purely numeric completely antisymmetric Levi- Ciuvita symbols for (1,n—
1)—dimensional space( can be straightforwardly generalised to arbitrary signature)

is defined by

’

4+1 if py... iy is an even permutation of 012...(n — 1)

Euyopn = § =1 if py...pty s an odd permutation of 012...(n — 1)

0 if otherwise

(A.12)

\
= 90 gt gL 59 00 7! — the remaining odd superscript permutation terms
12 Hn Hn g P

oy 2

+the remaining even superscript permutation terms

0
5%1 6‘;2 5;?"
_ I\ gy
-1 sn—1 sn—1
i U N o
— 0 st -1 _ 1500 51 w=1] gl 051 -1
= nld), 8, ..ot =nlsp 8L St =nlsl s g,
Note that
Eppyoogyy, = EMTH (numerically), (A.16)
and
T T YR o | L [ Iy}

= (al)2set ... o]

n—1]?

= (nl)26Dst. . .60 1),

(A.13)

(A.14)

(A.15)
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1. _
= ()03 801,

= nl . (A.17)

We can also obtain

Viote 0 st n—1 {1 51y v
Eprgn€ = (nkéy,, #2...6%] J(nldy™ 61 ...6n_1]),

1082 0 g

e ORI

= (nh)olngez. . ool

1 et Hn ?
oo L 5
2 15 1%
U i)
O e
We can also obtain these identities by nieans of the equation {A.14)
gk 5%2 5}11” 6k & 1N 4
) d b | 0 L Y -
DS Cert GV Y RSt

$12 Mn
tin n—1 on—l On-—l

e s N SR

grotognst oLt o

Hn
g | 1 A N NG
R 5 L S NS
N e | L R
T
oz g2 . 2
= | " e (A.21)

A A O i

o Y tin
IFrom this determinant we can obtain the further familiar identities such as

11 Hi H1
pmogm L om
He H2 H2
gl bin 5#1 5#2 - 6#11

, (A.22)

E"Iilmlln

Sun sun . gu

13 Ha e Hn
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1 0 0
0o 2 ... 0
= |, : 1, (A.23)
0 0 ... =n
= nl (A.24)
By the same method we obtain
Vm1 Vin1 Vm+1
5#m+1 6#m+2 oy 6#:1:
V42 Vm42 6Vm+2
tmt 1 R,
i |y S G (4.25)
¥n Yy 6”?1
Hm41 Hint2 o Hn
Note that ght-#mimtvn — (_1yn=-m)g¥miivnptsim  We emphasize that though

Epy..qin 15 @ tenosy in flat Lorentzian space( such that for Special Relativity) g#t-#n
is not. But in flat Euclidean space it is. We will see later. The determinant of

{(n x n)-matrix is given by

det ALJ =] |Al_]| — 51112IﬂAleAm]_-..Az‘nn_l’ (A.QG)
1
= ;ﬁei1i2...ip1€j;j2...jnAi]j] Aizjz-“A-i-njn- (AQ?)

In flat space the volume element of that space (V) is da® Ada® A--- A dz"1) and

1
Vo= da® Adat A Ada"H = g, det Adat A A datr,
'n,! Hi.lin
1

_ B eedbn Joadt
N 71.'8!11'--,11716 nd‘l’ )

= da". (A.28)
Hence, we obtain the useful relation

dat® A- - A dgt™ = gittn g, (A.29)
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where we use the standard definition

datt A daf? A N datt = Z(—l)"dm"(“l) ®dae"P) Q... & da"BV) (A.30)

g

In the general curved space the geometry is described by the metric tensor

Juov = (31®3J)(3m8v)'7?”a (A-?’l)

= ¢ el (A.32)

Now, we bring the Greek indices for curved space coordinates and the upper case
Latin indices for the flat space. The component of co-frame field (¢’,)? is a mapping

bhetween flat and curved metrie in a loeal coordinate.

Loeally, the line element described by both frames is the same
ds? = gudatde” = eI“e‘]vnIJ(lm“(lﬂ,‘” =ppele’. (A.33)

This is followed from the strong equivalence principle ([83],[84]{chapter2)). To say
geometric data is contained in e/, in locally flat coordinate. Physically, we can’t
measure the gravitational effects in this frame, but the frame itself subject to gravity

(the free falling frame). From equation (A.32) we obtain that
g=—¢ (A.34)

We can think of e/, as the square root of the metric g, and think of the curved

space-time as the generalised of flat space-time following way

ndztde? v ppyele’ = ?]Ue‘rye”’#da:"(lm", (A.35)

dat el = el da. (A.36)

3The prefix ‘co-’ is come from the fact that e is a co-vector (el = Gidﬂ‘l‘”), in oppose Lo
the vector, v = v#d,.
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Then the volume element is generalised
Vetat = do® Ada' Ao - Ada® D = V=" Ael Ace o p gD (A.37)

So, we have
)

Vo= @ Ael A Al (A.38)
1
— 5611[2.__171811 A 612 FARE A BI", (A39)
iy 1 I Iy In deft A dat Jytn A4
= ELIdnC € € e Adzh2 Ao A dat {A.40)
1
B thIz...In 611 .111812112' v 81n #neﬂxm---#n d:r’n: (A4l)
= eda”, {A.42)
= rv/=gdz", (A.43)
1
= ?j\/—gsmmm,,ndm“l A dat? Ao Adat, (A.44)

The last line tells us that V is indeed a differential n-form (see [85], par I1I of [86],
chapterld of [87] ). We also call it the volume form. Write the volume-form into

the standard form of n-form

1

V = ;ﬁemmn_”ndm”‘ AdzP? Ao Adath =te. (A.45)

The the component of the volume form cam be expressed in terin of the Levi-Civita
symbol
Epipapn = V T8 py (A.46)

The volume form is a tensor( it is the invariant volume /—gdz" ). So, the com-
ponents of ¢ can be raising and lowering by the metric tensor. Then we get the

contravariant version

ittt = g g iy (A47)

= ’*99““’1g“m--.g“"""fum,..yn- (A48)



Then by contraction

H1H2.. 1 — FARRPRPN ) L QP -1 ) HnV;
€ nem,uz...,un - 99 g 9 m nEvlug...unS;u;lz...pn;

-1
= nl\/'_'_g g_l = nl_{jg!

Compare to the equation (A.17) and we will see that

gH1Mebin —

E.ulf-ti’---#n X
v—d

and

H1p2- i '
€ i), & —nl

El-‘li¢2---.|1n6 __8,111#2---#11

Vi Emvg.vg.

In the Lorentzian flat spdce( as in SR) our results imply the relations

Spapaeptn TV TN pn T Eppaain

HLHZepin ___1 pHH2ecdin — _ oH1p2
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(A.49)

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

If we define dz® A dat A o A dae®=1 = %101 gz as the volume element, then

EOL..(nﬁl) — _“601...(7171) =1.

Because

OL...(

M- = g1 (nry  humerically,

80,

€ol...(n—1) — L.

(A.57)

(A.58)

(A.50)

The last two equations is a matter of definitions but we choose the most natural
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one. In general Lorentzian space-time, we have

o123 — Vv —4, 60123 = _1/\/ —4. (AGO)

We write explicitly for the general relations

PIV3...Vn §retien

€ Coruy. Lppiptielin — *p! Hpl oot (A61)

where d;141 for [ < n is a generalised Kronecker delta defined by

GHI-HL o R —(*1)@6:/1...1/16#1"#1: (A‘Gz)

V1.t [1..04] —

where (—1)% is equals to 1 or -1 depends on the signature of I-dimensional subspace
is Euclidean or Lorentzian, respectively. From (A.38) four-dimensional spacetime
volume is

te=enet Ae? Ae® {A.63)

while the volume of the space represents by (in appropriate coordinate adjustment)

fe=e' A Add, {A.64)
Therefore
e = e AP (A.65)
1 1 . . '
gEIJKLGI A GJ A CK A GL = BD A 56@',&-81 A A 8'[", (A.GG)

operate on the left with ey both side of equation, we obtain

1 4 1 . .
mEIJKLBJ Aef A el (1) 56 = yé‘ijkez Anel A Bk, (AG?)
Egijkei A Gj A Bk = Eijkei A 8J A Bk, (AGS)

Egijk(;‘i A Gj N ek = eijkei A Ej A Bk, (Aﬁg)



€0abedx® A da® N dz® = egeda® Ada® A da®,

E0abe/qdT* A da® Ada® = ege/qda® Ada® A da®,

Hence,

where \/g€oabec = €gabe-

E0abe = Eabes
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(A.70)
(A.71)

(A.72)

(A.73)



APPENDIX B VARIATION AND DETERMINATION
OF THE METRIC

B.1 The Variation of g The derivations in this section is based on the basic

knowledge from appendix A3

g %6”‘5 P iy Grp e (B.1)
R %6“’9*56“”""9&-#gsygw@gam (B.2)
;_Eq faﬁ?gﬁ#uwgaﬁgﬁvgwagéa: (B.3)
;—iqe“ﬂ 756&,@“5{]‘50, (B.4)
99" 850 (B.5)
For the variation of inverse metric

gt %eoﬂ?gs pupo g™ g grP g%, (B.6)
NG %eaﬂﬁguymg“‘”gﬁ"g""’ég‘s”, (B.7)
%;ea-,syac#upag"“gﬁ"g”"’dg‘i", (B.8)

—g ! W e
R TR 04", (B.9)
" 95509% (B.10)
Lg% = g7 gs.09”. (B.11)
8g ~9 95:69". (B.12)

"This result can also obtained from a result (B.5) with the relation §(g,.g"#*) = 0,

and because dg/g = §1n g, then the equation{B.5) can be expressed as

dIn(det(g)) = Tr(gdg™") . (B.13)
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Start from 8(g,,g"?) = 0 then we have

_g#yagwﬂ — QV'SCSQ;;.V; (B.l4)

_ga,ﬁ'g;wégyﬁ == 59'#& . (B.15)

B.2 Determinant of g, in ADM variables Consider the metric tensor of

space~time in ADM variables

_ [~N? 4+ NN, N,

G = % S (B.16)

Calculating determinant of this matrix by Gaul definition of determinant yields

e g 0001 902083,

= EOdegoo(Ichzqu b- <22

Ga0Jv18a2983,

= (=N? 4 NN 1002003 + £ Gavgore29as + £ gaogerganps,

= (=N?+ NN — e Ny Nideagas + €% ga0@1 902903 — €% 9001 Ge2903,

= (=N?+ NoNg — "N, N1geotas + 6 Natps Naqas — € Nogha geaNs,

= {=N?+ N,N%g — %eac"’e"” * N NpGreGsaq + %e“"‘dsp”f\faqpcf\’rqsd - %eﬁ“dsp’sNaqupcqrd,
= (~N?*4 N,N%q — %EGCdEPrSJ'\IaleQrcgsd:

= (—~N?*4 N,N%)g— %qe““"dep " Na Nplresd,

= (=N 4+ NoN%q — —;—qe“,.sep”NaNp,

1
= (—=N?+ N,N%g -~ EQQQQPNGNP,

finally, we obtain

g=—N?%, (B.17)



where we have use (see Appendix A.3)

- Oabe _ _abe .
E0abe == Egbey € =& Lahe = \/éea.bc; £
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(B.18)



APPENDIX C BASIC EQUATIONS FROM GEN-
ERAL RELATIVITY

The dynamical variable of GR. is a metric tensor, g,,(z). At each point the
metric describes the geometry of the space-time via Riemann curvature tensor,

R*,p, . This tensor is defined hy

R, 1= 01, — 0,05 + THT0, —T5Ihs (C.1)

izl ny

where the Levi-Civita connection (by its name means torsion-free and mettric

compatible)

1
Pfjv = §ga,ﬂ (a,ug,ﬂu 7k 3:/9,8;1 - 3,39,;1;) . (02)

It coincides with the Christoffel symbol { ffv} Note that it is not a tensor. Ricei

tensor and Ricci scalar then respectively reads
Ry =Ry, R :=g"R,, . (C.3)

We list below the symmetries of Riemann tensor
y

R%pu = Rpy, (C4)
Roupy = —=R%up, (C.5)
R%p = —R% . (C.6)

With R = RY the another symmetries can be expressed as
LV po 1y vpo »

Ryps + Rypor + Bugrp = 0, (C.7)

Vulupoy + Villoyoy + Voltywey = 0, (C.8)

They are called the first and second Bianchi ’s identity, respectively. From the later
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contract it with g*? yields
ViRor + VP Roypy ~ VR =0 (C.9)
contract again with g®* yields
V. R=VPRyy~V*Rp=0, (C.10)

and the further simplifying this gives us

1
EVyR*v‘uR'u;; = 0 y (011)
1
W-(EQWR — A (C.12)
VEG,, = 0, (C.13)

where G, is the Einstein tensor defined by

1
G = Ry = 50 R (C.14)

The Einstein-Hilbert action with cosmological constant (in the unit of [/i] and c is
explicitly shown up) is given by
3

Sealg™] = o= / d*ay/~=g(R — 2A) . (C.15)

The variation of this action functional reads

3
S T / d' [5(\/ —9)(¢"" Ry — 28) + V=g69" Ry + \/_—gguvaﬂ#y] ,
’ 1
= 1GC?TG / d4;E\! —g I:(}ilw - §gﬁy R4+ g,twA) + g“”éRW] . (Cl(})

In the last line we have use the results from A.3. Consider the Ricei tensor

Ry = 0gT8, — 0,1, + T,T, ~ 5T . (C.17)
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Choosing the frame that locally flat (means g, = Nue and I, L0 ) the Rieei

tensor reads

Ry, = T4, — o145, (C.18)

= V¥, — W05, (C.19)
atid then its variation reads

SRy = VI8 —v,6T% . (C.20
1 AC% g By

This is a tensor equation since the variation of metric connection is a tensor the
both terms on RHS are the tensor quantities, they are the total derivatives and
when we plug it back into the Einstein-Hilbert action they turned out to be the
boundary terins and not contribute to the equations of motion. Note also that this
equation is true for every frames since the tensor equations is frame invariant. It

is known as the Palatini identity.

Then we have
85gr /g
Sgiv 167G

(Guu+ guudh) - (C.21)

By Hamilton principle this gives us the vacuum Einstein equation with cosmological
constant, G, + g, A = 0. To take into the account the matter content we require

that

85en  0Sm =g
PR T T

y 8wl
(G + gpoh) = =T - (C.22)

Consequently, we have the relation between energy-momentum tensor and the ac-

tion functional for matter
—2¢c 8Su

YT g

Therefore the above equation can be use to find the energy-momentum tensor for

T, (C.23)
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a given action. For example the electtromagnetic action

Sear[g, A¥] = i f d'z\/—gFsFf | (C.24)
1
695&‘\{ = zl?fd4%[ \/ )F gpn's-’r\/ 5( FOWY e 6)] (0.25)
0
1
= —fd%[— V= g9,u89" FQBF""S+\/_5( QBF“ﬁ)] {C.26)
0Sen =3 af /— naf

Consider the last term in the vielbein form
FopFof = el el Fyjedel P10 (C.28)

We have done here for isolated the flat structure (g,,-independent) from curved

structure. Next, we will use the chain rule

55 sed 29)
Sgv de Sgmv '
From g" = nMPek % we have
Sg = ™M Pek 5% e . (C.30)

By using (C.28),(C.29) and (C.30)} we can calculating the last term of C.27 as

S(Fpgkre? ) e
% - el 2 (C.31)
Sef Se}
= dp I J o LF IﬂK’L “EP .39
CalsCr 6 g ( )
1
= (delefes605L FryPEL)( 2;;Mpe“ah) (C.33)
= 2elegenslsrod el nyp FryFEE (C.34)

= 2elelet e, I (C.35)
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= 2F,F®, =2¢°F,,Fs, . (C.36)
Then we obtain
O‘SEA,[ 1 1
= — /g9 FapF — —/=9(2¢°P F. . F3,) | C.37
Sgir BV 99mTos T Y 9029 Fanllp) (C.37)

and the energy-momentum tensor of the electiromagnetic field reads

—2c 5SEM =y C

N T T

C
= = Zﬂ—og,wﬁ‘aﬁﬁ’aﬂ : (C.38)



APPENDIX D DERIVATION OF DISFORMAL AC-
TION

D.1 Derivation in details

Continue from section 3.3, now we are going to calenlate the thivd and the

fifth terms in (3.19) by starting from the second term in (3.18)

ZV[#I(ﬁﬁ = vll(‘“%(vaD)qs,ﬁQS,v) _Vv(“%( D)§b5¢ )+vu( 2(v(3D)¢,V)¢'a)

~V (VD)) + V (’Y (VAD)$ ¢ b pdo) —

2
VL2 (VrD)# 6% 58,) 4 VuaD"dis,) Vol Do )

= (VAT D)ad — (VD) + (VT D)y + 5(T" D)ty
TV N Ve D)gnd” + 7" (ViVaD)bnd” + (Y (eD)byud® +v*(V(6D)duy b
(Vi) (VsD)yd™ — v (Vo V (D) d™ = (VD)™ — 12 (V(a D) by s,
V) P(VAD)G 8 Gty -+ ¥ (Vg DY (VA D)% by
+7° DV VaD) 928 dpdiy -+ v DIV A D)ty b by
+y D(VaD)§ . badi + 72 D(VaD)$*$* giutbu)

+2(Vi7*) DE° bgu + 29" (Vi DY baw) + 27° Doy b

+2’}’2D¢a¢ﬁ[v,u] )
VK, = —(V'VRD)uds — (VED)bapdi) + (Vur*) (Vs D)o
1 2
~'§(vv'72)(v#D)¢ﬁ¢'u + (vu72)(vﬁD)1Y + %‘(vﬁqu)q—l’vqs# + WQ(VﬁVVD)J\,

—Vz(v[,u )‘}51!]596# + WE(V(ﬁD)qbv)ng - TQ(V(ﬁD)Qb#}q‘B“D

( w3 D(VAD)¢ 6 dg + D(VA DYV, 42)p pp X
2

Qt\:)l

(VAD) (VD)4 83 + 7 (VAD)(V, D) s X

b |
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2
+%f)(v,\V,;D)¢u¢#¢A¢ﬁ + 2 D(VV, D) dpX
2D 20D
+ L (VAD) b — T (VAD) 8 s
’}’QD A i 2 A - /YQD LA
- (VaD)g uhu"dbp + v D(VAD) s X + - (VaD) s

+7° D(VAD) ¢ X + 2D(VvD)dujsd” + 273 (VD) byypd

+'}'2DD¢¢’V,6 - 72D¢'uv¢yﬁ + 272D¢#45ﬁ[y,u] . (D.l)

+

We will use the above quantity in order to calculate the 3rd and the 5th terms in

(3.19). The 3rd term is given by

20"V, K}, = (@OD)X
(VI D) 8" = (VD) + SVDIGG, + (V,77) (T, D)# 4"
2
=S TAVDI 4 (TN D)X + T (979, D)+ A(OD)X

2 2
5 (VD) + (VD) + (VY D)6, 0 = (Y D)y

@
(V) D(VaD)"$* X + D(VAD) (V) ¢ X = F2(VaD)(V, D) $* X
@ o @

+72(VAD) VD) X — 32 D(VsV ,,D)e* X + 2 D(VAV, D) ¢+ X
@%@
e %2 A &EQ v A e 2 At
) D(VAD)DQMS nr P (v)\D)QS qS#gb ¢u i D(VAD)QSF‘;'B X
55

A

+7D(VADYP$,X + TR(TAD) by ¢8> + 7 D(VAD)Dp X

+D(Vuy*)Ob¢" = D(Vy* )¢t + 42 (9, D)0dg# — v*(V, D)

+9*D(0¢)* — ¥ D¢ $y — v DRy ¢ (D.2)

2
= (@D)X + ¢#¢”{§V"VVD +(VAAVLD+ VY,

& &

A

—%(V”D)(sz) —(V*¥3(V,D)DX + DIVAD) (VB X

Qi@ el
~YHVEDYV,D)X + 52X (V*D)(V, D)}
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LB
v 1 u '}‘2 T 2771 (-FZ“_%

BB ‘
+¥ D(VED)X -~ DVHy? — 4271 D}

5V D)0g -~ L (99 D)0g + 44 D)

GEBZ EEEE
-~ - ™ si—
—YD(VED)UX -+ Y2 D(VFD)YIX

+D(V M Og + v*(V+ D)0}
+(VAN)VYD)X -+ (OD)X +4*D(0¢)* — ¥ D¢* ¢

—Y DR (D.3)

— (149 D@D)X + (VuDAVA)X + DS~ D,
5 (1 + P)VIVLD + (V, D))
Hhud (=5 (VD)1 +37) ~ D(V'7?))

(57D +87%) + D)D)

—’)/QDRNVQ#LQ‘{’V 5 (D4)

2" ViIly = (14 12)@D)X + (VuDYVH2)X + D) 7' D,
+§1§¢#¢”{(1 Y )VEVLD +(V,D)(Vi)
7y qﬁpvqﬁ"”){%(V"D)qu(l 1 39) + D(V*42)01p)

—y* DR " . (D.5)

Next, calculate the 5th term in (3.19) by using 2V K from (D.1)

—272D¢‘9¢”V[#Kf] g =

~y*D{=2(OD)X? ~ (V"V, D)¢" $, X + (V' D) 6" X + %(V"D)sﬁayqﬁﬂ ¢ bu
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A ) R
~2(V,P)(VaD) P X + (Vi) (VD) d X + (Vo1?) (VD) §P " X
2 52 0
~Y(VaVuD) X + 32 (VaV,D)g el X — (V1) b pp v
Qﬁ»’i )
TV D)t 968 — 2 (VaD)OE X — T(VpD)t b
J?,JEZJ?, JMJ{ZJA

+72(VHD)¢;W¢’VX + é(vp'yz)D(v)\D)quﬁbAXQ - ZD(VAD)(VV'Yz)QﬁA‘?ﬁVXE
Z 4 e
—22(VAD)(V, D)@ ¢} X2 + 292 (VAD)(V, D)#*¢" X2 + 242 D(V,V, D) g > X2

2g

272 D(VAV, D) " X7 + 292 D(VAD)Ogd* X2 + 42 D(V D), $* X
@cgfﬁ é&%@ @@@9@

+272D(VAD) P X% = 22 D(VaD)pN ¢ X2 — Y2 D(V D)t ¢ 9 X
@@f@g’ d&@a%ﬁg? @@@L@é&

+7°D(VAD)bg,d* $° ¢ X + D(V,77) 4,568 8° — D(V0) a6

+0 + D0, p0" 8 — ¥ D¢’ ¢, + 0}, - (D6)

= —y’D{-2(0D)X* — (V*V,D)¢"$, X + (V" D) ¢’ X
1 2
+5(V D)ot b — A (VD)0 X — (VD) 90" o
Y (VDYud” X + 29 D(VAD)Ogp* X2 + 42 DO, 8" 6"

~VD¢P "} ' (D.7)

= —¢"D{-20OD)X* — (V*V,D)§"$, X
+ g’ [(V“ D)X + 42 (V D)X]
o
5888 [§(V,D) — (12)(V,0) +42D(V,D)X |
HOD | - 292(VaD)X -+ 272 D(VD)X?]

‘l“’YzDDﬁbﬁﬁuﬁ‘isvﬁf’ﬁ - 72D¢ﬁ¢ﬁu¢"uy¢v} ) (D‘S)
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2y’ D¢ 'V, Ky = —y*D{-2(OD)X* — (V*V,D)¢"$, X
o8 [(1 +4)(V D)X |
+(09)¢° |24 (Vs D)X (DX - 1)]

+v:D0¢,5¢" 0" — V*DP ¢} . . (D.9)

Next, we will caleulate the ramaining 4th and 6th terms in(3.19). For the sake of

convenience we will write down everything straigthforwardly

K8, = (VD) (D) + T (,D)g, 00
A“QTD(V DI D

Kl = 5V D)y t T (9uD)bst7 -+ (Vp D)
”ZD (VD)6 uths + "D (.10

In the next step all the terms with ¢,¢, will be vanish,

2 4
‘ D
K5 = 0= T(VD)(ViuD)dsdiudnd” = 0~ 0= LE(VE D) b "B
4 4

—0+L 1 (VaDYVp D)6 $pd” + 0 +0 + ﬂ(V D) i "¢ P

—z(vin D)(V' D) Brupp + 0+ (V[ulD)(VﬁD)%W@vlw
4

D
VR 90 (9, D)8 i + L2 (71001, g5 0

2
(VAD)¢“¢A¢7¢[;1|¢“’¢|V]5

4D 4 2
+L2 (D) |D)¢“¢A¢T¢|m¢”f¢ﬁ 100+ T2

2D
—"’—(V“fD)cblv|¢ﬁ¢wp]+ (V[uD)cb,eqé"ci)%m

2
+""""—(VﬁD)Q5[v|¢"’¢ Buyls + 7 5 — (VD) ¢“ P dpd™ oy

+/Y4 D2¢T¢a¢7bt¢1/]ﬁ ) (D.ll)

2

1 X .
K0 = X 5 (VED)NV 1 D)ydp + V2 DX (VA D) Piuis
4

I, D)D) 5" + LV, D)y1867 100
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__’Y;(VMD)(V"’D)%Gbﬂﬁblvlﬁbﬁ - g(VI#ID)(VﬂD )9
"/Y?X(Vln!D)(VwD)¢>”¢“’¢iu]¢ﬁ — ' DX (Vi D} dyuis
O G D)D) 185 — VDX (AP s
ﬁl?(vm)qﬁ'[y@mﬁ”%iu} + %l—) VirD)$ad" ¢
+¢TD(V,BD)¢’IIJI¢/¥¢“¢7|#] - g(v“’mwﬁﬁ%[y'@&%lm

+Y DX b —

20 KNI, = ' X(VID)(VpD)gud” + 29" DX (VD)
(io)
+ LV, D) (VD) ad 9" + v D(V, D) $1 61,
(=0)
“T(VIDYT D) by 7 X (VY D)D)y
(=A0)
~ VDX (Vo DYV, D)$ud' "¢ - 24 DX (V(, D))" ¢
(=)
~Y DX (VD) (Vi D)bad*'¢> — 24 DX (VD) ¢ b’
. . (=0 | Y2 (=AU)
—PD(VID)$1,b¢" + 1 DV D) by "¢
(=0)

YDV D) bt by + 7 DXV D)§ b7 8 by

1294 D2 b’ (D.13)

2x
= DDy + VX2DHD, + DX D (¢, (08) — dud”)
% ’Y‘i./Y
—A DX D0 — (12 DD, § 9, — L= D" Dy

— X' D, — DX D,O0¢é* + v DX D¢, ¢# + 2v* D* X? Dy b
&
SDPX D\ by + LD DV ADX DY
+y pYoge ¢H¢u + 45 GV by iy + v D2 Py
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+’Y4D2¢’Y¢u¢'mm¢ - 74D2¢T¢ﬂ¢7u(f’ﬂva (D'14)
Finally, we have got the 4th term of (3.19)

. X
29Ky = (L= 5D Dyyd” +97(1 — 47 XD, D

2
48,08 DL = )} 4 o DU - 37 420}
+y DA e (L) = 7 D47 89,08,

Y DX DA P s (D.15)
Next, calculate the last term we want

K K
P
r}/ /\' 4 i s
= (VEDY NV D)$udsd’¢” ++* DX (V' D)y st ¢°
9
+0+04+0+4+04+04+0+0+0+0+04+0+0+0
72/\*2

= == (V*D) (V. D)gyd” = v X*(VD)(V,. D)

¥y DX

_|_

(VED)opd,d”d° + v DXHVH D) 50" (D.16)

—272D¢ﬁq5“1(%#1(3’]ﬁ = 'DX?D'D,¢,.¢" + 24*DX3DD,

—'D2*X Dt ¢, d° — 27 D2 XD G007 (D.17)
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