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ABSTRACT

For a finite field Fyx, it is well-known that F an is a cyclic group. A monic
irreducible f(z) € F,[x] of degree n is said to be a primitive polynomial if all its
roots are primitive elements of Fgn. On the other hand, F,» can be viewed as a
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CHAPTER I

INTRODUCTION

In this chapter, we will give a briel overview on this thesis. In addition, we
will explain why we are interested in primitive polynomials, normal polynomials
and primitive normal polynomials over finite fields.

Let Fyn be a finite field with ¢ = p* elements where p is a prime number
and % a positive integer. We know that F7. = Fg\{0} is 2 multiplicative cyclic
group and a generator of this cyclic group is called a primitive element of Fga. Let
f(z) € F,[z] be a monic irreducible polynomial of degree n. f(z) is said to be a
primitive polynomial if it is the minimal polynomial of a primitive element. It is
well-known that for any positive integer n there always exist primitive polynomials
of degree n over IF, and all n roots of a primitive polynomial are primitive elements
of F,. Hence a primitive polynomial of degree n over IF, is another way of finding
primitive elements of Fy». Primitive elements and primitive polynomials over finite
fields have been studied for many years by many researchers (3], [4], (5], (6], [7],
(8], [14], [16], [18], [22], and are widely used in cryptography system, coding theory
and design theory. One aspect of primitive polynomial research is finding criteria
for primitive polynomials over finite fields, see e.g. [17], [9] and [15]. Lidl and
Niederreiter [17] gave a criterion based on the order of polynomial f(z). It states
that an irreducible polynomial f{z) € F,]z] of degree n is primitive if and only if
f{z) is monic, f(0) # 0 and ord(f) = ¢"—1 where ord(f) is the order of polynomial
f{z). Fitzgerald {9] gave a criterion depending on the number of nonzero terms
of polynomial g(z), which states that for irreducible polynomial f(z) € Fyfz] of
degree n, f(x) is primitive if and only if g(z) = (27" ' —1)/(z — 1) f(2) has exactly
(g — 1)¢™ ! — 1 nonzero terms. In this thesis, we give a new criterion for primitive
polynomials which are monic irreducible factors of ™ — 1 over F,. This criterion

is based on concept of g-cycles mod n.



For a finite field Fyn, we can view Fyn as a vector space over field I, with
dimension n. Let {ap, a1,...,an_1} be a basis of vector space Fp» over Fy. Then

any 3 € Fgn can be represented uniquely as a linear combination
B = coag + cron -k Cpoyoin -1,

where ¢; € Fy, 0 <4 < n— 1. Then the number of elements in Fgn is [Fgn| = ¢™.
There are many types of bases for vector space Fn over I, such as polynomial basis,
self-dual basis, normal basis, optimal normal basis. Now, we focus on normal basis
of F,» over F, because normal bases are widely used in applications of finite fields,
in areas such as coding theory, cryptography, signal processing, etc. A normal
basis of Fua over I, is a basis of the form {e, a¥,. .. L0} where a € Fyn. We say
o is a normal element of IF» over F,. It is well-known that for every prime power
q and every integer n, the normal bases exist in Fg= over . A monic irreducible
polynomial f(z) € IF,[z] is called a normal polynomial {or N-polynomial) if its root
« is a normal element of Fy« over F,. For an irreducible f(z) € Fy[z] of degree n,
all distinct roots of f(z) are o, af,...,0? . If a,af,...,a% " are linearly inde-
pendent, then f(z) is a normal polynomial and {¢, o,..., "'} is a normal basis
of F« over IF,. Hence a normal polynomial of degree n over Iy is another way of
describing a normal basis: for a given positive integer n and the ground field Iy,
construction of a normal polynomial in Fy[z] of degree n is equivalent to construe-
tion of a normal basis of Fn over F,. There are many researchers investigate on
normal polynomials over If,. The work of Blake, LF. et.al., [1] collects some of re-
sults about normal polynomials over finite fields. One aspect of research of normal
polynomials (elements) is to find a criterion for normal polynomials (elements) over
finite fields, see e.g. [1] and [12]. For finite field F, where ¢ = p* is a prime power,
Blake, LF. et.al,, [1] gave a criterion depending on the coefficients of polynomial
f(z). Any irreducible polynomial f(2) = a,a™ + @py2™ -+ + dlfc + ag € IF,[z]
of degree n where n is a power of p or n is a prime such that ¢ is primitive modulo

n, is normal polynomial over F, if and only if the coefficient of 21 in f(z) is



nonzero, that is, a,—y 7% 0. In 1888, Hensel, K. [12) gave a criterion based on the
greatest common divisor of the polynomial 2" — 1 and az™ ! + o227 2 4. - 4 of"
in Fyn{z]. It states that o € Fye is a normal element of Fyn over Fy if and only
if ged(z™ — 1,027 4 af2? 4+ ... + a?"') = 1, which is the motivation for
the definition of k-normal elements over IF,. In 2013, A-normal elements over fi-
nite fields is defined and characterized by Huczynska, S. et.al., (13]. An element
a € Fyp is k-normal over F, if the greatest common divisor of the polynomials
9a(z) = az" ' 4 2z 24 -+ e+ o and " — 1 in Fea[z] has degree k.
Thus an element o which is normal in the usual sense is 0-normal and Huczynska,
S. et.al., gave a characterization of k-normal elements in terms of the rank of a
Sylvester matrix. We call f(z) € Fy[2] a monic irreducible polynomial of degree n
is a k-normal polynomial if it is the minimal polynomial of a k-normal element of
Fyn over IF,. In this thesis, we show some properties and some criteria for A-normal
elements (especially, 0, 1-normal elements), which based on trace functions from
Fgn to IF,, and then we apply these criteria for A-normal polynomials over F,. In
similarly way, cv € Fyx is called a primitive normal element if it is both primitive
and normal. If « is a primitive normal element, then {a, a9, ..., a‘fn‘l} is called a
primitive normal basis of Fpx over Fy. Let f(x) be a monic irreducible polynomial
of degree n over F,. f(z) is called a primitive normal polynomial if its root « is a
primitive normal elememt of Fon.

This thesis is organized into five chapters. In Chapter I, we show the lit-
erature review of this research and how important of ow research including the
objectives of this thesis. Chapter II collects all of the preliminaries dealing with
structure of finite fields, polynomial over fields and its roots, trace functions, prim-
itive polynomials, normal polynomials, k-normal elements and g-cycles mod n. In
Chapter Iil - 1V, the main results about criteria for primitive polynomials and
normal polynomials over finite fields are investigated, respectively. In Chapter V,

we sumarize all of finding results.



CHAPTER II

PRELIMINARIES

In this chapter, we present definitions, notations, and some useful results

that will be used through this thesis.

2.1 Structure of finite fields

This first section contains fundamental properties of finite fields.
Definition 2.1.1. ([20]) A group is a nonempty set G equipped with an operation
* that satisfies the following properties:

(1) axbe Gforalla,beG.
(2) ax(bxc)=(axbyxcforalla,bce G,

(3) There is an element e € G (called the identity element) such that

a*e=aqa=exaqa for every a € G.

(4) For each a € G, there is an element d € ( (called the inverse of ) such that

axd=ceanddzxa=e,

Definition 2.1.2. ([20]) A group G is said to be abelian if it satisfies

axb=0bxaforallabecG.

Definition 2.1.3. (|21]) A group G is said to be finite (or of finite order) if it has
a finite number of elements. In this case, the number of elements in G is called the
order of G and is denoted |G|. A group with infinitely many elements is said to

have infinite order.



Definition 2.1.4. ({17]) A group G is said to be cyclic if there is an element ¢ € G
such that for any b € G there is some integer j with b = a/. Such an element a is

called a generator of the cyclic group, and we write G = (a) = {a"|n € Z}.
Theorem 2.1.5. ([20]) Every subgroup of a cyclic group is itself cyclic.

Theorem 2.1.6. ([21]) Let G = (a) be a cyclic group of order n. For any integer

k, a* is a generator of ¢ if and only if ged(k,n) = 1.

Definition 2.1.7. ([20]) A ring is a nonempty set R equipped with two opera-
tions (usually written as addition and multiplication) that satisfy the following
properties:

(1) (R,+) is an abelian group.

(2) a-be Rloralla,beR.

(3) a (b-c)=(a-b)-cloralle,bce R.

(4) a(b+c)=ab+tacand (b+c)a=ba+caforalebce R
Definition 2.1.8. ([20]) Let R and S be rings. A function f: R — S is said to
be a homomorphism if

(1) fla+b)= fla)+ f(b) for all a,b € R.

(2) fla-0)= f(a)- f(b) for all a,b € R.

Definition 2.1.9. ([20]) A ring R is isomorphic to a ring S (in symbol, R £ 5} if
there is a function f: R — S such that

(1) f is injective.

(2) f is surjective,

(3) f is a homomorphism.



Definition 2.1.10. ([21]) Let F be a nonempty set with two binary operations, one
is called the addition and denoted by 4+, and the other is called the multiplication
and denoted by -. I is called a field with respect to the addition and multiplication,

if the following manipulation rules are fulfilled:

(1) {IF,+) is an abelian group.

(2) {IF*,-) is an abelian group, where IF* = I\ {0} and 0 is the identity element
of the group {F,+).

(3) a-(b+¢c)=ab+acforallabceF.

From above definition, we say that (F,+,-) is a field. (F,+} is called the

additive group of IF and (IF*, -} is called the multiplicative group of IF.

Definition 2.1.11. ({21]) Let ¥ be any field. For any a,b € F, ¢ + b is called the
sum of a and b, and a- b the product of a and b. For convenience, a- b is denoted by
ab. The identity element of the group (I, +) is denoted by 0 and is called the zero
of the field F. For any a € F, the inverse of a in the group (I, +) is denoted hy —a
and is called the negative of @ in the field . The identity of (IF*,-) is denoted by e
or Iy and is called the identity of F. For any a € F*, the inverse of ¢ in the group

(F*, -} is denoted by a1 and is called the inverse of c.

Definition 2.1.12. ([21]) Let F be any field. If the number of elements in I is
infinite, ¥ is called an infinite field. If the number of elements in [ is finite, IF is

called a finite field or Galois field.

Definition 2.1.13. ([17]) Let F be a field. A subset K of I that is itself a field

under the operations of F will be called a subfield of F.

Definition 2.1.14. ([21]) Let I be a field and e be its identity. If there exists a
positive integer m such that me = 0, then the smallest positive integer p satisfying

pe = 0 is called the characteristic of F and I is called a field of characleristic p. 1f



there is no such positive integer m, then we say the characteristic of IF is 0 or I is

a field of characteristic 0.

Theorem 2.1.15. ([21]) Let IF be any field. Then the characteristic of I is either
0 or a prime p.

Corollary 2.1.16. ([21]) If F is a finite field, then the characteristic of ¥ is a prime
p.

Theorem 2.1.17. ([21]) Let F be a field of characteristic p, and let a,b be any

two elements of F, and n be any nonnegative integer. Then
(6 £b)P" =" b,

Theorem 2.1.18. ([21]) Let IF be a finite field of characteristic p. Then the number

of elements of F is a power of p.

For finite field with g elements, we shall denote this field by IF,. By Theorem
2.1.18, we have ¢ = p* where p is the prime characteristic of IF, and £ is a positive

integer.

Theorem 2.1.19. ([21]) Let F be a finite ficld which contains a subfield IF,. Then

the number of elements of ¥ is a power of g.

Theorem 2.1.20. ([21]) Let Fym and Fyn be finite fields of ¢™ and ¢" elements,
respectively, where m and n are positive integers. Fym is a subfield of Fyn if and

only it m is a divisor of n.
Theorem 2.1.21. ([21]) Let F, be a finite field. Then a?~! =1 for all a € F.

Corollary 2.1.22. ([21]) Let F, be a finite field and F be a field which contains
F, as a subfield. Then o? = « for all @ € F,; and, moreover, for any « € £, o7 =«

implies o € ¥,,.

Theorem 2.1.23. ([17]) For every finite field Fy the multiplicative group ¥y of

nonzero elements of ¥, is cyclic.



Definition 2.1.24. ({20]) Let F be a field. A vector space over F is an additive
abelian group V equipped with a scalar multiplication such that for all a, a1, a9 € I

and v, vy,v € V

(1) ave V.

(2) alvy + v2) = avy -+ avy.

(3) (a1 + az)v = ayv + aqv.

(4) ai(agv) = (a1as)v.

(5) 1pv = v where 1y is the identity of F.

Definition 2.1.25. ([20]) If F and F are fields with F C E, we say that £ is an

extension field of TF.

Remark 2.1.26. If F is an extension field of I, then F is a vector space over
F, with addition of vectors being ordinary addition in F and scalar multiplication

being ordinary multiplication in £.

Theorem 2.1.27. ({21]) Finite field F,. is a vector space over Fy and dimp, Fgn = n.

2.2 Polynomials over fields and its roots

Definition 2.2.1. {[20]) Let F be any field. A polynomial with cofficients in F is
an expression of the form

ag + oy + aga? + - - + apa™,
where integer n > 0, a@; € F for all 2 € {0,1,...,n}. The as are called the

coefficients of the polynomial, and z is called an indeterminate.

Let

Tt

fl@) = zn: a and g(z) = > b
i=0

=0



be two polynomials of degree n. Then the sum of f(z) and g{z) is defined by

n

fle) +g(z) = Z(ai + b))zt

i=0

Similarly, let
n - n ]
flz) = Zaim‘ and g{z) = ij:ﬁj
i=0 3=0

be two polynomials of degree n and m, respectively. Then the product of f(z) and

g(z) is defined by

where 0 <i<nand 0 < 7 < ni.

It is well-known that the set of all polynomials in z over IF denote by Flz] is
a ring with respect to the above-defined addition and multiplication in F(z]. F[z] is
called the polynomial ring over F. The zero of F is the zero of F[z]| and the identity
Ig of IF is the identity of F|z].

Definition 2.2.2. ([20]) Let f(z) = ag+ a13 + aga? + - - - + a,a™ be a polynomial
in Flz} with a, # 0. Then a, is called the leading coefficient of f(x). If a, = 1,
Then we say f(x) is monic. The degree of f(z) is the integer n. For convenience,

we denote polynomial f(z) by f and denote the degree of f(z) by deg(f).

Example 2.2.3. For a polynomial f(z) = 22? + 3z% + 5z + 1 € R[z], we have
2,3,5 and 1 as cofficients of f(z), the leading coefficient is 2 and degree of f(z) is
4. For g(z) = 2% + 32* + 122 + 22 + 1 € R[z], we have 1,3,1,2 and 1 as cofficients

of g(z), the leading coefficient is 1, so g(z) is monic and deg(g) is 5. .

Theorem 2.2.4. ([17]) Let f(z}, g(x) € Flz]. Then
deg(f + g) < maz{deg(f), deg(g)},

deg(fg) = deg(f) + deg(g).
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Theorem 2.2.5. ([21]) Let F be a field and z an indeterminate. Then F(z] is an

integral domain.

Theorem 2.2.6. ([20])(Division Algorithm) Let F be a field and f(z), g(z) € F|z]
with g(z) # 0. Then there exists unique pair of polynomials ¢(z) and r(z) such
that

and either r(z) =0 or deg (r) < deg (g).

Definition 2.2.7. ([20]) Let IF be a field and f(z), g(z) € F[z] with f(x) is nonzero.
We say that f(z) divides g(z) [or f(z) is a factor of g(z)], and write f(z)|g(z), if
g(z) = f(z)h(z) for some h(z) ¢ Flz].

Definition 2.2.8. ([20]) Let F be a field and f(z), g(z) € Flz], not both zero. A
monic polynomial d(z) € Flz} is the greatest common divisor of f(z) and g(z) if

and only if d(x) satisfies these conditions:

(1) d(z)|f(z) and d(z)|g(=),
(2) for c(z) € Flz], if e(z)|f(z) and c(z)|g(z), then c(z)|d(z).

Definition 2.2.9. ([20]) Let f(z), g(x) € Flz]. Then the polynomials f(x) and

g(z) are said to be relatively prime if the greatest common divisor is 1.

Theorem 2.2.10. ([20]) Let f(z),g(z),h(z) € Flz]. If f(z)|g(z)h(z) and f(z)

and g(z) are relatively prime, then f(z)|h(z).

Definition 2.2.11. ([20]) A polynomial p(z) € F[z] of positive degree is said to
be irreducible over F (or irreducible in Flz], or prime in Flz]) if p(z) = b(x)c(z)
with b(z), c(x) € F|z| implies that either b(z) or c(zx) is a constant polynomial. A
polynomial in F[z] of positive degree that is not irreducible over ¥ is called reducible

over IF.
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Theorem 2.2.12. [17] For every finite field I, and every positive integer n there

exists an irreducible polynomial in ¥,[z] of degree n.

Lemma 2.2.13. [17] If an irreducible polynomial f(z) in Flz] divides a product
fi(z) fo(@) - fulz)

of polynomials in IF[z], then at least one of the factors fi(z) is divisible by f(z).

Theorem 2.2.14. ({17]) (Unique Factorization) Any polynomial f(z) € F[z] of

positive degree can be written in the form

f(x) = apP (z)p52 (=) - - - pt (),

where a € IF and pi(z), po(2),. .., pr(x) are distinet monic irreducible polynomials
in Flz], and ey, ey, . . . , €, are positive integers. Moreover, this factorization is unigue

apart from the order in which the factor occur.

Let IF be a field and f(z) € Fz| be a polynomial of degree n > 0. Then

Flz]/(f(@)) = { ap + @17 + @z + - + ap_12" 1| ag,@1,. .., an1 €F }.

Definition 2.2.15. (]20]) Let I be a field and f(z) a nonconstant polynomial in
Flz]. Addition and multiplication in Fz]/(f(z)) are defined by

9(z) +h(z) = 9(z) + (2),
g(z)h(z) = 9(z) h(z).

Theorem 2.2.16. ([20]) Let f(z) € F[z] be a polynomial with degree n > 0. Then

the set F[z]/(f(z)) of congruence classes modulo f(z) is a commutative ring with

identity.

Definition 2.2.17. ([21]) Let f(z) be a polynomial in F{z] with degree n > 0.
Then the ring F[z]/(f(z)) is called the residue class ring of the polynomial ring

F[z] modulo the polynomial f{z).
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Theorem 2.2.18. ([17]} For f(z) € F[z] with degree n > 0, the residue class ring
Flz]/(f(z)) is a field if and only if f(z) is irreducible over F.

Remark 2.2.19.

(1) If f(z) is an irreducible polynomial over IF, the field F[z]/(f(x)) is called the
residue class field of the polynomial ring F{z] modulo the irreducible polyno-

mial f{x).

(2) If f(z) € Fyjz] is irreducible with degree n > 0, then the residue class field

Folz]/(f(z)) contains ¢™ clements.

Example 2.2.20. ([17]) Let f(z) = 2?+z+1 € Zy[z] be irreducible over Zg where
Z, is the field of residue classes of integers modulo 2. Then Zs[z]/(f(z)) has the
p® = 22 elements 0,1, %,z + 1. The operation tables for this residue class ring are
obtained by performing table for this operations with the polynomials determining

the residue classes and by carrying out reduction mod f(z) if necessary:

+ 0 1 A o |
0 0 - T x+l
¥ 1 0 z+1 7T
z z  z+1 .0 ¥
c+1la+1 T i 0
0 1 R e |
0 |0 0 0 0
1 |0 1 T z+1
z |0 T z+1 1
t+1|0 z+1 1 z

By inspecting these tables, or from the irreducibility of f(z) over s and Theorem

2.2.18, it follows that Zy[z]/(z? + = + 1) is a field.
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Definition 2.2.21. ([17]) Let f(x) € K[z] be of positive degree n and IF an exten-
sion field of subfield K. Then f(z) is said to split in F if f(z) can be written as a
product of linear factors in Fz], that is, if there exist elements oy, ag,...,an € F
such that

a(w — o)z —ag) - (2 — o),
where a is the leading coefficient of f(z). The field IF is a splitting field of f(z) over
K if f(z) splits in F, F = K{ay,Qs,...,0,), where K{oq, ¢, ..., an) is smallest

subfield of ¥ containing both I and {aq,as,...,an}

Lemma 2.2.22. ({17)) If F is a finite ficld with ¢ elements and K is a subfield of
IF, then the polynomial ¢ — z in K[z] factors in F[z] as
iy e H(:L —a)
ackF

and IF is a splitting field of 27 — z over K.

Theorem 2.2.23. ([17]} For every prime p and every positive integer n there exists
a finite field with p" elements. Any finite field with g = p™ elements is isomorphic

to the splitting field of 29 — = over F,,.

Remark 2.2.24. From above Theorem, we get any two finite fields of the same

order are isomorphic,

Theorem 2.2.18 and Theorem 2.2.23 play an important role in finding ex-
amples to support our main results that we would investigate in the next chapter.

So we will remark the following fact.

{1) By Theorem 2.2.18, for an irreducible polynomial f(z) in F,[z] of degree n,
we have F [z]/(f(z)) is a residue class field of order ¢".

(2) By Theorem 2.2.23, a finite field F» 22 F [z]/(f(z)) where f(z) is an irve-

ducible polynomial of degree n over If,.
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(3) For finite field with ¢ = p elements and by Throrem 2.2.23, F, = Z, where Z,,
is the field of residue classes of integers modulo p. Computing with elements

of If, therefore means ordinary arithmetic of integers with reduction modulo

p.

Definition 2.2.25. ([17]) An element o € IF is a root (or a zero) of the polynomial
f(z) € Flz] if fla) = 0.

Definition 2.2.26. ([17]) Let « € I be a root of the polynomial f(z) € Flz]. If &
is a positive integer such that f(z) is divisible by (z ~ a)*, but not by (z — a)**1,
then % is called the multiplicity of . If k = 1, then « is called a simple root
(or a simple zero) of f(z), and if & > 2, then « is called a multiple root (or a

multiple zero) of f(x).

Theorem 2.2.27. ([17]) The polynomial f(z) € F[z] of degree 2 or 3 is irreducible

in Flz] if and only if f(2) has no root in F.

Theorem 2.2.28. ([20]) Let f(z) € Flz] and o € F. Then remainder when f(x)

is divided by the polynomial z — « is f{a).

Theorem 2.2.29. ([20]) Let f(z) € Fz] and « € F. Then « is a root of the

polynomial f(z} if and only if  — o is a factor of f(z) in IF[z].

Theorem 2.2.30. ([20]) Let F be a field and f(z) a nonzero polynomial of degree

n in Flz]. Then f(z) has at most n roots in F.

Theorem 2.2.31. ({17]) If f(2) is an irreducible polynomial in [F,[z] of degree n,
then f(z) has a root & in Fg.. Furthermore all the roots of f(z) are simple and

. ' . —1
are given by the n distinct elements o, ?,...,a%  of Fyn.

Example 2.2.32. Let f(z) = z* + 2 +1 be an irreducible polynomial over [Fp. We
consider Fyps = Fy[z}/ (24 4 x + 1) the residue class field constructed by z* +z + 1.
Let a = T be the residue class of 2 modulo z? + 2+ 1. Note that ¢ =T € Fpa is a

root of 2% + 2 4+ 1. By Theorem 2.2.31, we get that
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2 3
a, 0?0 =at=a+1,0" =af =a?+1

are all distinct roots in Fos of 2t + 2 + 1.

Definition 2.2.33. ([21]) Let o € F» and f(z) = (z — a)(z — %) -+ (z —a?" 7).
Then f(z) is called the characteristic polynomial of o € Fyn over Fy. ‘The monic
polynomial of least degree over F, having « as a root is called the minimal polyno-

mial of o € Fyn over F,.

Theorem 2.2.34. ([21}) Let oo € F,n. Then

(1) The minimal polynomial of o over FF, exists and unique. Moreover, it is

irreducible over ¥,,.

(2) Let m(z) be the minimal polynomial of o over F,. If f(z) € Fgfz] and
f(a) = 0, then m(z)|f(z).

(3) Let d be the least positive integer such that a? = @. Then dn, d =
deg{m(z)), and m(z) = (z — a)(z — a?) -+ - (z — ot ™,

Definition 2.2.35. ([17]) Let n be a positive integer. The splitting field of 2™ ~ 1
over a field K is called the nth cyclotomic field over K and denoted by K () The
roots of " — 1 in K™ are called the nth roots of unity over K and the set of all

these roots is denoted by E®,

Theorem 2.2.36. ([17]) Let n be a positive integer and I a field of characteristic
p. If p does not divide n, then E™ is a cyclic group of order n with respect to

multiplication in K™,

Definition 2.2.37. {[17]} Let K be a field of characteristic p and n a positive
integer not divisible by p. Then a-generator of the eyclic group E® s called a

primitive nth root of unity over K.

Example 2.2.38. Let 2? + z + 1 be an irreducible polynomial over Fz. Then
Fo[z]/(2? 4 z + 1) is a finite field constructed by #* 4+ z + 1. Let o = T be the
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residue class of z modulo 22 + 2 +1. Consider 2 — 1= (z — 1){z*+ z+ 1) over a
field K =TF,. Since 1, o, + 1 € Fpe = Fy[z]/(z? + 2 + 1) are all roots of 2% — 1.
By Definition 2.2.21 and 2.2.35, we see that

K® = FP =Fy(1,0,a + 1) = Fy(o, o+ 1)

is the splitting field of 2 — 1 over field K = F,;. Since 1,a,a + 1 € Fy 2

Fy[z]/(z® + 2 + 1) are all roots of z° — 1 in K®), we have
E® ={l,a,a+1} C K@,

Since K = [ is a field of characteristic p = 2 and n = 3 a positive integer not
divisible by p = 2, we have £ is cyclic with @ = T is a generator of this cyclic

group. Therefore o = 7 is a primitive 3th root of unity over .

2.3 Trace functions

Definition 2.3.1. ([17]) Let o € F . be a finite field with ¢" elements. Then

n—1 .
a,a, .., 0% " are the conjugates of o over TF,.

Definition 2.3.2. ([17]) Let X = F, and F = F». For a € I, we define the trace

n—1

of o over K as Trp/xl{a) =a+af+..-+af

That is, Trr/r(c) is the sum of the conjugates of «.

Example 2.3.3. Let K = I, and F = Fys. We consider Fp as the finite field
Fofz]/(z® + x* + 1) constructed by an irreducible poi'ynomial 2® + 3% + 1 over ¥y

and let & = ¥ be the residue class of £ modulo z* + 2% 4+ 1. Then

Tre()=1+12+1¥ =14141=1.
Trp/r(a) =a+l+a” =a+al+al+a=0.
Treyk(o®) = o + (&?)? + (o) =’ +a* + a

=af+ o +ata=0.
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Theorem 2.3.4. ({17]) Let K =T, and F = F;n. The trace function satisfies the
following properties.

(1) Trpxla) € K forall e € F.

(2) Treg(a+ B) = Trer(a) + Tre(B) for all o, 8 € F.

(8) Trr/xlca) = cTrp/la) forall e € Fyc € K.

(4) Trpx(c) =ncforall c € K.

(8) Trp/(a®) =aforall a € F.

2.4 Primitive polynomials

In [17], Lidl and Niederreiter concluded the definitions and properties of
primitive polynomials over finite fields. Recall that for every finite field ¥, the

multiplicative group F; of nonzero elements of F, is cyelic.

Definition 2.4.1. ([17]) A generator of the cyclic group IF; is called a primitive element
of If,.

Definition 2.4.2. ([17]) A polynomial f(z) € Fylz] of degree n > 1 is called a
primitive polynomial over F, if it is the minimal polynomial over I, of a primitive

element of Fn.

A primitive polynomial over IF, of degree n may be described as a monic irre-
ducible polynomial over F, and has a root & € Fyn that generates the multiplicative

group of Fgr.

Example 2.4.3. We view Fgs = Fylz]|/(2® + 22 + 1) the finite fleld constructed by
an irreducible polynomial z* + 2z + 1 over F3. Let o = T be the residue class of z

modulo 2% + 2z + 1. Then « is a root of f(z) = «* + 2z + 1. By Theorem 2.2.31,
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o, 0 = o+ 2,0% = a® + 1 are all distinct roots in Fgs of f(z). We can show that
a is a primitive element of cyclic group F};. Thus f(z) = z3 4 2z +1 is a primitive

polynomial over Fj.

Next we give the definition of the order of a polynomial f(z), which will be

used to characterize primitive polynomials over finite fields.

Definition 2.4.4. ([17]) Let f(z) € F,[z|] be a nonzero polynomial. If f(0) #
0, then the least positive integer e for which f(z) divides 2° — 1 is called the
order of f{z) and denoted by ord(f) := ord(f(z)). If f(0) = 0, then f(z) =
z"g(r), where h € N and g(z) € F,fz] with g(0) # 0 are uniquely determined;
ord(f) is then defined to be ord(g).

Theorem 2.4.5. ([17]) If f(z) € Fylz] is an irreducible polynomial over I, of
degree n, then ord(f) divides ¢" — 1.

Theorem 2.4.6. ([17]) Let f(z) € F,[z] be an irreducible polynomial over Fy of
degree n. Then ord(f) is equal to the order of any root of f(x) in the multiplicative

group ..

The order of an irreducible polynomial f(z) can be used to characterize

primitive polynomials as follows.

Theorem 2.4.7. ([17]) A polynomial f(z) € Fyjz] of degree n is a primitive
polynomial over I, if and only if f(2) is monic, f(0) # 0, and ord(f} = ¢" — 1.

Theorem 2.4.8. ([21]) For any positive integer n, there exist primitive polynomials
of degree n over IF,. Moreover, all n roots of a primitive polynomial of degree n

over Fy are primitive elements of Fyn.

Theorem 2.4.9. {[21]) Let 2® — 1 be a prime and f(z) an irreducible polynomial

of degree n over Fy. Then f{2) is a primitive polynomial of degree n over ;.
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2.5 Normal polynomials

As we known that g is a vector space over finite field ', with dimension

n. Now we summarize results of normal polynomials over finite fields.

Definition 2.5.1. {[21]) A normal basis of Fgn over Fy is a basis of the form
{a, a9, ... ,aqn_]} where o € Fn. We say that « is a normal element of Fyn over

. =1
IF,, or a generates the normal basis {a, 04,...,a7 }

Example 2.5.2. Consider Fgs & Fa2]/(23 4+ 22 4 1) the finite field arise from an
irreducible polynomial 22 + 2% 4 1 over F,. Note that Fys is a vector space over Iy
with dimension 3. Let a = T be the residue class of & modulo 22 + 2% +- 1. Then
oo, ad=a’+ ot =al+at+l, e =a+1,af =a®+a,a” = 1. Next we show
that {o, 0?0 =at=0tat 1} is linearly independent over 5. Let @, b, ¢ € Fy

be such that

aa + ba® 4 c(a?) = 0,

ac -+ bo? 5 cla + o+ 1) = 0,
a4+ ba? + ca® fca te=10,
(b+c)a® +(a+clate=0,

a—=b=c=0.

4

We have that {a, o?,a? = a* =+ o 4 @+ 1} is a normal basis of Fys over F; and

e is a normal element of Fos over Ifs.

The result in [21] guarantees that for a prime power g = p* and a positive
integer n, there exists a normal basis of Fyn over F,. The following resulis are

useful criteria for normal elements of Fyn.

Theorem 2.5.3. ({12]) Let @ € Fgn. Then {a,a%,...,a% '} is a normal basis
of Fp» over I, if and only if the polynomials 2" — 1 and az™! + a%2™ % 4 - +

-2 —~1 ., . .
o "z +a?  in Ful2] are relatively prime.



20

Theorem 2.5.4. ([21j) Let @ be an element of Fyn and assume that n = p° is a
power of the characteristic p of Fgn. Then o € Fy» is a normal element of Fy» over

Fy if and only if Trg,./r, () # 0.

Theorem 2.5.5. ([21]) Let ¢ be a power of a prime p, n be a prime different from
p, o be an element of F» not belonging to IF,. Suppose ¢ is a primitive element

modulo n. Then o is a normal element of F,» over IF, if and only if Tre, . /r, () £ 0.

Definition 2.5.6. ({1]) A polynomial f(z) € Fy[z] of degree n > 1 is called &
normal polynomial over F, if it is the minimal polynomial over F,; of a normal

element of Fyn.

A normal polynomial over Iy of degree n may be described as a monic
irreducible polynomial over F, and has a root o ¢ Fj» that generates the normal

basis of Fyn.

Example 2.5.7. Let f(z) = 2* + 2% + 1 € Fyz| be irreducible over Fy. Consider
o =% € Fou & Fylz]/(z* + 23+ 1) the finite field arise from z?+ % + 1. Recall that
Fqs is a vector space over [Fy with dimension 4. We see that « is a root of f(z).
By Theorem 2.2.31, a, 0%, a” = a® + 1,02 = o® +a® + a are all distinct roots in
Fga of f(z). Next we show that {a, a? o = a4 1,0% = o®+ o? + o} is linearly

independent over Fy. Let a, b, ¢,d &€ Fy be such that

ac+ba? + (e + 1) +d(0® + ¥ +a) =0,
ac + bo? 4 co® + ¢+ dod + do? + da =0,
(c+d)o® + (b+d)a? + (a + d)a+c =0,

a=b=c=d=0.

Thus {a,0? 0¥ = &® + 1,0 = &® + o + o} is linearly independent over IF,.
We see that o generates this normal basis and « is a root of f(z). Therefore

f(z) = 2* 4+ 2% + 1 is a normal polynomial over Fs.
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For some special n and polynomial f(z), the coefficient a, of f(z) can be

used to determine when f(z) is normal.

Theorem 2.5.8. ([1]} Let ¢ be a power of a prime p and n = p°. Let f(z) =
2"+ a2" " 4 +a, be an irreducible polynomial over F,. Then f(z) is a normal

polynomial if and only if ay # 0.

Theorem 2.5.9. ([1]) Let f(z) = 2* + a1z + ag be an irreducible quadratic poly-

nomial over F,. Then f(«) is a normal polynomial if and only if a; # 0.

Theorem 2.5.10. ([1]) Let ¢ be a power of a prime p and 7 be a prime different
from p. Suppose that g is a primitive element modulo . Then an irreducible
polynomial f(z) = 2" + ;"' + -+ - + a, is a normal polynomial over IF, if and

only if a; =~ 0.

Next we will give definition of primitive normal polynomials over finite fields.

Definition 2.5.11. ([2]) An element o € F,n is called a primitive normal element
if it is both primitive and normal. In this case, {@p, 01, .., an} where o; = aqi,

0 <i<n—1iscalled a primitive normal basis of Fyn over I,

Definition 2.5.12. ([2]) A monic polynomial f(z) € F,[z] is called a primitive normal

polynomial if it is the minimal polynomial of a primitive normal element.

A primitive normal polynomial over F, of degree n may be described as a
monic irreducible polynomial over F, and has a root o € Fyn that « is a primitive

normal element of Fgn over Iy

Theorem 2.5.13. ([2]) For a prime power ¢ = p* and a positive integer n, there

exists a primitive normal basis of Fgn over F.
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2.6 k-Normal elements

Following [12], for a € Fy» is a normal element of Fgn over I, if and only
if 2% — 1and az™' + %" 2+ 4o "z + o in Fplz] are relatively prime,
that is, the degree of their greatest common divisor is 0. In 2013, Huczynska S.

et.al., defined and characterized k-normal elements over finite fields.

Definition 2.6.1. ([13]) Let ¢ be a prime power and n a positive integer. o € Fgn
is a k-normal element of Fn over F, if and only if the greatest common divisor of
2® — 1 and go(z) 1= ™ 4 afa™ 24 ...+ ot "z 4+ o over Fn has degree k.

In case k = 0, a 0-normal element is a normal element in usual sense.

Remark 2.6.2. For o € Fn, go(x) has degree n — 1. Then ged(z" — 1, go(x)} has
degree less than n and so o can be only one of k-normal element of Fyn over F, for

some k € {0,1,...,n—1}.

Definition 2.6.3. ([13]) A polynomial f(z) € Fglz] of degree n > 1 is called a
k-normal polynomial over Fy if it is the minimal polynomial over IF, of a k-normal

element of Fyn over If,.

A k-normal polynomial over Iy of degree n may be described as a monic
irreducible polynomial over I, and has a root o € Fg= which is a k-normal element

of B over I,

Theorem 2.6.4. ([13]) Let a € Fjn. If o is a k-normal element of [F n over Iy, then
n—1

any conjugate of o is a k-normal element of Fyn over [y, that is, o, af,..., ¢4

are also k-normal of Ty over F,.

Example 2.6.5. We consider Fy{z]|/(2® + 2 + 1) the finite field constructed by an
irreducible polynomial 2® 4z 41 over Fp. Let o = T € Fos ™ Fafz]/(2® + 2 +1) be

the residue class of £ modulo 3 + z + 1.
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By the division algorithm, we see that

22 =1 = (x4 1)(az? + x4+ at) + (@° + Pz)

az’ + o’z 4ot = (Bz + ) (a® + of2) + 0.

Thus
ged(z® — 1, a2® 4+ ®z + o) = o® + oz,
and so
deglged(z® — 1, 02® + o’z + )] = 1.
From the definition of k-normal element, we have « is a 1-normal element of Fys
over Fy. Moreover, a, a2, o are also 1-normal elements of Fos over Fy.
Similarly, we consider a® = o+ 1 € Fg 2 Fy[z]/(z® + © + 1) where o = T is the

residue class of 2 modulo 2® 4 z -+ 1. By the division algorithm, we have that

2 —1=((a+ D)% +D({(a+D2* 4 (a+ 1%+ (a+ 1)) + (z + (@+ 1%,
(@ + Da® + (@ + 1)z + (a+ 1) = (@ + D+ (@ + 1)@ + (@ + 1)°) + (e + 1),

z+(a+ 1) = ((a+ 12+ {a+1))(a+ 1)®+0.

Thus

ged(z® =1, (a+ 122 + (@ + D’z + (e + D)) = {(a+ 1) = ¢,
and so
deglged(z® — 1, (a + 1)2? + (o + )%z + (a + 1)")] = 0.
From the definition of k-normal element, we get that « is a 0-normal element of
Fys over IFy. Moreover, a1, (a+1)% = a?+1, (@ +1)% = o? +- o+ 1 are O-normal

elements of 93 over .

Example 2.6.6. Consider Fy2 & Fy[x]/(2* + x + 1) the finite field arise from an
irreducible polynomial z* 4+ z 4+ 1 over Fy. Let @ = T be the residue class of z

modulo z? + z + 1.
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By the division algorithm, we get that

22— 1 = (Px+1)(az+0?) +(a? + 1),

ar+a® = (z+a)(a®+1)+0.

Thus ged(z? — 1, ez +a?) = o® + 1, 5o deg[ged(2® — 1, az + o?)] = 0. We have a is
a 0-normal element of Fos over Iy, Morcover, o, o? = a + 1 are 0-normal elements
of Fy2 over Fy. More precisely, « is a normal element of Fy2 over IFy and we see

that o gencrates the normal basis {a, a® = a + 1} of Fy: over Fa.

Remark 2.6.7. From Exmaple 2.6.6, we see that any nonzero element in Fa2 is

0-normal element of Fy2 over IFy.

2.7 (@-Cycles mod n

Now we will recall definitions and important results of g-cycles mod 7.

Definition 2.7.1. ([21]) Let F, denote a finite field of g elements and let n € N
be such that ged(g,n) == 1. Suppose that ag, a1, aq,...,a1 are [ distinct numbers

chosen from Z, = {0,1,...,n—1}. If

ai¢ = aiy {modn), i=0,1,2,...,0—2, and
awd = ar1q=ao (mod n),
then we say (ag,ay,as,...,ai_,) forms a g-cycle mod n with leading element ag,

denoted by g(ag)-cycle mod n, and call I the length of the g-cycle mod n.

The notion of g-cycles mod n was introduced by Wan in his book [21]. From
above definition, we start with element ag € Z, and clements ag, as,..., 011 € Zyp
can get by agq = a1, ao¢® = ag, ..., aoq' "t = a1, aoq' = ag and so (ag, a1, ag, ..., a_1)
is a ¢-cycle mod n of length . Remark that (ag, ay, az, ..., a—1), (a1, @z, as, ..., &-1, @a),

ooy (@=1, a9, a3, ..., a2) are the same g-cycles mod n.
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Theorem 2.7.2, ([21]) Let I, be a finite field with ¢ elements and n be a positive
integer with ged{(g,n) = 1. Assume that o is a primitive nth root of unity (if the
order of ¢ in Z} is m, then there exists a primitive nth root of unity in Fgm). If

(a0, a1, a9, .., a1-1) is a g-cycle mod n, then
F(3) = (- a®)(z — a®) - (3 — o)

is & monic irreducible factor of z" — 1 in F [z]. Conversely, if f(z) is a monic
irreducible factor of z™ — 1 in F,[z], then all roots of f(z) are power of « whose

exponents form a g-cycle mod n.

Corollary 2.7.3. {{21]) The number of distinct monic irreducible factors of z™ — 1

in IF[x] is equal to the number of g-cycles mod n formed by n numbers 0,1, ..., n—1.

Remark 2.7.4. If (ag,a1,0as,...,41-1) 18 & g-cycle mod n of length [, then the

correspondence polynomial 7
f(@) = (3 — ™) (5 — a™) - - (z — o)
has degree /.

Proposition 2.7.5. ([19]) Let (ag, a1, a2, ..., a-1) be a g-cycle mod n of length I,
and g(z) = 2% + 2% - - - f-z%-1, If the number of g-cycles mod n is equal to g, and
if ged(z™ — 1, g{z) —c) # 1 for all ¢ € F,, then each polynomial ged(2™ -1, g(x) —c)

is irreducible over F,.

Example 2.7.6. ([21]) For ¢ = 2,n = 15 and ged(g,n) = 1, factorize the polyno-
mial

a1

over [Fy into a product of irreducible polynomials. First, partition the 15 numbers

0,1,2,...,14 into 2-cycles mod 15.
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Assume that they have the properties:

a;g = a;41 (modn), 1=0,1,2,...,0—2, and

a1 = o {mod n).

2
o
)

i

Then we say that they form a 2-cycles mod 15 denoted by
(0}, (1,2,4,8),(3,6,12,9), (5,10), (7,14, 13, 11).

So the length of the 2-cycles mod 15 constitute 1,4,4,2,4, respectively. Corre-
sponding to each of these 2-cycles, there is a monic irreducible factor of z1° — 1
over Fy. The order of 2 in Z%; is m = 4. Then 15|(2? — 1). We can choose an irre-
ducible polynomial f(z)} = a* +z® + 1 € Fy[z] with degree 4 = m to construct the
finite field Fig = Fps & Fy[z) /(2! +2° +1). Let @ = 7 € Fas be atoot of 2*+2%+1.
Then o + a® +1 = 0 and Fe = {0, 1,0, 0%, 0%, a + 1,a® + 1,a®* + L, o + o, & +
a, 0l +a+1, 08+l +1, P +a+l, e +a?, o+ +a, 0 o +a+ 1} Moreover,

2 4 15 1}

@ is a primitive 15th root of unity over Fy. Hence Fpe = {0, v, 0%, ..., 0™, @™ =

Then, the monic irreducible factors of 215 — 1 over F, are

folw) = (@=a)

@) = (e=a)e=a)e-ol)e=ol)
fale) = @—aYo=af)e = oo =a?)
fl@) = @=a)a=a")

fi@) = (o=a")e— o)z —att)(e - o)

For each g-cycle mod n, its length and the degree of its correspondence polynomial

are equal. Now we have the complete factorization of z'* — 1 over Fy,

2’ — 1= fo(x)fi(@) fa(2) fs(2) fal).

To express fo(z), f1(z), fo(x), f2(z), fa(z) as polynomial with coefficient in Iy,
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we get
filz) = zt4+2°+1
folz) = 2* 428+ 241
falz) = z®+zx+1
fa(z) = 2"+ +1
Therefore

2% 1= (e + D+ 22+ D+t el o+ DAz D) (@t 2+ 1)

This is the complete factorization of z!® — 1 into a product of monic irreducible
polynomials over Fy. Moreover, the number of distinct monic irreducible factors in

Fa[z] of z'° — 1 is 5 and is equal to the number of 2-cycles mod 15.

Theorem 2.7.7. ([19]) Let n € N be such that ged(g,n) = 1. Let a,b € Z, and

(a,aq,...,aq") be a g-cycle mod n. Then

(1) The element b € (a,aq,...,aq" ) if and only if b = ag® mod n for some

ke Ny :NU{O}

(2) The length of each g-cycle mod n divides O,(g) where O,(g) is the order of
g in Z}, = Z,\{0}.



CHAPTER III

PRIMITIVE POLYNOMIALS

In this chapter, we give some criteria for primitive polynomials over finite

fields.

3.1 ¢-Cycle criteria for primitive polynomials

In this section, we focus on monic irreducible factors of ™ — 1 over F,
where ged(q,n) = 1. We give a new criterion for primitive polynomials which are
monic irreducible factors of ™ — 1 over IF,. This criterion is based on concept of
g-cycles mod n. g-cycles mod n are not hard to construct, and hence the concept of
g-cycles mod n is a good optional to check primitive polynomials over finite fields.

For any positive integer n, let Fyn be a finite extension field of a finite
field F, with ¢” and ¢ elements, respectively, where ¢ is a prime power. Let n € N
be such that ged(g,n) = 1. Suppose that ag, a4, ag, ..., @1 are I distinct numbers

chosen from Z, = {0,1,...,7n — 1}. We now recall that if

a;g = a1 (modn), i=0,1,2,...,] -2, and

apd = aig =ag (mod n),

then we say that (ag,as,as,...,a;-1) is a g-cycle mod n and its correspondence
polynomial

fl@) = (@ —a®)(z —a®)- - (z - o)
has degree [ and is a monic irreducible factor of " — 1. If aq = 0, then its
correspondence polynomial fo(z) = (z—a) = (z—1) is not a primitive polynomial
over [F,. In this chapter, we will investigate the correspondence polynomial f(x)
of g-cycle (ag, a1, az, ..., ay_1) where the starter element ap #* 0. Our main theorem

reads:
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Theorem 3.1.1. Let & be a primitive nth root of unity (if the order of ¢ in
Z is m, then there exists a primitive nth root of unity in Fy=). Suppose that
(ag,ay,...,a.1) i8 a g-cycle mod n of length { and ord(a) = ¢' — 1. Then its

correspondence polynomial f(z) = (z — a®)(z — a™) -+ (z — a®-1) is a primitive

polynomial over F_ if and only if ged(aq,¢' — 1) = 1.

Proof. Let (ag, a1, ...,a_1) be a g-cycle mod n of length [ and let ord(a) = ¢! — 1.

By Theorem 2.7.2, we have the correspondence polynomial
F(@) = (z — a®)(w = 0%} - (z = a=) € Fyfa]

is a monic irreducible factor of z" — 1 with degree I. Sinee I is the length of
(ag, a1, ..., a—1), by Theorem 2.7.7, we have {|m. Since {[m and by Theorem 2.1.20,
Fy is a subfield of Fom, so F, is a cyclic group of order ¢ —1. Since ord(a) = ¢' -1,
we get « is a primitive element of Fy, that is, Fy = (a).

We start by suppose ged(ag, ¢* — 1) = 1. Since ged(q,q¢' — 1) = 1, we have
ged(agg, ¢ — 1) = 1. Proceeding in the same manner, ged(apet, ¢t — 1) = 1 for all
¢ =10,1,...,0 — 1. By constructing of g-cycles mod n, we have ayq = a1, a0¢*> =
ag,..., 000 L = ai_1,a0¢ = ap € Zn. By Theorem 2.1.6, a®,a®, ..., a%-1 are
primitive elements of Fu. Then ord{a®) = ¢' — 1 and note that % are all roots
of f(z) for all 4 =0,1,...,! — 1. By Theorem 2.4.6, ord(f) = ord(a®) = ¢ — 1.
Since f(x) is monic irreducible degree [ and by Theorem 2.4.7, f(z) is a primitive
polynomial over F,.

Now, asswme that f(z) = (z — a®)(z — a®) - (z — 1) is a primitive
polynomial over IF,. We remark that f(z) is monic irreducible of degree {. Thus

all { roots of f(z), a®,a®,...,a% & F, are primitive elements. Since o is a

primitive element of F and by Theorem 2.1.6, gcd(ao, g —-1)=1 1

The next example support the result in Theorem 3.1.1.
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Example 3.1.2. For ¢ = 2 and n = 9, we consider the polynomial z¥ — 1 over Fs.

Start with partition the 9 numbers 0,1,2, ..., 8 into 2-cycles mod 9:
(0),(1,2,4,8,7,5),(3,6).

We see that (0),(1,2,4,8,7,5),(3,6) are all 2-cycles mod 9 of length 1,6 and 2,
respectively. The correspondence of each 2-cycle mod 9 is an irreducible factor of
2% — 1 over Fy. The order of 2 in Zg is m = 6. We can choose z° + z° + 1 € Fyfz]
an irreducible polynomial to construct the finite field Fos =2 WFalz]/(2% + 2° + 1).
Let o = Z € ['ys be a root of % 4- 23 + 1. Then « is a primitive 9th root of unity
over Fy. By Theorem 2.7.2, we can get all irreducible factors of z¥ — 1 over Ty as

follow :

fole) = (z—o)
fiz) = (z—al)(z - o)z —a')(z - o)z - a')(z - of)

faz) = (z=0a)(z— o).

Then the complete factorization of z° — 1 over Fy is 2 — 1 = fo(2) f1(2) falz).
By considering & = & € Fgs & Fyfz]/(2® + 23 + 1), we get the explicit terms of

fo(2), f1(2), folx) as polynomials with coeflicients in Fo,

folz) = z+1
filz) = 28 +2%+1

folz) = 2*+x+ 1

We first consider (1,2, 4,8,7,5), 2-cycle mod 9 of length [ = 6 and ord(a) =
63 = 2% -1 = ¢' 1. Thus we can apply Theorem 3.1.1 to this ¢-cycle (1,2,4,8,7,5)
whare ap = 1. Since ged(ag, ¢' — 1) = ged(1,63) = 1 and by Theorem 3.1.1, its

correspondence polynomial

fi(z) = (@ - oz — )z — o)z - o)z — a")(z — o®) = 2% + 2% + 1 € Fya]
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is a primitive polynomial.

Next we consider (3, 6), 2-cycle mod 9 with length [ = 2 and ord(a) = 63 #
22 —1 = g' —1. Thus we can not apply Theorem 3.1.1 to this case. This 2-cycle has
ap = 3 and ged{ag,¢' — 1) = ged(3,22 — 1) = ged(3,3) # 1 but its correspondence
polynomial fi(z) = (z — a®)(z — a®) == 2 + z+1 is primitive over Fy. In this case,

we see that the assumption ord(a) = ¢! — 1 is crucial for result in Theorem 3.1.1.

Forn € N with ged(g,n) = 1, if g-cycles mod n are only (0) and (ao, a1, . . ., Gn_2)
with length 1 and n—1, respectively, then we have ag = 1 and ged(aq, ¢"* —1) = 1.

By Theorem 3.1.1, its correspondence polynomial
fz) = (@ = 0"}z - a®) (g = a®?)
is primitive over F,. More precisely, we can state with the following remark.

Remark 3.1.3. Let o be a primitive nth root of unity (if the order of g in
Z% is m, then there exists a primitive nth root of unity in F»). Suppose that
(ag,as,...,a_1) is a g-cyele mod n of length [ and ord{a) = q' — 1. Then we have

if length { = n — 1, then its correspondence polynomial
f(@) = (2= a™)(@ — o) (@ - o)

is primitive over F,.

Primitive polynomial in the next example arise from Remark 3.1.3.

Example 3.1.4. For ¢ = 2 and n = 5, we consider the polynomial 2° — 1 over .

Start with partition the 5 numbers 0, 1,2, 3,4 into 2-cycles mod 5:
(0),(1,2,3,4).

Then {0), (1,2,4,3) are all 2-cycles mod 5 of length 1 and 4, respectively. The
correspondence of each 2-cycle mod 5 is an irreducible factor of z° — 1 over Fy.

The order of 2 in Z% is m — 4. We can choose 2 + 2® + 1 € Fy[z] an irreducible
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polynomial to construct the finite field Fpa 2 Fy[z]/(z? +2® +1). Let a = Z € Fu
be a root of x* 4+ 2% + 1. Then « is a primitive 5th root of unity over Fy. By

Theorem 2.7.2, we can get all irreducible factors of z° — 1 over IFy as [ollows:

folw) = (z—a’)

hlz) = (z-a')@ -z - o)z —a’).

Then the complete factorization of z° — 1 over Iy is z° — 1 = fo(2) f1(z).
By considering a = Z € Fp1 & Fy[zl/(z* 4 2% + 1), we can express fo(z), fi(z) as

polynomials with coefficients in Fs,

Joleg) = z+1

fE) = at428 ¥ oL

Note that (1,2,4,3) is the 2-cycle mod 5 of length { = 4 = n — 1 and ord(a) =
15 =24 — 1 =¢* — 1. Since (1,2,4, 3) is 2-cycle mod 5 with length { = n — 1 and

by Remark 3.1.3, its correspondence polynomial
fiz) = (@~ oMz — )z - o)z —-o®)=a* +2° +2° + 2+ 1 € Fyfz]

is a primitive polynomial.

For p! — 1 where p is a prime number, if p is odd, then p! — 1 is not prime.
Thus p' — 1 can be prime if p = 2. Special case when ¢! — 1 = 2! — 1 is prime will

be investigated in the next corollary.

Corollary 3.1.5. Let « be a primitive nth root of unity (if the order of ¢ in
Zr is m, then there exists a primitive nth root of unity in Fem). Suppose that
(ag,ai,...,a;1) is a g-cycle mod n of length [ and ord(a) = ¢/ — 1. Then we
have if ¢' — 1 is a prime number where g = 2, then its correspondence polynomial

f(z) = (z —a™)(z —a®) - (x — a®-') is primitive over 5.
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Proof. Since ag € Z, = {0,1,...,n — 1} and n = ¢' — 1 is prime, we have
ged(ap, ¢t — 1) = 1.

By Theorem 3.1.1,

) = (o o) ) (o at)
is a primitive polynomial over Fj. U

Example 3.1.6. For g = 2 and n = 7, we consider the polynomial 27 — 1 over F,.
Then (0),(1,2,4),(3,6,5) are all 2-cycles mod 7 of length 1,3 and 3, respectively.
The correspondence of each 2-cycle mod 7 is an irreducible factor of z7 — 1 over
Fa. The order of 2 in Z} is m — 3. We can choose z° + z + 1 € fy[z] an irreducible
polynomial to construct the finite ficld Wys 22 Fyfa]/(23 + 2+ 1). Let o = Z € Fys
be a root of 28 +x+1. Then o is a primitive 7th root of unity over ;. By Theorem

2.7.2, we can get all irreducible factors of =7 — 1 over IFy as follows:

fo(z) = (z—a)
filz) = (z—al)(z~o®)(z— o)

fo(z) = (2= a’)(@—a®)(z - o).

Then the complete factorization of 27 — 1 over Iy is 27 — 1 = fo(z) f1{z) fa(x).
For a = € Fps & Fy[z]/(z® +2+1), we can get fy(z), f1(z), f2(x) as polynomials

with coefficients in [Fy,

filz) = F4a+1

folz) = 22+ 22+ 1.

We see that (1,2,4) is 2-cycle mod 7 of length { = 3, ord(a) =7 =2"—1=
¢ —1and ag = 1. Since ¢! —1 = 2% —1 = 7 is prime, ged(ag, ¢’ — 1) = ged(1,7) = 1.
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By Corollary 3.1.5, its correspondence polynomial
@) =(@-a)z-a®)(z—a®) =2 +z+1 € Fyfz|

is primitive.
Similarly, (3,6,5) is the 2-cycle mod 7 of length 1 = 3, ord(a) =7 =23-1 =
¢ —1and ag = 3. Since ¢ —~1 =231 =7 is prime, ged(ag, ¢' —1) = ged(3,7) = 1.

By Corollary 3.1.5, its correspondence polynomial
folz) = (z — oWa — a®) (& — o®) = 2° + 2% + 1 € Fy[z)

is primitive.



CHAPTER IV

kE-NORMAL POLYNOMIALS

In this chapter, we focus to give some criteria for £-normal elements
and k-normal polynomials (especially & = 0,1) over finite fields by using trace

functions.

4.1 Trace function criteria for k-normal polynomials

In this section, we show some properties and some criteria for k-normal
elements, which based on trace functions from F,. to F,. Then we use these
criteria for normal polynomials over finite fields. We now recall, for & € Fgn, the

n—1

trace function from Fx to Fy, is given by Trg ./p, (@) = ¢ +af + - +a? °, and
for each 0 < k < n — 1, the element o € Fyn is called a k-normal element if and
only if deg(ged(z™ ~ 1, go(z) = 2™ +a%™ 2 + -+ 4 e x4 a? ) =k In
this section, we devote to the cases n = 2 and n = ¢'* — 1 where ¢ is a prime power
and m is a positive integer.

The first part of this scction we will investigate 0, 1-normal elements of Fg.

over ;. When n =2 and o € F 2, we consider
ged(z? — 1, go(a) = az + af).
If o is an element in the ground field Fy, we have a? = « and then
ged(z? — 1= (z —1)(z + 1),z + @ = a(z + 1)) =.3;+ 1.
So implies e is a 1-normal element of Fe2 over If,.

Proposition 4.1.1. Let a € F,. If 1 is the unique root in F, of go(z), then a is

a 1-normal element of 2 over Fy.
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Proof. In this proposition, n = 2 and for oo € Fp2, go{x) = azx + o has degree 1.
Assume that 1 is the unique root of g,(z). Then g,(1) = 0 and so (z — 1)|ga(%).

Since (z — 1)|(z®— 1) and by definition of the greatest common divisor, we get that

ged(z® — 1, g{x)) =z — 1.

Thus deg(ged(z® — 1,gq(z))) = 1. Therefore a is a 1-normal element of Fp over
IF,. C

Example 4.1.2. We consider Fge & F3[a]/(2?422+2) = {o, a1, 20+1, 2, 20, 20+
2, +2,1,0} the field constructed by irreducible polynomial 2* + 2z + 2 € F3[z].

Denote the residue class of z mod 22 4 2z + 2 by «. Then
Fa: = {0, 1,020,200+ L, + 1,00 + 2,200 + 1, 2a¢ + 2}

and

Goas2(z) = (20 -+ 2)(2) -+ (20 + 2)*.

We see that

G2042(0) = (20 + 2)(0) + 2 + 2)° = + 1,

g20r2(1) = (20 + 2)(1) + (2 + 2)° = 0,

Par2(2) = 2a + 2)(2) + (2 -+ 2)° = 200 + 2,

Grar2(@) = (20 4+ 2)(@) + 20 + 2)° = 2a,

Gra+2(20) = (20 +2)(20) + (20 1 2)* =2,

Foarafa+1) = Qa+2){a+1)+ 2a+2° =a12,

Para(a+2) = Qa+2){a+2) + 2a+2)° =1,

Frar2(20+1) = 20+ 2)2a + 1) + 20 +2)* =20 + 1,
(

Prar2(20 4+ 2) = 200+ (20 + 2) + 20 +2)% =

So 1 is the unique root in Fa2 of gogya(z) = (2a+2)(x) + (20 + 2)>. By Proposition

4.1.1, we obtain 2a + 2 is a 1-normal element of F32 over .
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Next result is the main tool for studying 0-normal and 1-normal elements

of g2 over IF,.

Theorem 4.1.3. Let o € Fp2\F,. Then Tre k. (e) = 0 if and only if a is a

1-normal element of Fp2 over IF,.

Proof. Forn =2and o € F};, go(2) = az+of. Since go(1) = a(l)+a? = ato? =
Tnng/gzq(a) = 0, we have (z — 1)|ga(2). Since (z — 1)[(2® — 1) and by definition of

the greatest common divisor, we get that
ged(z® — 1,g,(2)) =z — 1.

Thus deg(ged(z* — 1, go(x))) = 1. Therefore o is a 1-normal element of Fp over
F,. Conversely, let @ he a 1-normal element of F,z over F,. Note that 2> —1 =
(x—1)(z+1). If ged(z® — 1,az +a?) = x+ 1, then (z + 1)|(az +0?) and -1 is a

root of ax + ¢ and hence « = o contradicts with o ¢ F,. Thus
ged(z® — 1,0z + %) = — 1,

and (v — Df(az +af) = gu(z). Therefore Trp ,/z,(a) = a +a? = afl) +a? =
Ga (1) = 0.

Remark 4.1.4. By the negation of Theorem 4.1.3, T?‘];rq2 /e, (o) # 0 il and only
if & is a O-normal element of ¥ over F,, that is, Tre, sr, (@) # 0 if and only if

flz) = (z — a)(z — a?) is a normal polynomial over F,.

Example 4.1.5. Consider Fs2 & F3(z]/(2? + 2 + 2) the field constructed by irre-
ducible polynomial 2%+ x +2 € Fs[z]. Denote the residue class of z mod &* +z+2

by @. Then
Fse = {0, 1, 0,200, 20 + 1, + 1,0 + 2,200 + 1, 2¢ -+ 2}
and we see that

TTF32/I?3 (@) = TTnglFs (200 +2) = TTng/ﬂ*'s (2a) = TTE‘"32/F3 (a+1) #0,
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but Tre,, s (2004+1) = Trp, jry (+2) = 0, by Theorem 4.1.3, we obtain 2a+1, a2
are 1-normal elements of Fs2 over F3. Moreover, o, 2a + 2, 2a,« + 1 are 0-normal

elements of Fs2 over F3 and for § € {a,2a + 2,20, + 1},

f(z) = (z — B)(z — 5°%)
is a normal polynomial over 3.
For er, f € F2\F,, we will apply the result of Theorem 4.1.3 to consider the
sum of v amd 3, and the inverse of «.
Corollary 4.1.6. Let o, 8 € F2\F,. If & and § are 1-normal elements of F2 over

F, with a + 3 € Fp\F,, then o+ 3 is a 1-normal element of ¥z over F,.

Proof. Let o, B € F 2\, be such that & and 8 are 1-normal clements of Fy2 over
Fy and a + g € Fpe\F,. By Theorem 4.1.3, we get that T7g, (@) = 0 and
Try, /F.(B) = 0. Thus

Tre e, (@ B) =Tre g, () + Tre,m,(0)=0+0=0.
Therefore o + § is a 1-normal element of ¥ over I, O
Example 4.1.7. This example constructs a 1-normal element of Fz2. Let
Fye & Fsfo]/(a® + 22 +2) = {a,a+ 1,20 +1,2,20, 20 + 2,0 + 2, 1,0}

be a field constructed by irreducible polynomial z” + 2 + 2 in Fafz] aind denote
the residue class of z mod 2? + 2z + 2 by «. From Example 4.1.2, we known that

200 + 2 is a 1-normal element of Fq2 over Fs. Since
(20:’+ 2) + (20{."*‘ 2) =a+1¢€ ng\ﬂ“g,

and

Tragam(a+)=(a+1)+(@+1)P=a+1+2a+2=0,

we have o -+ 1 is a 1-normal element of 32 over ¥.
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Corollary 4.1.8. Let o € F2\F,. If o is & 1-normal element of F2 over F,, then

-1

o~ ! is a l-normal element of F» over If,.

Proof. Let o be a l-normal element of Fg2 over Fy. Then T'ry ,r, () = 0.
Since o ¢ F,,”! ¢ F,. Note that =1 = aa? 2 = 1, s0o a™! = % and

2 _ 2. .
ala? 971 =1, 50 (@?)7! = ~771, Consider

T'f‘[ng/[?q(aﬁl) —a! + (ail)q
=a 4 (o)t
—af 2y gl
ot  af
o e
af o1t & o o?
a?afﬂ'l
a?(af + a)
a?(aetl)
al + o
- TT[FQQ/FQ (0{)
, o+l

'k

1

Therefore o™ is a 1-normal clement of F 2 over Fy. |

Example 4.1.9. Let [F32 = F3[2]/(2? + 22+ 2) be the field arised from irreducible
polynomial 22 4 2z + 2 € Fa|z} and denote the residue class of x mod z? 4 2z + 2
by . By Example 4.1.7, we get that a + 1 is a 1-normal element of Fg2 over Fs.
Since (o + 1){(2a +2) = 1, we have (@ + 1)7! = 2a + 2. Note that

Tre,/m (20 +2) = (20 +2) + 22+ 2)° = 0,
50 (a+ 1)7" = 2 4+ 2 is a 1-normal element of Fz2 over Fs.
For 1-normal elements «, 3 € F2\F,, we can conclude that v -+ 8 and a~t

are 1-normal elements in F,» over IF,. Before we investigate o+ 8 and o~ ! when o

and 3 are 0-normal elements in F2 over Fy, we will note the following example.
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Example 4.1.10. We view Fy2 22 Fylz]/(z® +z+1) the field arised from irreducible
polynomial z2 4+« + 1 over Fy and denote the residue class of 2 mod 2+ + 1 by

o. Then Fy2 = {0, 1, o, -+ 1}, and we compute
Try,, g, (@) = ataf=a+(a+t1)=1,

and
Tre,m(a+1) = (a+1)+(@+ 1) =(a+1)+(a) =1
Thus o and o« + 1 are O-normal elements of Fyz over Fy by Theorem 4.1.3. Since

Tre im0+ (@4 1) = Tre,/z,(1) = 1 1 1% = 0, we have that a + (e + 1) is a

l-normal element of Fy2 over IFy.

For ¢, 8 € F,2, we obtain counterexample that « and § are O-normal ele-
ments of Fy2 over Fy, but o+ f is not 0-normal clement of Fgz over Iy, In the next

result, we will find a sufficient condition for o+ 3 is a 0-normal element of Fy over

F,.

Proposition 4.1.11. Let o, 8 € F2\F,. If o and § are 0-normal elements of Fe
over Fy with o+ 8 € Fe\Fy and Trg 575, () + T7 ok, (B) 7 0 in Fy, then o + B

is a 0-normal element of F» over F,.

Proof. Let o and f be O-normal elements of Fpz over I, with a+ 3 € Fp\F,. Then
by Theorem 4.1.3, T?'qu /F, () # 0in Fy and T'rqu /5, (B) # 0in ¥y By assumption,

we get that
T?‘]qu/];pq (Qﬂ -+ ﬂ) = T?‘qu/};‘q (Oﬁ) + T?‘]E‘qz/]pq(ﬁ) 7é 0in Fq.
Therefore o + 5 is a 0-normal element of K2 over F,. O

Example 4.1.12. We give Fp2 & Fiz)/(2? + 2z + 2) the field constructed by
irreducible polynomial 22 4- 2z + 2 € Fs[z] and let « be the residue class of  mod

12 + 2z + 2. Then

TTFSZ/FB(C‘L’) —atad=a+2a+1)=1
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and
Tre,m@®)=a®+ (@) =’ +o’ =’ +a=1

Thus by Theorem 4.1.3, o and o® are 0-normal elements of a2 over F3. Moreover,

Trg,,ms(0) + Trey, {0y =2 in IFs.
By Proposition 4.1.11, & + o must be 0-normal element of F32 over Fs and

f(@) = (z - (a+a?))(@~(a+t o*))
is a normal polynomial over FFj.
Proposition 4.1.13. Let o € F2\F,. If o is a O-normal element of F,2 over e,

then o ! is a O0-normal element of F,z over If,.
q q

Proof. Assume that o is a 0-normal element of g2 over Iy, Then Trg , (o) # 0.
Since o ¢ Ty, we have a~! ¢ IF,. Note that for o € Fp\F,, we get that (a+1)? =

(afa)? = o€ af = aaf = of*" and so Trz ,m,(0) € Fy by Corollary 2.1.22. Since

TTK*‘qz [, (O.')

TTF«;?/FQ (ail) - patl

+

we have T'rg ,m,(a7!) # 0. Therefore a™" is a O-normal element of iz over Fy. [

Example 4.1.14. We may regard Fa 2 Fy[2)/(z? + 2 + 2) where 2® + x4+ 2 is

irreducible over . Let o be the residue class of  mod 2% -+ z + 2. Note that
Trp, e (0) = a+ o = o+ (2a+2) =2.

By Theorem 4.1.3, we get that « is a O-normal element of Fg over I'3. Since
(a)(@+1) =1, we have o~! = a + 1. Therefore - 1 is a 0-normal element of s

over Iy by Proposition 4.1.13 and so

f@)=(z = (@+ 1)z - (a+1))

is a normal polynomial over Fj.
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Next part of this section, we are interested in the case n = ¢™ — 1 where ¢ is
a prime power and m is a positive integer. For a € F»\F,, we can show that there
is only two types of k-normal elements of Fyn over F,, that is, O-normal element
and l-normal element of Fy» over IF,.

Forn=¢™—1and a € Fjp, If o is element in the ground field Fy, then we

have o = ¢ and

ged(z" — 1, ga(@)) = ged(a™ =1, aa™ 4 a%2" 2+ +a?)
= ged{z™ — 1, 0™ 42724 . + 1))

zmn—1+$71—2+___+1,

hence we have o is a (n — 1)-normal element of Fp= over ¥,. From now on we
investigate only « ¢ .

It is well-known that if ged(g,n) = 1, then the polynomial ™ — 1 has no
multiple factors in F,[z]. In the next result, n = ¢™ — 1 and ged(g,¢™ — 1) = 1.

We consequently get that 9"~ — 1 has no multiple factors in [Fym-1[z].

Theorem 4.1.15. Let n = ¢™ — 1 where m is a positive integer and a € Fen\F,.
Then
(1) @ is a L-normal element of Fyn over F, if and only if Trg ./, (0} = 0.

(2) v is a O0-normal element of Fgr over Iy if and only if Trg,, /Fq(a) /0.

Proof. Assume that @ € Fgn\IFy = Fom-2\F,. First we will show that
(292 23 1) flaa® ot a® %) = gal2).
Suppose that
(27" 242 D |(ea” 2+ 0% B o
There exists § € Fgm-1[x] such that

i

(0™ 4+t 4o ) = B 0 )



= [3$q”‘—2 4+ ﬂxqm—3 +-- 4B

This implies that & = 0 = +-. = o2

2.1.22, we have o € F,. It contradicts o ¢ F,. Thus

(292 4278 4 & 1) /r(o::cqu + otz Tt Oéqqmﬁz) = ga(z).

S0 0x?" 4otz 34 al” o (2?4t B 1) forall v € Famo:

Note that

"z =gl i =1)

I

(
a(z — 1}g(z) where g{x) € Fem_:[2] with degree ¢™ — 2
z{

z— (! P4 a4 1)

= z(z — 1g1(z)g2(x) - - go(w)

by the unique factorization for polynomials and =7~ ' — 1 has no
multiple factors where g1(¢)ga(z) - gr(2) € Fem-1{z] are distinct

irreducible polynomials.
Next we consider

amqm_z + aqwqm_s + . + aqqm_z % f)l(:[;qm_?' + :L‘qm_s + Y + 1)

= g1 (z)g2(x)gs(2) - - gr()]
= vo1 () [g2(@) gs(z) ga (2} - - - go()]
= gi1{z)[vg2()gs(z)gulz) - - g (@]},

for all y € Fgm-1{z]. Consequently, gi(z) f(az? =%+ a%27 3 4. & @™ %),
Similarly, g:(2) Maz?™ % + o923 4+ 087 ) = ga(), forall 1 < i<

(1) If Trg, o sz, () = 0, then

"M —2

ga(1) = a(D)" 2 4+ a?(1)" o 4 0® T matal b ba? =0,

n

and s0 (z — 1)|(aa® 2 + 02293 4 - + 01" ") = ga(z). Since

(@ =1 = (- P+ 1) = (2 - Dai(@)ga(2) - 0 (2)
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= . Since @ = af and by Corollary
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and

(z — 1)|ga(z) and g;(z) fgo(z) for all 1 <1 < 1,

we have z — 1 is only a common divisor of 29 ! — 1 and g,(z). Hence o is a
l-normal element of Fyn over F,. Now, we assume that o is a I-normal element of

Fyn over By, Then deg(ged(z™ — 1, go(2))) = 1. Consider

ged(z"™ — 1, go(2))
=ged((z— D@ + 2" 2+ -+ 1,0 Falz" 2 )
since n =¢™ —1and (27 *+27 *+. +1) fagT 7 +afa? P4

+ aqqmug).

Now we get ged(z™ —1, go () = 2 — 1. Thus (z— 1)|(az™ ' +alz" 24 .- +a8" "),

=1

Therefore a + a9+ +a% " =0. Hence Try,, /r () = 0.

(2) ¥ Trg . pr, (@) # 0, then (z—1) J(az™ 1 4adz" %+ +a? ) and so 29" "1 -1
and g,(z) has no a common divisor. Thus « is a 0-normal element of F,» over If,.
Now, let c@ be a 0-normal element of Fyn over Fy. Then deg(ged(z™ -1, ga{z))) = 0.
So ged(z" —1,g.(2)) =1 and (x — 1) [ga(x). Therefore 0 # go(1) = a+of+-- 4+

aqn—l _ TT‘]F,?II/Fq (0_') Hence TTII*'qn/Fq (Q') ?é 0. O

Remark 4.1.16. For n = ¢™ — 1 and a € F»\F, and by Theorem 4.1.15.(2), we

obtain the followings.

(1) Try,am,(c) # 0if and only if {,@,...,a¢" '} is a normal basis of Fyn over
Wy, that is, Tre_./p, () # 0 if and only if f(z) = (z—a){z—a?) - (z—af )

is a normal polynomial over IF,.

(2) f ¢ = 2 and ¢" — 1 = 2" — 1 is a prime, then by Theorem 2.4.9, we have
Trp up () # 0 if and only if {o, ... ,a? "} is a primitive normal basis
of Fon over Iy, that is, Trg .k, (@) # 0 if and only if f(z) = (z — a}(z —

=1y . o g .
a?)- - (x — " ) is a primitive normal polynomial over IF,.
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Corollary 4.1.17. Let n = ¢" — 1 where m is a positive integer and f(z) =
z" + a;z" ! + .-+ + a, be an irreducible polynomial over IF,. Then f(z) is a 1-

normal polynomial over F, if and only if a; = 0.

Proof. Assume that f(z) = &" + 12" + --- + a, is an irreducible polynomial
over F,. Then there exists & € Fyn such that « is a root of f(z) and we have that

o, af,..., 07 are all distinct roots of f(z) by Theorem 2.2.31. So we can write

fz)=(z —e)(z—a®)  (z—aT ).

Since f(z) is a 1-normal polynomial over F,, we have o is a 1-normal element of Fgn
over IF,. Thus o, af, ... Lo are also 1-normal elements of By over F, by Theorem
2.64. Hence T7p, /5,{er) = 0 by Theorem 4.1.15. From symmetric relation, we
obtain that ¢y = a+a%+-- Fa? T = Lipe /7, (e} = 0. Now, we assume that a; =
0. Note that f(z) = 2" +a;2” '+ +a, is an irreducible polynomial over F,. Then
there is o € Fyn such that « is a root of f(z} and o, a9, ... Lo ' are all distinet
roots of f(z) by Theorem 2.2.31. Morcover, f(z) = (z —a)(z — o) - (z — a7,
By symmetric relation, we see that ¢y = a v+ a? +--- + a? T = Tre, 0 /8, (a), s0
Trs, k(@) = 0. By Theorem 4.1.15, v is a 1-normal element of Fpn over Fy and
we get that o, af, ... ,a‘fn“l are also 1-normal elements of Fyn over F; by Theorem

2.6.4. Hence f(z) is a I-normal polynomial over F,. O

Corollary 4.1.18. et n = ¢™ — 1 where m is a positive integer and f(z) =
2™ + a1z ' + -+ + a, be an irreducible polynomial over F,. Then f(z) is a 0-

normal polynomial over F, if and only if a; # 0.

Proof. Similarly, the proof of Corollary 4.1.17. d

Remark 4.1.19. Let ¢ = 2 and ¢® — 1 = 2" — 1 is a prime. Then by Theorem
2.4.9, we have

f@)=z"+az" "+ +a,

is a primitive normal polynomial over Iy if and only if a; # 0.
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Example 4,1.20. Let Fyr = Fofz]/(2" + 2 + 1) be the field constructed by irre-
ducible polynomial 7 4z +1 in Fy[z] and let o = T be a root of f(z) = 2"+ + 1.

For ov € Fg7, we compute

Tre,m,(a) = a+a? +a® 4o +a¥ +a% + a7
—a+al4at+ (@@ +a)+ (@ + o)+ (o + o’ +a)+ (o +a)

= 0.

By Theorem 4.1.15.(1), we get that « is a 1-normal element of Fyr over Fy.

Similary, we consider a4+ 1 € Fyr and

Tre (@ v 1) = (ot 1)+ (e 1)+ @+ D)% + @+ D 4 (a+ 1) +(@+1)¥
+ (a+1)
= (a+D F@+D+ (e +1)+(?+a41) + (¢! + o+ 1)
+ (@*+ef+a+l)+{a! tatl)

By Theorem 4.1.15.(2), we obtain that is a O-normal element of Fyr over Fg.

From the definition of k-normal elements of Fyn over Fy, we have to consider

n—

ged(a" 1, ga(@) = ax™ T a% P4k ol T+ af),

The irreducibility of z* — 1 and g,{x) is effect to k-normal elements of Fgn over
F,. For o € F, the ground field, « is a (n — 1)-normal element. We next consider
o ¢ F,. If g,(z) is irreducible, then a is 0-normal over Fy. If g,(2) is reducible,

then we will consider to factor 2 — 1 for finding ged(z™ — 1, ga()). We note that
g —1l=(z—1)(@" 42"+ +a+l)

In next result, we use the irreducibility of polynomial z" 7 + 2" 2+ -+ a2+ 1as

a condition for 1-normal elements.
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Proposition 4.1.21, Let o € Fu\F,. If 2™+ 2"2 4 - + 2 + 1 ig irveducible

over Fy and 1'rg /v, () = 0, then « is a 1-normal element of Fyn over Fy.

Proof. Assume that 2™ 142" 2 4. .. +z+1 is irreducible over I, and T?‘Fq,, /5, (o) =

0. Note that go(z) = aa™ ' +a%™ 2+ -+l . Since Trz_./r, (@) = 0, we have

-1 -1

gell)= ()" (1) 24 2 =at ot +a¥ =0

It follows that (z — 1)|ga(z). Since
= 1l=(z-1E"T+2"+. -+ +1)
and 21 + 2" "% + ...+ 2 + 1 is irreducible over [F,, we have
ged(a® — 102" L+ 0" P 4+t ) =a -1

Therefore deg(ged(z™ — 1,02 + afa™ 2 | -4 of ') = 1. Hence o € F, is a

I-normal element of Fyn over I, O

Example 4.1.22, Let F3s = F3[2]/(2%+ 2z +2) be the field arised from irreducible
polynomial £ 4+ 2z 4+ 2 over 5. Denote the residue class of x mod 2° -+ 2z + 2 by

. We see that

Trie ra (@) = @+ + a® 4o
= (@) + (a®) + (a* + a+ 1) + (o* + & + 1) + (o + 2a° + 207
+a+1)

=0

and the polynomial z* 2% 4 22 + x +1 is irreducile over F3. By Proposition 4.1.21,

we obtain that « is a 1-normal element of F3s over [3.
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4.2 Trace function criteria for k-normal polynomials con-

structed by ¢-cycles mod n

Let I, be a finite field with ¢ elements and n be a positive integer with

g and n are relatively prime. Let ag,ay,as,...,q_1 be [ distinct numbers chosen .

from Z, :={0,1,...,n—1}. If

a;qg = a;p (modn), 1=0,1,2,...,1—2, and

;o1¢g = ag (mod n),

then (ag, a1, ag, ..., ai—1) is called a g-cycle mod n of length { and its correspondence
polynomial

$&) = (2 - a®)p = 0): -+ (o = a)

is a monic irreducible factor of 2" — 1 in F,[z}. Conversely, if f(x) is a monic
irreducible factor of 3™ — 1 in IF,[z], then all roots of f(z) are power of @ whose
cxponents form a g-cycle mod n.

A monic irreducible polynomial f(z) € F,[z] of degree n is called a k-normal
polynomial over IF, if its roots are the k-normal elements of Fyn over IF,.

In this section, we give trace function criteria for k-normal polynomials
(especially, 0, I-normal polynomials), which are monic irreducible factors of z" — 1

constructed by g-cycles mod n.
Proposition 4.2.1. Let e € N and n = 2% + 1. If the number of 2-cycles mod n is

equal to 2, then f(z) = 2" 14+ 2™ %2+.. . +x+1 is a O-normal polynomial over Fs.

Proof. Suppose that (0), (1,2,...,n—1) are only 2-cyclesmod n. Since (1,2,...,n—
1} is a 2-cycle mod n of length n — 1 = 2%, which n — 1 is even, we have 11

"% 4. 41 =0y, s0 (w— (@t +2" 2+ +z'). Thus

ged(z® —1Lz" 42" 4 4 a) A L
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Similarly, we known that z" — 1 = (x — 1){z"" ! 4+ 2" ? + ..« + 2 4+ 1). Therefore
ged(z® —Lz" 42" 4 b+ 1) £ L

We see that ged(z™ — 1,27+ 27?4+ -+ x+c) # 1 for all ¢ € Fo. By Proposition
2.7.5, we get that 2"~ 1427724 ... 42+ 1 is irreducible over Fy where the coefficient
of "% is 1 £ 0. By Theorem 2.5.8, we have 2* ! 42" 24 ... 4241 is a O-normal

polynomial over [Fy. O

Remark 4.2.2. We keep the notations as in Proposition 4.2.1. For ¢ = 2 and
g" ' —1 = 2""1—-11is aprime and by Theorem 2.4.9, we have "' 42" 2+ - - +a+1

is a primitive normal poiynomial over Ify.

Example 4.2.3. For ¢ =2 and n = 5 = 2% + 1. By constructing of 2-cycles mod
5, we have (0),(1,2,3,4) are 2-cycles mod 5. Consequently, by Proposition 4.2.1

flz) = z* + 23 + 22 + 2! + 1 is a primitive O-normal polynomial over Fs.

Proposition 4.2.4. Let ¢ be a power of prime and n be a positive integer with
ged(g,n) = 1. Let o be a primitive nth root of unity (if the order of ¢ in Z7, is m,
then there exist primitive nth roots of unity in Fym ). Assume that (ap, a1, ..., a_1)

is a g-cycle mod n of length /. Then its correspondence polynomial

flz) = (2= a®)(z —a%). - (z - o)

is a O-normal polynomial over F, if and only if {a%,a™,...,a%-1} is linearly

independent over .

Proof. Recall that I|m and so Fy is a subfield of Fym. By constructing of g-cycles,
0 = ()¢ By Corollary 2.1.22, a® € Fu. Assume that f(z) = (z — a®)(z -
a®) - (z—a%-1) is a 0-normal polynomial over F,. Then {a™,a®,...,a%1}isa
normal basis of Fr over Fy. Therefore {a®,a*,...,a%-1} is lincarly independent

over F,. ]
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Remark 4.2.5. We keep the notations as in Proposition 4.2.4. For ¢ = 2 and
g' —1= 2! — 1 is a prime and by Theorem 2.4.9, f(z) = (z — a®)(z —a®) - (¢ —
a®-1) is a primitive normal polynomial over Fy if and only if {a%, o™, ..., a%1}

is linearly independent over Fs.

Example 4.2.6. Factorize the polynomial z7 — 1 into a product of irreducible
polynomial over [Fy. Frist, partition the 7 numbers 0,1, 2, 3,4, 5, 6 into 2-cycles mod
7. Then (0),(1,2,4),(3,6,5) are 2-cycles mod 7 of length 1,3 and 3, respectively.
The correspondence of each 2-cycle is a monic irreducible factor of 27 -- 1 over Fs.
The order of 2 in Z3 is m = 3. We choose f (z) = z* +2+1 an irreducicle polynomial
over Fy to construct the finite field Fps = Folz|/(2® + 2+ 1). Let « = T € Fys
be a root of f(z). Thus « is a primitive 7th root of unity over ;. Then monic

irreducible factors of z7 — 1 over F, are

fo(z) = (z-0a°
h@) = (@-a)(@-ao)(z -

B = @ ed)e o)z o).

Thus the complete factorization of 27 — 1 over [y is

2" —1= folz)filz) falw).

By considering o« = 7 as a root of 23 + 2 + 1, we get the explicit terms of

folz), fi(z), fa(z) € Falz].

fol) = z-1
filz) = 2 +z+1

folz) = 2°+22 41

First, for 2-cycle mod 7, (0), fo(z) = z — a® = z — 1. We known that

{a® = 1} is linearly independent and it is a normal over Fy. Then fo(z) =z —1is
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a O-normal polynomial over [y,

Next, for 2-cycle mod 7, (1,2,4), we get that

filz) = {z — oMz — o) (z — a4) =t z+1

% = a® + a} is not linearly independent. By Proposition 4.2.4, fi(z)

and {a,a?, o
is not 0-normal polynomial over [Fs.

Note that the 2-cycle mod 7, (3,6,5), has 3 as the leading element and
its correspondence polynomial f5(z) = (z — a®)(z — a%)(z — ). Consider the set

{a® = a+1,05 = a®+1,0° = o®+a+1}. We will show that {a-+1, a*+1, o’ +a+1}

is linearly independent over Fy. Assume that a,b,c € Fy. Then

ala+ 1} +b(a® + 1) +ela® +a+1) = 0,
aax+a+bal4+btca’+catec = 0,
(c+b)o + (a+c)a+{at+b+c) = 0,

a=b=c=0.

Therefore {4 1,a% 4 1,02 + o+ 1} is linearly independent over IFo. By Theorem
4,24, f(z) is a 0-normal polynomial over Fs and thus f(x) is a primitive normal

polynomial over Iy,

Theorem 4.2.7. Let n be a positive integer such that ged(n,¢) = 1 where g is a
power of prime p. Let « be a primitive nth root of unity (if the order of ¢ in Z;, is m,
then there exist primitive nth roots of unity in If,m ). Assume that (ao, a1, ..., @-1)
is a g-cycle mod n of length | = p® for some ¢ € N. Then its correspondence
polynomial

f) = (o = )& — ")+ (z = 0 )

is a 0-normal polynomial over F, if and only if Tnuql /e, () # 0.

Proof. Assume that T?*qu, /E, (@) # 0, where ap is the leading element of ¢g-cycle

mod n, (ag,ai,...,a-1) of length [ = p° for some e € N, by Theorem 2.7.2, we
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have its correspondence polynomial
flz) = (z — ™)z — ™) - (x — ™)

is a monic irreducible factor of 2" — 1 in Fy[z]. From Theorem 2.2.31, we get
a®,a, ... a%-1 € Fu\F,. Since dimension [ = p® and Trgqr/;gq(a“”) # 0, a® is
a 0-normal element of Iy over Iy by Theorem 2.5.4, so all conjugates of o™ are

0-normal elements of Iy over Iy by Theorem 2.6.4. Therefore
() = (&= aM)(o =) (2~ o)
is a 0-normal polynomial over IF,. Conversely, let
fz) = (2 —a®)(z - o) - (z — o)

be a 0-normal polynomial F,. Then its all roots of f(x) are 0-normal elements of

Fq over IFy. By Theorem 2.5.4, hence Ty, /r, (@) 5 0, |

Remark 4.2.8. We keep notations as in Theorem 4.2.7. For ¢ = 2and ¢'—1=2t-1
is a prime and by Theorem 2.4.9, f(z) = {z — a®)(x — @) -+ (x — a®1) is a

primitive normal polynomial over F, if and only if Trs, e {a®) # 0.

Example 4.2.9. Factorize the polynomial 2°—1 over F, into product of irreducible
polynomial over Fy. First, partition the 5 numbers 0,1,2,3,4 into 2-cycles mod
5. Then (0) and (1,2,3,4) are 2-cycles mod 5 of length 1 and 4, respectively. For
each of the 2-cycle, there is an irreducible factor of 2 - 1 over Fy. The order of 2
in Z% is m — 4. We choose an irreducible polynomial f(z) = 2% +2° +1 € Fy[z] to
construct the finite field Fyiz]/(x* +2* + 1). Let o = @ be a root of f(z). Then «
is a primitive 5th root of unity over Fy. Then monic irreducible factors of 25— 1

over Iy are

folz) = (z-)

Al) = (@-a))e— o) —a¥)(z - o).
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The complete factorization of z° — 1 over Iy is

z® — 1= folz)fi(z),

and so

2 —1=(z - Dt +23 422 +z+1).

Since T7r,, /s, (@) # 0 and by Theorem 4.2.7, we have fi(z) =z* +2° +2* +a +1

is & O-normal polynomial over F,.

Theorem 4.2.10. Let n be a positive integer such that ged(n,q) = 1 where g
is a power of prime p. Let « be a primitive nth root of unity (if the order of ¢
in Z* is m, then there exist primitive nth roots of nnity in Fgm). Assume that
(ap,a1,.-.;a.1) is a g-cycle mod n of length { where [ is a prime different from p

and ¢ is a primitive element modulo . Then its correspondence polynomial
f(@) = (z —a®)z —a™) - (x—a™?)

is a 0-normal polynomial over IF, if and only if TTqu Jie, (047) # 0.

Proof. Let Tryql se, (@) # 0. Since (@, a1, .. ., @1} I8 a g-cycle mod n of length {
where { is a prime different from p and ¢ is a primitive element modulo ! and by

Theorem 2.7.2, we have that its correspondence polynomial
F@) = (- a™)(z — o) (@ — o)

is a monic irreducible factor of z® — 1 in Fy[z]. From Theorem 2.2.31, we get that
a®,a™, ..., a% € Fu\F,. Since ! is a prime different from p and T’I’qu JE, (@)
0, @™ is a 0-normal element of Fy over IF, by Theorem 2.5.5, so a*, o, L, et
are O-normal elements of Fy over F, by Theorem 2.6.4. Therefore its correspon-
dence polynomial f{z) = (x —a®%){(z —a®) .- (v —a%-} is a 0-normal polynomial
over F,. Now, assume that f(z) = (z — a®)(z — a™) - (z — a1) is a O-normal
polynomial over F,. Then all its roots of f(z) arc O-normal elements of Fy over

F,. By Theorem 2.5.5, we get T?‘Eq;mq(aa") # 0. .
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Remark 4.2.11. We keep notations as in Theorem 4.2.10. For ¢! —=1=2'~1is a
prime and by Theorem 2.4.9, f(z) = (z —a*)(z—a®}- - {z— a1} is a primitive

normal polynomial over I, if and only if Ty, e (0%) # 0.

Theorem 4.2.12. Let n be a positive integer such that ged(n,¢) = 1 where gis a
power of prime p. Let a be a primitive nth root of unity (if the order of ¢ in Z, is m,
then there exist primitive nth roots of unity in Fyn). Assume that (ag,a1,...,aq-1)

is a g-cycle mod n of length { = ¢° — 1 where e is a positive integer.
(1) Tre /m, () £ 0 if and only if its correspondence polynomial
flz) = (& - a®)(z —a™) - (z —a%)
is & 0-normal polynomial over F,.
(2) Trs /¥, (@®) = 0 if and only if its correspondence polynomial
fa) = (z—a®)(z—a™) - (- a®)

is a 1-normal polynomial over IFy.

Proof. Let (aq,a1,...,a; 1) be a g-cycle mod n of length { where [ = ¢® — 1 for

some e is positive integer. By Theorem 2.7.2, its correspondence polynomial
f(ey = (@~ at)(@ ~am) ./ (w =)

is a monic irreducible factor of 2" — 1 in Fy(z|. By Theorem 2.2.31, we get that
a®, o, ..., ot € Fa\F,.

(1) Assume that Tre, /F, (@) # 0. By Theorem 4.1.15.(2), we get that o™ is a
0-normal element of Fy over Fy, so @®,a®, ..., a®-! are 0-normal elements of Fy

over IF, by Theorem 2.6.4. Therefore its correspondence polynomial
f@)=(z—a®)(z—a") - (z—a"")
is a O0-normal polynomial F,. Now, we assume that

fl@)=(z—a“Hz—a™) - (v —-a")
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is a 0-normal polynomial over F,. Then all its roots of f(z) are 0-normal elements
of Fyr over Fy. By Theorem 4.1.15.(2), we obtain T'rg, /(%) # 0.

(2) Suppose thatATrFq!/Fq(a“U) = 0. By Theorem 4.1.15.(1), we obtain that a® is
a 1-normal element of T, over Fy, so a%,a,...,a%"! are l-normal elements of

Fp over IFy by Theorem 2.6.4. Therefore its correspondence polynomial
Flz) = (z — ™)z — ™) - - (x — %)

is a 1-normal polynomial over IF,. Now, we suppose that
F@) = (3= a®)(z — o) (2 ")

is a 1-normal polynomial over F,. Then all its roots of f(z) are l-normal elements

of ¥yt over F,. By Theorem 4.1.15.(1), Ty /r, (") # 0. a

Example 4.2.13. For ¢ = 2,n = 7, (0),(1,2,4),(3,6,5) are 2-cycles mod 7 of
length 1,3 and 3, respectively. In Example 4.2.6, we consider Fafz]/(z® + z + 1)
and o = T is a root of f(z). For 2-cycle mod 7, (3,6,5), its correspondence

polynomial is
folzy = (z— o)z —a®z - a®) =2% +2* + 1.
Consider the element o® = o+ 1. We have

Trep (@) = o + (@) +(a8)?
— (D) + @D+ D)

= 1.

From Theorem 4.2.10, we obtain that fy(z) = 2% + 2%+ 1 is a 0-normal polynomial
over Iy, that is, fo(x) is a primitive normal polynomial over . In the same way,

the 2-cycle mod 7 of length 3 = 2% — 1, (1,2,4), its correspondence polynomial is

Aly=(-aYz—-af)(z—afy ="+ +1
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Consider the element . We see that

TTFzE/Fa (Oi) = o’ + O£22
=a+a’+a’ta

= 0.

From Theorem 4.2.12, we get that fi(z) = 2+ 2 +1 is a 1-normal polynomial over

I¥y.

Theorem 4.2.14. Let F, be a finite field with ¢ elements and n be a positive
integer such that ged(q,n) = 1. Let « be a primitive nth root of unity (if the order
of ¢ in Z;, is m, then there exist primitive nth roots of unity in Fym). Assume that
(ap,a1) is & g-cycle mod n of length [ = 2. Then f(z) = (z —a®)(z —a*)isal-

normal polynomial over I¥, if and only if T?*Fq2 s, (a®) = 0.

Proof. Suppose that T?‘Fq2 /5, (@®) = 0. Since (ag, a1) is a g-cycle mod n of length
! = 2, by Theorem 2.7.2, we have f(z) = (z — a®)(z — a*) is a monic irreducible
factor of z™ — 1 in F,[z]. From Theorem 2.2.31, we get that a®, a® € F\F,. By
assumption and Theorem 4.1.3, o is a 1-normal element of 2 over Fy, so a** is a
1-normal element of F 2 over F,. Therefore f(z) = (z — a)(z — ") is a 1-normal
polynomial over F,. Now, assume that f(z) = (¢ — a®)(z — @*) is a l-normal
polynomial over F,. Then all its roots of f(z) are 1-normal elements of Fgz over

IF,;. By Theorem 4.1.3, we have Tv‘qu JF, (a®®) = 0. L]

Example 4.2.15. Factorize the polynomial 2% — 1 into a product of irreducible
polynomial over Fs. Frist, partition the & numbers 0,1,2,3,4,5,6,7 into 3-cycles
mod 8. Then (0),(1,3),(2,6),(4),(5,7) with length 1,2,2,1 and 2, respectively.
The correspondence of each 3-cycle mod 8 is an irreducible factor of 28 — 1 over Fs.
From the order of 3 in Zj is m = 2. We choose f(z) = z? 4+ & + 2 an irreducicle
polynomial over T and consider the finite field Fg2 = F3(z]/(22+2+2). Leta =7

be a root of f(z). Thus « is a primitive 8th root of unity over F;. Then monic
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irreducible factors of 28 — 1 over Fs are

folz) = (z-0o)
hlz) = (z—a)(z-0o’)
hz) = (z—a*)(z-0)
f(z) = (z—af)
falz) = (v —0o®)(z—a)

Then we have the complete factorization of z® — 1 over IF;

2® — 1= folz) fr(=) fole) f3(2) fal).

To express fo(z), fi(z), f2(2), fa(z), fa(z) as polynomial with coeffcients in Fg, we

use o = 7T as a root of 2 + z + 2. Then

folz) = -1
falz) = 2?2z +2
flz) = 2* 41
falz) = z+1

f4(’L‘) = $2+$+2

For the 3-cycle mod 8, (2, 6), its correspondence polynomial is
Fa@) = (5 — a®) (e ) =a® + 1
Consider

T'rlf“'32/]1‘"3 (0’2) = o + (a‘Z)S

={2a+ 1)+ (a+2) = 0.

By theorem 4.2.14, we get that fy(z) = 22 + 1 is a l-normal polynomial over 3.



CHAPTER VI

CONCLUSIONS

In this chapter, we conclude all main results that we found in this research.

1. Let o be a primitive nth root of unity (if the order of ¢ in Z}, is m, then there
exists a primitive nth root of unity in Fym). Suppose that (ag,ay,...,q-1) is a
g-cycle mod n of length [ and ord(a) = ¢ —1. Then its correspondence polynomial
flz) = (z — a®) (o —a®) - (z — 1) is a primitive polynomial over F, if and

only if ged(ag,¢' — 1) = 1.

2. Let o be a primitive nth root of unity (if the order of ¢ in Z7, is m, then there
exists a primitive nth root of unity in Fom). Suppose that (ag,ai,..., a_1) is a
g-cycle mod 7 of length { and ord(a) = ¢ — 1. Then we have if ¢ — 1 is a prime
number where ¢ = 2, then its correspondence polynomial f(z) = (z — a®)(z —

a®) - (z — a-1) is primitive over Fy.

3. Let o € F;. If 1is the unique root in Fp2 of ga(), then o is a 1-normal element

of Fy: over IF,.

4. Let o € Fp2\F,. Then Tre , j7,(a) = 0 if and only if o is a 1-normal element of

Foo over IF,.

5 Let a,f € Fp\F,. If a and 8 are l-normal elements of F,. over F, with

a+ B e Fp\F,, then o+ 8 is a I-normal element of F over F,.

6. Let o € Fa\F,. If ovis a 1-normal element of Fp2 over F,, then o™ is a 1-normal

element of 2 over IF,.

7. Let a,f8 € Fp\If,. If o and B are O-normal elements of ¥z over Fy with
a+ B € Fp\Fy and Trp g, (a) + Tre ,/x, (8) # 0 in Fy, then o + B is a O-normal

element of F2 over IF,.
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8. Let o € Fe\F,. If v is a O-normal element of F2 over IFy, then o™ is a 0-normal

element of F2 over F,.

9. Let n = ¢™ — 1 where m is a positive integer and o € Fpn\F,. Then

(1) o is a l-normal element of Fg» over F, if and only if T'rg . /5, (@) = 0.

(2) o is a 0-normal element of Fy» over Fy if and only if Trg /5, () # 0.

10. Let n = q™ — 1 where m is a positive integer and f(z) = "+ a1z '+ +a,
be an irreducible polynomial over ;. Then f(z) is a I-normal polynomial over I,

if and only if a; = 0.

11. Let n = g™ — 1 where m is a positive integer and f(z) = 2"+ a1z '+ - +a,
be an irreducible polynomial over F,. Then f(z) is a 0-normal polynomial over IF,

if and only if aq # 0.

12. Let a € Fu\F,. If 2™ !+ 2" % + ... 4+ 2+ 1 is irreducible over Fy and

Tncqn /Fq(a) = 0, then « is a l-normal element of Fy» over F,.

13, Let e € N and n = 2° 4+ 1. If the number of 2-cycles mod n is equal to 2, then

f(@) =21+ * 4+ ...+ 2+ 1isa 0-normal polynomial over Fy.

14. Let g be a power of prime and n be a positive integer with ged(g,n) = 1. Let
o be a primitive nth root of unity (if the order of ¢ in Z7 is m, then there exist
primitive nth roots of unity in Fym}. Assume that (ag, a1, ..., a:-1) is a g-cycle mod

7 of length /. Then its correspondence polynomial
f(il?) = (’L‘ — Of““)(_q; _ O‘{m) e (’b _ aa(_l)

is a 0-normal polynomial over F, if and only if {a®,a™,...,a%1} is linearly

independent over ;.
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15. Let n be a positive integer such that ged(n, ¢) = 1 where ¢ is a power of prime
p. Let o be a primitive nth root of unity (if the order of ¢ in Z7 is m, then there
exist primitive nth roots of unity in Fym). Assume that (ag,as,...,01-1) is a g-cycle

mod n of length ! = p° for some e € N. Then its correspondence polynomial
f() = (@~ a®)(e - )+ (@ — @)
is a 0-normal polynomial over ¥, if and only if T'r JF,(a®) # 0.

16. Let nbea positiﬁre integer such that ged(n, g) = 1 where ¢ is a power of prime p.
Let o be a primitive nth root of unity (if the order of g in Z;, is m, then there exist
primitive nth roots of unity in Fym). Assume that (ag, ay,...,6i-1) is a g-cycle mod
n of length | where [ is a prime different from p and ¢ is a primitive element modulo
I. Then its correspondence polynomial f(z) = (z — a®)(z —a®) - (z — a®-1) is

a O-normal polynomial over F if and only if Trg, /E, (%) # 0.
17. Let n be a positive integer such that ged(n, q) = 1 where ¢ is a power of prime
p. Let a be a primitive nth root of unity (if the order of ¢ in Z] is m, then there
exist primitive nth roots of unity in Fy). Assume that (ao,a1,...,a-1) is a g-cycle
mod n of length { = ¢® — 1 where e is a positive integer.

(1) Tre, /7, (™) # 0 if and only if its correspondence polynomial

/(@) = (@=a")(@—a") - (¢ — a®)
is a O-normal polynomial over I,
(2) Trs, /F,(@®®) = 0 if and only if its correspondence polynomial

f@) = (@ = )@~ ™) - (z — o)

is a T-normal polynomial over .
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18. Let T, be a finite field with ¢ elements and n be a positive integer such that
ged(g,n) = 1. Let « be a primitive nth root of unity (if the order of g in Zj is
m, then there exist primitive nth roots of unity in Fym). Assume that (ao,a:) is
a g-cycle mod 7 of length [ = 2. Then f(z) = (z — a®)}(z — a®) is a 1 - normal

polynomial over F, if and only if T’J‘qu JE, (%) = 0.
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