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CHAPTER I

INTRODUCTION

In 1974, the concept of near vector space was introduced and studied by
Andre. Tater several researchers, for example, Van der walt, Howell, Mayer and
Tim Bovkett, paid attention to investigate such concept. In 2010, Howell and
Mayer classified near-vector spaces over finite fields of p (p is prime) elements up
to isomorphism. Until 2014, they also extended the result to a finite field of p"
elements and presented in Theorem 2.2.13, [1] of the paper name “Near-vector
spaces determined by finite fields” (in Journal of Algebra, 2014). They asserted
that the nmumber of near vector spaces V = F®™ ogver a finite field F = GF(p") is
exactly

m+ &pj:;:g — B
m—1
up to the isomorphism in Definition 2.2.7, where ¢ is the Iluler’s totient function.
They calculated the number based on the distinct suitable sequences, (Definition

2.2.5, [1]). In other word, if A; and A} are determined by suitable sequences (S1)

and (.5y), respectively, then (F®™, A7) = (F®™, A3) if and only it (S)) = (Sy).

However, for the case F = G F(3%) and m = 4, it twns out that (F®*, A3) =
(F®1, A%), where A} = {sa|a € F} and A} = {t5|/f € F} are constructed using
the sequences (S)) = (1,5,7,7) and (Sp) = (1,7,17,17), respectively, which are
distinct suitable sequences. Accurately, the isomorphism is obtained by the group
isomorphisms 8 : F®1 —— ¥ defined by 8(z),x, T3,24) = (22, 2], 23, 74) and

n: Al — As defined by n{s.) := tas, which can be seen that;

0((21, T2, 23, 24)5a) = 0, 00”, w30, w40")

7

.
= (z30° 230”230, 040")

= (.’Cgﬂ'ﬁ, x?(a5)7, I3(0‘5)171 wa{a®)'7)



= (w9, 2}, 23, Ty )tas

= B(ay, 29, 23, x0)0{84)

for all (@1, zq, 23, 74) € B, s, € A}, This contradicts to the main results of the
paper. A slip can be found in the proof of Theorem 3.9 in {1} (line 17" in the
proof) in which there is using the isomorphism 7 to be n(s,) = t.. In fact, this

should be n(s,) = tae, for some 1 < ¢ < p* —1 and ged(g,p" — 1} = 1.

In this thesis, we fix the slip and provide a criteria for the classification of
near-vector spaces F®™ gver a finite field F = GF(p?). The munber of near-vector
spaces up to the isomorphism is also displayed based on subgroups lattice of the

abelian group G := U(p" — 1)/ (p).



CHAPTER II

PRELIMINARIES

In this chapter, we give some definitions, notations, examples, and basic
results, which are used in this research. This chapter is divided into two sections.
The first section deals with fundamental algebra structures. Details and proofs
about groups and fields can be found in [2] and [3]. The next one is about basic

definitions and examples in near-vector spaces.

2.1 Fundamental Algebraic Structures

Definition 2.1.1. [2] Let G be a set with a binary operation, which is denoted
by - and called the multiplication in &. G is called a group with respect to the

multiplication, if the following manipulation rules hold:

(‘1 The associative law. That is, for all ¢,b,ce G, (a-b)-e=a-(b-¢).
(2 Therc is an element in &, denoted by e, such that ¢-e = a for alla € G.
('3 For any element « € G, there is an clement in G, denoted by ™!, such

that a -a~ ! = e.

Definition 2.1.2. [2] Let G be a group and the binary operation in G be denoted
by - If the commutative law holds in G, i.c., for all ¢,b € G, ab = ba, G is called

an abelian {or a commutative) group.

Definition 2.1.3. [2] Let H be a subgroup of a group . For each « € G, the set
{ah : h € H} (resp. {ha: h € H}) is called a left coset (vesp. right coset) of G

velative to H and is denoted by af (resp. Ha).

Proposition 2.1.4. [2] Let G be a finite group and H be « subgroup of G. Then
the number of left cosets of G relative to H is equal to the number of righl cosets

of G relative to H.



Lemma 2.1.5. {2] Let G be a finite group end H be a subgroup of G. Then any

two lefl cosets of G relative to H contain the same number of elements.

Definition 2.1.6. [3] A subgroup N of a group G is said to be normal if alV = Na

for all « € G.
Theorem 2.1.7. [3] Every subgroup of an abelian group is a normal subgroup.

Definition 2.1.8. [3] Let N be a normal subgroup of a group &, then the group

G/N = {aN : a € G} is called the quotient group or factor group of G by V.

Definition 2.1.9. [2] Let « be an element of a group G. If for any positive integer
n, we have @™ # e, then a is called an element of infinite order. If there exists a
positive integer n such that @™ = e, then « is called an element of finite order and
the smallest positive integer n such that a® = e is called the order of @. The order

of a is denoted by ord(a).

Definition 2.1.10. [3} Let & be a group and a € G, The set {a) = {¢" : n € Z}
is a subgroup of G which is called the cyclic subgroup of G generated by «.
A group @ is called eyelic if there exists an element ¢ € G with G = (e} ;

in this casc a is called a generator of G.

Example 2.1.11. Let G = {1,—1,i,—i} C C, (the group operation is the multi-

plication of complex numbers), (G, ") is a cyclic group, G = {(i). Now, consider

(YL =1, then 1 has order 1
(—1)2 =1, then —1 has order 2
(i) =1 but (i)2 #£ 1, then i has order 4
(=) =1 but (—i)* # 1, then —i has order 4.

Theorem 2.1.12. {2] Let G be the cyclic group yenerated by an element a € G.

If G is of finite order n, then ord(a) = n and

G ={ea,ad® . .. o}



o

Proposition 2.1.13. [2] Let G = (a) be a cyclic group of order n. For any integer

k, af is a gencrator of G if and only if ged(k,n) = 1.

Definition 2.1.14. {3] The Euler ¢ function is the map ¢ : N — N defined by
d(n) = 1 for n = 1, and, for n > 1, ¢(n} is the number of positive integer m with

1 <m < nand ged{m,n) = 1.

Proposition 2.1.15. [3] The number of generators of a cyclic group. of order n is

o(n).

Definition 2.1.16. [3] Let ¢, b, n be integers with n > 0. Then « is congruent to

b modulo n, written ¢ = b(modn) provides that n divides @ —b.

Definition 2.1.17. [3] Let @ and n be integers with n > 0. The congruence class
of @ modulo n, denote [a] or a, is the set of all those integers that are congruent to

e modulo n, i.e.

[e] = {b:b€7Z and b= a(imodn)},

where 0 = a(modn) means that b — « = nk for some integer k. Thus

la) ={b: b€ Z,b=a(modn)}.
={b:b=c+nkkecZ}

= {a+nk:keZ}.
Theorem 2.1.18. (3] @ = c(modn) if and only if o] = [¢].

Definition 2.1.19. [3} A relation ~ on a set S is

(i) reflexive : if a ~a for all a € S.
(1) symmetric : if ¢ ~ b implies b ~ a for all «,b € S.

(#14) transitive : if @ ~ b and b ~ ¢ imply @ ~ ¢ for all ¢,0,c € S.



A relation on S that has all of these properties is called an equivalence relation on

S.

Definition 2.1.20. [3] Let ~ be an equivalence relation on a set 5. If a € 5, the

equivalence class of a, denoted by [a], is defined by
[a] ={s € S:s~a} CS.

Theorem 2.1.21. 13] (Lagrange’s Theorem). If H is a subgroup of a finite group
G, then |H| is a divisor of |G]|.

Definition 2.1.22. [3] The index of a subgroup H in G, denote by [G : H], is the

number of left cosets (or right cosets) of H in G.
Proposition 2.1.23. [3] If H is o subgroup of a finite group G, then
G+ H) = |GI/{H.

Corollary 2.1.24. [3] If G is a finite group and a € G, then the order of a divides
|G

Definition 2.1.25. [3] A mapping ¢ from a group & into a group G’ is said to be

a homomorphism if for all @, b € G,

¢(ab) = p(a)p(b).

Also, a homomorphism from a group & to itself is called an endomorphism of G.

We denote End(G) for the set of all homomorphisms on G.

Definition 2.1.26. [2] Let G and G7 be two groups. Assiune that a bijective map

from G to &,

o:ar— o(a) (a € G,o(a) € GY)

and for any a,b € G,



a{ab) = ol{a)o(b).

Then we say that G and G’ are isomorphic, which is denoted by G =2 G7, and that o
is an isomorphic map from G to G/, or in short, an isomorphism. An isomorphisn
from a group G to itself is called an automorphism of G. We write Aut(G) for the

set of all automorphisms of G.

Definition 2.1.27. [2] Let F be a set with two binary operations + and - (called
addition and maultiplication, respectively). F is called a field with respect to the

addition and multiplication, if the following manipulation rules are fulfilled:

F1 . (F,+) is an abelian group.

F2 : (IF*,") is an abelian group, where F* = F\{0} and 0 is the additive

identity of the group (IF, +).

I3 alb+c¢) =ab+acforall a,b,c €T,

We also say that (F,+,) is a field. (IF, 4) is called the additive group of the field

F and (F*,-) is called the multiplicative group of .

Definition 2.1.28. [1] A skew field is a triple (IF,+,-) which satisfies :

F1: (IF,+) is an abelian group.

F2 : (F*,.) is a group, where F* = IF\ {0} and 0 is the additive identity
of the group (IF, +).

F3 :a(b+c¢)=ab+ actorall a,b,ceF.

Definition 2.1.29. [2] Let I be a field and e be its identity. If for any positive
integer m, we have me # 0, then we say that the characteristic of I is 0 or that ¥
is a field of characteristic 0. If there exists a positive integer m such that me = 0,
then the smallest posilive integer p satisfying pe = 0 is called the characteristic of

F and F is called a field of characteristic p.



Theorem 2.1.30. (2] Let IF be any field, then the characteristic of If is cither O or

a prime p.

Definition 2.1.31. [2] Let p(x) be a polynomial with deg p(x)} > 1 in Flz]. I p(w)
is a prime clement in Flz], we say that p(z) is an irreducible polynomial in Flz].

Otherwise p(z) is said to be reducible.

Definition 2.1.32. {2] Let FF be a field. If the number of elements in F is infinite,
F is called an infinite field. Tf the number of elements in F is finite, I is called a
finite field or a Galois field. Here, F = GF(p") is a finite field with p" elements,

where p is a prime characteristic of IF and n is a positive integer.

In fact, we can caleulate all distinet elements in F = GF(p™} by using the

following proposition:

Proposition 2.1.33. [2] Let 7, be the prime field of characteristic p and p(zx) be
an irreducible polynomial of degree n in Zy(x]. Then Zylx]/ () 15 @ finite field

with p" elements.

Example 2.1.34. Let p(z) = 2% + 2 + 1 € Zs(z], which is an irreducible polyno-
mial of degree 2 in Zolz). Then Zy[z)/ w2 rasr) 15 a finite field of order 2° with the

maltiplication table:

Table 1 The multiplication table of Z;[z]/ 24041

0 1 T 1+ =z
: 0 0 0 0 0
1 0 1 T 1+
T 0 x 14+ 1
1+x 0 14+ 1 x

Theorem 2.1.35. [2] Any two finite fields containing the same number of elements

are isomorphic.



Let F = GF(p") = I, be a finite field with p” clements, The multiplicative
group F} of F, is of order ¢ — 1, every clement of 7 is of finite order and its order

is a divisor of ¢ — 1. Furthermore, GF(p") has following results.

Proposition 2.1.36. (2| Let F be o field of characteristic p;p # 0, a,b be any two

elements of F, and n be any nonnegative integer, then

(@ £ D) = " £ b

Theorem 2.1.37. (2} Let ' = GF(p") be a finite field with p" clements. Then

@' =1 for alla ¢ F*.

Theorem 2.1.38. [2] The multiplicative group of any finite field is cyclic.

In 2014, Howell and Mayer constructed a necessary condition on the pos-
itive integers ¢ and r in which sufficient for the identity {(e? 4+ %) = (a" +b")? is
true over a finite field, where a,b € F = GF(p"). They presented this a necessary

condition in the form of following theorem:

Theorem 2.1.39. [1] Let ¢1,¢2 € {1,2,...,p" — 1} with ged(q;,p" — 1) = 1, (i =
1,2) and ¢ < q3. Then (a® + b1)% = (a2 4 b%2)" for all a,b € T if end only if

1 = qep' mod(p" — 1} for some l € {0,1,...,n -1},

Proposition 2.1.40. [1] Let ¢; be an automorphism of the group (IF*,-), where
F = GF(p") and the multiplicative group U{p"* — 1) ={k € Z: 1 <k <p" -1,
ged(k, p* — 1) = 1}. Then there exists ¢; € U(p" — 1) such that ;(x) = 2% for all

x & FF,
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2.2 Basic definitions and Examples in Near Vector Spaces
Let p be a prime, # be a positive integer and F = GF(p"), be a field of p”
elements. We first recall the definition of a near-vector space over a finite field I

Definition 2.2.1. [1] A pair (V, A) is called a near-vector space if:

1. (V,+) is a group and A is a set of endomorphisms of V,
2. A contains the endemorphisms 0, id and —id,
3. A* = A\{0} is a subgroup of the group Aut(V),

4. A acts fixed point freely on V;ie, forx € V and o, 8 € A,z = 2p

implies that 2 = 0 or o = f3,

ot

the quasi-kernel Q(1) of V| generates V' as a group. Here,

Q(V)={zcV :Va,f €A Iy e A such that za + 206 = 2y} C V.

Remark:
(a) —id € A implies that (V,+) is an abelian group, since by (2) :
z+y = (—2)(=1)+ (D=2 -1 = (—{y+a))(-1) =yt
Also, the dimension of the near-vector space, dim(V), is uniquely determined by
the cardinality of an independent generating set for (V).
(b) Every vector space is a near vector space, that is we can consider vector

space as near vector space under the scalar multiplication defined by

('(L‘la R ):UI?I)S(\ = ((1':1317 R }a':l:m)a

where (21,...,2,) €V and A= {s, : a € F}.

Definition 2.2.2. [1] Two near-vector spaces (Vi, A1) and {Va, Ag) are isomorphic,

written by (Vi, A1) = (Va, Ay), if there are group isomorphisms 6 : (V1,+) —
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(Vo, +) and 5 : (A},-) = (43,-) such that 0(za) = 8(x)np(a) for all x € V; and

a € AL

In fact, the group isomorphism 7 : (A7,-) — (A3,-) can be extended to a
semigroup isomorphism 7 : A; — Ay by setting 7(0) = 0 and 7j{a) = n{a}, for all
a € Aj. For a near-vector space (V, A), the endomorphisms in A are sometimes
called scalars and the action of these endomorphisms on the clements of V' ois

sometimes called scalar multiplication.

Example 2.2.3. Pul (Vi,+) = (Ve, +) = (GF(5),+). Let Ay = {s, : a € GF(5)}
and Ay = {to : o € GF(5)}, where vs, == za and v, = xa? for all v, o € GF(5).
Then, we show that (V1, Ay) and (Va, Ay) are near-vector spuces.

1) (V1,+) is a group. Moreover Ay = {s, : & € GF(5)} where xs, 1= za.

Let ¢,y € V. Then

(z+yl)sa = (z+ya
= zo+ ya

= ISq t YSa.

Thus s, 15 an endomorphism of V1. Hence Ay is the set of all endomorphisms
of V1.
2) Let x € V). Then

xsp = x(0) =0

zsy=a(l) ==

xs ) =x(—1) = —=u.

3) We shall now show that A7 C Aul(Vy). Let s, € A]. Then s, is an endomor-
phism. It suffices to show that s, is « bijection.
(i) Let x,y € Vy, and a € GF(5)\{0}. Suppose that s, = ys,. Then za = yao.
We have xao — ya = 0. Since o £ 0, so x —y = 0. Then v = y. Hence s, is

wnjective.
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(ii) Let x € V) and let s, € A}. So o' evists. Then za™ € V. We have
(za™ s, = (za Vo = x. Hence s, 1s surjective. Next, we show that A} is a
subgroup of Aut(Vy). Let Ay = {sa 1 o € GF(B)}. Then A; = {so, 81,52, 53, 54}
Thus A; = A\{0} = {s1, 52, 53,54} # 0. Let so, 53 € A}. Then

IU(SO © Sﬁ) = IOB
= 2Sag, V& € GF(5).
Thus 84 0 85 = Sag. Since aff € GF(5)\{0}, s0 sqp € A} and hence s, 0 55 € A].

Let s, € A, Then o # 0. So a™! exists and o' € GF(5)\{0}. Thus sa—r€ Aj,

we have

(84 © Se-1) = zOQO

= x(id).

We have sq 0 8o-1 = id. Thus s,-1 is the inverse of sq. Hence A} is a subgroup of
Aut(Vl).
4) Let © € Vi and sq,35 € Ay, Suppose that xs, = xss and so # sg. Then

xa = xf. Since 3, # sg, we have oo # 8. So a — B+ 0. Since za — z8, we have
zao—zf =0

(a =) = 0(a - j3)
TS(a-p) = US(a—p)-

Thus sa—py € A} C Aut(V) and spy is injective. We conclude that x = 0,
5) The quasi-kernel Q(V1) of Vi consists of all those elements x of Vi such that
for every s,,sg € Ay there cuists a s, € Ay for which xs, + xsg = ws,. Consider

x e Vi and 84,88 € Ay,

T8y + w5z = oot af

= az{a -+ f)



13

= ZTSu4p.

Hence x € Q(V1), so Q(V1) = V1. We have (Q(V1)) = (V1) = V1. Since o, €

GI'(B), thus Saepg € Ay, By (1)-(5), we have (Vi, A1) is @ near-vector space.

~o

Similarly (Va, Ay) is a near vector-space. Moreover, we will show that (Vi, A;) =
(Vo, Ap). Consider the group isomorphisms 6 : (Vi, +) — (Va, +) defined by 2 — x
and 1 1 (ALY = (AL, ) defined by so = taiss, where 1/3 is the inverse of 3 in
U(4) which is 2. Let x € Vi and sa € A}, Then, we show that 0{zs,) = 0(x)n(s4)
which can be seen that
8(xs,) = 6(za)

= za

— a(aPy

= alsat® € GF(5),Va € GF(5)

= 9(58)7?('9&)'
Hence (Vi, A1) = (Va, Ag).
Example 2.2.4. Put'V = F® where F = GF(T%) and let each o € ¥ act as an

endomorphism on V' by defining
. iy ¥ S | U
(1, Ta, T3, T4 )0 = (@10, Tad”, B30°, T4,

As in the previous example, it can be easy to show that (V,IF) is a near-vector space

but not o vector space which can be seen that for o =4 and (0,1,0,0) € V, then

(0,1,0,0)4 -+ (0,1,0,0)4 = (0,4°,0,0) + (0,4%,0,0)

(0,2,0,0) + (0,2,0,0)
— (0,4,0,0)

£ (0,1,0,0)
(0,1,0,0)(4 + 4).

Hence it has no left distributive law and (V, ) is not « vector space.
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Definition 2.2.5. [1] A finite sequence of m integers g1, ga, . . ., @y, is called suitable
with respect to P = GF(p") if

()1 < <p*—1and ged(ge,p" — 1) =1foralli=1,...,m;

(b) no ¢; can be replaced by a smaller ¢} that also satisfies (¢) and such

that ¢; = ¢/p' mod(p" — 1) for some ! € {0,1,...,n—1}.

Suitable sequences arc always written in non-decreasing order:

G s % O

In order to construct a suitable scquence with respect to IF, we consider
subgroup {(p} of the multiplicative group U(p® — 1) ={k € Z: 1 <k < p" —1 and
ged{k,pt — 1) =1}, ie,

Ulp" — 1)/ (o) = {kp) ke Up" — 1)},

Then select a list of the smallest members of all the cosets and write them
down in non-decreasing order. Note that the number of elements in the list we can

choose is ¢{(p™ — 1)/n.

Example 2.2.6. Let B = GF(3%), then U(p" — 1) = U(3* - 1) = U(26) =
{1,3,5,7,9,11,15,17,19,21,23,25}. Furthermore, The set of coscts determined by
{3) in the group U(33— 1) is given by {{1,3,9},{5,15,19}, {7,21,11}, {17,25,23} }.
The set of smallest elements {1,5,7,17} in these cosets determines all possible

suitable sequences with respect to W of length four are

(1,1,1,1),{1,1,1,5),(1,1,1,7),(1,1,1,17), (1, 1,5,5), (1, 1,7,7), (1, 1, 5, 17),
(1,1,5,7), (1,1,7,17), (1,1,17,17), (1,5,5,7), (1,5,5,17), (1,5,7,7), (1, 5,17, 17),
(1,5,7,17),(1,5,5,5),(1,7,7,7), (1,17,17,17), (1,7,17,17), (1,7,7,17).

Recall that a (right) near-field is a triple (F, +, -) that satisfics all the axiom

of a skew-field, except perhaps the left distributive law ¢ (b+¢) =a-b+a-c



15

Example 2.2.7. Let F = GF(3%). Denote the usual multiplication in F by -.
Define a new binary operation = on I by:

if b is any element of F which is a square and « is any element of ¥, then
axb=a-b,

if b is any element of T which is not a square and a is any element of I, then
axb=a-b

Thus the binary operation * 1s illustrated as in the table below:

Table 2 The multiplication table of F

* 0 1 2 z ko= 2z 1422 242z

Oﬁ 0 0 | 0 0 0 | 0 0 0 0

1 0 1 2 B 1+ 24z 2% 142z 242z

2 0 2 1 2z 24 2¢ 142z T 24 1+=z

x 0 H 2x 2 1+2x =x+1 1 24+2¢x 24z
T+z 0 142 924+2r 2+ 2 2z ' . 0 F 1
242 0 24z 1+2z 242z T 2 R 1 2%
2T ( 2 T 1 242 242z 2 1+4+z 142z
1+2x 0 142z 2+2 14z 2 1 24 2% 2 T
242x 0 2+2¢x 14z 1427 ! B 1+ 2z 2

Therefore ¥ with the binary operation * above is a (right) near-field of

order 9, but (IF, +,) is not a field.

Theorem 2.2.8. [4] Let (V,+) be a group and let A = DU{0}, where D acts fived
point freely on group of automorphisms of V. Then (V, A) is a finite-dimensional
near-vector space if and only if there exist « finite number of near-fields ¥y, ... | Fp,
semigroup isomorphisms ; ¢ (A, 0) — (Fy,-), and en additive group isomor-
phism ¢ : V. — Fy ® - @ F,, such that if ¢(v) = (x1,...,2,), then ¢lva) =
(zihy (), .. aphe{@)) for adlveV,a e A
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In the case of F; = IF for all { = 1,...m, by the above theorcm, all such
near-vector spaces, which we now call near-vector spaces over a finite field, arc
determined by semigroup automorphisms ; : (F,) — (F, ). Precisely, for a
near-vector space (V, A) with V =F®" :=F @ - - & F and A = {s, | € F}, the

scalar multiplication on V is given by
(1, Tm)Sa = (11 (@), .. Btm{)),

for every o« € IF,
Howell and Mayer stated that, two near vector spaces are isomorphic if
they are determined by the same suitable sequences. Therefore, the number of

near-vector spaces up to isomorphism as below:

m+ 8=l 9
Theorem 2.2.9. [1] There are exactly " m-dimensionel near-
m—1

vector spaces V. = B9 (where F = GF(p")), up to isomorphism. Each of these
is completely determined by a suilable sequence 1 = q < g2 € -+ < @ with
respect to GE(p"). Each such sequence 1 = q1 € g2 <+ £ ¢ defines the scalar

multiplication
(‘1:17 e ‘Trn)sa = (wlaqlv * s !‘T"!aqm)i
where v € 7,

However, we found a slip in the proof of this Theorem in line 17" in the
proof. Therefore, we intend to fix the slip and provide a criteria for the classification

of near-veetor spaces F9™ over a finite field FF = GF(p").



CHAPTER III

MAIN RESULTS

This chapter is divided into two sections. In the first section, we present a
necessary and sufficient condition for isomorphism of two near-vector spaces over a
finite filed, The number of near-vector spaces over a finite field (up to isomorphism)

is counted in the second section.

3.1 Classification of Near vector spaces

In this scction, we denote (V, A) a near-vector spaces over a finite field
where ¥V = F®™ which (V/; 4) is an abelian group and A is a set of endomorphisins
of V. By Proposition 2.1.40, semigroup automorphisms ; : (I, ) — (F, ) is given
by ;(z) = 2%, Va € F*, for some ¢; € U(p"—1) 1= {1 < ¢ < p"=1]| ged(g, p"—1) =

1}. Let A = {s, | € F}, with the scalar multiplication on V given by
(3’)11 . ;:l:m)sa — (‘Tl'l/)l (Q‘), s . )mm.‘l,!}m.(a'))
T L o N, 0 OPR

for every o ¢ IF.
We will need the following two lemmas in connection with this construc-

tion:

Lemma 3.1.1 {confront Lemma 3.6 in [1]). Let ¢ be any permutation of the indices

{1,2,...,m} and A, = {oo | € F}, with the scalar multiplication on' V' given by
(T, Bm)Ta = (ma® M, a0,
for all o € F. Then A is a subgroup of Aut(V) and (F®", A) = (FO, As).

Proof. We want to show that Atisa subgroup of Aut(V}. First, we show that A* C

Aut(V}. Let A, = {04 | € F}, where (x),...,2m)0, = (a0 £ %707
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and (z1,. .., 2m) (Y1s - -y Ym) € FE?. Then

(:L‘l R R A o '.Um)aa = ((:L‘l + '.Ul)(-}'q"(])a Caey (wrn + ym)a’qa(m))
= (o™ p a0 (2,04 4oy ot )
— (ivla’qg(l): v ’mma,q(y(m)) + (y:a‘q”(l), - )ymaqg(wrt})

= (311, R 73:771)00 + (’,9'1, v :ym)an-

Thus o, is an endomorphism of F®”, Next we show that ¢, is a bijection. Let

(21, T)y Wy - - s Yim) € F¥" g, € A, and suppose that

(‘Tia ey :l:m)o-n — (yla ces }ym)ga-
Then (z1a®®, . w09 ™) = (yra%D | y,a? M) We have
((:E]O.'q”(l) £ ylauqﬁ(l)), o (:B,nﬂ'q”(nl) 1 | ynla-qa('n))) E 3 (0, A 0)'

Thus ({(z; - yl)a-q"(l), vy (B — Y )a® ™) — (0 0). Since o # 0, we have
a% @ £ 0. So (z; — 1) = 0. We conclude that z; = y;, for all i = 1,2,...,m
and (x1,...,%,) = (¥1,..,yn). Therefore o, is injective. Furthermore, let

(T1,...,%m) € F®™ and o, € A*. Then o #£ 0. Thus o' exists and

(:Ela-—q"(l), b, T _.“qn(m))aﬁ - (;Eiaﬁqn(l)aqﬁ(lJ, . :z:ma'“q“(m)aq”(”l))

ey

= (3.51,---,3:771)-

Hence g, is surjective. Iinally, we show that A* is a subgroup of Aut(V). Let

Ta, 05 € A*. Then

(1, 2m)oa00og) = ((@1,....¢m)04)08
w {zpa® et ey
— (:i;la""’(l)ﬁ"”(l), o :—EIRG,Q'U(”I)[)’QG(’”))‘
= (2{af)"Y . an(af) M)

= (:1,‘1, R ,wnz)aﬂﬁ’
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for all (a1,...,x,,) € F®™ Thus o, 0 03 = 043 but aff € F\{0}. So 0,5 € AF
Lot o, € A*. Then a # 0. So a ! exists and o ! € F\{0}. We have g, € A*,
Thus 0, 00,1 = Opon-t = oy = id. Hence o,-1 is the inverse of ¢,. Therefore A
is a subgroup of Aut(V). By considering the group isomorphisins ¢ : F&" — Fé
defined by (z1,...,2m) = (Zo@), - - > Toguy) and 72 A" — A* defined by 84 H 0a.

Then
B(vsa) = OB((T1y. 0 Tm)50)

= LA RN L™

= (:v(,(l)a""’“), e :ca(m)cr"’('"))

= (To()r-+r Ta(m))%a

= G sies

= B(v)n(sa)-
Hence (FO™, A) 22 (Fm A,), 0
Example 3.1.2. For F = GF(3%), denote Ay = {s, i a0 € F} and Ay = {ta:a €
IF}, where

(21, 2g, T3, 4)Sa = (2107, @’ wya’ | 20"

7

(w1, X2, 23, Balta = (2107, 220, waor' T waa).

Then (P, Ay) =2 (F®, Ag).

For each ¢; € U{p™ — 1) with i = 1,...,m, there is a permutation ¢ such
that o (1) < -+ < o{gn). Thus, it is enough to consider the action of A in terms

of the non-decreasing secuences,
Lemma 3.1.3. Let A = {s,:aw € F} act on V by

(T, oy )8 = (pa™, oo 2%,
forall € F and A = {t,: o € F} acts on V by

U b7 D
(@1, Bmba = (0™ L 2 a®™P )
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where ly, ..., L, € {0,1,...,n—1}. Then A is a subgroup of Aut(V) and (F&", A) =
(F9™, A).

Proof. We want to show that A" is a subgroup of Aut(V). First, we show that A C
Aut(V). Let A = {t, : a € F}, where (z4,..., 25 )ta = (a:;a‘“’"l, e ,a:,,,a"fmpl”l)
and (21, .-, T )y (Y1, -1 Ym) € FO Then
(14 Y1,y T+ Umita = ({21 + yl)cr””’l1 yoes (T y,,,)a"‘"“’""')
= ((wla.mp’l T yla,qu'l Yyenns (T Q@™ y,,,a-q"‘pjm )
=z T (yqo:‘“pl1 o ymatmP ™Y
= (21, Tm)ta + W1se o Y )la-

Thus #, is an endomorphism of F®"  Next we show that ¢, is a bijection. Let

(21, . . JFn MO ) e FERSRS A" and suppose that
(1, T )ta = W1y oo YUm)ta-
Then (2107t ., @pa® ™) = (g,rla-rf”’[l e Y™ P, We have
(zra®Pt — gan? TP oy @™y = (0, 0),

i ! 3
Thus ((z1 — yo)a™Pt, o (@ — Ym)a®? ™) = (0,...,0). Since a # 0, we have
ol . .
a®?' £ 0. So (x; —y;) = 0. We conclude that @; = 3, for all i = 1,2,...,m. and
(21, ., Zm) = (Y1, Ym). Therefore 4 is injective. Furthermore, let (2, ..., 2,) €
F® and t, € 4 . Then o # 0. Thus o ! exists and
— 151 — Ly — ! 5 — {1 Lo
(o~ @PY) g o = (20 (ap ) gt g @) gme
o -1 S ] —1 . Ngptm
= (e 'e)PP (T @)
= (21,...,%m).
Hence t, is surjective. Finally, we show that A is a subgroup of Aut(V). TLet

ta, 3 € A", Then

(3711 s :H:m)(tn © tﬁ) = ((:Bla cee »HTJn)tn)tﬁ
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= (;U]O‘qlpll soroae 1:1:??1(-}-’{‘,1”1}“" )tﬁ

= (e gurt Lyt pmpty
- (',l:l (Q’ﬁ)qu)!l P xm(alﬁ)‘h"l#m )

= (&1,...,Tm)tas-

for all (z1,...,Tm) € F¥". Thus t, ol = lap but af € F\{0}. So tsp € A
Let ¢, € A*. Then a £ 0. So a~! exists and ot € F\{0}. We have to-1 € A",
Thus t, 0 te-t = tgea-1 = t = td. Hence t -1 is the inverse of t,. Therefore A
is a subgroup of Aut(V). By considering the group isomorphisms ¢ : F#" — Fom
defined by (x1,. .., 2m) = (s';’l’ll qielet ,/L’i"!"’) and . A* — A" defined by sq = ta.

e i}

Let v = (21, ...,2Zm) € F¥" and s, € A*. Then

O(vs, Jeme pPUET =10, £ 02)
ST L DN Wy
= {((z0™)", . (zmat ™)
_f (3;113’1 it =\ ,mﬁi’" Q.qmp’m)
plt plm

= (ef ... Ma

= Bxg,. .., Tmia

= B(v)n(sa.).
Hence (F9™ A) 22 (F™ A). O
Example 3.1.4. For I = GF(3%), denote Ay = {sa:a € F} and Ay = {to 1 0 €
F}, where

(1, T2, T3, T4)56 = (2107, 130", 23007, w407)

21

(21, 22, 23, T )te = (v10*, 2907, w30™, wya!t).

Then (F¥) Ay) 22 (F¥1) 4,).

So, we can now only concentrate on the smallest element in the class
7; € G, for each i = 1,...,m; namely, the action of A is in the form of a suitable

sequence.
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Thus, the classification of near-vector spaces over finite fields depends on
- : H 3 3 - "
semigroup automorphisms ;'s and their actions. Morcover, by Lemama 3.1.1 and

3.1.3, we have A = {s, |a € F}, A, = {oo | € F} and A — {t, | € F}. Then

(FO™, A) = (FO" A,)  and  (F®™, A) & (Fo, 7).

This motivates us to consider the group G = U(p™ - 1)/ {p), where the
operation is the usnal multiplication modulo p™ — 1 and {p) = {1,p,...,p""'}. By
the above discussion, we can identify the action of A on F®™ by a non-decreasing

sequence of length m on G. Precisely, if A = {s,|a € F} acts on F®™ by
(:Ul: Sy fEm)Sa = (mla'[n: cee :mma'qm)s
then we identify this action by the sequence

(S) ‘T3 ((Ih sy Qm)-

A non-decreasing sequence (S) = (¢1,...,@n) in which ¢ is the smallest element

in the class g; € G for cach i = 1,...,m, is a suitable sequence of length m.

Furthermore, if ¢ € G and (S) = (¢1,...,¢n) is a suitable sequence of
length m on G and A = {s.]a € F} is identified by (5), then (F®™ A} =
(F@m A", where A" = {s, |« € F} is identified by (5") := ¢{(S) :== (¢q1, .-, qGn)-

Here, the isomoerphisin is derived b
¥
9:’ . IFEBm IFFBm, . . . . 1 i, A* Aln !
: — (@, @) () and g AT AT s, 1 8L,

Example 3.1.5. For ¥ = GF(3%), denote A| = {sq:a € F} and Ay = {t,: o €
[}, where

- Q,'r)

(@1, 29, 23, 24)86 = (27 a’, w0,
(21, 9, T3, By )l = (210!, 200®, 2307, 20!,

Then (F® A)) = (F¥1) Ay).
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Thercfore, to classify and count (up to isomorphism) all near-vector spaces
FP™ gver a finite fited I, it is enough to deal with the set of all suitable sequences on
G of length m with 1 in the first position, and we denote this set by St(1,m,G).
We also define an equivalent relation ~ on the set St(1,m,G) by, [or suitable

sequences (Sy) and (Sy) in St(1,m,G),
(S1) ~ (Ss) = (F¥", Ay) = (F®", A,), (3.1.1)
where A; and A; are determined by (51) and (S3) respectively.

Since G = U{p™ — 1)/ {p}, where {p) = {1,p,...,p" '}, we can represent
the group G explicitly as ¢ = {1, ¢, .. .,q‘;,(p_w;_u} C U(p" — 1), where ¢; is the
smallest element in the coset of (p) containing ¢;. Thus the product of ¢; and g¢; in
G will be ¢ € G whose its coset @ = ¢x (p) contains the remainder of ¢;¢; divided
by p* — 1. The theorem below is a main tool that is used in the proof of the main

result.

Theorem 3.1.6 (confront Theorem 2.2 in [1]). Let I = GF(p") end ¢;,q; € G.
Then, (a% + B9 = (o% 4 B9)% for all o, B € TF if and only if g; = q;.

Proof. (<) Suppose that ¢; = ¢;. Then a% = ao% for all ¢, 8 € F. Thus
(a,fIi + th‘)&‘j — (a.f!j + lﬁf!j)fb‘

for all a, 3 € IF.
(=) Let ¢;,q; € G. For cach o, f € IF, we have (% + %)% = (a% 4 f9)4,
By Theoremn 2.1.39, we have ¢; = ¢;p(nod p* — 1) for some [ € {0,1,...,n— 1}

Since iy 45 = G, i = q;. 1

For a given suitable sequence (S) = (1, ¢2, . .., ¢ ), we denote S = {1, ..., ¢n}

the order set (strictly increasing) of all distinet elements in {.5).

Theorem 3.1.7. Let (F¥™, A) and (IF®™, Ay) be near-vector spaces, where A,

and Ay are determined by suitable sequence (Sy) and {5;), respectively. Then
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(FOmA)) = (FO™ Ao} if and only if there is ¢ € Sy such that S; = ¢Sy and the
occurrences of q¢; € (51) and q; € (S3) are the same for each j =1,..., N, where

N = |31| == ISZI

Proof. Suppose that (F¢" A)) = (FP™ A,). So there exist group isomorphisms

g : F¥m — B9 and 51 A} — Aj such that
0((1, 22, ooy T )Sa) = 021, Tay .., T )1 (80).

Suppose (S1) = (I = @, G2y - ¢m) and (Sa} = (1 = ¢4, ¢,,...,q,,). Then the

actions of Ay, Ay on F®™ are explicitly given by
9 a JE— 3 0 2 ,{ 1 .
(1, %2, 00y T )86 = (10T, 2202, ., w0,
a s r;’
(X1, T2, oy T )y = (@170, B2y%2, . YY),
for cach o,y € F and each (3y,z9,...,2m) € F¥7.

Since I* is a cyclic group, * = () for some a € F*. Suppose 1(s,) = tp,
for some b € F* = {a). Thus, there exists an integer 1 < ¢, < p" — 1 such that

b = a%. Since 7 is an isomorphism, we have ord(s,) = ord(t;) == k. So
(L1, 1) = (L1, ., D) = (L1 Dty = (0P, 5%, bhom),
and then ¢ = 1 (beeause ged(ql, p* — 1) = 1}, I oxd(h) = 1 < k, then
(t) =ty =t =1id.

This implies that ord(¢,) < ! < k, which is a contradiction. So, ord(b) = k.
Similarly, ord(a) = k and thus & = {F*| = p* — 1. Since b = a® and a,b have
the same orders, ged(¢o,p™ — 1} = 1; namely, ¢, € U(p™ — 1). Therefore, for the
given isomorphism 7, there must exist g, € U(p" — 1) such that, for each non zero

a(=a"}inF,

N(sa)} = 1(sa) = (1(80))" = (bawo)" = Liaey = Eavo.



Let 51 ={1,...,q5,} C G =U(p" - 1)/ {p) be the order set (strictly in-
creasing) of all clements in the sequence (51). Supposce that, for each @ = 1,..., Ny,

the occmrrence of ¢ in {S7) is 4. Then {y; > 1 for each i = 1,..., Ny and
l]l + -+ ll.‘\’l = IN. (312)
Now, for cach 1 < k < Ny, consider the constant subsequence (gg, ..., q:) (length
Iig) of (Sy). Let e; = (0,...,1,...,0), with 1 in position 4, and zeros elsewhere,
I € 7 < m. Suppose that
0(e;) = (Wit - Wim)
for some w;; € F b i < k4, 1 < 7 < m. Also, for o € IF, we have
0{e;s,) = 0(0,...,a%, ...,0),
0(85)7?(301) i (wi,la s :wi,m)ta'w 3~ (wi,la'qoqla v )wi,ma'qoqm)
and thus
H(D, . M ,Q‘Qi, . 0) x= H(G;SQ) = (w;‘laq"ql, . ,w;!ma‘ch”‘)
for k <i < k41, and o% in the i position. Hence, with o in the A" position,
6(0,...,a,...,0) =6(ers, 1/a. ) = (wk‘lami/q“, A5 ,wk,,naqc'qi"/q").
Consequently, for a, 8 € F,
9(0, ey ﬂ'+ﬁ, L ,0) s 0(61.-3{(1_’_}3)1/:1_‘\,) = (Ou"k‘l(a‘ + ,B)q(lql/‘?k, o }wk.m(a' + JB)qum/Qk).
We also have
0(0, oo+ B.0,0) = 9(6,!.-8(11/4,{) -+ 9(8;;851/%)
_ (wk]aﬂof!f]/qk’ Wk ma,qaqin/qk) + (wy lﬁqofli/fik} Wk mﬁqorfin/qk)

— (wk,l(a"""’*"l/"'*‘ + BHSBY ((Y(IO’I:H/QK' + ﬁqoqin/rn-))'

Since eg is non-zero, at least one of wy 1, ..., Wk, is NON-zero, say wy, # 0, where

r is minimal with respect to this property. Then, we have

Wi ?_(a,qoqi/qr\- + ﬁqoq’r/(ﬂr) = wy (o + 5)chi./qk_
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Thus,

atethlan 4 ﬁ%qi/fm = (a+ ﬁ)ﬁo‘}:-/‘lk {3.1.3)

for all e, 3 € IF.

By Theorem 3.1.6 in [1], the equation (3.1.3) happens if and only if
% € 1 = (p); equivalently, if and only if g¢. = g, where ¢ € G such that
G € q{p). 'T'his also implics that wy; = 0 if g¢} # g, for each j = 1,...,m.

Assume that (q,...,q. ) is the constant subscquence of maximal length of the

sequence {5;) and satisfies gp = ¢¢. = - = qq,..y. Then
9((35) 5 (0, v ,O,UJZ",-, sy Wipglty 0, c o ,0),

for each i = k, ...,k + ly. U < I, then {f(er),. .., 0{erty, )} is a linearly
dependent set in the veetor space F®" over F. So, there exists of’,...,af" € F,

not all zero, such that

I ik L
— ZQ(@;‘.H)LQP S ZE)(@kH.sm) =0 (Z e;‘.+ism) .
=0 §=0 i=0

I fx . : .
U ergiSa, = 2% Uiy where v; = (0,...,0,a{",0,...,0), with of* in

Then, 0 =
position &k + 7 and zero clsewhere, 0 < ¢ < ly;. This is a contradiction because
{vo,. -+, } is a linearly independent set in the vector space F®" over F. Hence

=

Now, let Sy = {¢l,... . ¢y, ; € G be the order set (strictly increasing) of
all elements in the sequence {Ss). Suppose also that, for each j = 1,..., Ny, the

oceurrence of ¢; in (Sy) is ly;. Then ly; > 1forall j=1,..., Ny and

o+ Ly, = 10 (3.1.4)

Therefore, for each g € Sy, there exist ¢, € Sy such that gq. = g; namely,
51 € ¢Sy and by, < B, However, by (3.1.2) and (3.1.4), we conclude that S = ¢53
and the occwrrence of g € (S1) is the same as occurrence of ¢~ 'gp = ¢ € (Sa).

Morcover, since 1 € Sy NSy, ¢ € 5y and ¢71 € Ss.
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Conversely, we assume the assumptions and then define n : A} — A
by 17{8a) = las, for cach a € F. For Sy = {1,...,q5} and Sy = {1,...,qy}, let
I; and I} be the occurrences of g; € (51) and ¢} € (Sy), respectively. Define a
permutation p : {1,.., N} — {1,..., N} by setting p(j) = n; if q¢; = q,,, for
each 7=1,...,qx. Now, foreach k=1,... /¥, we set

k
My == Z l; and oy o= Zl;,
J<p(k) =1

and set my == 0 = mjp. Foreach 2 € {1,...,m} such mj,_, < i < mj, we define
a ’ : fee1 I3
a(i) == mpm +7,

where i = mj_, +j. Then o : {1,...,m} — {I,...,m} is a permutation sat-
isfying the property that q¢f = geq), for all i € {1,...,m}. By sctting s; :=
4./ ¢o(y mod(p™ — 1) for each i = 1,...,m, we see that s; € 1T = (p). So, the

function g : F®™ — B defined by

vSn

6(3‘:1’ L2y o) ,:L’m) = (f”';l(l)’ mj?i?)’ Y :Lo(m))’
is a group isomorphism, by Theorem 3.1.6 in [1]. Moreover, for o € F and

(331:3;2 ce ,Qfm) € ]F&Bm:

O((21, T2, . -y Tm)Sa) = 0(z1a”, 2202, .. ., Tp™)
= ((#o)@™ @), (Er2ya®® ), .., (Zo(mya® ™))

e 51 fa{1)51 52 Ma(2)%2 S aim)im
(‘Lo(])a ! ",1’0’(2)0 : L g"a(m)a 7 )

' ] !
(s adh 82 i NER
= (aya®, ain o™, gl o )
_ W51 52 -
= (%(1)’ Totgy oo ’R’a(m))tﬁq

= 0{z1. 9, T )(Sa)

Thercfore (FP™, A;) = (F¥ A,). O
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3.2 Number of Near vector spaces

As in the previous scetion, we also denote by & the group U(p" — 1)/ (p)
and 1 by the identity of G and the number (up to the isomorphism) of near-vector
spaces F¥™ gver a finite field F is based on the number (up to the rclation ~ in
{3.1.1) of cquivalent classes in St(1,m, G).

In this section, we let .S be the set of all distinct elements in the suitable
sequence (S) on . By Theorem 3.1.7, we know that if |S1]| # |5z, then (S)) »
{S2). Thus, the total number of near-vector spaces up to the isomorphism is

min(m,|G})
> 1),
i=1
where T(¢) denote the number (up to ~) of suitable sequences (S) of length m

with |S] = 4.

It is clear that, for ¢ = 1, then T'(1) = 1. Now, we consider T(N) for
2 < N < min(m, |G|). Let St(1,m,N) denote the set of all possible distinct {#)
suitable sequences (S} having length m, |S| = N and 1 in the first position. By

basic combinatorics, there are suitable sequences in St(1,m, N):

|G| =1 m—1
N A N-—-1

= tN

For a suitable sequence ($) € St(1,m, N} having the set S = {1 =q¢1,¢,...,9x5},

by Theorcm 3.1.7, it means that equivalent class can be explicit as

[(9)] == {(9), 45" (S}, .- ay (9) )

Here, q;l(S) it means the suitable secquence obtained from (S) by multiplying
elements in cach position of the sequence by q; "and then rearrange their entry in
non-decreasing order. By the discussion above, each class in St(1,m, N)/ ~
contains N elements, then T(N) = (ty)/N.

However, it can oceur that |[(S)]| < N that is ¢; '(S) = ¢; *(S), for some
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1 <i#j <N orequivalently ¢(S) = (9) for some ¢ € S (¢ = q;q;l € S, because

1 € 8). Now, we consider the cases |[(S)]] < ¥, as the following.

Proposition 3.2.1. For a suitable sequence (S) € St(1,m, N), |[(SH < N if and

only if

1. S is a disjoint union of cosets in G/H such H C 8, for some non-
trivial subgroup H of G in which |H| is a common factor of m, N, |G|,

and

2. elements in (S) coming from the same cosels have the same occur-

fences.

Proof. (=) Suppose that |[(S)])} < N. Then ¢(S} = (S), for some ¢ ¢ S. This
implies that ¢S = 5. We claim that ¢*S = S for all k € N. Tf ¢*S = 3, then
¢S = ¢*(¢S) = ¢*S = S. By mathematical induction, we have the claim. Since
1€ S and ¢°S = S for all k € N, we have ¢* € S for all k € N. So {¢} C 5. Now,
we can write S = {1, ¢,¢% ..., ¢ @1 an} = {¢) U {g1, ... qn}, where
r = ord(g) and U is the disjoint union. By using the fact that ¢S = $, for all
k € N again, we have ¢®¢.., € S, for all K € N. Then ¢.,1{¢) € S. Thus we

can write S = {(¢) U ¢ (¢) U{g2rs1,.--,an}. After continuously repeating this

process, we can write
S={D Ut (@) Uzt (@ U U gvern (@) (3.2.1)

We conelude that S is a union of cosets in G/ {g}. Since r{N, ¢™ = 1. By using the
fact that ¢(S) = (9), the occurrences for g¢’ and ¢' must be equal for cach ¢' € S.
We claim that clements in S coming from the same coset in G/ (¢) must be the same
occurrences. Let ¢’ € S. If the occurrences for ¢*¢’ and ¢ are equal, then ¢ ¢/, ¢ ¢/
and ¢’ have the same occurrences. By mathematical induction, the occurrences for
¢*q¢ and ¢’ nwst be equal for all k€ N. Let ¢}, ¢, € ¢ (¢). Then ¢} = ¢'¢*' and

¢, = ¢'¢** for some ki, ke € N. So the occurrences for ¢ and ¢ are the same as the
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occurrences for ¢'. Thus, we have the claim. Denote ¢f = 1 and q} = (jr41, Where
i=1,2,..., N=r+1. Let nmy be the occinrences of g, where k = 0,1, ..., N—r+1.
By (3.2.1), we can conclude that m = r(mg + my + -+ + my_py1). Thus rjm.

(<) Suppose that H is a non trivial subgroup of G in which its order
divides ged(m, N, |G]). Let S be a disjoint union of N/|H}-elements in G/H and
clements in (S} coming from the same cosets have the same occuwrrences. Let ¢ € H
and ¢’ ¢ S. Since S is a disjoint union in G/H, we have g¢' € S. Then ¢’ € ¢71S.
Note that the occurrences for ¢' and gq¢’ are equal in (S). Since the occurrences for
gq in (S) are equal to the occurences for ¢/ in ¢72(S), we have the occurrences
for ¢ in (S) and in ¢~ 1(S) arc equal. Hence ¢~ *(S) == (S). Suppose that ¢, go are

in the same coset in G/H. Then ¢z = ¢1¢ for some ¢ € H. We have

()7 (5) = (ma) (S) = (@) ¢ () = () 7}(S).
Thus (q1) 4S) = {g2)71(S). Since [(S)] == {(5),% " (S),..., ¢y (S)}, we conclude
that [(9)] contains at most N/|H| sequences. .
An instant resultant of this proposition is as follow.

Corollary 3.2.2. If ged(mn, N, |G]|) = 1, then T(N) = (tx)/N. In particular, if

ged(m, |Gl) = 1, then the total number of newr-vector space up to the isomorphism

18
min{m, G
Z {tw) /N
N=1
and
|G| — 1 m—1
—tx
N-—1 N1

is divisible by N for each N = 1,2,...,min{m, |G|).

For B # H < G such that |H| is a divisor of ged{m, N, |G}), we denote
St(H,m, N) the sot of all suitable sequences (S) of length m satisfying (1) and (2)

in Proposition 3.2.1.
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Proposition 3.2.3. Let H, K be subgroups of G such that |H| and |K| are the
divisors of ged{m, N, |G|). Then St(K,m,N) C S{(H,m,N) if H < K.

Proof. Suppose that H < K. Lel (S) € St(K,m, N). Then S is a disjoint union of
cosets in G/ K. Since cach coset in G/I{ can be written as alK|/|H| disjoint union
of cosets in G//H, we have that S is also a disjoint union of cosets in G/H and

olements in (S) coming from the same cosets in G/H have the same occurrences.

Thus (S) € St(H,m, N). Hence St{i,m, N) C St(H, m, N}. u

The proof of Proposition 3.2.1 also asserts that if |[(S)]| < N, then this

class contains at most N/|I{| sequences. In fact, we have:

Proposition 3.2.4, Each [(S)], where (S) € St(H,m, N), contains exactly N/|H|
sequences if and only if H 4 K for any subgroup K # H of G such that |K| is a

divisor of ged(m, N, |G|).

Proof. (=) Suppose that H < K for some subgroup K of G such that |K| is a
- divisor of ged(im, N, |G]). Let {S) € St(K,m, N). So {S) € St(H,m,N). By the
assumption of Proposition 3.2.1, [(S)] contains at most N/|K| sequences, which is
exactly not N/|H| sequences.

(+) Suppose that [[(S)]] < N/|H|. Then there are disjoint cosets [g], [¢]
in G'/H such that ¢71(S) = ¢ 1(S), or equivalently, ¢(S) == (5) for some ¢ ¢ H.
Again, ¢'(S) = (), for all i € N and hence ¢'S = S. Since H € S, we have
¢H C ¢S = S for all i € N. Hence {g) H C S. Since G is abelian, K = {(¢) H
is a subgroup of G. We sce that H < K. Let ¢ € K. Then ¢’ = ¢'h for some
i€ N. and h € H. We claim that ¢/(S) = (5) for all ¢’ € K. Since h(S) = (S) and
¢(S) = (8) for all i € N, we have ¢'(S) = ¢'h{S} = ¢'(5) = (). Thus ¢'(5) = (5)

for all ¢’ € I and we have the claim. Now, we can write

S=KU {([;-_;_1, Cae :QN} = K LI q,.+llr{ e (jN_,-+1I(,
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where || = r. Then r|N and § is an N/|K| disjoint union of coset in G/K. Let
¢, ¢ € ¢ K. Then ¢ = ¢'¢' hy and ¢4 = ¢'q2hy. Since ¢(S) = (S), the occurrences
for ¢’ and ¢ must be equal for each ¢ € S. Note that the occurrences for ¢'gthy
and ¢'¢* must be equal in (S) and the occurrences for ¢'¢2he and ¢'¢™ must be
equal in (S). By the same process in the proof of Proposition 3.2.1, the occurrences
for ¢'q’ and ¢ must be equal for all 7 € N. Thus the occurrences for ¢ and ¢} arc
the same as the occurrences for ¢’. This also implies that m is divisible by r. Hence

| K| is a common factor of m, N, |G|. [l

By Proposition 3.2.1 and the proof above, yields us to conclude that:

Corollary 3.2.5. For a suitable sequence (S) € St(L,m,N), if |[(S)]| # N,
then |[(S)]| = N/|H| for some subgroup H < G such that |H| is a divisor of
ged(m, N, |G]).

Proof. Suppose that [[(S)]] # N/|H|. By Proposition 3.2.1, (S} € St(H',m, N).
for some IT" < G such that |H’| is a divisor of ged{m,N,|G|). Let H be the
largest subgroup of G which contains H’ and |H| is a divisor of ged(m, N, |G|). By

Proposition 3.2.4, [(S)] contains exactly N/|H| sequences. O

This motivates us to consider all possible subgroups of G that their or-
ders are divisors of ged{m, N, |G|). Tet {di,...,di} be the set of all divisors of
ged(m, N, |G]) and suppose without loss of generality that d; < .-+ < d;. Suppose,
for each d;, there are k; distinct subgroups of order d;; we refer to these subgroups
by Hyj, foreach 1 <i<land 1< j <k;. Denote Sy,(G,N) = {H;; |1 <j <k},

forcachi=1,...,1

Lemma 3.2.6. Let Hy, Hy € S54,(G, N), for some 1 <i <l such Hy # Hy. If there
is a suitable sequence (S} € St(Hy, m, N) N .St(Hy,m, N), then (S) € St{I{,m, N}
for some K € Sy, (G, N) such that d; > d; and HiHy C K.
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Proof. Assumc that (S) € St(H,,m, N) N St(Hy, m, N). Thus hi(S) = (S) for all
hi € Hy and he(S) = (S) for all hy € Ha. Let h € HyHy. Then b = hihy, for some
hy € Hy,hy € Hy. We have h(S) = hiho(S) = ni(S) = (9). Thus h(S) = (5),
for all h € H H,. Since 1 € S and S = S, we have h € 5. So {1 Hy; C 5. Now,
we can write S = H{Hy U {¢p41,...,qn}, where |H1Hy| = r. By using the same

process as the proof of Proposition 3.2.1,
Hliqg U q,.+1H1H2 Ll qj\f._r+lHlH2.

Then »|N and S is an N/|H;H,| disjoint union of coset in G/HHy. By using
the fact that h(S) = (S5), the occwrrence for ¢’ and ¢’ must be equal for each
g € 8. Let q,,45 € ¢ HiHy. Then ¢ = ¢'h and ¢} = ¢'g for some h, g € H Hy. So
the occurrence for ¢} and ¢ are the same as the occurrence for ¢'. By the same
process in the proof of Proposition 3.2.1, we can conclude that rjm. Hence |Hy Haj
is a common factor of m, N, |G|. Thus (S) € St{H,Hz, m, N), which complete the

proof. ' O

We observe that if (S) € St(H,m, N), then [(S)] € SHH,m, N). Thus,

by Proposition 3.2.4 and Lemma 3.2.6, St(Hy;, m, N}/ ~ contains exactly

el mo__ 1

N j /(N/dl)
W il

ey dy

equivalent classes {each class has exactly N/d; suitable sequences), for each j =
1,..., k. However, for ¢ < I, St(H;;, m, N) may contain some (S) € St(H;, m, N)
(and hence all S¢(H,;, m, N)), forsome s > iand 1 < 7 < &y which these equivalent
classes, [(S)], have order less than N/d;. Now, for cach 1 <i{ <{land 1 <j <y,
we define
S(Hy) = 1(S) € St(Hyy,m, N [[[(D]] = N/dy),
(N, d;) = % ! &—,: !

N N
d; k o; 1
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and C,(H;;) to be the set of all subgroups of order dy of G containing Hy;, for each
1 < s < 1. By the above discussion, Proposition 3.2.1, 3.2.4, Lemma 3.2.6 and by

basic combinatorics, we compute directly that;
|S(H;) =t(N,dp), foreachj=1,... k, (3.2.2)

I?(H(p;)jl =t{N,d1) |C1(H{1_1)j)|t(1\7, dp), foreachj=1,..., k., (3.2.3)

and, for 2 < v <[, 1 <5<k,

11
[S(Huysl = N di) = | > ISUDI = [C{Hu—u;)[H(N, ).
s=l—-vtl HECS{H{l—v}j)
(3.2.4)
Since S(H;;)’s are all distinct sets, there are exactly Y20 & Zi‘;l |S(11:;)] equiva~

lent classes of order less than N. So, there must be 3 [ti\r - Zi.ﬁl 2?:1 |§(Hij)|]

equivalent classes of order N. Therefore, the following is immediate.

Theorem 3.2.7. The total number of near-vector spaces F¥™ over a finite field F

is ezactly SmnmIC) TN which each T(N) is explicitly as
N=1

! ki
ta 1 L
SR Z}(di —1) ; |S(H;)l,

(=

where 1 < dy < -+ < dy are all divisors of ged(m, N, |G|) and H;; € Sq,(G, N),
foreachi=1,.. Jlandj=1,.. ki :=|Sq(C,N)|. Here, |S(H;)|’s can be read
from (3.2.2), (3.2.3) and (3.2.4), recursively.

We see from this theorem that the number of near-vector spaces depends
on the subgroups lattice of G. For example, in the case n = 3,p = 3, we have
Gy = U(26)/(3) = {1,5,7,17} and, in the case n = 2,p = 5, we have G =
U(24)/ (5) = {1,7,13,19}. Their group structures are illustrated as in the group

tables below:



Table 3 Group table of )

]
(a3}
jum—y
-J
et
~J

v 7T 5 1

Table 4 Group table of G

Goddsimmsid 13 1D

1 1 7 13 19
T ToAdr 3
SeCiseaEr Al 7
1919771300 730 1

We sce that G has only one subgroup of order 2, which is {1, 17}, whereas
(5 has three subgroups of order 2, which are {1,7}, {1,13} and {1,19}. By direct
calculation {listing all possible suitable sequences and then grouping them), we
have tables of the number of near-vector spaces on F®" corresponding to G and

Gy, with m = 4,5,6,7,8 as below:

Table 5 The number of near-vector spaces on GF(3%)

TN, Gt m=4 m=5 m=6 m=7 m=38

N=1 1 1 1 1 1
N =2 9 6 8 9 11
N =3 3 6 10 15 21
N =4 1 1 3 2 10

Total 10 14 22 30 43
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Table 6 The number of near-vector spaces on G F(5?)

T(N); Gy, m=4 m=5 m=6 m=T7 m=28

N =1 1 1 1 1 1
N =2 6 6 9 9 12
N =23 3 6 10 15 21
N=4 1 1 4 5 11
Total i 14 24 30 45

In fact, this calculation agrees with the calculation using Theorem 3.2.7.

Example 3.2.8. Letn = 2,p =7, then G = U(48)/ {7) = {1,5,11,13,17,19, 25,41}
Thus group structures is illustrated as in the group tables below:

Table 7 Group table of

G 1 5 11 13 17 19 256 41

A 1/ /6y 11 13 S V9 95441
5 b5 2561 17 19 41 11 13
11 11 1 25 41 13 17 & 19
B NS e, 4T ado . dile 7 ANTT
i7 17 19 13 11 1 &5 41 25
19 19 41 17 1 5 25 13 11
25 25 11 6 19 41 13 1 17
41 41 13 19 56 26 11 17 1

We see that G has three subgroups of order 2, which are {1,17}, {1,25} and
{1,41} also G has three subgroups of order 4, which are {1,5,11,25}, {1,13,19,25}
and {1,17,25,41}. By using Theorem 8.2.7, we have a table of the number of near-

vector spaces on F®™ corresponding to G withm = 4,5,6,7,8,9,10,11, 12 as below:



Table 8 The number of near-vector spaces on GF(7?)

37

T(N; Gym 4 5 6 7 8 9
N WN =] 1 1 1 1 1 | .1
N=2 12 14 19 21 26 28
N=3 21 42 70 105 147 196
N =4 12 30 92 150 314 420
Total 46 87 182 277 488 645

10

1
33
252
744
1,030




CHAPTER IV

CONCLUSIONS

In this chapter, we list all main results of this thesis below.

1. Let ¢ be any permutation of the indices {1,2,...,m} and A, = {0a | € T},

with the scalar multiplication on V is given by

W™ . Ty (rcla-q”(l), - . ,mma’"’{"‘)),
for all @ € F. Then A* is a subgroup of Aut(F®®) and (FO™, A) ~ (Ko™ A,).
2. Let A= {s,:a€F}actson V by

(B . . o 130\ T (:z:lcv'm’l1 N .. ot ),
where i, .., bw € {0,1,...,n— 1} and A = {t, 1o € F} acts on V by

(1 b 4z )td = P e ), Pl

for all @ € F. Then A" is a subgroup of Aut(V) and (F®", A) 2 ((F®™, A).

3. Let F = GP{(") and ¢;,¢q; € G. Then, (% + %)% = (a% + f4)% for all

a, B € Fif and only if ¢; = ¢;.

4, Tet (F®" A;) and (F¥™, Ay) be near-vector spaces, where A; and Ay are de-
termined by suitable sequence (S)) and (S3), respectively. Then (F®™, A;) =2
(F®™ A,) if and only if there is ¢ € S; such that S; = ¢S; and the occurrences of

qq; € (S1) and g} € (Sy) are the same for each j = 1,..., N, where N = |S1| = |94
5. For a suitable sequence {(S) € St(1,m, N), |[(S)])] < N if and only if
1. S is a disjoint union of cosets in G/H such H C S, for some non-

trivial subgroup H of ¢ in which |H| is a common factor of m, N, |G,

and
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2. elements in (S) coming from the same cosets have the same oeccur-

rences.

6. If ged(m, N,|G|) = 1, then T(N) = ({5)/N. In particular, if ged(m, |G]) = 1,

then the total number of near-vector space up to the isomorphism is

min(m,|G1)

Z (tn)/N

N=1
and

|G| -1 m—1
=ln
N—1 N -1

is divisible by N for each N =1,2,..., min(m, |G}).

7. Let H, K be subgroups of G such that | H| and | K| are the divisors of ged(m, N, |G}).
Then St(K,m,N) C St(H,m,N)if H < K.

8. Each [(S)], where (S) € St(H,m,N), contains exactly N/|H| sequences if
and only if H ¢ I for any subgroup K # I of G such that |K] is a divisor of
ged(m, N, |G).

9, For a suitable sequence (S} € St(1,m, N), if [[(S)]] # N, then |[(S)]| = N/{H]|

for some subgroup H < G'such that |H} is a divisor of ged(m, N, |G]).

10. Let Hy, Hy € Sq, (G, N), for some 1 < ¢ < [ such Hy # Hy. If there is a
suitable sequence (S) € St(H, m, N} N St{Hy, m, N}, then () € St(I, m, N} for
some K € Sq, (G, N) such that d; > d; and 1 H, C K.

11. The total number of near-vector spaces F®" gver a finite filed F is exactly

ZK&E”"'GD T{NY} which each T(N) is explicitly as

! ks
Y =1 Y B
i=1 i
where 1 < d; < -+ < d; are all divisors of ged(m, N, |G|} and H;; € 94(G, N),
for cach i =1,..., L and j = 1,... & = |Sq, (G, N)|. Here, |S(Hy;)|'s can be read
from (3.2.2); (3.2.3) and (3.2.4), recursively.
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