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ABSTRACT

This thesis is separated into two parts. The first part is to present iterative
methods to solve the fixed point problems in Banach spaces and the another part
is to propose iterative methods to solve the split type problems which are split
feasibility problems and split equilibrium problems in Hilbert spaces. We prove
the convergence properties of our proposed iterative methods in many directions.
Nevertheless, we give the numerical examples to demonstrate the effectiveness of

our theoretical results.



CHAPTER I

INTRODUCTION

The fixed point theory is one of the rapidly growing areas of research. This
theory plays a fundamental role in many branches of pure, applied, and computa-
tional mathematics, such as nonlinear analysis, optimization, economics. In 1922,
the Polish mathematician, Stefan Banach [3] established the important result on
fixed point theory known as the Banach Contraction Principle. Many researchers
have studied to generalize, improve and extend the fixed point theory. The con-
cept of a multi-valued contraction mapping was initiated by Nadler {50] and Markin
[48]. The authors [48, 50] concentrated the ideas of Banach’s contraction mappings
and multi-valued mappings which use the Haudorff metric and proved some fixed
point thecorems. Since then there exist extensive literatures on a multi-valued fixed
point theory which have applications in several areas, such as convex optimization,
control theory, differential inclusion, and economics (see [31] and references cited
therein). Approximating a fixed point of nonexpansive and multi-valued nonex-
pansive mappings has been happened to the difference of the iterative methods.
Sokhuma and Kaewkhao [63] proposed the iterative method of a hybrid pair of &
single-valued nonexpansive mapping and a multi-valued nonexpansive mapping in
2011. The strong convergence theorem for their iterative method was proven in
Banach spaces. Many researchers have generalized, improved and extended their
iterative methods for solving various problems.

The convex feasibility problem (CFP), is formulated as the problem of find-
ing a point in the nonempty intersection of finite family of closed convex sets in
one space. It has attracted the concentration owing to its extensive applications in
several applied disciplines diverse as approximation theorem, image recovery, signal
processing, control theory, biomedical engineering, communication and geophysics

(see [15, 23, 42, 61, 83]). A special case of convex feasibility problem (CFP) is the



split feasibility problem (SF'P), where some of the closed convex sets are related
to constraints in the range of a nonlinear operator. The split feasibility problem
(SFP) induced by Censor and Elfving [14] in 1994 is formulated as the problem of
finding a point of a closed convex subset in one space such that the image of the
point under a bounded linear operator belongs to & closed convex subset in an-
other spaces. Many researchers have studied and interested this problem due to its
application. The well-known ‘terative methods have been proposed for solving the
split feasibility problem (SFP) such as CQ algorithm of Byne [7], the applied Mann
iterative process of Xu [76], the subgradient extragradient of Vinh and Hoai [71].
On the other side, Korpelevich [41] presented the extragradient iterative method
where two metric projections onto feasibility sets must be found at each iterative
step. It improves the usual gradient projection iterative method (see 5, 62]) by
performing an additional metric projection step at each iteration. Many researchers
have modified and relaxed this iterative method in order to ensure the existence of
the solutions of various problems.

To be continue, we are interested in the split equilibrium problem (SEP)
which generalizes than the split feasibility problem (SFP) introduced by He [19]
in 2010. It is a generalization of various important problems involving split varia-
tional inequality problem (SVIP), split minimization problem (SMP), split common
fixed point problem (SCFP). To solving the split equilibrium problem is to find a
solution of equilibrium problem in one space such that under a bounded linear
operator, its image can to find a solution of equilibrium problem in another space.
Many researchers have studied and constructed iterative methods for solving the
equilibrium problem. The most interested iterative methods are the proximal point
iterative method and the extragradient iterative method for the equilibrium prob-
Jem. To solving the split equilibrium problem has used it for finding solutions (see
more [34, 25, 26, 28]).

Motivated and inspired by the work mentioned above, we propose itera-

tive methods for solving all mentioned problems and to investigate its convergence



theorems under suitable assumptions. Moreover we give numerical examples to
demonstrate our proposed iterative methods.

In the following we give a description of the contents of this thesis.

Chapter 11, We include some well-known definitions and some useful re-
sults that will be used in our main results of this thesis.

Chapter III. This chapter focuses on the proposed iterative method for the
fixed point problems of a hybrid pair of a generalized nonexpansive single-valued
mapping and a finite family of multi-valued nonexpansive mappings. The weak
and strong convergence theorems of the proposed iterative method are proven in
Banach spaces.

Chapter IV. We solve a problem of gradient projection iterative method
involving the minimization of the considered function which is ill-posed by using
Tikhonov's regularization [76] in the part of the extragradient iterative method and
combine with a generalized Ishikawa iterative method for solving the split feasibil-
ity and the fixed point problems of pseude-contractive mappings with Lipschitz as-
sumption on a closed convex subset in Hilbert spaces. On the other hand, we aviod
Lipschitzian condition by substituting a generalized Ishikawa iterative method to be
a generalized Mann iterative method in the proposed iterative method for solving
the split feasibility and the fixed point problems. The weak convergence theorems
of our iterative methods in Hilbert spaces are proven. Moreover, we give numeri-
cal results and compare its behavior with an Ishikawa-type extragradient iterative
method and a Mann-type extragradient iterative method of Ceng et al. [21].

Chapter V. In this chapter, we are interested in constructing iterative
method for solving the equilibrium problem. Each iterative method constructed by
many researchers for solving this problem has advantage and disadvantage differ-
ently, so we focus on the extragradient iterative method for solving the equilibrium
problem such that its disadvantage is a condition of a equilibrium bifunction which
need Lipschitz-type continuity on a closed convex subset in Hilbert spaces. This

condition is very strong and so difficult to approximate. Another interested it-



erative method is the proximal point iterative method such that its disadvantage
is when a equilibrium bifunction is a generalized monotone bifunction such as a
pseudomonotone bifunction, a regularized equilibrium problem can not be strongly
monotone so the existence and the uniqueness of the solution can not be con-
firmed. Next in 2015, Khatibzadeh et al. [37} solved this risen problem by using
a pseudomonotone bifunction in the proximal point method for finding the solu-
tion of the equilibrium problem under different assumptions. Solving the multiple
set split equilibrium problem is separated into two parts. In section 5.2, we will
propose iterative methods by combining the extragradient iterative method with
the proximal point iterative method of a psendomonotone bifunction under con-
ditions of Khatibzadeh et al. [37] and prove the weak and strong convergence of
the proposed iterative methods. In section 5.3 we will propose similar iterative
methods in the section 5.2 but in the part of the extragradient iterative mnethod,
we avoid Lipschitz-type continuity on a closed convex subset in Hilbert spaces by
using linesearch procedures of Tran D.Q. et al. [69] and prove the weak and strong
convergence of the proposed iterative methods. Finally, we close this chapter by
demonstrating numerical examples which apply the Nash cournot oligopolistic equi-
librium problem.

Chapter V1. The conclusion of this thesis is presented.



CHAPTER II

PRELIMINARIES

In this chapter, we present several definitions, notations, and some useful
results that will be used in the later chapter.
Throughout this thesis, we denote R stands for the set of all real numbers

and N the set of all natural numbers.

2.1 Basic results

Definition 2.1.1. [44] A linear space or vector space X over R is a set X with
the binary operation addition defined for elements in X and scalar multiplication
defined for numbers in R with elements in X satisfying the following properties:
for all 2,4,z € X and o, B € R,

(VL) o +y=y+a

(V) (24 y) + 2= 2+ (y + 2)

(V3) there exists an element 0 € X called the zero vector of X such that z-1-0 =

for all z € X

(V4) for every element & € X, there exists an element —2 € X called the additive

inverse or the negative of x such that z 4- (—2) = 0;
(V5) alz +y) = az+ oy,
(V6) (a+ B)e = azx + PBz;
(V7) (af)z = a(fz);
(V8) 1.z =u.

The elements of a vector space X are called wectors, and the elements of R

called scalars.



Definition 2.1.2. (44] A norm on a linear space X is a function {| - || : X =+ R
with the following properties:

(N1) ||z|| = 0 for all x € X

(N2) ||lz|| = 0 if and only if x = 0;

(N3) ||ez|| = le||z|| for all scalars o € R and each € X;

(N4) l + ]| < {lzlt + [iyl| for each =,y € X.

A norm linear space (X, || - ||) is a lincar space X equipped with a norm || - ||.

Definition 2.1.3. [44] An inner product space is a vector space X along with
a real-valued function {,-) called an inner product which associates each pair of

elements z,y¥ € X. An inner product space satisfies the following properties:
(11) (z,z) > 0for all z € X;

(12) {(z,z) =0 if and only if 2 = 0;

(13) {az,y) = afz,y) for all scalar o € R and each z,y € X;

(14} {z,y} = (y,=) for each z,y € X;

(15) (x+y,2) = (z,2) + {y,2) for each z,y,z € X.

Theorem 2.1.4. [44] (Schwarz inequality) Let X be an inner product space. For

each 2,y € X, we have

=, 1] < llzlllyll-

Definition 2.1.5. [44] A sequence {z,}nen in a normed space X is said to con-
verge (strongly) to an element z € X if lim, e |2, — 2| = 0. We usually write
iMoo &y = & OF T — « as 7. — oo and call the element = the limit of the

sequence { Ty, bnen-



Definition 2.1.6. [44] A sequence {2, }nen is a Cauchy sequence if for every ¢ > 0

there is N € N such that ||z, — 2,| <€ for all m,n > N.

Definition 2.1.7. [65] A normed space is said to be complete if every Cauchy

sequence is convergent.

Proposition 2.1.8. {44] Let X x ¥ be an inner product space. It is complete if

and only if both X and Y are complete.

Definition 2.1.9. [66] A Banach space is a complete normed space.
Example 2.1.10. I, and L,[0,1}, 1 < p < oo are Banach spaces.
Definition 2.1.11. [66] A Hilbert space is a complete inner product space.
Example 2.1.12. [ is a Hilbert space.

Theorem 2.1.13. [44] A strong convergent sequence in a Hilbert space is weak
convergent with the same limit. In particular, a weak convergent sequence of a

finite dimensional Hilbert space is a strong convergence with the same limit.

Definition 2.1.14. [66] A sequence {z, tnen in a normed space X is said to be

bounded if there exists a positive number M such that ||a,|| < M for alln € N.

Theorem 2.1.15. [66] Every bounded sequence in a Hilbert space possesses a

weakly convergent subsequence.

Definition 2.1.16. Let A be a nonempty subset of H. The sequence {z,} is said

to be Fejermonotone if and only if
Nper — || < ||z, — z||, forevery n€ N and z € A.
Let X be a normed space, we denote the set B(z;7) 1= {z € X : [jz—z|| <}

a ball with center x € X and radius r > 0. Next, we recall some useful sets in a

normed space.



Definition 2.1.17. [44] A subset A of a normed space X is said to be open if for
each © € A, there exists 7 > 0 such that B(z;r) C A. A subset B of X is said to

be closed if its complement X\ B is open.

Definition 2.1.18. [44] Let A be a subset of a normed space X and x € H. Then,
« is said to be an interior point of A if there exists r > 0 such that B(z;r) C A.

The interior of A is the set of all interior points of A and denoted by int(A).
Definition 2.1.19. [44] Let A be a subset of a normed space X. The closure of A
is the smallest closed set containing A and it is denoted by cl(A).
Let us recall useful facts related to convergence and closedness which will

be needed later.
Theorem 2.1.20. [44] Let A be a subset of a normed space X. Then,

(1) @ € el(A) if and only if there is a sequence {#n}nenw C A such that z, — ©

ag n — 4-00.

(2} A is closed if and only if for any sequence {Zp}nen C Awithe, 2z € X as

n — +o0, we have & € A.

2.2 Convexities

Throughout this subsection, we let H be a Hilbert space.
Definition 2.2.1. [66] A subset C of H is said to be convez if cx+ (1 —a)y € C
for every z,y € C and for every a € (0,1).
We will mention that the arbitrary inte.rsection operation yields convexity.

Theorem 2.2.2. [4] Let {C;: j € J} be an arbitrary collection of convex sets in

H. Then, their intersection (;c ; C; is also convex.
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Definition 2.2.3. [27) A subset C of H is a cone if oz € C whenever z € ' and

a € (0,+o00)

Definition 2.2.4. {27] A convex subset C' of H and T € C. A vector d € H is

normal to ¢ at & if

(d,z— %) <0, forevery € C.

Observe that if d is normal, then so is Ad for A > 0. The collection of all
normal forms the cone called normal cone and is denoted by N¢Z.

A Banach space X is uniformly convez if for any two sequences {z,}, {¥n}
in X such that

lzn]] = llynll = 1 and n]g](}o w4+ 1l = 2,
lim, e ||y — ¢nl| = 0 holds.

Proposition 2.2.5. [73] Let X be a uniformly convex Banach space and let r > 0.
Then there exists a strictly increasing continuous convex function g : [0,00) —

[0, 0} with g(0) = 0 such that
Az - (1 = Wll> < Allell® + (1= Mllgl® = ML= Vgll= — vl
forall z,y ¢ B, = {z € X : ||z]| <} and A € [0,1].
In the following definition, we recall the convexity of a real-valued function

which goes together with the convexity of a sct as we have recalled above.

Definition 2.2.6. [66] A function f : H — R is said to be conves if for any

2,y € H and for any a € (0, 1), there holds

flaw+ (1= a)y) < af(@) + (1 - a)f(y).

Next, we recall some semicontinuities of a function on a Hilbert space.

Definition 2.2.7. [66] A function f : H — R is said to be upper semicontinuous

on H if {z € H: f(z) < A} is an open set for all A ¢ R,
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Definition 2.2.8. [66] A function f : H — R is said to be lower semicontinuous

on H if {w € H: f(z) <)} is a closed set for all A € R.

In order to present very useful properties of semicontinuities, we denote the

extended real number [-o0, +00] = R U {—o0, +o0}.

Definition 2.2.9. [4] Let D be a subset of [—o00,400]. A number a € [-c0,+0c0)
is the (necessarily unique) infimum (or the greatest lower bound) of D if it is a
lower bound of D and if, for every lower bound @ of D, we have & < a. This
number is denoted by inf(D). The supremum (or least upper bound) of D is

sup(D) := ~inf{-b: b e Dj.

Remark 2.2.10. Note that if D is bounded from above in R, we know from the
completeness of R that the supremum of D exists, If D is not bounded from above
in R, in this situation, we have sup(D) = +co. Similarly, if D is not bounded
from below in R, we have the infimum inf(D) = —oco. In this viewpoint, the set D
always admits an infimum and a supremum in [—oo,+o00}.

Definition 2.2.11. [65] Let f : H — R be a function. For a sequence {&,}nen © H
the ltimit inferior of { f(x) }nen in [—oo, +o0] is

lim inf f(@n) = sup Jnf flew)

and its limit superior in [—o00, +o0] is

limsup f(z,) := inf sup f(zxn).
n—+o0 n2laN

The following theorem gives the characterization of lower semicontinuity in

the term of limit inferior.

Theorem 2.2.12.-[65] Let f : H — R be a function. Then, f is lower semicon-

tinuous at z € H if and only if, for every sequence {&,}new in H,

t, =2 as k— 4oo implies f(#) < liminf f{2,).
n—00
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It is alike to the lower semicontinuity, we also have the characterization of

upper semicontinuity in the term of limit superior.

Theorem 2.2.13. [65] Let f: H — R be a function. Then, f is upper semicon-

tinuous at @ € H if and only if, for every sequence {z;, }nen in H,

T, — % 88 k — +oo implies limsup f(z,) < f(z).
TT—r oD

Definition 2.2.14. [65] A function f : /7 — R is said to be continuous at z € H

if, it is lower and upper semicontinuous at x.

The following theorem concerning a suficient condition for continuity of a

convex function.

Theorem 2.2.15. [70] Assume that A is finite dimensional. Then a convex func-

tion f: H — R is continuous.

The following definition involving differentiabilities of a function in Hilbert

spaces.

Definition 2.2.16. {4} Let f: H — R be a function and z,s € H be given. The

directional derivative of f at  in the direction s is

flz-tis) - f(@)
t bl

7 1
(@, 5) = lim

whenever this limit exists, The function f is said to be Gateaux differentiable at

« if its has directional derivatives f'(x, s} for all s € H and

f’(:L‘, 3) ={g,8)

holds for some ¢ € H. The element g is called Gateaux derivative or Gateaux

gradient of f at z and is denoted by V f(z).

Definition 2.2.17. [4] Let f : H — R be a function and « € H be given. The

function f is said to be Fréchet differentiable or, shortly, differentiable at 2 if there
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exists an element y € H such that

o @)~ f@) =
(Ili—0 12|

The element y is called Fréchet derivative or gradient of f at x and is denoted by

The following theorem concerning the relationship between these two dif-

ferentiabilities,

Theorem 2.2.18. [4] Let f : H — R be a function and z € H. If f is Fréchet
differentiable at «, then it is Gateaux differentiable at @ and D f(z) = V f(x).

Definition 2.2.19. [4] Let f : H — R be a function and x € H. An element

g € H is a subgradient of f at x if

f) = f(z) + {9,y — x) for every y € H.

The set of all subgradients of f at  is called subdifferential of f at @ and
may be denoted by 8f(x), .e., 8f(z) ={g € H : f(y) = fle)+{g,y—),Vy € H}.
If 3f () # 0, we say that f is subdifferentiable at .

In order to guarantee subdifferentiability of a function, we need the conti-

nuity as the following theorem.

Theorem 2.2.20. [85] Let f : H — R be a convex function. If f is continuous
at some element zp € H, then it is subdifferentiable. Furthermore, if f is lower

semicontinuous, then it is also subdifferentiable.
We close this subsection by providing the relationship between differentia-
bility and subdifferentiability.

Theorem 2.2.21. [85] Let f : H — R be a convex function and » ¢ H. If f is
Gateaux differentiable at z, then f(z) = {Vf(z)}.



13

Next, we recall some properties of bifunctions on C x C where C'is a closed

convex subset in a Hilbert space H.

Definition 2.2.22. [6] A bifunction f: C x ' — R is said to be

{i) monotone on C if

fla,y) + fly,2) <0, forall z,y € C;

(ii) pseudomonotone on G if

flz,y) 2 0= f(y,x} <0, forall ,yeC;

(iii) pseudomonotone on C' with respect to S C C'if

flz,y) 2 0= fly,z) <0, forall z € S,y €C;

(iv) Lipschitz-type continuous on C' if there exist two positive constants In, Ly

such that

flay) + fly,2) 2 flzy2) = Luflz — y\12 — Lofly - ?«’UZ, for all =,y,%z € C.

2.3 Operators

Throughout this section we also let C' be a closed convex subset of a Hilbert space

H. We denote the set of fixed points of an operator I": H — H by
Fig(T) = {z € H: Te =z}
In the following we will recall some useful operators and its properties.

Definition 2.3.1, Let 7 : H — H be an operator which is said to be nonexpansive
if
IT2 Tyl < llo — ]l for all m,yc H,
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and 7' is called to be firmly nonexpansive if 21" — I is nonexpansive, or equivalently,
(z —y,Tx — Ty) > |Tx — Tyl?, for all z,y € H,
alternatively, T is firmly nonexpansive if and only if T can be expressed as
1
T = —Z_(I + S )1

where S : H — H is nonexpansive.

Next, we recall the definition of the metric projection and its properties.

Definition 2.3.2. Let ' be a nonempty subset of H and @ € H. If there exists

an element y € C such that
|z =yl <|lz—c|| foral ceC,

then the element y is called a metric projection of @ onto C' and is denoted by Fp.
Further, if Poz exists and uniquely determined for all © € H, then the operator

P : H — C is called the metric projection onto C.

We can guarantee the existence and uniqueness of the metric projection by
the following theorem.
Theorem 2.3.3. {10] Let € be a nonempty closed and convex subset of H. Then
for any x € H there exists a unique metric projection Fox.

The following are some properties of the metric projection which will be
used in our main results.

Proposition 2.3.4. Let x € H and z € C. Then

(1) 2=FPoz = (e—2y—2 <0 foral yed;

(2) 2= Pov & lle— 2P < eyl ~ lly— 2| forall yeC;
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(3) {z —y, Pox — Poy) = |Pex — Poy|? forall y c C.

Moreover, it is well-known that metric projection Py : H - ' is firmly

nonexpansive, that is,

{x —y, Por — Poy) > || Pox — Poyll?

& 1P — Poyll? < llo =yl = I = Po)o — (T — PoyylP, Vay € H.
(2.3.1)

Let H be a Hilbert space, the inequalities are hold: for all ,y, z € H, then

e+ g]* = llel® + 2{w, y) + 1yl (23.2)

oL~ a)yll2 = oflelf+(1—a)ylE—a(i—a)l—yl]? where a ¢ [0,1), (2.3.3)
and

la+By4-v2))? = allzl*+ Bllyl* +-7lll* - afllz — gl — avllz—2l* - Bylly — 2l

(2.3.4)

where @, 8,7y € [0,1] with o+ S+ y=1.
The following definitions are some nonlinear operators which are important

basic operators that we will discuss in later chapters.

Definition 2.3.5. T' . H — H is called a contraction operator if there exists a

positive real number p € (0,1) such that
|7z — Ty|| < pllz —yl| for all z,y€ H.

Definition 2.3.6. T' : H — H is called a Lipschitz operator if there exists a

positive real number L such that
T2z —Ty|| < Lllz —y|| forall z,y€ H.

Befinition 2.3.7. Let € be a closed convex subset of H and T : C — ' is called

a uniformly L-Lipschitz operator if there exists a positive real number I such that

7"z — Ty < Life —y|| forall z,y € C' and n € N.
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Definition 2.3.8. Let C be a closed convex subset of H and T': C' — ' is called

a pseudo-contraction if
(Tz — Ty,z —y) < ||z —y|* foral z,y€C,
if and only if
Tz — Ty||® < ||z —wl? + (I - Ta— (I =T)y||* forall z,yeC.

Proposition 2.3.9. [21] Let T be a pseudo-contractive mapping with the nonempty

fixed point set Fiz(7"), then the following conclusion holds:
(Ty -y, Ty —&*) < [Ty —y|)’, forall ycC, o*e Fiz(I).
Next, to overcome the L-Lipschitzian property, we suppose that pseudo-
contraction mapping 7" satisfies the following condition:
(Ty—y,Ty—2)Y<0VyeCVzel. (2.3.5)
Next, we recall the definition of operators which are used in our main results.

Definition 2.3.10. Let T : H — H be an operator. Then

(1) T is said to be monotone if
(& —y,Tx—Ty) >0, foralla,y € H;
(2) T is said to be [-stongly monotone with 5 > 0, if
(@ —y,Tx — Ty) > Bllz —yli*, forall ,y € H;
(3) T is said to be v-inverse strongly monotone (v-ism), with v > 0, if

(x —y, Tx —Ty) > v||[Tz — Ty|* for all z,y ¢ H;

(4) T is said to be pseudomonotone, if

(Ty,z —yy > 0= Tz,x —y) >0, forall z,y € H.
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It is easy to check that a B-strongly monotone mapping is monotone and

a monotone mapping is pseudomonotone.

Example 2.3.11. Let C' be a nonempty closed convex subset of Rand T: €' —+ R

be a mapping,.

(1) If we take Tz = 1—2 and C' = [0, 1], then it is easy to check that the mapping
T'is a pseudomonotone mapping, neither a monotone mapping nor a strongly

monotone mapping.

(2) If a mapping 7" is defined by Tz = ¢, where ¢ is a constant and C = R.

We observe that the mapping T is monotone, but not strongly monotone

mapping.

Proposition 2.3.12. 8] Let 7': H — H be a given mapping. Then

(1) T is nonexpansive if and only if the complement I —T is %—ism;
(2) T is v-ism, then 4T is Z-ism, for v > 0;
(3) T is averaged if and only if the complement I — T is p-ism for some v > 1
Indeed, for a € (0,1), T is a-averaged if and only if 7 — T is glcrism.
The following definition is very important called the demiclosed principle.

Definition 2.3.13. Let 7' : H —+ H be a mapping. Then (I — T) is said to be
demiclosed at zero if for any sequence {z,} C H with z, =~z and z, —T%, = 0

we have z = T2

The following theorem is due to Opial [52] involves the demiclosed principle

of a nonexpansive operator.

Theorem 2.3.14. [52] If an operator T : H -+ H is nonexpansive with Fix(T') # 4,

then it satisfies the demiclosed principle.
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The following definition of operators will play an important role in this
thesis. Let H; and Hy be two Hilbert spaces with the inner produets (-, ) and the

associate norm || - ||.

Definition 2.3.15. [44] Let A : H1 — H» be an operator. Then

(1) A is said to be linear if

Alaz + By) = aAx + pAy forall z,y € Hy and for all o, 5 € R;

(2) A is said to be bounded if there exists a real nmumber A > 0 such that

Azl g, £ M| 2| m, for all z € Hy;

(3) A is said to be confinuous at an element z € H; if for every sequence
{Zn}nen C Hy such that 2, — = € Hy as n — oo, we have the sequence
{Az, }hew C Ha satisfies Az, — Az € Hy as n — co. And, A is said to be

continuous if it is continuous at every element of Hy.

Definition 2.3.16. [44] Let A : H; — H, be a bounded linear operator. The

Az
Al = sup 1A
otzer; | |z]lm,

is called a norm of the operator A.

number

The following theorem gives some useful properties of a linear operator.

Theorem 2.3.17. [44] Let A : Hy —» Hy be a linear operator. Then the following

statements are true:

(1) If A is bounded, then

Azl < ANzl for every = € H),

{2) A is bounded if and only if A is continuous.
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Definition 2.3.18. {44] Let A : H; — H; be a bounded linear operator. An

operator A* : Hy, —» H, is called an adjoint operator of A if

(Az, 9V, = {x, A'y)r, forall @ € Hy and for all y € Hs.

Of course, we can guarantee the well-defined of the adjoint operator of a

bounded linear operator by the following theorem.

Theorem 2.3.19. [44] Let A : H; — H, be a bounded linear operator. Then
there exists a unique adjoint operator A* : Hy —» H; of A, Furthermore, the

adjoint operator A* is bounded linear operator with norm

LA™Y = [|A].

The following theorem provides a general property of the adjoint operator

which is used frequently.

Theorem 2.3.20. [44] Let A : H; — H, be a bounded linear operator. Then it
holds that
JATAll = | AAT| = JIAlI*

2.4 TFurther Convergence Tools

Lemma 2.4.1. [74} Let {a,}, {bn} and {c, } be sequences of nonnegative real num-
bers satisfying
Qa1 < (L4 cn)an + by, foralln e N,

where 3> b, < coand ), ¢, < 0o, Then:

(1) limy,oe0 @, exists;

(i) if liminf, o0 @p = 0, then lim, e an = 0.
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Definition 2.4.2. [59] Let I be a nonempty subset of a Banach space X and let
{,} be a sequence in X. We say that {x,} is of monotone type (I) with respect
to I if there exist sequences {d,} and {e,} of nonnegative real numbers such that
S0 160 < 00,307 L&y < 00, and || — 2| < (L +8)l|zn —pll +en foralln e N

and p € F.

Recall that dist(z, F) = inf{|lz —y|} : y € F} is the distance from a point
to a subset [' in X.

Proposition 2.4.3. [59] Let F be a nonempty subset of a Banach space X and
let {z,} be a sequence in X. If {z,} is of monotone type (I} with respect to &
and liminf,_ e dist(z,, F') = 0, then lim, ,©, = p for some p € X satistying

dist(p, F') = 0. In particular, if F'is closed, then p € I

Lemma 2.4.4. [60] Let X be a uniformly convex Banach space, {A,} be asequence
of real numbers such that 0 < a < A, < b < 1, for all n € N, {@,} and {y,} be

sequences of X satisfying, for some » > 0,

(i) limsup,_,, [zl < 7
(ll) limsup”_,oo ”yn“ S L8]

(iil) Himy, o0 | Anzn + (T = An)unll = 7.

Then lim, e || — 2|l = 0.

Lemma 2.4.5. [64] Let X be a Banach space which satisfies the Opial property
and {z,} be a sequence in X. Let u,v € X be such that lim,_, ||z, — ¢ and
HiMyse0 ||2n —v|| exist. If {@,,} and {z,,;} are subsequences of {,} which converge

weakly to u and v, respectively, then u = v.

Lemma 2.4.6. [87] Let I be a real Hilbert space, C be a closed convex subset of

H. Let T: C = C be a continuous pseudo-contractive mapping. Then.
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(1) Fiz(T) is a closed convex subset of C.

(2} (I —T) is demiclosed at zero.

Moreover, we utilize a weak-cluster point of the sequence {x,}, denoted by
ww(zy) = {’L : Ty, — @ for some subsequence {z, } of {m,,}}
Lemma 2.4.7. [40] Let H be a real Hilbert space and {2} be a bounded sequence
in H such that there exists a nonempty closed convex set €' of f{ satisfying:
(1) for every w € C, limy,_,q [|2n — wl} exists;

(2) each weak-cluster point of the sequence {z,} is in C.

Then {x,} converges weakly to a point in C.

Lemma 2.4.8. [52] (Opial condition) For any sequence {z,} C H with z, — &,
the inequality

lim inf |2, — 2| < liminf ||z, — yj
n—0o0 303
holds for each y € H with y # 2.

Lemma 2.4.9. [77] Let C be a nonempty closed convex subset of H. Let {zn} be

a sequence in # and u ¢ H. If any weak limit point of {x,} belongs to C' and
e, — u|| < flu— Poul|, forall n€N.

Then z, — Pou as n — oo.
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CHAPTER 111

ITERATIVE METHODS FOR SOLVING THE

FIXED POINT PROBLEMS

In this chapter, we focus on iterative method which is a hybrid pair of a
generalized nonexpansive single-valued mapping and a nonexpansive multi-valued
mapping for solving the fixed point problems. Finally we give a numerical example
for supporting our main results.

Throughout of this chapter, we denote that £ is a nonempty subset of a
Banach space X. Let CB(D) and KC(D) be the families of nonempty closed

bounded subsets and nonempty compact convex subsets of D, respectively.

3.1 Introduction and preliminaries
The Housdorff metric on CB(D) is defined by
H(A, B) = max{sup dist(z, B),supdist(y, 4)} for 4, B € CB(D),
reA yeB

where dist(z, B) = inf{||x — y|| : y € B} is the distance from a point  to a subset
B.

Let t : D —» D be a single-valued mapping and T : D — CB(D) be a
multi-valued mapping. Denote that Fiz(t) = {x € D : & = tz} is the set of fixed
points of t and Fix(T) = {& € D : z € Tw} is the set of fixed points of T A point

x is called a common fized point of t and T" if @ = {z € Tx.

Definition 3.1.1. [68) Let ¢ : D — D and I : D — D be single-valued mappings.
We say that ¢ is generalized T-asymptotically nonexpansive if there exist sequences

{kn} € [1,00) and {s,} C [0, 00) with lim, 400 by, = 1 and limy, 00 5n = 0 such that
“tnf‘" - tny” < kn”I@' - Iy“ + Sn,

for all z,y € D and n € N.
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If [ is an identity mapping, then a single-valued mapping ¢ reduces to a
generalized asymptotically nonexpansive mapping. If s, = 0, for all » € N, and
I is an identity mapping, then a single-valued mapping ¢ is called an asymptoti-
cally nonexpansive mapping. In particular, if &, = 1, s, = 0, for all n € N, and
I is an identity mapping, a single-valued mapping ¢ reduces to a nonexpansive
mapping. The fixed point theorems for generalized I-asymptotically nonexpansive
single-valued mappings in uniformly convex Banach spaces can be found in [68].

The following exampie shows that ¢ is generalized [-asymptotically nonex-

pansive,
Example 3.1.2. Define

1 1 T
g =sin—,fo=—, where —— <z < Bl and x +# 0,
z T

o[

This implies that

1 1 1 1 1
Isin“(g) - sin"(§)| 8 |sin(5) —|—sin(§)| + =

1 1 1
< inf— — — s
<2 sm(zx gy)l + 7
1 1 1
< 2 arcsin(sin(% T B o
1 1 1
=9].. . | ALY
123; 2y 3 2n
~ |1 ; | 1
= i 27
={lz — ly| + !
B o
Moreover, we know that ¢ is not nonexpansive. Set © = % and y = ﬁ:%

LT ., T LT T
|sm(§) - sm(—g)) = ]sm(g) +Sm(§)l
1+ 1] = [2].
2 2 4
o=yl =12 (<2 =2 = Lama)

Therefore |Tx — Ty| > | — y|.
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The following example shows that the fixed point set of a generalized [-

asymptotically nonexpansive mapping is not necessarily closed.
Example 3.1.3. [54] Define a single-valued mapping ¢ : [~2, 2] = {—2, 3] by

x, if @ €[-%,0)
ted 0, if =0 (3.1.1)
at, if 2 € (0,3,
and
(0

Ir=g forall ¢e [_5’ §]

Then ¢ is generalized I-asymptotically nonexpansive and Fix(t) = [~%, 0) which is

not closed.

In 2011, Sokhuma and Kaewkhao [63] proposed the iterative method of a
pair of a nonexpansive single-valued mapping ¢ and a nonexpansive multi-valued

mapping T' as follows:

Yn = (1 o a'n)wn + QpZp,

Tnyl = (1 I JBn)xn +,Bntyn) ne N:

(3.1.2)

where z; € D, z, € T%, and 0 < a < ap, B, < b < 1. They assured the existence of
a strong convergence theorem for the iterative method (8.1.2) in uniformly convex
Banach spaces.

In 2011, Eslamian and Abkar [29] introduced the iterative method for a pair
of a finite family of asymptotically noncxpansive single-valued mappings {;}~ ; and

a finite family of quasi-nonexpansive multi-valued mappings {T:}Y, as follows:

Un = 1(10)1171 + E:,il ﬂr(:)zi(:)a

; (3.1.3)
Tpyl == ad )mn -+ Z;—I amt"yn, n € N,

where @1 € D, 2 € Tix,, and {af}, {8} are sequences in [0,1] for all i =
1,2,..., N such that Zz —0 o) = Zz Oﬂm
In 2015, Suantai and Phuengrattana {55] extended the results of {29, 30, 63]
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in uniformly convex Banach spaces. They introduced the following iterative method
for a pair of a finite family of generalized asymptotically nonexpansive single-valued
mappings {t;}), and a finite family of quasi-nonexpansive multi-valued mappings
{TiHL:
" (O)’Un + E: lﬁ:(f)zg), (3.1'4)
Tyl = o, + Zx—l a’n)tuJ,;, n €N,
where 2, € D, 29 € Tiz,, and {o:(t)} {ﬁ,f)} are sequences in [0, 1] for all ¢ =
1,2, ..., N such that YN af) — YV g — 1. They [55] proved the weak and
strong convergence theorems of the iterative method defined in (3.1.4) in Banach
spaces.

Inspired by the above convincing, in this chapter, an iterative method for a
hybrid pair of a finite family of generalized I-asymptotically nonexpansive single-
valued mappings and a finite family of generalized nonexpansive multi-valued map-
pings is established. Moreover, the weak and strong convergence theorems of
the proposed iterative method in Banach spaces are proven. The obtained re-

sults can be viewed as an improvement and extension of the several results in

[29, 30, 33, 55, 63, 82).

3.2 Convergence theorems

Let D be a nonempty closed convex subset of a Banach space X. Suppose that
{L}X, is a finite family of asymptotically nonexpansive sclf-mappings on D with

a sequence of real numbers {un)} C [1,00) with limy,_e s = 1. Therefore
172 — 17yl < vl - yll,

forall z,y € D, foralli=1,2,..., N and for ali n ¢ N.
Assume that {t;}, is a finite family of generalized I;-asymptotically non-
expansive self-mappings on D with the sequences of real numbers {h,‘f )} < [1,00)

and {sy» )} C [0, 00) with lim, e EP =1 and limy,eo s = 0. Therefore

lef — 7yl < kPN ~ Lyl + s,

P>
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for all @,y € D, for all ¢ =1,2,..., N and for all n € N,
Letting k, = maxj<;cn{k%’} and s, = maxlS,-SN{sg) }. It follows that

lim,, o0 kn = 1, and lim,,_ys, 5, = 0 and
82 — £yl < ka2 — Iy + sn,

forall z,y € D, for alli=1,2,...,N and for all n ¢ N.

Let v, = maxi<ic N{u,(f)}. It is clear that lim, e v, = 1 and
17w — Lyl < wnlle —yll,

forall z,y € D, forall=1,2,..,N and for all n ¢ N.
Put r, = max{k,,v,}. Thus we have lim, o7, = 1, [[{f2 — 'yl <

Tnllz =yl and
3 — 8l < kallffe = Iyl 4+ sn < rolle = yll 4 50,

forall z,y € D, foralli=1,2,..., N and for all n € N.
We now prove the following lemma for helping to prove the theorem in this

section,

Lemma 3.2.1. Let I be a nonempty closed convex subset of a Banach space
X. Let {t;}X, be a finite family of generalized I;-asymptotically nonexpansive
single-valued mappings on D with sequences {k,} C [1,00) and {s,} C [0,00)
such that .2 (r3 — 1) < co and Y e s, < 00 and {£}{’, be a finite family of
asymptotically nonexpansive single-valued mappings on D with a sequence {1} C
[1,00). Let {T;}Y, be a finite family of quasi-nonexpansive multi-valued mappings
of D into CB(D). Assume that F = (Y, Fiz(t;) N Y, Fia(l) NN, Fia(T;) is
nonempty closed and Tip = {p} forallp € F and ¢ = 1,2,...,N. Let 21 € D and

the sequence {z,} be generated by
g = B0m0+ L, B, ) € Tha (3.2.1)
Tp41 = 0'1(10)1::?. + Z -1 a(l)tnym n €N,

where {a$?} and {g§ ®1 are sequences in [0,1] for all 4 = 1,2,..., N such that

ZNU o =1 and Z_i:{, ﬁ,(f) = 1. Then lim,_,s ||z, — pi| exists for all p € F.



27

Proof. Assume that p € F. Therefore
nsr — pll = oz, + Z Pty —
N

= ”0-'(0)3' nt+ Z a’g)t?yn - Z ag)p“
i=1 i=0
N

= laz, + Y oDy, — alp— Z o
i=1 i=

N
< oz —pll + ) PNty — ol

i=1
N

<O, 2+ o) (v-znyn 4 ) )
=1

for alli=1,2,...,N.

Since

iy — Pl = Ilﬁ(o)’anrZﬁ(")I"z(*) ?l

N
“3(0)%4_2)5(1)1:1 T(:) Z (1)pn
i=1 i=0

N
< BNz —pll + Y BONE2E —

3=l

(D) [zn —pll + Zﬁ(zjrwz“z(z) -7l

t—l

= Al -l +Zﬁ“)rndlst (o7, Tp)

< ﬁ(o)”%n plf + Z (Z)7HH(Ti$naﬂp)

=1
N

< /57(10)”3:n - p” + Zﬁs)ﬂ:llﬂ"n - p”:
i=1

we obtain that
N
”:E?H-l - p“ SQ'S?) uq"ﬂ - p“ + Za:(r:) (Tvgluyn - p” + Sn)

N
<o® o 7l + Z ol (100Nl + 3 A0rl ) + )
i=1



28

N
=(a? + 7 ) DB o P”JF?SZ”MZﬁS)“@ —Pl|+za§f’sn
=1

N
<(a'g]) + 4 Z a{:) (0))“'1'71 pll + 7l Z a(z) Zﬁr(:)”mn =l + sa
i=1

i=1 i=1

N
<afPan —pll +7a(r2 D DBl — ]

" zaw S 60—l + o

i=1

Oz, — || + 3 Za(‘) z BN, — pl| 4 5n

i=]

=al fw, — pl| 475 Za(‘)!l’vnﬁpllﬂn

<20z, — pll 13 Za(")umn || -+ sn
{=1

N
:T?z Za’r(f) “-'L'n — ]J” + Sn
1=0

=rilfe. — pll + s
:(1 L (T‘i = 1))I|$n - P” + Sn.

It now follows from Lemma 2.4.1, we have lim, , ||z, — p|| exists for all p € F.

This completes the proof. O

Theorem 3.2.2. Let D be a nonempty closed convex subset of a Banach space
X. Let {#;}¥, be a finite family of generalized I;-asymptotically nonexpansive
single-valued mappings on D with sequences {k,} C [l,00) and {s,} C [0,c0)
such that >°°° (r3 — 1) < oo and Y oo, s, < 00 and {L;}; be a finite family of
asymptotically nonexpansive single-valued mappings on D with a sequence {v,} C
[1,00). Let {T:}Y,, be a finite family of quasi-nonexpansive multi-valued mappings
of D into CB(D). Assume that F = (v, Fiz(t;} N, Fiz(l;) NN, Fiz(T) is
nonempty closed and Tip = {p} forall p ¢ F and i = 1,2,..., N. Let @; € D and
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the sequence {z,} be generated by

_y (O)fbn _|_ Ez 16(2)1'1'12’(:’), (t) c Tmn

o (3.2.2)
1/1-1.{..1 == (¥ 'Ln + Zl—l an)tny,“ 7 E N

where {a{’} and {8} are sequences in [0,1} for all i = 1,2,..,N such that
ZNOQQ) =land 53N, B = 1. Then the sequence {x,} converges strongly to a

point in F if and only if lim inf,, e dist(zn, F) = 0.

Proof. The necessity is obvious. For proving the converse, suppose that
lim inf,, o0 dist(®,, F) = 0. It follows from the proof of Lemma 3.2.1, we can
conclude that the sequence {x,} is of monotone type (I} with respect to F. By

Proposition 2.4.3, we obtain that the sequence {a,} converges to a point in . []

The following lemma, is a main tool for proving our results.

Lemma 3.2.3. Let D be a nonempty closed convex subset of a uniformly convex
Banach space X. Let {#;}), be a finite family of uniformly L-Lipschitzian and
generalized J;-asymptotically nonexpansive single-valued mappings of D) into itself
with sequences {k,} C [1,00) and {s,} C [0,00) such that >332, (r} — 1) < oo
and Y7 8, < oo and {L}Y, be a finite family of uniformly T'-Lipschitzian and
asymptotically nonexpansive single-valued mappings of D into itself with a se-
quence {1} C [1,00). Let {T;}Y; be a finite family of quasi-nonexpansive multi-
valued mappings of D into CB(D). Assume that 7 = N, F iz (t) NN, Fia(l;)N
N, Fiz(T;) is nonempty and Tip = {p} for all p € F and i = 1,2,.., N. Let

27, € D and the sequence {z,} be generated by

Yo — 0, +Zz— ﬂ(z)lrn,zg‘), 2D e T, (3.2.3)

Tppl = ot T + Z; Ia,l)t'.’yn, n €N,

where {a’} and {89} are sequences in [0,1] such that 0 < a < oD B <b<1

foralli =1,2,..,N, YN, o) =1and SN B = 1. Then we have the followings:
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(3) Nl ljn — P20 | = 0 for all §=1,2, N;
(i) linnooo |Tn — tin|l = 0 for all i = 1,2, o N

(iif) if it o0 1240~ 12289 == 0, then linniy oo [l —Tizall = 0 forallé =1,2,.., V.

Proof. (i) Letp € F. We conclude from Lemma 3.2.1 that limyco ||z, — || exists.

Assume that limy, seo [|2n — P = €. This implies that, for each 7 = 1,2,..., N,

[Py — pll < rallyn — 2l +5n

N
= 2|0, 4 Y BT — pll + 5

i=1

N
< 1280z, —pll + 12D BRNE 2D — pll + s

i=i
N

< 7‘?118}9) en — 2l + o Zﬁg)t}n]lsz) —p|| + sn

N
£ T?zﬁg))”ﬂ:n —pll + TiZﬁf(:)“zf(:) ~pll + a
i=1

N
— 71121@(10) 2, — Pl + 7?15: B diSt(zr(:)sTi’P) + Sa

i=1
N
< 1260w, = pll + 72 Y BOH(Tiwn, Tip) + 50
i=1
N
< T'iﬁf(zo) o — 2l + T Z BN wn ~ pll + sn
i=1
= 130 — Dl + 5
It follows that

limsup ||t7y, — pl| < lim sup(r2|lyn — il + 8n) < Jun sup(r3 ||an — Pl + 8a)-
n—ood 00

n—co

Since limy, o0 7n = 1 and fimy,ye0 80 = 0, we have

Y sup ||y, — pll < limsup s — pll < limsup lzn — 2l = ¢ (3.2.4)
n—ed n—eo

300
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Because of limp. o0 [|Zns1 — Pl = liMusoo ||oz$10 Nay —p) + Zf\;l o (t2y, — p)|| and
by Lemma 2.4.4, we obtain that

Hm @, — t7yall = 0 for all i = 1,2, oy N (3.2.5)
n—300

Since

N
s — 2l < P llen —pil + > a@ltFy. - 2l

i=1
Ve N
= (1= 3300 =l + Y Ntk =
i=1 i=1
N N .
< (1= 32 o) llow ol + DS 2l 2l o)
i=1 i=1

we have
N I
|&nss — pll = [l — Pl < Zaﬁf)(rﬁllyn — p|| = lzn — 2]l + 8n)-
i=]
This implies that

|I$n+1 N p“ B "ﬂ;n . p“ + “mn r"p” < “mn-l»l - p]l! I ”'Lﬂ r p“ 4 ”'Ln — p“

bN Doimt a,(f :

< 12 lyn = pl| = lltn — pll 4+ 80 + ll2n =2

= rllyn —pll +8n-

By (3.2.4), this yields

H:’En+1 - plblf\_r' ”’Bn - p“ + “3711, — p”)

< liminf(r2)|yn — pil + s»)
n—oQ

¢ = lim inf (
n—roo
= lim inf ||y, — Pl
n—oe

< limsup ||y — p|| < e

n—oo

Since

11728 — pl| < wall2) — pll = vadist(29, Tip) < vl (T, Tip) < vallzn - pl;

TR
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it follows that

limsup {17289 — p|| < limsup vpl|zn — pl| = c.
RGO n—roo

‘Therefore

N
¢ = lim |lgn —p|| = lim 87 (@, —p) + 2@&”(1&3) ~ )l

=

By Lemms, 2.4.4, we have

lim ||@, — Iz =0 for all 4=1,2,..., N.
O

—
(ii) Since t; is generalized I;-asymptotically nonexpansive, for all ¢ = 1,2,..., N, we

obtain that
”t?wn - mn” = ”t:‘ﬂ}n o t:}y" + t?‘yn —_ a’,‘n”
<Nt n — yall + 16y — Tnll
| S sz?,“mﬂ F yn” + s, + “t?yn T ﬂ;n”

Using the definition of {,,}, we have y, — 2, = Sp, B2 ~2,). This implies

that

N
1 — wull 75Y 7 BOMFZD — 2all + 1790 — @all -+ 50

i=1
< TRl e — wall + 1Y — Zall + 80
By (i} and (3.2.5), we obtain that
Jim ltn — tan)| =0 for all ¢=1,2,...,N. (3.2.6)
For each ¢ = 1,2, ..., N, we have

#n — tizall <ljen — Tpalf + || Tns1 — t?+lwn+1“ + ”t?HfEnJrl - t?“‘”n”
+ [t e — tiwa|
<|wr — Tni1ll + [|Frs1 — t?+1$n+1” + Ll|wns1 — @a]| + |It?+1$n — £z,

SO+ Dllwn = @npill + l@nss = 8 wnpal] + Lt zn — 2]
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N
<+ L) Yy a@llzn = gl + loner — 6w | + Lt 0 — 2l

i=1
By using (3.2.5) and (3.2.6), we can conclude that lim, . ||z, — ;@] = 0 for all
i—1,2,..,N.

(iii) Since
12 — all < 1122 = I22P0 + 11728 = @

< Vnl|@n — zr(:)” 71 ”Iz‘nzr(zi) = Zn})
< valllen = 1P20N 4 |28 = 2@+ 11720 — ]
and by (i}, we obtain that
Jim ', — 2] = 0. (3.2.7)
Since
lzn = Lidnll <len — ol + |8as1 — Iin+1$rl+1“ + ”I;a+1$n+1 W I?-H*'Bn“
H| Iz, — Lw,|
Nen — 2naall + lEnss — I;1+1$n+1” A+ T|ns1 — @all + ||Iz'n+1$n ~ L

SO+ D) en — zapsll + l2nt = B 2nall + Tl 20 — 20

N
<140 S a@w, = Pyl + fenss = I Gpa || + Tl 20 — @all,

i=1

and by (3.2.5) and (8.2.7), we can conclude that lim, e[|z, — Lizs|| = 0 for all
i=1,2,.., N. [

Next, we prove a strong convergence theorem of the proposed iterative
method in a uniformly convex Banach space. Moreover, we add uniformly L-
Lipschitzian of mappings {¢;}¥, and {T;}, satisfy condition (Z) in order to re-
duce closedness of F.

Definition 3.2.4. ([1]) A multi-valued mapping T : D — CB(D) is said to satisfy

condition (E,) where p > 0 if for each z,y € D,

dist{z, Ty) < pdist(z, T'z) + lz — y||.
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We say that T satisfies condition (£} whenever T satisfies (E,} for some p > 1.

Remark 3.2.5. We observe that if T is nonexpansive, then 7" satisfies the condition

(£1).

Theorem 3.2.8. Let D be a nonempty compact convex subset of a uniformly
convex Banach space X. Let {¢;}; be a finite family of uniformly L-Lipschitzian
and generalized I;-asympfotically nonexpansive single-valued mappings of D) into
itself with sequences {k,} C [1,00) and {s,} C [0,00) such that > oo (r3 — 1) <
oo and 3% 5, < oo and {L;}; be a finite family of uniformly T-Lipschitzian
and asymptotically nonexpansive single-valued mappings of D into itself with a
sequence {v,} C [1,00). Let {T3}Y,; be a finite family of quasi-nonexpansive multi-
valued mappings of I into CB(D) satisfying condition (F). Assume that F =
NN, Fiz(t)NNY, Fia(l) NOY, Fiz(T;) is nonempty and Tip — {p} forallp € F
and ¢ = 1,2,..., N. Let z; € D and the sequence {z,} be generated by

©) @) () G)
Tnt+ Yo B IPzn”, 2z € Tizy
“ ot X "’ (3.2.8)

Tpil = a;(:])ibn + Za—l a’n)tnym n e N

where {ag)} and {8} are sequences in [0,1] for all i = 1,2,..., N such that
0<a<odp? <b<i, >y Oaﬂ) — Land 33N, ) — 1. Suppose that
lim,, 00 ||z(i) Ii(i)z,(f)u == foralli =1,2,..., N. Then the sequence {z,} converges

strongly to a point in F.

Proof. Using Lemma, 3.2.1, we obtain that {2,} is bounded. By the compactness
of D, there exists a subsequence {z,;} of {x,} converging strongly to p € D. By

condition (F), there exists u > 1 such that

dist(p, ;p) < [lp — @, || + dist{zn,, Tip)
—<— ||p - 'rl:ﬂj” + #diSt(mle7ﬂ$nj) + “‘T'Ilj _p“
= 2l|zn, — p|| + pdist(@a;, Tivn;)

< 2l|en, — pll + plln, — 25|
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< 2”"311; —pll + r“f”mnj - Iﬁjz(i)” + ﬂ”I?jz(i-) - z(i)”a

i “nj T nj
for all i = 1,2,...,N. By using Lemma 3.2.3 (i), we obtain that p € Tip for

all + = 1,2,...,N. This implies that p ¢ ﬂfil Fiz(T;). Since t; is uniformly L-

Lipschitzian, we have

ltip = pll < lltep — tigen; | + Wity — @yl + llen, — 2l
< L”a;"j —p|l + ”timﬂj — Tn; I} + ”"‘;n; —pll

= (L+ Dl = pll + fsn, — 2ol

for all i = 1,2,...,N. By Lemma 3.2.3 (ii), we obtain that ¢;p = p for all 1 =
1,2,..., N. This implies that p € ﬂil Fix(t;). Since I; is uniformly T-Lipschitzian,

we have

1 Zip = pll < | Fip — Liwn; || + ien, — n, ||+ [2n; — 2|
< Dljn; ~ pll + M in; — &l 4 llon, — plf
= (T + Dllwn, = pll + [Hizn; — 2l
for all ¢ = 1,2,...,N. By Lemma 3.2.3 (iii), we obtain that Ijp = p for all ¢ =
1,2,..,N. It follows that p € ﬂf\f__l Fiz(L;). Thus p € F. Since lim, o0 |2 — p|

exists, we have limy, o0 [|#n — pll = limje0 [|&n, — pl} = 0. Hence {z,} converges

strongly to a point in JF. ]

We now illustrate the following example for supporting Theorem 3.2.6.

Example 3.2.7. Let R be the real line with the usual norm | -| and let D = [0, 1].

Define single-valued mappings £y, ts, I1, and I on D as follows:
2 :I:
tiw = arctanz, fyx = a°, [jo = v and Lz = 5

Define multi-valued mappings T} and 13 on D by

T T

&
T1(L‘ = [O, g and Tg.’b’ = [Z, E]
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Let {z,} and {y,} be generated by

v = B0, + YL, 8O, D € Tia,

2 (i

- ) (3.2.9)
Tpy1 = Qn ' Ty + Zi:l on 1 Yn, NE N,

w0 1 () 12n1 L (2) 1201 () 1 p() | 10n-1 5(2) _ 10n-1
where an’ = pm, an’ = g, an” = g B = B = Ty Br = i

for all n € N. Then the sequences {z,} and {y,} converge strongly to 0, where

{0} = N7, Fia(ts) 0 ey Piz(L) N (e Pie (7).

Solution We first show that ¢; is a generalized [;-asymptotically nonexpan-
sive and uniformly L-Lipschitzian single-valued mapping. Let k, = l and s, = (%)”
for all n € N. Therefore limy,—yeo kn = 1 and lim,, ;o 8, = 0. Since

liiz = |
|= 9l

)* for all @,y € D,

<1
S

we have

[the —tly] < |v —y| + s, foralln e N,

and we can show that #; is a uniformly L-Lipschitzian mapping with £ == 1. Since
t, is a single-valued nonexpansive mapping of D), we have 3 is a uniformly L-
Lipschitzian and generalized J3-asymptotically nonexpansive single-valued mapping
of D. Moreover (i, Fiz(t;) = {0} = (., Fiz(Z;). Both Ty and T are quasi-
nonexpansive multi-valued mappings satisfying condition (E) and (._, Fiz(T}) =

{0} (see [55]). Thus (2, Fiz(t) NV, Fia(L) N2, Fiz(Ti) = {0}.

For cvry € N, aff = of, ol = B o = 2L Y - ok,
0 = ol pY = 1021 Therefore the sequences {ady, {af}, {oy, {8,

{ﬂ,gl)}, {ﬁﬁg)} satisfy all assumptions in Theorem 3.2.6. By putting 2 = 2o and
AP = & for all n € N and by using the algorithm 3.2.9 with the initial point
#; = 0.5. The sequences {x,} and {y,} converge strongly to 0, where {0} =
N2, Fiat) 0y Fio(l) 0oy Fin(T).
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Table 1 : The value of the sequences {z,} and {y,} in Example 3.2.7

T Ty Yn

0.5000000 0.1750000

—_

(.1133181 0.0355693
0.0168875 0.0050975
0.0021379  0.0006325
0.0002512 0.0000734
0.0000283  0.0000082
0.0000031  0.0000009
0.0000003  0.0000001
0.0000000 0.0000000

@ 0 ~J S Wt e W o

Finally, we prove a weak convergence theorem of the proposed iterative

method in a uniformly convex Banach space.

Theorem 3.2.8. Let D be a nonempty closed convex subset of a uniformly con-
vex Banach space X with the Opial property. Let {¢}Y; be a finite family of
uniformly I-Lipschitzian and generalized [;-asymptotically nonexpansive single-
valued mappings of I into itself with sequences {k,} C [1,00) and {s.} C {0, 00)

such that 3% (rd — 1) < co and }"2 8, < oo and {;}[L, be a finite family of

=)
uniformly I'-Lipschitzian and asymptotically nonexpansive single-valued mappings
of D into itself with a sequence {r,} C [1,00). Let {T;}}; be a finite family of
quasi-nonexpansive multi-valued mappings of D into KC(D) satistying condition
(E). Assume that F = [, Fia(t;) N, Fiz(L) ﬂﬂ?il Pi2(T;) is nonempty and
Tip = {p} for all p € F and i = 1,2,..., N. Let z; € D and the sequence {z,} be

generated by

O, 0
'En—l— 1 I zn . ¢ Tix
Yo = P By n (3.2.10)

Tpyl1 = a'i(u Ty + z ]C‘-’n)tn'ym n C N

where {af’} and {8P} are sequences in [0,1] for all ¢ = 1,2,.., N such that
0<a<ad P <b<1 TV, af =1and N, 89 = 1. Suppose that
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lim, 00 ||z{’) Ii-(i)z,(f) I} =0 foralli=1,2,..,N. Then the sequence {x,} converges

weakly to a point in F,

Proof. By using Lemma 3.2.1, we obtain that {z,} is bounded. Since X is a
uniformly convex Banach space, there exists a subsequence {z,,} of {z,} con-
verging weakly to p € D. By Lemma 3.2.3, we have lim; o [z, — I}’ (Z)II =0,
W00 (|20, — i)l = 0 and lim, oo [[fitn; — %, || =0 for all i = 1,2,..., N . We
will show that p € F. Since T1p is compact, for all § € N, we can choose wy,; € Tip
such that ||z, — w,;|| = dist(z,,;, T1p) and the sequence {wy,} has a convergent
subsequence {w,, } with limy_,c w,, = w € Tip. By using condition (E), we obtain
that
dist(zn,, T1p) < pdist(@n,, T12n,) + |1Tn, — P-

This yields

%, = wll < l[@n, — wa, | + {lwn, — wll
= dist(zn,, T1p) + [Jwn, — ||
< pdist(Zry,, T1Tn, ) + |20, — 2l + lws, — wl]
< pellen, = 25N Nl @n, — Dl Jleon, — w]

< gl = 12 + pll 12l — 2§ +en, — 2l + llwn, — wl.

n,\

It follows that

limsup ||2z,, — w| < hmsup |%n, — 2l
k—co k—

From the Opial property, we can conclude that p — w € Tip. Similarly, it can
be shown that p € Tip for all i = 1,2,...,N. Therefore p € ﬂfil Fiz(T;). By

mathematical induction, we obtain that
Jll)ngo n, — t@n, [l = O for each m € N, (3.2.11)

for all ¢ = 1,2,..., N. Indeed, the conclusion it is true for m = 1. Suppose the

conclusion holds for m > 1. Since ¢; is a uniformly L-Lipschitzian single-valued
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mapping, we obtain that

I|$71j th"an i < “'bnj t:‘nmn;— I+ “t;nwnj - t?““’n; |

< ”a;“j - t;n“"nj” + L|lwﬂj - timn;“-

This implies that §m; e ||Tn, — 7 @a,|| = 0 for all 4 = 1,2,..,N. Therefore
(3.2.11) holds. Since ¢; is generalized I;-asymptotically nonexpansive, we obtain

that
lm sup [[72n; — 7| < i sup(kp[| 1" Tn; — ol + 5m)
jro0 j—300

< limsup(km{¥mllzn, — pll) + 8m)

oo

< limsup(ry,fan; — pff + $m).

j—reo
1t follows that
lim sup (hmsnp [t Tn,; — t"‘p”) < limsup [|@,; = pl|- (3.2.12)
m—3co F—oo i—oo

By Proposition 2.2.5, there exists a strictly increasing continuous convex function
g: [0,00) — [0, 00) such that

PP 1 1 2
A

1 1 | 1 .
s "”mnj 7 p||2 + ﬁ”f’*'nj - tinp||2 — —g(llp — ti"pl])-
2 4

Tn N

Therefore

p+t’”p

1
u < Hllmsup n; — pII” + +3 limsup ||q; — il
o0

lim sup “’LHJ —
")—)00

j‘?OO

— gg(llp —tpll). (3.2.13)

Since X satisfies the Opial property and {z,,} converges weakly to p, we obtain
that

+i'p
limsup Je,, —pI> < limsup o, — 5P
j—rco J—

By using (3.2.13), we have

1 1. 1 .
79Ul = 8"pll) < 5 limsup fjan; — pl* + 5 limsup [jan; — £ plf?
j—o0 Fro0



p+t?‘pnz
2

— limsup

wn_,— -
00

i.. 1.,
< 3 limsup ||z, —p|? + = limsup lzn, — ]2
2 j—o0 2 J—oo

— limsup |z, - p°.
F-re0

Therefore
o(llp — £l) < 2limsup flon, = I~ 2limsup o, — p|>. (3:2.14)
Jj—ro0 e
Using (3.2.11), (3.2.12), and (3.2.14), these yield

limsup g(|lp — #"p|)) < 2lim sup(limsup ||z, — #7"p{|*) — 2limsup ||z, — p[/®
M0 i—roo j

m—3o0 F—reo

<0.

Therefore lim,, o g{|lp = tp||) = 0 for all 1 = 1,2, ..., N. By using the properties

of g, we have lim,,, . ||lp — t/"pll = 0 for all ¢ = 1,2, ..., N. This implies that

I~ pl < litip — )+ 17 p )

< Lilp = 7l + ¢ p — pil.

This implies that ¢;p — pforall 4 = 1,2, ..., N. Therefore p € ()., Fiz(t;). Similarly,
we can prove that p € ﬂfil Fiz(1;). Thus we obtain p € F. We now show that {z,}
converges weakly to p. Suppose on the contrary. Then there exists a subsequence
{xn,} of {z,} such that {z,,} converges weakly to ¢ € D and ¢ # p. By the same
argument as above, we can show that ¢ € F. By Lemma 3.2.1, we obtain that
limy, o0 [|2n — || and lim, e J|2, — ¢|| exist. Using Lemma 2.4.5, we obtain that

g = p. Hence {2, } converges weakly to a point in F. This completes the proof. O

We now present the following example for supporting Theorem 3.2.8.

Example 3.2.9. Let R be the real line with the usual norm |-| and let D = [0, -+c0).

Define single-valued mappings t1,ts, I1, and I3 on D as follows:

e =——— it = /——, iz = d Iz = .
¥ T 2(1+ ) e e M T T,
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Define multi-valued mappings Ty and 75 on D by

Tz = [0, E] and The = {5, Z]

Let {z,} and {y,} be generated by

(0) @) n D 0
7,n+§ Izy', =’ €l
. = Pulian, € dian (3.2.15)

Tyl = Ofn 'Ln + Z 1an)t,}ym n e N,
1 = 2 » 0 1 n— 2 _
©_ 1 (1) _ 121 (2 _ 1201 ()__mn,ﬁ()ilﬂnlﬁ()_lonl

where an,” = Tane On = Tgepty On” = Tygps Pn 30n 16n

for all n € N. Then the sequences {z,} and {y,} converge strongly to 0, where

{0} = iy Fia(t) 0 iy Fie(h) 0 iy Fia(T).

Solution We first show that t; is a generalized I;-asymptotically nonexpan-
sive and uniformly L-Lipschitzian single-valued mapping. Let k, = 1 and s, = (3)*

for all n € N. Therefore lim,,_,o, kr, = 1 and lim,, 44, s, = 0. Since

. | S g
1+42nz l+2ny T (14 2nx)(1 4 2ny)'
-y
<
_|(1ﬂHrch)(l—l—ny)I
T Y 1
< N |

1+nx 1+ny on

|tz — tiyl < |

2‘7?,

for all z,y € D and n € N. Similatly, {5 is generalized [-asymptotically nonex-
pansive with k, = 1 and s, = ()" for all n ¢ N. Moreover (._, Fiz(t;) = {0} =
ﬂ?=1 Fiz(l;). Both Ty and T), are quasi-nonexpansive multi-valued mappings sat-
isfying condition (E) and (o, Fiz(Ti) = {0} (see [55]). Furthermore, we have
(2., Fia(t) NN, Fiz(L) O, Fia(T;) = {0}.

For every n € N, a(o) = ﬁ Off(zl) = 123’.;;;1, Ofr(tz) = ‘121[5‘;1: '(10) - ﬁ’
n a1 @ 1n-f  Therefore the sequences (a2, (VY {2}, {89,

{[3,,1)} {ﬁ(z) } satisfy all assumptions in Theorem 3.2.8. By putting A = &

and 2 = e for all n € N and by using the algorithin 3.2.15 with the initial

point #; == 5. Then the sequences {z,} and {y,} converge strongly to 0, where

{0} = ﬂ?:l Fix(t:) N ﬂ?=1 Fiz(l) N n?:l Fiz(Ty).



Table 2 : The value of the sequences {z,} and {y,} in Example 3.2.9

[

<n

Yn

= 7 T o)

10
11
12
13
14

5.000000
0.664154
0.101141
(.024007

0.000018
0.000006
0.000002
0.000001
(.000000

0.937500
0.172128
0.038240
0.010239

(.000008
0.000003
0.000001
0.000000
0.000000




CHAPTER IV

ITERATIVE METHODS FOR THE SPLIT FEASIBILITY AND

FIXED POINT PROBLEMS

In this chapter, we construct iterative methods by combining the extragra-
dient with regularization method due to a generalized Ishikawa-type and Mann-type

iterative methods for solving split feasibility and fixed point problems.

4.1 Introduction and Prelimilaries

In this section, we denote that C is a nonempty subset of a Hilbert space H. The

fixed point problems for the mapping T : C — C is the following:
find o € C such that Tx = 2.

Denote Fiz(1) = {& € C : Tz = x} be the set of solutions of the fixed point
problems.
In 1953, Mann [47] introduced the Mann iterative method as follows:
Tpy1 = (L —op)zn + 0, Tz, forallneN, (4.1.1)
where {a,} C [0,1).
And then in 1974, Ishikawa {45] introduced the Ishikawa iterative method
as follows:
Yy = (1 — 0,) & + 0Ty,
=1~ 0n) " (4.1.2)
Tpi1 = (1 — Bp)n + BnTyn, forall n €N,
where {a,}, {8.} C[0,1].
Next, Noor [51] introduced three-step iterative method as follows:
Yn = (1 - Urz)xri + on T,
2y = (1 - ﬂn)ﬂf'n + ﬂnTym (4'1'3)

Zp1 = (1~ Yn)n + L%, forall n eN,
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where {a,}, {8.}, {7} € {0,1]. Clearly, Mann and Ishikawa iterative methods are
special cases of Noor iteration.

The above iterative methods have been extensively studied by many authors
for approximating fixed points of nonlinear mappings and solutions of nonlinear
operator equations,

On the other hand, let H; and H, be two real Hilbert spaces and let ¢
and () be two nonempty closed convex seis of H; and Hy, respectively. The split

feasibility problem (SFP) has the following property:
find z € C such that Ax € Q.

where A : H; — H, is a bounded linear operator with its adjoint of A*. Denote
I'o = {2 € C: Az € Q} the set of solutions of the split feasibility problems (SFP}
and I' = {z € Fia(T)NC : Az € Fiz(S) N Q} the set of solutions of the split
feasibility and fixed point problems where 7' : H, — Hy and S': Ho — Hy .

Censor and Elfving [14] introduced the split feasibility problem (SFP) in
finite-dimensional Hilbert spaces for modeling inverse problems which arise in phase
retrievals and medical image reconstruction (7]. The split feasibility problem (SFP)
can also be applied to intensity-modulated radiation therapy (IMRT) [16, 17, 18]
and have been used in signal processing and image reconstruetion, see (7, 16, 8, 56,
75, 78, 86).

The original iterative method for solving the split feasibility problems (SFP)
is given in [14] under assuming the existence of the inverse of A. We know that
the finding of the inverse of A is difficult so this iterative method has not become
popular. A more popular iterative method for solving the split feasibility problems
(SFP) is the C'Q iterative method which introduced by Byrne [14] because it is
found to be a gradient—projection‘method (GPM) in convex minimization and a
special case of the proximal forward-backward splitting method [24].

Many researchers have studied the C) iterative method and its variant

form, refer to [12, 13, 72, 76, 79, 80, 84]. In 2010, Xu [76] applied a Mann-type
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iterative method to the split feasibility problems (SFP) and proposed an average

C(Q iterative method which proposed in the following:
Tpy1 = (1 — an)@y + anPo(l — yA* (I — PpA)z, for alln e N, (4.1.4)

where {a,} is a real number sequence in (0, 1) and « is a constant in (0, WEIIV) This
was proven to be weakly convergent to a solution of the split feasibility problem
(SEP).

For solving the split feasibility and fixed point problems, in 2012, Ceng et
al. [12] proposed an iterative method by combining the extragradient iterative
method which was introduced by Korpelevich [41] with the idea of Nadezhkina

and Takahashi [49). The authors proposed iterative process in the following:

29 € C' chosen arbitrarily,
Un = PC'(I - /\n(-[ - PQA))wm (415)
Tpa1 = ATy + (1 — an)(SPo(I — M({ — PoA) Yn, forall n e N,

where {a,} is a real number sequence in (0,1) and {\,} C [a,8] for some a,b €
{0, ﬂ;%”—,) They proved that the sequences generated by their iterative method
converge weakly to an element of the solutions of the split feasibility and the fixed
point problems of a nonexpansive mapping S on C.

In 2014, Yao et al. [81] studied the split feasibility and fixed point problems.

They [81] constructed an iterative method as the following:

xp € C chosen arbitrarily,
1y, = Polagu + (1 — ap)(@n — §A*(I — SPp)Az,)), (4.1.6)
Tr1 = (1 = Bty + BT (1 — m)un + vuTwy), forallm e N,

where {0y}, {5}, {1} are three real number sequences in (0, 1) and § is a con-
stant in {0, W), S . Hy —» Hy is a nonexpansive mapping and T': H; — H; is an
L-Lipschitzian pseudo-contractive mapping. They [81] proved that the sequences
generated by their iterative method converge strongly to solutions of the split fea-

sibility and the fixed point problems.
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Very recently, Ceng et al. [21] had motivation and inspiration from the work
of Ceng et al. {12] and Yao et al. [81]. They proposed an Ishikawa-type extragra-
dient iterative method for pseudo-contractive mappings with Lipschitz assunption

on 7', For given a4 € C as the following:
4

tn = Pol(an — AAY(I — SFy)Ax,,),

:::P L';‘"A,,A*I_SP An:
< zn G(rl“.' ¥ ( Q) y ) (4.1-7)

Wy = (1 =5 Ofn)zn + 0, Tz,

Tnyl = (1 Ti ﬁn)zn ) ﬁnTwm for all n € N.-

\

Moreover, they proposed a Mann-type extragradient iterative method for pseudo-

contractive mappings without Lipschitz assumption on 1" ag the following:

yn = Polzn — MA*( — SPp)Az,),

zn = Po(x, — A A (I — SFPR)Ay), (4.1.8)

Tnt1 = (1 — an)zy +anT'z,, foralln eN,
where S : @ — @ is a nounexpansive mapping and they [21] proved that their
sequences generated by their iterative methods converges weakly to a solution of
the split feasibility and the fixed point problems.

The mathematical term well-posed problem stems from a definition given

by Jacques Hadamard {32]. He believed that mathematical models of physical

phenomena should have the properties that:
(1) a solution exists;
(2) the solution is unique;
(3) the solution’s behavior changes continuously with the initial conditions.
Problems that are not well-posed in the sense of Hadamard are termed ill-posed.
If the problem is well-posed, then it stands a good chance of solution on a com-

puter using a stable algorithm. If it is not well-posed, it needs to be re-formulated

for numerical treatment. Typically this involves including additional assumptions,
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such as smoothness of solution. This process is known as regularization. Tikhonov
regularization is one of the most commonly used for regularization of linear ill-
posed problems.

Throughout this research, we assume that the solution set of the split feasi-
bility problem is nonempty. Let f : Hy — R be a continuous differentiable function,

the minimization problem
. 1 9
min f(x) = Sl Av = Fode]| (4.1.9)

is ill-posed. Therefore, Xu 76} considered the following Tikhonov regularized prob-

lem:

1 L
i E Y . 12 L = 2
Iglelélf (g == 2“A:L PoAz|* + 2(1’”3:” \ (4.1.10)

where o > 0 is the regularization parameter.

We observe that the gradient
Vi) = Vf{z) +alz = A*(I - Pp)Az + odx

is {c + || A}]*)- Lipschitz continuous and a-strongly monotone.

Lemma 4.1.1. [21] Let @) be a nonempty closed convex supset of a Hilbert space

H and S : @ — Q be a nonexpansive mapping. Set V¥ = A*(I — S§Pg)A, then

5 i St 2
(@ -y, V(@) - V@) > WIIW’ (@) = VLS W% (4.1.11)

In 2012, Ceng et al, [11] proposed iterative method by combining the reg-
ularization method and extragradient method due to Nadezhkina and Takahashi
[49] and they proved that the sequence generated by their iterative method con-
verge weakly to an element of the solution of the split feasibility and fixed point
problems.

We can use fixed point algorithms to solve the split feasibility problem on
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the basis of the following observation.

Let A > 0 and assume that z* € T. Then Az* €  which implies that
(I — Pp)Az* = 0, and thus, AM(I — Pg)Az* = 0. Hence, we have the fixed point
equation z* = (I — A({ — Pp)A)z*. Requiring that z* € C, we consider the fixed

point equation
a* = Po(l — MI — Pp)A)x* = Pe(I — AV fa™. (4.1.12)

It is proven in [76] that the solutions of the fixed point equation (4.1.12) are exactly
the solutions of the split feasibility problems; namely, for given «* € C, z* solves
the split feasibility problem if and only if z* solves the fixed point (4.1.12).
According to these motivaiions, we introduce the iterative methods by us-
ing a combination of an extragradient method with regularization due to a gen-
eralized Ishikawa iterative method for solving the split feasibility and the fixed
point problems of pseudo-contractive mappings with Lipschitz assumption on C
and nonexpansive mappings on 3. On the other hand, we aviod Lipschitzian con-
dition by proposing an iterative method which combine an extragradient method
with regularization due to a generalized Mann iterative method for solving the split
feasibility and the fixed point problems. We establish weak convergence theorems
for sequences generated by the proposed iterative processes. Finally we give numer-
ical results and compare its behavior with an Ishikawa-type extragradient iterative

method and a Mann-type extragradient iterative method of Ceng et al. [21].

4.2 Convergence theorems

The generalized Ishikawa-type extragradient with regularization itera-
tive method for pseudo-contractive mappings with Lipschitz assumption
In this section, we propose the generalized Ishikawa-type extragradient with
regularization iterative method for pseudo-contractive mappings with Lipschitz as-

sumption for solving the split feasibility and fixed point problems.
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Theorem 4.2.1. Let H, and H4 be two real Hilbert spaces and let C and @ be
two nonempty closed convex sets of Hy and Ha, respectively. Let A : Hy ~» Hy be
a bounded lincar operator with its adjoint of A*. Let S : @ — @ be a nonexpansive
mapping and let T : C — €' be an L-Lipschitzian pseudo-contractive mapping. For

2o € Hy arbitrarily, let {2, } be a sequence defined by

¢

y. = Po (rcn — M(AH(I - SPy)A + Q’nI)&;n)a

tn = Po(an — M(42( = SPQ) A+ a,,,I)yﬂ),

J wy, = (1 — dn)2n + 03T, (4.2.1) .
sn = (1= Br)zn + BuTwn,

[ @asr = {1~ ")zn + al'sn,

where {\,} C {s,7] for some x,7 € (0, m), {an} C (0,00), B2, < 00
adl<a<y<b<fi<c<o,<d< —JLW—_f—llJ;—lW Then the sequence {x,}

generated by algorithm (4.2.1) converges weakly to an element of I'.

Proof. Firstly, we will show that the sequence {25} is bounded. Let 2* € I'. Then
&t € Fig(T)N C and Az* € Fiz(S) N Q. Set vy = PoAn, Un = Tp — An(AXI —
SPo) A+ anD)an, V50 = A*(I = SPo)A+ a,] and V¥ = A*(I — SPg)A4, for
all n > 0. Since Pg is nonexpansive, we have
g — [P <[\ Pottn — a7 % < Jlutn — 2|
—[l2n — An (A*(I — SPo)A+ anI) & — 2|2
=|\zn — @ |* + 2An{@n — &%, AT (S P — I)Azy)

-+ )\i A* SPQ — I)Aa;n 2. Ann{2(tt, — :r;*) + ApQtny, Tn).
(4.2.2)

From A is a linear operator with its adjoint A*, we obtain that
{(wn — ', A*(Svn — Awy)) = (Az, — Ax*, Sv, — Awxp)
= (Az, — Az* + Sv, — Azn — Sv, + Ay, Su, — Auy)

= (S — Az, Sty — Awn) — ||Svn — Az,
(4.2.3)
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In combination with (2.3.3), we get that
(Sv,- Aa*, Svp— Ay} = %(HS’U“—A:::*||2+]|Svn—Amﬂ||2—||Aa:,,,—A:r;*|]2). (4.2.4)
Since §'is a nonexpansive mapping and (2.3.1), we have
| S, — Az*|)? = ||SPoAw,, — SPAz*|?
< ||PoAz, — PoAz®|?
< ||Azy, — Az*)? — |Jv, — Az,|%. (4.2.5)
In view of (4.2.3), (4.2.4) and (4.2.5), it follows that

(®, — 2", A*(Sv, — Amy))
1 . .
= 5I15v, — Az |2+ [|Svn — Azall® — [|Azy — A*|[”) = S0, — Ax|®

1 *
< 5(llAz, — A2 = ||vn — A*|® + ||Svn — Awall® — [ Aza ~ A*|?)
— ||Sv, — Az,|l?
1 £(12 ]. 2
30 5”“’1 — Az ” e 5”8'“11 = Amn“ . (4.2.6)

Substituting (4.2.6) into (4.2.3) and the assumption of {A,}, this implies that
g — &7 =llza — &> + AN APNSvn — Aznll® + 20020 — 27, A*(Svn — Azn))

o A0 {2y — &%) + ApQpp, Zn

< — &P+ A2 AT S — Aal?
2 ( - %”vn — Awa|l? — %HS’UH — Aeall?)
— A0 {2(2tn ~ T*) + ApOnn, Tn)

=len — 2" |I* = Anllwn — Az|l? = A1 = Al AP S ~ Az,|f?
— Ann (2(uy — &%) + ApoenZn, Tn)

<laen — 2| — Anan{2(up — %) + Apann, Tn). (4.2.7)

Now, we will show that

(V1500 (@) = VI ()0 =9) 2 gl VS = D I (429)



By Lemma 4.1.1, we have
1
(@~ 4, V() = V() = Wllvfs(fﬂ) - VIS
Observe that

(0 + 2| APV 5 (@) — V5o (y), & — p)
=(an + 2 A1) (anlle — ol +(V£5(2) - V5 (w), @ — 1)
—a2lle =yl + (V15 (@) ~ VI3W), x ~ g) + 20| A | — w)l?
+ 2 APV (@) - V()5 — )
>a2lle — gl + an(VF5(2) = V), 2 = v + 20l AlP|w — y)f?
11V 5 @) = V@)
>a2lle — il + 20, (V5 (2) — V()2 - 9) + IV @) - VW)
=[lan(z — y) 4+ V(@) = VI
=||Vf5 () — V 5 ()|
By Proposition 2.3.4(2), we get that
o — @ [2 <llew — AeV 527 0 = 2% = Nl = MV () — 2l
= &P = 2\alan — %, VIS () + XV ()P
Nlain — 2l o 22 (0 — 20y VIO (@) — AV 5 (32
=l — 1P = e — zall> + 22V £ (1), 5" — 2}
=l — & [[F ~ llon — zall” = 220 ({757 @) — VI (), 0 = @)
F (V5 (@), 27 = ) + (VI (), o — 7))
<lwn = 12— Uen — Zall® + 22n(VF5 (), Y — )
=fen — 27 ~ Nl — gal® = lgn — 2all?
+ 2(Tn — AV I (Yn) — Yns 20 — Yn)-

Combining (4.2.8) with Proposition 2.3.4(1), we have

(fb'n*}‘nvfsa"(yn) — UnyZn — yn)
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= (@0 — MV (@0) = Uy 20 — Yn) + Aa( VLI (@) — V5 (), 20 )
< AV F5n (@) = V5 (Yn), 20 — Yn)

<Al V £ () — VI (ga)lll2n — vall

< Mnlan + 20 AP len — yallllza — all. (4.2.9)

The hypothesis of {)\,} and (4.2.9), it follows that
”zn - 3"*”2 < flwn - -""*”2 =Lt~ yn||2 =mi= Zn“2
+ 2($n =S /\nvfsan (yn) —Yn, & — yu)
—_ ”mn - ‘E*Hz - ”'Ln - yn”2 - ”yn - zn|[2
+ 22 (0n + 20 AP 1z — Ynlllzn — gl
< lzn — 33*”2 — [|#n — yn“2 — |l ~ zn”2 + |20 — yn"2
+ AZ (e + 20| A ez — yall®
= ||z — 2*||* = (1 = AZ(om + 20| AP 20 — yall?
< an — 2% (4.2.10)
Likewise, we get that
lzn — | = Yo —a*I1® — (1 = X3 (an + 2142l — 9all- (4.2.11)
Since T is a pseudo-contractive mapping, we obtain that
1Tz — 1 < l120 — 22+l — Tl (12.19)
and
| Tw, — 2*||2 = || T((1 = on}2n + 0uT 2} — 2*|?
< (1 - Jvz)(zn — &) + (T2 ~ 5'3*)”2
+ (1~ an)zn + 05172 — T((1 — 0,) 20 + o' 2|7 (4.2.13)

Again using (2.3.3) and 7' is an L-Lipschitzian pseudo-contractive mapping, this

implies that

”(1 - Un)zn +opTay — T((l - Jn)z-u + UnTzn)llz
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= {1 = on){zn — T = on)zn + 0,T2,)) + On(T2n — T{(1 — on}en + onTz:))||?
= (L= au)ll7 — T((1 = on)2n + onT2n)IF + 0ul|T20 — T((L = n)2a + 00Tz
— on(l = on)llen — T

< (1= o)lzn — T = 00) 2 + 0 T2) |2 + 00 L2 20 — T2

— on(l = 0u)l|20 — T2|[?

= (1 = 0)l|2n = T(L — 0)2m + 0uT2) 2 = Gu(l — 05 — I?)| 20 — Tz .

(4.2.14)

Combining with (2.3.3) and (4.2.12), we get that

I = o) (2 — &%) + (T2 — )
= (1= 0n) |2~ 2 + || T — o*|? —~ an(l = on)llzn — T 2lf?
< (L=l = @|* + oulllen =27 + Nz — Tzl ]
- Un(l — an)llzn — Tznllz

= |lzn = 2|12 + 02120 — T2l (4.2.15)
By (4.2.14) and (4.2.15), it follows that

HTwn — a1 = | T((1 = on)2a + anT2n) — a*||?
< (L= n) (20 — 27) + on(T20 = )|
+ 1 = 6p)20 + 02120 — T{(1 ~ 00)2n + 00Tz
= |lzn — &2+ (1 — on)l|2n — T — o)z + 0Tz} |
— on(1 — 20, — 02 L) |2 — Tzl (4.2.16)
Likewise, since 1" is a pseudo-contractive mapping, we get that
178 — 2*[1% < |50 — 2*|1* + |50 — Tsull®. (4.2.17)

Consider

1T, — "1 = IT((L = Ba)2n + BuTuwn) — 2 |)°

< “(1 - )Bn)(zn - :L‘*) + 6n(Twn - -T*)Hz
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+ 11 = B)zn + BaTwn — T((1 = Ba)zn + BuTwa)l?,  (4.2.18)

and by combining with (2.3.3) and (4.2.16), we get that

1) = &) + Bul T — )P
(1= B)llzn = &P+ Bull T — "1 = Bu(d ~ Bln — Tuwn?
<(1 = Bulllzn ="+ B (12 — "I+ (1 =) 2w — T
~ ou(L~ 20 = L) = Tll”) = Buld— Bulln — Tun

S”zn 7 "'B*Hz - ﬁn(o'n - ﬁn)”zn - Twnuz = ﬂno'n(l RS 0121L2)”zn - Tzn||2-
(4.2.19)

Again using (2.3.3) and T is an L-Lipschitzian pseudo-contractive mapping , we

get
”(1 ¥ ﬁn)zn + BT wy — T((l 7 ﬁn)zn & /an‘qﬁ-'f"n)”2
=[1(1 = Ba) (20 = T((L — Bn)2n + BaT20n)) + Bu(Twy — T((L = Br)zn + BuTw )|
:(1 — ﬁn)”zn N T((l - ﬁn)zn + ﬂnTwu)”2 + ﬁn“T“}n 7 T((l = .Bn)zn + ﬁnT'wn)”2
= Bu(1 = B)llzn — T ||?
:(1 - ﬁn)”zn - T((l = ﬁn)zn + ﬁnTwn)Hz + ﬁnL2”wn = ((1 — ﬂn)zn + JBILI-FH-"'.%)”‘2
— Bu(1 = Badllzn — T ). (1.2.20)
Since w, = (1 — 0,)2, + 0,72, and 0, < d < m, we have

2w — (1 = Bu)zn — BaTwpll> =|(1 — 0n)2n + 0720 — (1 = Bu)2n — BuTwnl|?
=Billzn — Tw,|l” + o} |20 ~ T)?
— 2800z — Twn,y 20 — T'2,)
=Pallzn — Twa® + oz —~ Tl
— 2Bn0n 20 — Twy + T2y — T, 2n — T2n)
=Ballzn — Twal® + opllen — Tall”

— 2B16nll2n — T2a* — 28000 (T 2y — Twn, 20 — T'2n)
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Sﬁg”zn - T’wnflz + ‘7721”2:1 - Tznllz

— 2Bn0all20 — T2al® + 280l T2 — Twallli T2 — 2l
<Ballen — Twall® + 03|20 — Taall*

— 2Ba0nl|zn — Tonll* + 28n03 Ll 20 — T2alll| T — 2]
=Ballzn — Twy|* + ohllzn — Tl

— 2Bn0a(1 — on D)l 2n — Tzal*

SBillan = Twnll® + opllzn = Tza*. (4.2.21)
Combining (4.2.20) with (4.2.21), we obtain that

(L — Ba)zn 4 BaTws — T((L = Bu)zn + BuTwn) |
=(1 = Bu)llzn — Tsull® + BaLPllwy — (1 = Bn)n + BaLwr)|?
— Ba(1 = P}l — Tn|f? |
<1 = Balllzn = Tsall® + BuL?(Ball2a — Trwnl® -+ onll 20 — T2a1?)
= Bu(L = Balllzn = Twa]
=(1 = Bp)llzn = Tsall® + Baonl?|| 2 — Tzall®

1L ﬁn(l e ﬂn o ﬁﬁL2)”zn - Twﬂ”2 (4222)
From (4.2.18), (4.2.19) and (4.2.22), this implies that

|T's, — 3"*“2 = [T ~ Bu)za + BaTwn) — 35*”2
<N = Bn)(zn — %) + Bu(Twy — 2|
F I - Badazn + BuTwyn — T((L — Bu)zn + B Twr)II?
<z — *|f? ~ Bulon — Bn)lizn — Twall®
— Bu0u(l = 20, - on L) |2n — Tl
+ (1= Bulllzn — Tsall® + Buoi LP| 20 — T
= Ba(l = Bu — B2 L) |20 — Twylf?
=llzo — *|° + (1 — Ba)llza — Ts|®

o ﬁn ((gn - )Bn) + (1 - )Bn - ﬁiL2)) ”Twn - zﬂ”2



— Buon(l = 0,2 + L) — 0213 2 — Tzal]%. (4.2.23)
Since g, <c <o, <d< ﬁm, it obtains that
1 =B, — P22 >0 and 1~ 0,(2+L%) — 027> 0.
Therefore
\Tsn — 33*”2 < flen — 2+ (1 = Ba)llzn — Tsn||2- (4.2.24)
From (2.3.3), (4.2.1) and (4.2.24), we have
[@nsa — @[> =[(L = 1)z + T80 — <"
=(1 = ya)llzn — &I + Wl Tsn — 2*[° = 1 (L = W )ll 20 — Tsal®
<1~y )llzn — 3"*"2 + Yl — 33*”2 + (L= 8u)llzn = Tsnl|2)
Y '711(1 . ’Yn)”%: I T5n”2

:”zﬂ - 55”:“2 v ’Yn(ﬂn T Afn)”zn B TSnHQ

o EA (4.2.25)
This together with (4.2.11) implies that
2t — 2| < o — 2],

for every z* € I" and for all » > 0. Therefore {z,} gencrated by algorithm (4.2.1)
is the Féjermonotone with respect to . Thus we obtain lim, . ||z, — z*}} exists
immediately, it follows that {z,} is bounded and the sequence {|lx, — 2*|} is
monotonically decreasing. Moreover, {y,} and {z,} are also bounded sequences
from (4.2.7) and (4.2.10) immediately. Combining (4.2.9) and (4.2.25), this implies
that

1 = 27| < flan — 2|

< lon — 2°]7 = (1 = A2(an + 2 AP e — vl
It follows that

(1= Xa(an + 21 A w0 — tll® < llwn = "7 = l@nsa — 2|17,
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and so

lim ||, — yall = 0. (4.2.26)

o0

Likewise, we get

lim ||z, — ynll = 0.
o0

In combination (4.2.26), (4.2.7) and limy, e &, = 0, we have

An(1 = An”AHQ)”S'Un ' A"En”2 + Anllvn — Am*llz
S ”wn - :E*”z 4 ”yn - m*HQ - /\na’n<2(7—'5n - 3:*) + )\nanfﬂm wn)
< (flen — 2| + Nl — 2" IPllzn — yull = A0 (2(ttn — %) + Ag0nn, Tn),
which implies that
lim ||v, — Az,|| =0 and  lim ||Sv, — Az,|| = C.
n—oo n—o0

So lim, ;0 || — Sval] = 0. From (4.2.25), we get that

st = &I <llzn = 2 1° = (B — u)ll2n = Tsll®

<lan — 'E*Hz o ’Yn(ﬁn = 'Yn)nzn - Tsnnz-
It follows that
V(B — WMllzn — Tsull? < flwn — &*[1* = lons — 2|,

and so

lim {2, — Tsn|| = 0.
n—od

For all n € N, we have

lzn — Tznll Sz — Tsull + [|Tsn — Tznl|

<z — Tsn|| + Llsn — 2all-
Since s, = (1 — Bu)2n + BuT'wy, we have

o — Tzl <||2n — Tsnll + Lllsa — 2za]]
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=]|Zn - Tsn” + ﬁnLHZn — T'wnu (4.2.27)
Since Wy = (1 — o) 2y + 0T 20, We get that

ll2n — Twall <llzn — Tsnll + | Tsn — Tws||
<z — Tsnll -+ Lijsn — wal)

=12 — T'snl| + onLllzn — Tonll + BuLllzn — Twnl|- (4.2.28)
So,
(1 = Bu)|Twp — 2l < N2 — Tsnll + onlll2n — Tznll- (4.2.29)
By (4.2.27) and the previous inequations, we get
Iz = Tzall <llzw = Tsall + BulLllzn = Tewn

1
:“zn — T.S’nn -+ ﬁnL (mﬂzn Ts,,,“ + ﬁ L”Zn Tan)

Bl onfnl’
- — — Tzl
(1 5NE 3 T 1— ﬁn )”zn Tsnn € = ﬁnL”zn Z ”

This implies that

1
“zn - Tzn“ < (1 — ﬁﬂL -~ O'nﬂan) ”Zn — TSn”.

Therefore

1iI11 ”Zn - TZnH — 0-
n—oo

By (4.2.29), we have
].iln HZn - TwR” — 0.
n—od

Using the firm nonexpansiveness of Fg, (2.3.1) and (4.2.7), we have
g — 2|12 = | Pottn — I < lun = I — 1 Fottn = ual”
< ”wn - -T*HZ - “yn - unuz-
It follows that

i — tal® <lien =27 = g = "1
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Slwn = 21+ g — 2" Dllwn — all.

From (4.2.26), we have
lim fly, —u,|| =0
300
Since the sequence {m,} is bounded, we can choose a subsequence {z,.} of {z,}

such that z,, — 2.

Therefore, from the above conclusions, we can obtain that

Ty T, Zn, — I,
Un; — g, and Amn,- — AIB, (4230)
fin, 3% £, vy el A,

it is applied by Lemma 2.4.6, we have
& € Fix(T) and AZ € Fiz(S).
From y,, = Pouy, € C and vy, = PpAx,, and combine with (4.2.30), we get that
£ e and AZ € Q.

Therefore

z e ONFiz(T) and A% € QN Fiz(S).

We can conclude that # € T and this shows that wy{x,) C I'. Since the lim, 0 ||#n—
x*|| exists for every z* € T and every subsequence of {,} converges weakly to
@* € T, it is immediate from Lemma 2.4.7 that {2, } converges weakly to * € T".

This completes the proof. ]

Next, utilizing Theorem 4.2.1, we give the following corollary when defining
iterative method becomes combining an extragradient method with regularization

due to the Ishikaws iterative method.

Corollary 4.2.2. Let H, and H» be two real Hilbert spaces. Let ¢ and @ be two

nonempty closed convex sets of Hy and Hp, respectively. Let A : Hy -3 Hp be a
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bounded linear operator with its adjoint A*. Let S : ) — @ be a nonexpansive
mapping and let T : ' — €' be an L-Lipschitzian pseudo-contractive mapping. For

%o € H; arbitrarily, let {x,} be a sequence defined by

yn = o (-Tn = A (A~ SPQ)A + C\’,J):L‘n),
2 = Pg (q; — M{A*(I — SP)A + anI)y,,), 2.0
Wy, = (]- - g?l)z?l + Unsz

Tny1 = (I a ﬁn)zn i ﬁnT’l‘.Un,

\

where {\,} C [, 7] for some &,7 € (0, -&;—;21—”71—”3), {an} € (0,00), B2 g0, < 00 and

O<a< f<b<o,<c< —L‘/ﬁm Then the sequence {z,} generated by

algorithmn (4.2.31} converges weakly to an element of T'.

Proof. Firstly, we will show that the sequence {z,} is bounded. Let 2* € I'. Then
a* € Fiz(T)N C and Az* € Fiz(S) N Q. Set v, = PoAx,, u, = &, — A (AT —
SPY)A + apl)an, V5% = A*(I — SPR)A + anl and V9 = A*(I — SPy)A, for

all n > 0. As in Theorem 4.2.1, we have

1yn — 3"*”2 <||@n — 5’5*”2 — Aalfon — Aa:n||2 = Al = An”AHz)”SUn - Awnnz

— A (2(uy, — ) 1+ Ap0inTn, Tn)s (4.2.32)
lzn — 2|7 < [len = & |7 — (1 — A2(an + 2| A7) (|20 — all?
< o, — 2% (4.2.33)
20 — ¥ = flzn — &*}12 — (1 — M (an + 201 AI7) 20 — wall, (4.2.34)
and

“Twn - -'73*”2 < ”zn - 3:*”2 + (1 - ‘fn)“’zn - T((l - Jn)zn + JnTzn)Hz

— on(1 — 20, — 02 L)|| 20 — Tnl)*.
Since b < g, < ¢ < Wllm’ we obtain that

| Tw, — 2*||2 < {20 — 2* > + (1 — on)ll2a — T{1 — on)zn + oaTza)|*. (4.2.35)
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From (4.2.32) and (4.2.35), this implies that

2t — a1 =1~ Bu)zn + BuTwn — 2|
=(1 = Bo)llzn — 2*|I* + BallTwn — &*|1* = Bull = Br)llzn — Twall?
<1 = Bllzn — &2 4 Balllzn — 2°2 + (1 = an)llzn — Tw,l|?)
— Bu(L = Ba)llzn — T, |f?
=Mz — w*Hz — Bulon — Bulllza — Twn”2

<lzn = &|I* < o — 27| (4.2.36)

This implies that {z,} is a bounded sequence and the sequence {|z, — z*||} is
monotonically decreasing. Thus we obtain lim, e ||, — =*|| exists immediately,
Moreover, {y,} and {z,} are also bounded sequences. In the same process of a

proof in Theorem 4.2.1, we get that
nlg{}o zn = all = ,}3{.10 lzn — yall = 7}11}1010 g —uafl =0,
and by (4.2.32), we obtain that
lim ||v, — Awy| = lim ||Sv, — Az,| =0.
n—eo f1—r0Q
From (4.2.36), we observe that

|Znt1 — 'L*”z <|[zn — H"*Hg N ﬁrt(dn = Bulllzn — Twnnz

<llzn — 2% = Balon = Bu)ll2n — Twn|®. (4.2.37)
Thus
Bu(ow — Balllzn — Twnl® <l — &*||* = lwnia — ™%, (4.2.38)
taking the limit of n — oo,
lim |lz, — Tw,| = 0.
11—00
For all n € N, we have

“zn — Tzl < |f2n — Twpl| + | Tw, — Tnl|
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< |lzn = Twnl| + LA — on)zn + 0nT2n — 24|

< |z — Twy ||l + ouLllzn — Tzl

It follows that
(1 — o, D)z — Tzl < 2, — Tw, |l

Therefore

lim ||z, — Tz, = 0.
n—oeo

Consequently, all of conditions in Theorem 4.2.1 are satisfied and we can conclude

that Corollary 4.2.2 can be obtained from Theorem 4.2.1 immediately. O

Next, utilizing Theorem 4.2.1, we give the following corollary when omit

{z,} in the iterative method of Theorem 4.2.1.

Corollary 4.2.3. Let H; and H, be two real Hilbert spaces and let C and @ be
two nonempty closed convex sets of Hy and Ha, respectively. Let A : Hy — Hy be
a bounded linear operator with its adjoint A*, Let S : QQ — @ be a nonexpansive
mapping and let T': ' — ' be an L-Lipschitzian pseudo-contractive mapping, For

xo € Hy arbitravily, let {z,} be a sequence defined by
¢

Yp = P(; (ﬂ:n — /\n(A*(I 7 S.PQ)A Ha CYnI)ZEn),

) Wy, == (1 — Un)yﬂ + UnTyil) (4239)

Sn = (1 - ﬁn)yn + BaTwn,

L Tpt1 = (1 - 'Yn)yn + 1T sn,

where {A,} C [x,7] for some k,7 € (0, %—_leﬂ—ﬂg), {an} C (0,00), N2 40, < 00
and 0 <a<y<b<hi<ec<o,<d< m Then the sequence {z,}

generated by algortthm (4.2.39) converges weakly to an element of T'.

Proof. Firstly, we will show that the sequence {z,} is bounded. Let &* € I". Then

z* € Fiz(T)yN C and Az* N Fix(S) € Q. Set v, = PpAzy,, up = @, — A (A*( —



63

SPA + anl)zy,, V5 = A1 — SPy)A + anl and V5 = A*(I — SPy)A, for

all » > 0. As in Theorem 4.2.1, we have

i — 5"3*“2 <, — 53*”2 — Anllvn — Aa;n]|2 — An(l— An”AHQ)“SUn - Af"nlr2

- f\nan(z(un - 9-7*) + Aira.OC'ng-:m Tn (4240)
and
Ty e | (4.2.41)

This implies that {z,} is a bounded sequence. In view of (4.2.40) and (4.2.41), we

obtain that

n11)11010 |vn — Az, || = nli}rglo ||Sv, — Azl = 0. (4.2.42)
Therefore
lim |v,, — Sufl = 0.
n—00

Since Fe is firmly nonexpansive, we have

g — &*I* = | Poun — &*|1” < [t — &*|1* — | Pottn — walf?

<l = 2P — Hlyn — unll®
Hence
nli—l;go ”yn - unl[ == Oo (4.2.43)
By u, = 2, — A (A* (I — SPQ)A+ o, Nz, and (4.2.42), it follows that
Him |[fu, — x| =0.
71— 00
Combining with the previous equation and (4.2.43) implies that
liln ”:En - yn” — 0.
-300

In process in the proof of Theorem 4.2.1, we have lHimy, o ||t — T'sn|| = 0. It leads
to prove that lim, e [|¥n — Tys|| = 0. Consequently, all of conditions in Theorem
4.2.1 are satisfied and we can conclude that Corollary 4.2.3 can be obtained from

Theorem 4.2.1 immediately. a
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Next, utilizing Theorem 4.2,1, we give the following corollary by setting

S : Hy — H, to be identity mapping in Theorem 4.2.1.

Corollary 4.2.4. Let H; and Hs be two real Hilbert spaces. Let ¢ and @ be
two nonempty closed convex sets of Hy and Ha, rvespectively. Let A : 1, — Hy
be a bounded linear operator with its adjoint A*. Let T' : ¢ —= C be an L-
Lipschitzian pseudo-contractive mapping. For @y € Hp arbitrarily, let {z,} be a

sequence defined by

’

yu=Po (zn — M(A(I = Po)A + anD)m,),

24 = Po (mn — A(A*(I — Po)A+ anI)yn),

§ wa = (1 —0,)zn + 0, T2, (4.2.44)
sn = (1 — Ba)za + AnTwnp,

Tyt = (1 e ’Yn)zn + ’}'nTsn)

\
where {\,} C [k, 7] for some &, T € (0, #”A”z), {an} C (0,00), B2 javn < 00 and
< m<a<fBy<b<o,<c< \/rg——ﬂlﬂjrﬁ Then the sequence {z,} generated

by algorithm (4.2.44) converges weakly to an element of I'.

Example 4.2.5. (22] Let H be the real Hilbert space R? under the usual Euclidean

inner product.
If ¢ = (a,b) € H , define o+ € H to be (b, —a). Let K :={z € H : ||z|| < 1} and

sel

[—y

Ky ={z e H || < %} and Ke:={zcH: - <|z| <1}

2
Define T : K — K as follows:

z+azt if @€ Ky,
Ty = ' (4.2.45)

ﬁ—ﬂ:—f—:ﬂj' if € K.

Then T is Lipschitz I, = 5 and pseudocontractive and F(T) = {0}.

We next show that Example 4.2.5 satisfies all asumptions in Theorem 4.2.1

in order to show that the convergence of the iterative method defined in Theorem
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4.2.1 and compare its behavior with Ishikawa-type extragradient iterative method

of Ceng et al. [21].

Example 4.2.6. Let Hy = H; = R? under the usual Euclidean inner product. Let
C ={x€ H:{z|| <1}. and T as in Example 4.2.5 for all ¢ € C. Let Q@ = R* and
Sw = 1w for all & € R% Set Az = Jx for all @ € R% Let A, = 25, a, = ﬁ,
o, = 0.03, B, = 0.025, v, = 0.01 for all n € N. It is easy to sce that I' = {0}. Let

xo = (0.8,0.6), then the sequence {z,} geunerated iteratively by (4.2.1) converges

to 0.

Table 1 for Example 4.2.6

No.of iteration

New iterative.

Tterative of Ceng et al. [21]

0 (0.800000, 0.600000)  (0.800000, 0.600000)
10 (0.253946, 0.249351)  (0.633949, 0.605189)
20 (0.080841, 0.079395) (0.284389, 0.271512)
80 (0.000035, 0.000034)  (0.000514, 0.000491)
90 (0.000009, 0.000009) (0000164, 0.000157)
91 (0.000008, 0.000008) (0000146, 0.000140)
110 (0.000001, 0.000001) (0000016, 0.000015)
111 (0.000001, 0.000001)  (0.000014, 0.000014)
112 (0.000000, 0.000000)  (0.000013, 0.000012)
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Figure 1. The convergence of {a,} of Theorem 4.2.1 and Theorem 3.1 [21]
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Heralive step

The generalized Mann-type extragradient with regularization iterative
method for pseudo-contractive mappings without Lipschitz assumption
We propose the generalized Mann-type extragradient with regularization
iterative method for pseudo-contractive mappings without Lipschitz assumption

for solving the split feasibility and fixed point problems.

Theorem 4.2.7. Let H; and H4 be two real Hilbert spaces and let C and @ be
two nonempty closed convex sets of Hy and Hy, respectively. Let A: H; — Hp be
a bounded linear operator with its adjoint A*. Let S : Q@ — @ be a nonexpansive
mapping and let 7" : ¢ — C be a continuous pseudo-contractive mapping. For
%o € H; arbitrarily, let {z,} be a sequence defined by

Yo = P (a: ~ (AT — SPQ)A + a,lI):Bn),

%= Po (q, — A(A*(I - SPo)A+ anI)yn), (4.2.46)

Tnt1 = OpZn + BaT 2n + Yotn, 1 20,
where {A,;} C [&,7] for some k, 7 € (0, m), {an} € (0,00), 52y, < 00 and
{7}, {8}, {on} C (a,b) C (0,1) such that vy, + S, + o5, = 1. Then the sequence

{x,} generated by algorithm (4.2.46) converges weakly to an element of I'.

Proof. Firstly, we will show that the sequence {2} is bounded. Let 2* € I". Then
#* € Fig(T)N C and Az* € Fiz(S) N Q. Set v, = PoAmy, tn = &n — Ao (A*(I
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SPo) Ay + cnl)y, V5 = A*(I — SP)A + aypl and VS = A*(I — SPg)A, for

all n > 0. In the same way is proven in Theorem 4.2.1

yn — 7’*“2 <z — 3"*”2 = Anllvn — A33n”2 — dp(1 - ’\n“A“z)“S'”n - A"’Jn”z

— Aen{2{u, — %) + M@, Tn) (4.2.47)
and
|22 — 3:*”2 < |lan = 3"*”2 L /\i(an S 2”-’4“2)2)”3311 - ynllz- (4-2-48)

Likewise, we obtain that
12 — 53*”2 < len — "’4*”2 —(1- Ai(an + 2'1A1‘2)2)|lzrt o ynllz-
In view of (2.3.3), (2.3.4), (4.2.47), and {4.2.48), this implies that

Iengs — 2N =l1vn@n + onzn + BuT 2, — 2*|°
=Yull@n - €2 + Oallzn — 3" + Ball T2n — 27|
— YnOnllTn — zn“2 — YnBullZn — Tzn”Q — 0nfnlzn — Tznllz
=l — 212+ onllze — 2 4+ Bu((T2y — 20y T2 — )
{2 — &t Ty — 2°)) = YnOullTn — 2all” = WaBallen — Tl
— OafBallzn — Tz?
<Anllen = a*[B+ (on + Ba)llzn = &*I” = monllan — zl)?
~ Palltn — Toall” — oubullzn = Tz
Sl = @17 + (on + Bu) (e — |2
= (1= X on + 20 AP 2 — wall?)
~ Ya0ullzn = 2l —~ AaBalltn — Tzl — onfullzn — Taull?
<lwn = 2*|2 = (on + Ba) (L — bl + 20 AP l2n — yall®

— 'Yno'uuwn - zn”2 - 'Ynﬁn“ﬂ"n - Tz-nllz - Jnﬁn“zn - Tzn“z-

(4.2.49)

By the hypothesis of {},}, we have

21 — 2"} < l|wn — 7).
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This implies that {[}x,, —2*||} is a nonincreasing sequence and obtain that the limit
of the sequence {||z, — z*||} exists, we get that {z,} is a bounded sequence. From

(4.2.49), we have

(@n+ Ba)(1 = X:(an + 21 APz — gull® + Youlln — 2l
+Bullen = Tznll” 1+ onBallzn — Tanll”
< lon = 2P = fnss = 2* )%
By the hypothesis of the parameter oy, 3, and -y, , we obtain that

lim ||z, — 2]l = lim ||z, — T2,)| = lim ||z, — Ta| =0,
00 n—oo 00

and
lim ||z, — all = 0. (4.2.50}
n—od

Likewise, we have
lim |jz, — ya|| = 0.
n—0od
Combining with (4.2.47), this implies that
Aullvn — A"Unnz + Aa{l — ’\-n”AHQ)”S'Un - Aﬂ:nnz
< ”xn - m*”2 S ”yn = m*”z il )\rza’n<2(un - 33*) + Ananwm mn)

S (“mn . CC*” T ”yn - Ti”)”mn s yn” - /\nan (Z(T[‘n F 'Bi) + AnOfi'::L'-m .’L‘,;).
By the hypothesis of {a,}, {An} and (4.2.50), it follows that
Hm fjo, — Az, || = lim ||Sv, — Az,|| = 0.
o n—reo
Therefore,
lim {lv, — Sva|| = 0.
n—oo
In the proof of Theorem 4.2.1, we get that
T}l}rgo flyn — unl| = 1351010 flun — @l = 0.

Consequently, all of conditions in Theorem 4.2.1 are satisfled and we can conclude

that Theorem 4.2.7 can be obtained from Theorem 4.2.1 immediately. O
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Similarly as before subsection, utilizing Theorem 4.2.7, we give the following
Corollary when changing the generalized Mann-type iterative method is the Mann-

type iterative method.

Corollary 4.2.8. Let H; and Hy be two real Hilbert spaces. Let C' and ¢ be two
nonempty closed convex sets of Hy and Ha, respectively. Let A : Hy — H; be a
bounded linear operator with its adjoint A*. Let S : Q@ — @ be a nonexpansive
mapping and let T : C' — C' be a continuous pseudo-contractive mapping. For

xp € H; arbitrarily, let {z,} be a sequence defined by

Yn = Po (q, C (AT — SPy)A+ anI)mn),
n = Po (i — MnlA(I = SPo)A+ nl Yy, (4.2.51)
Tt = (1= Bu)zn + Pulzn, 2 0,
where {A,} C [k, 7] for some «,7 € (0, m), {an} C (0,00), o0, < 00
and {8,} € (0,1) such that liminf, e #a(1 — B} > 0. Then the sequence {z,}

generated by algorithm (4.2.51) converges weakly to an element of I'.

Proof. Firstly, we will show that the sequence {«,} is bounded. Let &* € T'. Then
a* € Piz(TYyN C and Az* € Fiz(S)NQ. Set v, = PoAty, Un = Tp — An{ AT —~
SPo) Az + an Dy, V5 = AT — SPp)A+ oy, I and V ¥ = A*(I — SFo)A, for

all n > 0. In the same way is proven in Theorem 4.2.1

lgn — 2*1% <ln — 2 [17 = Anllvn — Aal]® = Ma(1 = JullAI?)|Svn — Azl

— M (2(utn — &) + Xann, Tn) (4.2.52)
and
l|zn — 33*“2 < l@n - "’**“2 —(1- }‘rzz(an + 2”A||2)2)“$n - 'yn“2° (4.2.53)

Likewise, we obtain that

70 — 3"*”2 < lan — T*Hz —({1- )‘rza(an + 2|]A”2)2)”zn - ynllz'
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By (2.3.5) and (4.2.53}, it follows that

[ns1 = 2|2 =1 — Bu)zw — BTz — 2"
—(1L — B)llzn — |2+ Bl Tz — 21 = Bull = Bu)ll2n — Tl
=(1 = B)llzn — & |* + BalT2n — 20, T — %)
¥ Baln — &5 T = %) — Ba(l = Bu)llzn — Taull?
<zn = |2 = Ball = Ba)llzn — Tl
<l — 2 = (@ = X2ewn -+ 2 APz — vl

- ﬁn(l - ﬁn)”zn - Tzn”2- (4.2.54)

Therefore

1 = 2| £ llon = 27l

Similarly, by the process in Theorem 4.2.7, we have {z,} is a bounded sequence.

From (4.2.54), we have

(1 A2 (o + 24N zn = Gall® + Ba(l —~ Ba)llzn = Tzall

< o — 22— flamin — 27| (4.2.56)
It follows that
Jim fl, — gnl| = lim iz, — Tzall = 0.
Similarly, we obtain that
nh_{go ”zn - ynl, = (.

As the same argument of Therem 4.2.7, we get that
i {[vn - Ayl = lim ||Sv, — Azs|l = Jim v, — S|l = 0.
n—oo =300 I

and
lim [|uy — @5]l = lim [lu, = yall = 0.
n—eo n—00
Consequently, all of conditions in Theorem 4.2.7 are satisfied and we can conclude

that Corollary 4.2.8 can be obtained from Theorem 4.,2.7 immediately. (]
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Next, utilizing Theorem 4.2.7, we give the following corollary when omit

{z,} in the iterative method of Theorem 4.2.7.

Corollary 4.2.9. Let H; and Hy be two real Hilbert spaces and let C' and @ be
two nonempty closed convex sets of H; and Hy, respectively. Let A: Hy — H; be
a bounded linear with its adjoint A*. Let S : @ — @ be a nonexpansive mapping
and let T : ¢ — C be a continuous pseudo-contractive mapping. For 2o € H;

arbitrarily, let {z,} be a sequence defined by

= Po (0 = Mn(A°(I = SPo)A+ al)zn), 1256
R
Tptl = Opln + ﬁnT’yn + Ynilp, > 0,

where {M\,} C [k, 7] for some &, € (0, %—+21”—A—"—2) , {an} € (0,00), 22 500, < 00 and
{v.}: {Bn}; {on} C (a,b) C (0,1) such that y, 4 f, + o, = 1. Then the sequence

{x,} generated by algorithm (4.2.56) converges weakly to an element of I'.

Proof. Firstly, we will show that the sequence {z,} is bounded. Let z* € I. Then
z* € O'N Fig(T) and Az* € Q N Fiz(S). Set v, = PoAwy, up, = 2n — M(A*(J -

SFo)Axy, + Al Yapy, for all n > 0. In the same way is proven in Theorem 4.2.7
lim ||y, — Tyl =0
Ti—3C0

and

lim |jv, — Az, = lm {|Sv, — Az,f] = lim v, — Sv,|| = 0.
=00 200 n—ed
Similarly to Corollary 4.2.3,
lim fu, = yof| = Hm |\z, — gl = 0.
— 00 IL—00

Consequently, all of conditions in Theorem 4.2.7 are satisfied and we can

conclude that Corollary 4.2.9 can be obtained from Theorem 4.2.7 immediately, (]

Next, utilizing Theorem 4.2.7, we give the following corollary when define

S : Hy — H, to be identity mapping in Theorem 4.2.7.
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Corollary 4.2.10. Let H, and H; be two real Hilbert spaces and let C and @) be
two nonempty closed convex sets of Hy and Hy, respectively. Let A: H; — Haobea
bounded linear operator and A* : Hy — H; be the adjoint of A. Let T : C' -~ C be
a continuous pseudo-contractive mapping such that I'N Fiz(T) # §. Tor g € H,

arbitrarily, let {z,} be a sequence defined by

Yn = PC’ (:L'n ) /\n(A*(I - PQ)A + Q’,,I)ﬂ:n),
2z, = Po (fam — (AT - Po)A+ anI)yn), (4.2.57)

Bppl = pZp + ﬁnTzn + Valn, 1 > 01

where {M,} C [&, 7] for some k,7 € (0, mlﬂ;r”g), {an} C (0, 00), B e, < 00 and
{1}, {Bu}s {00} C (a,b) C (0,1) such that vy, + Bn + 0, = 1. Then the sequence
{@,} generated by algorithm (4.2.57) converges weakly to an element of I".

Next, we give numerical example which satisty with Theorem 4.2.7 in order
to show that the convergence of the iterative process defined in Theorem 4.2.7 and
compare its behavipor with Mann-type extragradient iterative method of Ceng et

al. {21].

Example 4.2.11. Let Iy = II, = R. Let C' = R/{-—1} and Tz = — 3 for all

v € C. Sinco |[Ta~ Tyl < syl < o = wlP + 10 = T = (1 = Thy?,

then 7' is a continuous pseudocontractive mapping. Let () = R and Sz = %1 for all
z €R. Set Az =z forallz € R Let A, = 28, oy, = '(m_li')ﬁ, o, = 0.6 8, =0.3,
¥n = 0.1 for all n € N. It is easy to see that I' = {0}. Let the sequence {x,} be

generated iteratively by (4.2.46), then the sequence {z,} converges to 0.
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Table 2 for Example 4.2.11

No.of iteration

New iterative. Ceng et al.[21]

0
1
5
10

14
15
16
e

2.000000
1.007543
0.037257
0.000267

0.000005
0.000002
0.000001
0.000000

2.000000
1.369996
0.164183
0.005400

0.000304
0.000147
0.000071
0.000034

Figure 2. The convergence of {,} of Theorem 4.2.7 and Theorem 4.1 [21]
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CHAPTER V

ITERATIVE METHODS FOR SOLVING THE

SPLIT EQUILIBRIUM PROBLEMS

In this chapter, we propose the parallel extragradient-proximal point meth-
ods and the parallel extragradient-proximal point methods with linesearch for solv-
ing multiple set split equilibrium problem when both equilibrium bifunctions are
pseudomonotone to obtain weak and strong convergence theorems of the iterates
generated by the proposed iterative methods are obtained under certain assump-
tions for equilibrium bifunctions and parameters. In addition, we also present a
numerical example to satisfy the convergence of the proposed iterative methods.

Throughout this chapter, let Hy and H, be two real Hilbert spaces and let

C and € be two nonempty ¢losed convex sets of Hy and Hy, respectively.

5.1 Introduction and preliminaries

Given a bounded linear operator A : Hy -3 Ha, the split equilibrium problem

{(SEP) introduced by He [34] in 2010 is the following:

Find z* € C such that f(a*,y) >0, forall y€C, (5.1.1)
and u* = Az* € @ such that g{u*,v) >0, forall ve @,
where f 1 Hy x Hy — R and g : Hp X Hy — R are bifunctions with f(z,z) =
g(u,v) =0 for all z € C and for all u € @, respectively.
Obviously, in problem (5.1.1), if g = 0 and Q = Hj, then the split equilib-

rium problem (SEP) becomes the following equilibrium problem (EP):
Find z* &€ such that f(z*,9) >0 foral yeC.

The most interested method for solving solution of the equilibrium problem {EP)

based on the proximal point method which consists of solving a regularized equi-



75

librium problem (REP); at the current iteration, given z,, the next iterate x,44
solves the following problem;

1
Find z € C' such that f{z,y)+ ?j—(y—rs,fc—:rn) >0, forall yeC, (5.1.2)

n

where f is a bifunction and 7, > 0 for all n € N. Observe that problems (5.1.2) is
strongly monotone, if f is monotone. Hence the solution of a regularized equilib-
rium problem (REP) exists and is unique but when f is a generalized monotone bi-
function such as a psendomonotone bifunction, problem (5.1.2) can not be strongly
monotone. So the proximal point method can not be applied to this case.

In 2015, Khatibzadeh et al. [37] solved this risen problem by using pseu-
domonotone bifunctions in the proximal point method for finding the solution of
the equilibrium problem under different assumption and proved the weak conver-
gence of the generated sequences to the proximal point method in Hilbert spaces.

Another method for solving the solution of the equilibrium problem (EP),
Tran et al. [69] proposed the extragradient method based on the auxiliary problem

principle. Given zy € C, the sequences {z,} and {y,} generated by

n = arg min{ A f(z,, y) + e, —yl|?: v € C},
y gmin{Af (%, ¥) + 3llzn —yl* 1y € C} (5.1.3)

st = arg min{Af (v, ) + Sllea — ol 1y € C,
where A is a suitable parameter.

The split equilibrium problem is to find a solution of the equilibrium problem
such that its image under a given bounded liner operator is a solution of another
equilibrium problem.

In 2012, He [34] used the proximal method for obtaining a solution of the

split equilibrium problem (SEP) and introduced the following method;

#

Sk, v) + 2y -, ul, —2,) 20, forall yeCi=1,2,.,N,
_ub4ud

Tn = N ’
{ (5.1.4)
F(wn, 2) + (2 — wy,wy — ) 20, forall z€@Q,

Tni1 = Polt + pA*(w, — A1,)),
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where f and I are monotone bifunctions on C and @, respectively. Under suitable
conditions on bifunctions and parameters, He {34] proved that the sequences {z,}
and {u} converge weakly to a solution of the split equilibrium problem (SEP) for
ali=1,2,..., N

Over the last several years, many researchers have related problems when f
is monotone or pseudomonotone and g is monotone and constructed methods for
solving the solution of split equilibrium problem (SEP), see [25, 26, 28].

Recently, Kim and Dinh [39] introduced the multiple set split equilibrium
problem (MSSEP) which is stated as follows;

;

Find 2* e C = ﬂfil C; such that fi{z*,y) >0, forall y€ G,
and for all 1 =1,2,..,, N, and such that
the point w* = Az* = ﬂ;il @; solves gi{u*,v) >0, forall ve @y

and for all 7 =1,2,..., M,

(5.1.5)

where C; C Hy for all ¢ = 1,2,..,N, Q; C Hy for all j = 1,2,..,M and
fi « H x Hi - R, g; + Hy x H, — R such that fi(z,z) = g;(u,n) = 0, for
alz e Cyi=1,2,..,Nand v e @y, j =1,2,...,M. They proposed the itera-
tive method by using extragradient methods for the multiple set split equilibrium
problem (MSSEP) and proved the weak and strong convergence theorems in their
results.

The multiple set split equilibrium problem (MSSEP) is a generalization of
many important problems in applied mathematics including the multiple set split
variational inequality problem (MSSVIP) introduced by Censor et al. [20], the split
common fixed point problem, see (19, 43] and the split common fixed null problem,
see [9, 67].

In this section, we denote the solution set of the equilibrium problem EP{C, fi)
by

Sol(Cy, iy ={z* € C; : fila*,y) =0 forall ye G},
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foralli—=1,2,..,N, and
Sol(Qy,9:) ={u" € Q; : g;(u*,v) >0 forall ve @y},

for all j = 1,2, ..., M, is the solution set of the equilibrium problem EP(Q;, g;).

Motivated and inspired by the work mentioned above, we propose iterative
methods for multiple set split equilibrium problem and obtain the weak and strong
convergence theorems of the proposed iterative methods. In section 5.2, we utilize
the extragradient method and the proximal method for two pseudomonotone map-
pings in F; and Hy to obtain the weak convergence theorem. Moreover, in section
5.3, we propose the iterative method by using a combination of the extragradient
method with Armijo linesearch type rule for avioding Lipschitz-type continuity of
bifunetion in f; with the proximal method in H;. In the addition, we combine
this method with the shrinking projection method to obtain the strong convergence
theorem. Finally we give numerical examples to demonstrate the proposed iterative

methods.

5.2 Parallel extragradient-proximal point iterative methods for mul-

tiple set split equilibrium problems

In order to solving the multiple set split equilibrium problem (MSSEP), we assume
that f : Hy x Hy — R with f{z,z) = 0 for all z € C satisfies the following
conditions:

Assumption A

(A1) f is pseudomonotone on C' with respect to Sol(C, f);

(A2) f(z,-) is convex, lower semicontinuous and subdifferentiable on C' for all

x €,

(A3) f is weakly continuous on C' x C: that is, if #,y € C and {z.}, {yn} C C

converge weakly to & and y, respectively, then f(zn,y.) — f(z,y) asn — oo.
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(A4) f is Lipschitz-type continuous on C' with constants Ly > 0 and L; > 0.

Moreover, we assume that g ; Hy X He — R with g{u, ) = 0 for all v € @ satislics
the following conditions:

Assumption B

(B1) g is pseudomonotone on @Q;
(B2) g(u,-) is convex and lower semicontinuous for all © € ¢J;
(B3) g(-,v) is upper semicontinuous for all v € &;

(B4) There exists 8 > 0 such that g(u,v) + g{v,u) < 8]lu —v|)? for all w,v € Q (g

is called undermonotone and @ is the undermonotonicity constant of g).

Lemma 5.2.1. [46] If g satisfies (B2), (B3) and (B4), then the sequence {®,}

generated by the proximal peint method is well-defined.

Lemma 5.2.2. {46] If equilibrium bifunction g satisfies (Bz), (B3), (Bs) and assume
that A > 0, then EP{Q), g) has a unique solution.

Lemma 5.2.3. (36} If g satisfies (B1), (B2) and (B3), then the solution set of the
equilibrium problem (EP) and the solution set of the convex feasibility problem

(CFP) have the same solution set.

Remark that the convex feasibility problem (CFP) is a dual of the equilib-

riwm problem (EP) i.e., finding z* € @ such that f(z,2*) <0, for all x € Q.

Lemma 5.2.4. [34] Let H be areal Hilbert space. Then for each z1,2,...,z, € H

and ay, as, ..., ay € [0,1] with 32 a,,n € N we have

N N N-1 N
P il =Y adledl® = > Y aallei - @l (5.2.1)
i1 i=1 il 1= bl

Lemma 5.2,5. [7] Suppose that f;,i = 1,2, ..., N, satisfies assumptions (A1), (A2),
{A4) such that ﬂf\;l Sol(C;, f:) # 0. Then, for all i = 1,2, ..., N, we obtain that:
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(1) pﬁl[fi(w?ljy) - fn(:cn,y;",,)] 2 (y; - 33,,,yfl - ?J), for all ye Ci;

(i) llzn — 21 < flwn — 221~ (1~ 2p{ Loz — ol — (1= 205 La)llyy, — 23]1* for
all z* € (Y., Sol(C, f;) and n € N,

Lemma 5.2.6. (28] Let the equilibrium bifunction f satisfy assumptions (Al) on
Sol(C, f) and (A2) on €, and &, € C, 0 < p < 3, {pn} C [p,7]. Let

1

2,0 “y k) quIQ Y€ C}, for ali n € N.

Yn = arg min{ f(wn, ¥} +

If {z,} C C is bounded, then {y,} is also bounded.

Next, we propose iterative method for solving multiple set split equilibrivm
problems such that we have motivation and inspiration from the work of Tran et
al. [69] and He [34].
Algorithm 1 Parallel extragradient-proximal point methods for multiple
set split equilibrium problem:.
Initialization. Let g € C = [, C;, choose constants 0 < p < 5 < min{ﬁ, 2—1152}, 0<
@ <@ <1, Foreachi=1,2,.., N, choose parameters {p.} C [p, 7], {a},} C [, al,

¥ el =1and p€ (0, W)

Step 1. Solve 2N strongly convex optimization programs in parallel

vh = avgmin{fi(wn, 1) + 5 lly ~ @al® 1y € G,

ly — @all? : y € Ci},

zfl = arg min{fl(y‘:l’y) + 21'];;:

fori=1,2,...,,N.
Step 2. Compute 2z, = S n, alzi. and wi = AZ,.
Step 3. Solve M regularized multiple set equilibrium programs in parallel

g;(wl, v + M wi — Az, v—wl) >0, forall vEQy; j=1,2,.., M.

Step 4. Set @, = argmax{||w) — Az,||:7=1,2,...,M}.
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Step 5. Compute &,y = Po(Z, + pA* (@, — AZ,)).

Set n = n+ 1 and go back Step 1.

Theorem 5.2.7. Let C; and @ be two closed and convex subsets of real Hilbert
spaces Hy and Hy for all i = 1,2,...,N,7 = 1,2,..., M, respectively. Let f; be
a bifunction satisfying assumption A on C; for each ¢ = 1,2,..., N and g; be a
bifunction satisfying assumption B on @; for all j = 1,2,..., M. Let A: Hy - Hy
be a bounded linear operator with its adjoint A* and {M } < (8, 7], for some 5 > ¢

for all 1 =1,2,...,M. In addition the solution set
N A

0 = {:c* € ﬂSol(Ci,f@-) NAT € ﬂSol(Qj,gj)} # 0,
i=1 j=1

then the sequences {x,},{#}},{z%}, i = L,2,...,N converge weakly to an ele-

ment &* € Q and {wl}, j = 1,2,.., M converges weakly to an element Az* ¢

MLy Sol(@y, 97).

Proof. Let z* € Q. Then

N M
o € ﬂl Sol(Cy, f;) and Aa* € (1) Sol(Qy,91)-
i= j=1

From Lemma 5.2.4 and Lemma 5.2.5 for all i = 1,2, ..., N, we obtain that
N N
Hzn - a"*”2 = ” Z a:lzftl - (L*Hz = ” Z a:),(z:l o ‘T*)Hz
i=1 i=1

N N-1 N
= D abllzm 2P = Y ahahlle — zl
i=1

=1 [=it1

N
T Aoy A A
i=1

N
— > ok (1 - 265 Lo)lly, — AN (5.2.2)
i=1

[A

Suppose that j, € {1,2, ..., M} such that w, = wir. Since Az* € ﬂfil Sol{Q;,9;),
we have

gi(wir, Ax*) + M (wir — AZ,, Az* — wir) > 0.
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By Lemma 5.2.3, every element of ﬂ;’il Sol(Q4, g5) can solve CFP(Q;,g;) for all
» Az*) < 0foralln € Nand j, =1,2,..., M. It follows

n

j=1,2,..., M, hence gj(w
that

(wir — AZ,, Ax* —wi") > 0.

Since
(wfr — A%, Ao ) < 2 (lpude Ao P+ A7 = Ao P — i ~ AZIPY,
we obtain that
A" — Az — ||wl — AZa|* — [ Ax* —wir]? = 0.
This implies that
| A" — wir|® < [|Aa* — AZ|* — llwl — Azl (5.2.3)
Likewise, we get that
(A(Zn — 7)ol ~ AZ)) = %{Ilwi" — Aa*||? — || Az, — Az"|P = [l - Az}
Combining with (5.2.3) and previous inequation, we obtain that
(A(Z, — z"),wir — AZ,) < ~{lwi — Az, |}
It follows that
(A(Z, — %), Wy — AZp) < —lws — AZ|* (5.2.4)
Because of the relation (5.2.4) and the definition of @,, this implies that

|11 — &2 ={| Po(Za + pA* (@5 — AZ,)) ~ Poa*|?
<Zn — 2" + pA* (@, — Az
170 — 2P 1 P A (@ — Az + 205 — 37, AN, — AZ,))
=[|Z, — 2*|* + 2| AN @n — AZa|l® + 20 A(Zn — 2°), 100 — AZ)

<z = @ [1° + 2N AN |D — Azl — 2l|@n — AZ?
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=Nz — &*|* — p2 - pll AN @, — Az, (5.2.5)
In combination with (5.2.2), we get that
nis — I =l — 271 = (2 = B AIP) 3, — AZo)?

N
len — 2| - Z (1 = 20, L) l2n — w31
n=1

N
i Z a:l(]' . 2,():1.[12)”@/; -~ z‘fl||2

i=1

— 2 = AP, — Azl (52.6)
By the hypothesis of p € (0, iim), {6} C [p, 7, it follows that
|ne1 — &% < Jlwn — 2",

This implies that {||z, —=x*|{} is a nonincreasing sequence, we obtain that the limit

of the sequence {||z, — 2*||} exists. From (5.2.6), we get that

N
an(1 — 20, L) wn — vl
1

n=

N
+ > (1 =20, La)lly, — 2?2 — pl| AP lon — Az

i=1

<z — .’l:*||2 ~{nt1 — 93*”2- . (5.2.7)
Therefore

. il T P if— . P

1}5&”% ¥l ,ghngollyn 2 ll=0, forall i=1,2,...,N, (5.2.8)
and

lim ||@, — Az,|| =0, (5.2.9)

n—oo

by the hypothesis of @,, we get
lim {jwi* — Az,|| =0, forall j=1,2,.., M. (5.2.10)
n—oe

Since the limit of {}|z, — «*||} exists, {z,} is a bounded sequence. Then there

exists a subsequence {x,,} of {z,} such that {z, } converges weakly to z* as
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k — oco. From Lemma 5.2.6, {14} is a bounded sequence and {z}} is also a
bounded sequence. It obtain that {y}, } and {2z} } converge weakly to z* for all
i =1,2,..,N. Hence from (5.2.2), {Z,,} converges weakly to x*. Consequently
{AzZ,, } converges weakly to Az*. By (5.2.10}, we have {wf;';"‘} converges weakly to
Azt ask s> oo forall § =1,2,.., M.

Note that z, € C = ﬂfil Cy, since C; is a closed and convex set for all
i=1,2,..., N, we have C is also a closed and convex set, So z* € (' that is 2* € C;
for all ¢ = 1,2,..., N. Similarly, ¢; is a closed and convex set for all 7 = 1,2,..., M,
So Az* € ) that is Az* € @); for all § = 1,2,..., M. From Lemma 5.2.5, for all

i=1,2,...,N, this implies that
Pl [l @nn ¥) — Fl@nn Ui )] 2 W — Znu Vi, — ),
forally € C;,i=1,2,...,N. Since
Wy = Cuger Yoo — W) = — k. = @il — 4l
we obtain that
Prig i@ ) = [il@ng, U0 )] = =, — @l — i
Hence

- . . .
Ji(@n, ¥) = fil&n Un,) 2 “;;*H'y;k = @ 1, — Y-

ny

Taking the limit & — oo, we get that
file*,y) — fila®,&®) > 0 forall y e Ci,e=1,2,...,N.

Therefore z* € ﬂil Sol(C;, f;). In addition, for each § = 1,2,..., M, by using

Cauchy-Schwartz inequality, we obtain that

o
A

gj(w;'i, v) + )\“;';(wf; — Az, v — wl)

A

g5(w},v) + Mfwg, — Azal[lv — wl
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Trom the hypothesis of {A} and {||v — wi||} are bounded sequences for all j =

1,2, ..., M, we have

0< }injllfgj(wf;,v), forall ve Q;,j=1,2,..,M. (5.2.11)

Under upper semicontinuity of g{-,v), wﬂ’;‘“ — Ag* for all § = 1,2,...,M and

(5.2.11), we obtain that
g;{Az*,v) = limsup gj(wf;';"‘ ez,
n—o0

for allv € Qy, = 1,2,..., M. Therefore Ax* € ﬂ;il Sol(Q;, 9;). Finally, we prove
that {z,} converges weakly to «*. Suppose that there exists a subsequence {wy,, }
of {z,} such that z,, — T with & # z*. By Opial’s condition, we obtain that
liminf ||z, — 2 < liminf fla,, — 2"
00 m—oo
= liminf [l — o)
< liminf ||z, — &
iminf [|zn, =]

This is a contradiction and so {®,} converges weakly to z*.

From (5.2.8), we also have g, — a*, 25, — «”, for all ¢ = 1,2, ..., N. Therefore
zZ, — o' and Az, — Az*. Consequently by (5.2.10}, wir — Az* for all j =
1,2,.., M g

The following result is an immediate consequence of Theorem 5.2.7 when

N =M =1. Then C{ = C and ¢; = @), we get the folowing corollary.

Corollary 5.2.8. Let € and @ be two closed and convex subsets of real Hilbert
spaces H; and Hj, respectively. Let f be a bifunction satisfying assumption A on
C and g be a bifunction satisfying assumption B on ). Let A: H; — Hy be a

bounded linear operator with its adjoint A* and { .} C (6,7}, for some 7 > 8.
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Take g € C', {pn} C [p,p] such that 0 < p <7 < min{i—l, ﬁ}, {an} C e, @]
such that 0 <o <@ < 1 and p € (0, ”A%) Consider the sequences

s

Yn = argmin{pn f(zn, y) + 3y — xall* 1 y € C}
zn = axg min{pn f (n, ¥) + 3lly — @l 1y € C}
gy, v) + A (wn — Azp, v —wy) > 0, forall ve@

L Tpy1 = PC(Zn ali ;U'A*('wn - Azn))-

If the solution set
Q- {z € Sol(C, ) : Aa* € Sol(Q,g)} £9,

then the sequences {x,}, {¥»}, {2.} converge weakly to an element z* € Q and

{wn} converges weakly to an element Az* € Sol(Q, ¢).

We now present the following example for supporting Theorem 5.2.7.

Example 5.2.9. We apply a Nash-Cournot oligopolistic equilibrium problem re-
sult arising in electricity markets and oil markets with Algorithm 1 to solve the
solution of the multiple set of split equilibrium promblem. These problem has been
investigated as in [46, 35, 57, 38, 39].

Consider H; = RY, and Hy = RM by 2N = M. We define

C; ={$ERN: 0 <=y, < 80, 7”':1:2;"')N}:
and

Qi={uelRM: 0<u <50, t=1,2,..,M}.
Let A :RY — RM be given by

A " " " - — 1 - W TN , TN
(CL1,$2,2,3, ...,(LNﬁl,:LN) = (3,3,1 — ?,?, ...,—2—,be — ?)

The bifunction f;,i = 1,2,..., N€ is given as follows

filz,y) = (B + Dy + )" (y ~ ) + eiy) — ai(2),
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where B;, D; € RV*N are symmetric positive semidefinite matrices such that B;— I
is also a positive semidefinite matrix, ¢; € R forall¢ =1,2,.., N C. The bifunction
f; has the form of the one arising from a Nash-Cournot oligopolistic electricity
markets equilibrium problem model, see [39, 57] which is equivalent to the profit

function f of electricity companies 4, that is
f’t(rl’) — p(m)EmEI‘-me = Emef.-cm(-'vm)y

where p(z) = 378.4 — 2%,,¢1,&m I8 price function of company 4, and ¢, (z,,) is the

cost for generating ,,, we define cost function of generating unit @, by
C Y — 0 (o0 N Al (o
emlm) = ma (e (@), chy(n)}

where

0 i
Kn 2 ,6 —~1/81 Lo 1y/8L
C?n(wm) 7 %mm + ﬁgaff"m + '7';Om Crln(wm) 5 o"rlnxm + }61 n-;: l'Ym /B (‘(Um)(ﬁm+ )/ﬁm'
m

Denote that [; is tile index set of generating unit m and @, is power of generating
unit 7n.

In this case, the bifunction f; satisfies the condition of Assumption A with
Lipschitz-type continuity with constant L = L$ = 3||4; — B;] see([35], Lemma
6.2). We choose Ly = max{Li,i = 1,2,..N®} and L = max{L,i = 1,2, ..NC}
and pi, = p = 7, with & = max{Ly, L,}. By setting ¢" = (1, 1,..., DT e RY and
define

Uy = o8N (1= @™, Vi= Saal @)’

by = —387.4%0

N_ g, and ¢z) = Sp_1Cm(Tm).
Then we set B; = (U; + (3/2)V;) and D; = (1/2)V;, for to show that f is satisfics
Assumption A, for more detail see [43].

The bifunction g; has the form of the one arising from a Nash-Cournot

oligopolistic oil markets equilibrium problem model, sce [38} such that it is the

profit function of oil companies j, it is given as follows

g;(u,v) = (Byu+ Fyu + dj) (v — ) -+ d;(v) — ds(u),
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where Ej;, F; € RM*M are symmetric positive semidefinite matrices such that Ej —
F is also a positive semidefinite matrix, d; € RY for all j = 1,2,.., M. By

setting ¢f = (1,1,...,1)" € R and define
Hy =250, (1= ) @))", Ty = lidi(e))",

dj = —87502?’;1(1;, and ¢;(u) = M cy(u).

Then we set F; = (H; + T3), F; = (1/2)T; for to satisfies Assumption B.
Finally, we use the two bifunctions f; and g; for our main result in Theorem

52.7. Set N =3, M =1, N =6, M =12, p}, =2foralli=1,2,3. Since § =0,

we can set

lg;(wi, v) -+ (o, wi)|/lwh = vl|* if w) # v,

0.5 if w = v,

M,

n

forall j =1, al =04, a2, a> = 0.3, z = (30,20, 10,15,10,10) € C' = N, C; and

n*Tn

set up ™ =50 for t = 1,2,...,12.

Tablel. The power generation of the generating unit of each companies

Com. Gen Zmin ZTmez Com Gen Tpin Tmaz COmM  Gen Twmin  Tmas

1 iy, W 80 2 10 50 3 10 60
2 0 80 2 0 80 2 0 70
30 50 3.0 50 30 45
4 0 55 4 0 45 4 0 55
5 0 30 5 0 50 5 0 50
6 0 40 6 0 55 6 0 55
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Table2,
The parameters of the cost functions of the generating unit of each companies.
Com. Gen  af g ¥ a5 A8
1 1 0.0400 2.0000 0 2.0000 1  25.0000
2 00350 17500 0 1.7500 1 28.5714
3 0.1250 1.0000 0 1.0000 1 8.0000
4 0.0166 3.2500 0 3.2500 1 86.2069
5 0.0500 3.0000 0 3.0060 1  20.0000
6 0.0500 3.0000 0 3.0000 1  20.0000
2 1 0.0300 3.0000 0 2.0000 1  35.0000
2 00550 1.5500 O 1.7500 1  28.5714
3 0.0250 1.0000 0 1.0000 1 7.0000
4 02166 3.1500 0 3.25600 1  76.2069
5 0.0500 2.0000 0 3.0000 1 15.0000
6 0.0100 3.0000 0 3.0000 1  20.0000
3 10,0500 1.0000 0 2.0000 1 = 29.0000
2 01350 1.9500 0 17500 1 27.6714
3 00250 0.8900 0 1.0000 1 5.0000
4 0.1166 2.2500 0 32500 1  90.0069
5 0.0400 4.0000 0 3.0000 1 15.0000
6 0.0300 3.0000 O 3.0000 1 25.0000

We implement Algorithm1 in Matlab R2015b running on a Desktop with
Intel(R) Core(TM) i5-4200U CPU with 1.60GHz 2.30GHz, 4 GB Ram. We use the
stopping criteria %ﬁ% < ¢ for terimanation of the algorithm. The Table 3. is

the computation results with £ = 1072 and £ = 1075,
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iter. error p  Com 1 T T3 T4 Ts g Cpu(s)
14 1_0*3 0.25 1 19.0942 19.0935 19.0909 19.0902 19.0900 19.0903 23.6719
2 19.0935 19.0933 19.0906 19.0866 19.0897 19.0904
3 10.0944 19.0915 19.0895 19.08%4 19.0892 19.0906
all 20.0197 20.0191 20.0179 20.0172 20.0176 20.0180
23 107 0.25 1 19.0966 19.0068 19.0951 19.0940 19.0942 19.0946 b53.0156
2 19.0959 19.0966 19.0948 19.0903 19.0940 19.0946
3 19.0968 19.0948 19.0938 19.0931 19.0935 19.0948
all  20.0215 20.0213 20.0206 20.0196 20.0203 20.0206

We apply Nash-Cournot oligopolistic equilibrium problem result arising in
electricity markets and oil markets to solve the split equilibrium problem, which
means that we are finding break even point of the trading between electricity com-
panies and oil company. For our main results, we can find break even point of
each companies such that the previous research, see [57, 28, 38] can find break evén
point of total companies but our main results must set the amount of electricity

units/oil wells of each companies which are all equal.

Next, we prove a strong convergence theorem of hybrid parallel extragradient-
proximal point methods by using previous iterative method with shrink projection
method.

Algorithm 2 Hybrid parallel extragradient-proximal point methods for multiple
set split equilibrium problem.
Initialization. Let zg € C' = ﬂiNil C, choose constants 0 < p < 5 < min{ -271:, 5}72},

0 <a<@< 1 Foreach i = 1,2,..,N, choose parameters {p}} C [, 1,

ai} Cla,al, TV . of =1 and p € (0, 25 ).
n i=1% AT
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Step 1. Solve 2V strongly convex optimization programs in parallel

4, = argmin{ (e 3) + 2y — 2all 1 € G,
7, = axgmin{fi(y},, ) + g lly — =l 1 y € Ci},
fori=1,2,.., V.
Step 2. Compute 7, = 32N o 22

Step 3. Solve M regularized multiple set equilibriuin programs in parallel

9wl ) + XN (w? — AZp,y—wl) >0, forall ye @y, §=1,2,...., M.

Step 4. Set 1w, = argmax{||wi — Az,||: 5 =1,2,..,M}.
Step 5. Compute &, = Pg(Z, + pA* (@, — AZ,)).
Step 6. Take xny1 = Fg,,, (%g), where

O = {0 € H : Jtn —of] < 20 = o] < flan — o]l}.

Set n =n+ 1 and go back Step 1.

Theorem 5.2.10. Let C; and @; be two closed and convex subsets of real Hilbert,
spaces Hy and Hy for all i = 1,2,...,N,7 = 1,2, ..., M, respectively. Let f; be
a bifunction satisfying assumption A on Cj for all ¢ = 1,2,...,,N and g; be a
bifunction satisfying assumption B on @) forall j = 1,2,...,M. Let A: H, — Hy
be a bounded linear operator with its adjoint A* and {M,} < (8,7], for some ¥ > ¢
for all § =1,2,..., M. In addition the solution set

N M

0= {:L‘* € ﬂ Sol(Cs, fi) : Az* € nSGl(Qj,gj)} # 0,

i=1 j=1
then the sequences {=,}, {#.},{z¢}, i = 1,2,..., N converge strongly to an ele-
ment z* € Q and {wi}, § = 1,2,..., M converges strongly to an element Az* €

nj; Sol{Qy, 9;)-
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Proof. Firstly, we observe that C,,,, is a nonempty closed convex set for all n € N,
Let &* € Q. Then ¢* € N, Sol(C;, f;) and Az* € ﬂ;‘il Sol(Q;, g5). TFor each

t=1,2,...,, N, by the proof of Theorem 5.2.7, we have

N N
120 =" <l =P~ ot (1=20} L) len )P~ D oy (1= 20}, L) 1wl — 231
i=1 i=1

(5.2.12)

Suppose that 4, € {1,2,..., M} such that @, = wi*. Since Az* € ﬂf:il Sol(Qy, g5,
we have

gj(w?;n1A$*) + A'z?;n (,wg;n - AE,;, Az” — w#) = 0.

By the same process of a proof in Theorem 5.2.7, we get that

A" — [P < [|Ae® — Az |12 = [l — Az, (5.2.13)
and
(A(Z, — 2*), W, — AZ,) < —||@, — A2n||2. (5.2.14)

By the definition of t,, and (5.2.14}, this implies that

ltn — *|)2 = ||PolZ, -+ pA* (@, — AZ,)) — Poa*|?
< 2w =+ pAT (W, — Az
120 = 2°(? + P2l A (@0 — AZa)|1” + 20(Z0 — 2%, A™(W, — AZ,))
= |Za — & * + @2 JAIP N[00 — AZall + 20{A(Z0 — &), Ty — AZn)
< |z = 2P + 2 AP @ — AZ|)* — 2ull@, - Az

= | —a'l* — p2 — pll AN 00 ~ Az, (5.2.15)

By hypothesis of 4, it follows that
it — "> < [z — 2|, (5.2.16)
Combining (5.2.12), we get that

= P < fl20 — @[ < [l — 2°%. (5.2.17)



92

Therefore (d C (5,41, From the definition of €, it implies that z, = Pg_ {z). By

Proposition 2.3.4 and z,41 € Chyy, we have
lZni1 — mnHZ + @ — 2:0”2 < lzpsa — -"30”21 (5.2.18)

it follows that

llazn — zoll* < lny1 = aoll*.

Similarly to @p41 € Po,, (#0) and &* € Chyy, we get
l2ns1 — @oll® < fla* — ol
This implies that
lzn = @oll* < lwnsr — 2ol” < Jl2* = ol (5.2.19)

Consequently, the sequence { ||z, — [/} is & nondecreasing and bounded sequence.
Then the limit of the sequence {||x, — zo||} exists. It follows that {z,} is bounded
and by Lemma 5.2.6 obtain that {y%} is also bounded for all ¢ = 1,2, ..., N. From

(5.2.18) and the limit of the sequence {|jz, — xo||} exists, we get that
lim ||€p41 — @a|| = 0.
00
Next, we will show that * € §2. Since z,,1 € Cpy1, we obtain that
|Znst = tall < flznsr — @all-

Since

Hen —zpll < ltn — Zpst |l + 10 — @l

< 2f@np — 2all, (5.2.20)

it follows that

iyl = ]| 0. (5:2:21
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In view of (5.2.12) and (5.2.15), we get that

tn — 2" = llzn =21 = u(2 = il AP |50 — AZull®

N
< Mlon —2*IP = 3 al(1 = 20, Lo)llen — g1

n=1
N - - .
= > ah(L =260 La)llyp, = 2P — (2 — sl AP Bn - Azl
i1
(5.2.22)
This implies that
N :
>l =20 Ln)len — vl
n=1
N . .
+ 220l = 200 o) = 2l 2 = AP B Azl
i=1
e = 2*)|* ~ [itn z*||?
Sllen = 2 -+ [[tn — 2*[[Hlwn — 2al|- (5.2.23)
Taking the limit 7 — co and combining (5.2.21), we have
1}5210 Nzn — v = ?311)1010”?;; ~ 2 =0, foralli=1,2,..,N, (5.2,24)
and
lim |l@, — AZ.[] = 0. (5.2.25)
n—=ee
By hypothesis of @, we get
lim [jui — AZ,|| =0, forall j=1,2,.., M. (5.2.26) -
n-—00

Next, we will show that any weak accumulation of {z,} belongs to Q. Suppose
that the subsequence {x,, } of {x,} converges weakly to z* that is ,, — z*. Since
{,} is a bounded sequence, by Lemma 5.2.6, {4} } is a bounded sequence, it follows

that {z}} is a bounded sequence. We get 35, — «”, zf, —a* foralli=12,..,N,
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and by (5.2.13), (5.2.25), we obtain that wf;';_"' — Az* for all j = 1,2,..., M. From

Lemma 5.2.5, for each 4 = 1,2, ..., N, this implies that
p:l’lk[fi(ﬂ;nk’y) o fi(ﬂ;nmy:tk)] 2 (yfz;.- - wﬂk)y:lk - ?j), for all yE Giai =1,2, ey V.
Since
(Wh = T Uy =YY = =0k, = @i v, — 9l
we obtain that
p:fak [fi(fl?m,.,'y) o fi(mnk»yrilk)] 2 _“y:;k = Ty, l“ly:u, N y”
Hence

i ; i i
Ffl@ng, ¥) = fil@ng s Un ) 2 —;,.—H'ynk — @ [y, — ¥l

g

Taking the limit & — oo, we get from
filzy) - fila” @) 20 forall y € Ci = 1,2, NV,

Therefore a* € ﬂf\;l Sol(C;, fi). In addition, for each j = 1,2,..., M, by using

Cauchy-Schwartz inequality, we get that
0< g]’(wﬂ) TJ) v ’\J;(wfj; . Azm v ’LU%)
< gi(wh,v) + M fjw), — Az |lIlv — wi. (5.2.27)

From hypothesis of {M} and {|lu — wi||} are bounded sequences for all j =

1,2,..., M, we see that
0< 1i1r_1}infgj(w;';,v), forall ve Q;7i=1,2,.., M, (5.2.28)
n—o

Under upper semicontinuity of g{-,v), wf;';*' — Az* for all j = 1,2,..., M and

(5.2.28), we obtain that

gi(Az*,v) > limsup gj(wf;'}f ,v) >0,

1300
for all v € @;, 7 = 1,2,..., M. Therefore Aa* € ﬂ;’il Sol(Q;,9;) and we can

conclude that z* € (1.
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Finally, in view of (5.2.19), we have ||z, — zof| < ||lz* — @] where 27 =
Po(xo). Tt is immediate from Lemma 2.4.9 that {x, } converges strongly to 2*. From
(5.2.24), we also have {3} and {z.} converge strongly to an element z* € Q for all
i=1,2,..,N and {w!} converges strongly to an element Az* € ﬂ;\il Sol(Q;, g4)
for all 1 =1,2, .. M by (5.2.26). d

Likewise Theorem 5.2.7, when N = M = 1, then C; = (' and @) = @}, we

get the following corollary immediately.

Corollary 5.2.11. Let C' and @ be two closed and convex subsets of real Hilbert
spaces H; and Hs, respectively. Let f be a bifunction satisfying assumption A on
C and g be a bifunction satisfying assumption B on Q). Let A : H; - Hy be a
bounded linear operator with its adjoint A* and {A,} C (8,7, for some ¥ > 8.
Take z9 € €' ,{pa} C [p,p) such that 0 < p < p < min{z—il,ﬁ}, {o,} C [, &]
such that 0 < o <@ <1 and p € (0, ﬂﬁ) Consider the sequences

4

yn = argmin{p, (2., 9) + 3lly — za* 1 y € C}
Zn = argmin{pnf(yn,y) + %“y - 3:1:”2 Yy e C}
(W, v) + Ap(wy — Azy,v—wy) 20, forall ve@

s e,

L Znp1 = Fo (’zn ik MA* ('wn 7 Azn))-

If the solution set
0= {:r;* € Sol(C, f): Az” ¢ Sol(Q,g)} £ 9,

then the sequences {z,}, {¥n}, {#n} converge strongly to an element z* € £ and

{wy} converges strongly to an element Az* € Sol(Q, g).
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5.3 Parallel extragradient-proximal iterative methods with linesearch

for multiple set split equilibrium problems

In previous subsection, we focus a Lipschitzian-type continuous on C' property of

f ie., if there exist two positive constants ¢y, ¢z such that
f(ﬂ’)y) + f(yaz) > f(lL,Z) - CIH:E - y”2 - C2||y =" z”21 for all T2 E ¢ and Q

This condition is very strong and so difficult to approximate. To aviod this
requirement, Tran et al.[69] proposed linesearch procedures to obtain extragradient
method for solving equilibrium problem.

Consequently, in this subsection, we reduce this condition Assumption A
of a bifuncton f and use linesearch procedures of Tran et al. [69]. Next, we recall
lemma which use in the part of our main result.

Let f be an equilibrimm bifunction defined on C x C. For 2,y € C, we

denoted by 8;f(z,y) the subgradient of the convex function & f(z,-) at y, that is
Oof(w,y) ={€ € H : f(z,2) = flz,y)+ &z — y),Vz € C}.
In particular
&f(z,z)={e H: flz,2)={z—y), Yz € C}.

Let A be an open convex set containing C. The next lemma can be considered as

infinite-dimensional version of Theorem 24.5 in [58].

Lemma 5.3.1. Let C be a nonempty closed convex subset of a real Hilbert space
H and f: C — R be a convex, subdifferentiable, lower semicontinouns function on
C. Then z* is a solution to the following convex optimization problem min{g(z) :
z € C} if and only if 0 € 8f(z*) + Ng(z*) where 8f(-) the subgradient of f and

N¢(z*) is the normal cone of C' at z*.

Lemma 5.3.2. [28] Suppose that &* € Sol(C, f}, f(z,-) is convex and subdiffer-

entiable on C for all # € C and that f is pseudomonotone on C. Then, we have



97

(i) The Armijo linesearch rule (6.4.4) is well defined,;
(i) flzn,2n) > 0;
(i) 0 € 92f(2n, Tu);
(iv) [Jun ~ 2*]] < |lzn — 2] - (2 — '7'11)(th|'€1£||)2-

Nevertheless, we propose the iterative method by using a combination of the
extragradient method with Armijo linesearch type rule for avioding Lipschitz-type
continuity of bifunction f in f1; to obtain the weak convergence theorem for solving
multiple set split eguilibrium problems (MSSEP).

In order to solving the multiple set split equilibrium problems (MSSEP), we
assume that [ : Hy x Hy — R with f(z,z) = 0 for all z € C satisfies the following
conditions:

Assumption A

(A1) f is pseudomonotone on C with respect to Sol(C, f);

(A2) f(=z,-) is convex, lower semicontinouns and subdifferentiable on C for all

r e
(A3) f is weakly continuous on C x C' that is, if 2,y € C and {z,},{ym} C C

converge weakly to x and y, respectively, then f(z,,1.) — f(z,y) asn — o,

Moreover, we assume that g : Hy X Hy — R with g(u,u) =0for all u € ¢
satisfies the following conditions:
Assumption B
(B1) g is pseudomonotone on @;

(B2) g{u,-) is convex, lower semicontinuous for all © € @,

(B3) ¢(-,v) is upper semicontinuous for all v € ;
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(B4) There exists £ > 0 such that g(u,v) + g(v,u) < llu —v||? for all w,v € Q (g

is called undermonotone and « is the undermonotonicity constant of g}.

Algorithm 3 Parallel Extragradient-Proximal Methods with linesearch Ini-
tialization. Let 2y € C = ﬂf‘;l C;, choose constants 7,8 € (0,1),0 < p < 5,0 <
a<a<land0<y<7¥<2 Foreachi=12,.,N,j=12..M, choose

parameters {pi} C [p, 8,72 C (27, {et} C [, @], 5 0f = 1 and p € (0, W)

Step 1. Solve N strongly convex optimization programs in parallel

1

sl = axgmin{ien,1) + 5=l 1y € G} (53.1)

;
for i = 1,2,...,N. If 4, = x, then set z, = u} and go to back step 4.

Otherwise go to step 2

Step 2. Armijo linesearch rule. Find mmn,, as the smallest positive integer number
m such that
z-ia,m = (1 —7™)z, + nmy;.u

fﬁ'(z:i:,ma ‘Tﬂ) .y fi(z:z,m’yf;) > 'zg—:‘lllm?l > %”2

(5.3.2)

Set 1, = nm,;,zf1 o z;,mn,

Step 3. Select &), € dafi(#%,z,) and compute ¢!, = f‘—l(l’;';:ﬁ’T”) and @, = Pg, (2, —
Tnaiei)

Step 4. Compute @, = Zf\;l atul,

Step 5. Solve M regularized multiple set equilibrium programs in parallel

gi(wi, ) + M {wl — Aty —wl) >0 y€Qy, j=1,2,.., M. (5.3.3)

Step 6. Set W, = argmax{]|wi — Au,||:5=1,2,.., M}

Step 7. Compute xp11 = Poli, + pA* (0, — Ally,)).
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Set n =1+ 1 and go back Step 1.
The following lemma presents that if Algorithm 1 stop at step 1 then a

solution of the multiple set equilibrium problem in C go to step 5.

Lemma 5.3.3. If Algorithm 1 terminates at step 1, then z, is a solution to the

multiple set problem in C.,

Proof. If the algorithm terminates at step 1, then #,, = y&, Since % = z,. Since

4 is the solution to the convex optimization problem (5.3.1), we get that

1

Nyt = @, Yy e C..
2pzll’yn zoll* Yy € C;

gl .
fi(iﬂn,y) + g”y - "'-’n”z = fi(mm y:z) i
n

By Lemma 2.2 [69], we can conclude that ,, is a solution to the equilibriumn prob-

lem. ]

If Algorithm 1 does not stop, it go to step 2. The next step Lemima 5.3.2
show that there always a positive integer m such that condition (6.4.4) in step 2
is satisfied. Next go to step 3 and step 4 and In step 5 we will find solution of
the equilibrium problem in @; C Hy such that condition (5.3.3) is well-defined
by Lemma 5.2.1. Next we will find the most difference between solution of the
equilibrium problem in €; C Hy with sum of the equilibrium problem in C; C H;

for all i = 1,2, ..., N which it is forwarded to Hy and finally compute to step 7.

Theorem 5.3.4. Let C; and (), be two closed and convex subsets of real Hilbert
spaces Hy and Hy for all i = 1,2,...,N,j = 1,2,..., M, respectively. Let f; be
bifunction consistent with assumptions A on Cj for each i = 1,2,..,N and g;
be a bifunction consistent with assumptions B on @; for all j = 1,2,..., M. Let
A Hy — H, be a bounded linear operator with its adjoint A* and {M} be a
bounded sequence such that {\} C (sn_1,+00) for all n € N . In addition the
solution set

N %
0= {a:* € mSol(Ci,;,ﬂ—) Azt e ﬂ SOl(Qj,gj)} #0,
i=I

i=1
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then the sequences {a, }, {ul}, 1 = 1,2, ..., N converges weakly to an element z* € Q

and {wi}, 7 =1,2,..., M converges weakly to an element Az* € ﬂfil Sol(Q;, 9;).

Proof. Let * € 1. Then
N M
z* € ()Sol(C, fi) and Az* € ] Sol(Q;, 95)-
i=1 j=1

For each 5 = 1,2, ..., N, from Lemma 5.3.2(vi}, we have

e, — *1I” =[Py (w0 = motel) — 'l
<o — &2 = 32— v) (I’

<|len — 2|2 (5.3.4)

For each 7 = 1,2, ..., N, from Lemma 5.2.4 and (5.3.4), we obtain that

N
= 21 =l 3 bt — w1
i=1

N—-1-N

N
:Za;“u; - "E*”2 - Z Z 0'5011”%:1 ] u’i:”2
i=1

i=1 l=i+1
N .
< Z a:z“u:z i :B*Hz
i=1
Sz, =% (5.3.5)

Suppose that 4, € {1,2, ..., M} such that W, = wir. Since Az* € ﬂfil Sol(Qy, 94},
we have

gj(wf;", Az) + Nr{wls — Ati,, Ax* —wi®) > 0.

By Lemina 5.2.3, every element of ﬂ?il Sol{@;, g;) can solve CFP(Q;,g;) for all
7=1,2,..,M, hence g;{wi", Az*) <0 for alln € N and j, = 1,2, ..., M. It follows

that
(wi* — Afiy, Az* — wi*) > 0.

Since

lAz* — Aun|? ~ [lwl = Aualf* — || 42" —wr|” 2 0,
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which implies that
lAe® —wir||? < [|Az* — Adn||® — lfwlr — At (5.3.6)
From the following fact, we have
(AT — "), ude — Aig) = S {wle — A2 | ~ AR, ~ Aa*| ~ fuly — Auall}.

It follows that

(A(ﬁn I\ .’E*),‘wi" - Aﬁn) < ﬁ”w?;n — Aﬁ‘”nz'
Hence
(A — "), 1y — Ally) < — |, — Aity)|*.

By the definition of z,,4, and previous inequation, we obtain that

|Zngr —a*I> = (|Po(@, + pA* (@, — Aty)) — Poo'|?
<l — &+ pA (B, — At
= @, — 2*||2 + pE| AN (@, — AT+ 20y — a7, AN (WD, — AZy))
= |lin — &*|* + 2| AP N1 0n — ATl* + 20 AT — &%), By — Alt)
<l &P 4 @I AP D, — At |l® - 2pl|@, — AT,

= @, =2 |* 2 — @A) @5 ~ At (63.7)
In combination with (5.3.5), we get that

Jni =2 ? = @ —2"|” = w2~ pl Al @, — Agylf?

A

o — &1 = (2 = p AP o — At

Since u € (0, ﬁ), we have
iznss — 33*“2 < [#n - 3"*”2'

This implies that {|{z, — z*}}} is a nonincreasing sequence. Thus the limit of the

sequence {|lz, — 2*||} exists.
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In view of (5.3.5), (5.3.8), we get

[n — &7 < i — 2*|? < ELiag e, = o7 < flzw — 271" (5.3.8)
From (5.3.8), we conclude that

(2 = | AP D — AT < Nl — 22 — llwnss — 27" (5.3.9)

Since the limit of the sequence {ll&, —«*||} exists and p € (0, rfm), we have

Jin @ = ol = i S o, — o = Jim flo = o7 (53.10)
and

lim ||, — Adiy|| = 0. (5.3.11)

00

This implies that
Ji)n(}onwf;“ — At,l|=0, forall §=1,2,.., M. (5.3.12)
By (5.3.4), we have
g, = 271 < llwn = 2" * = 702 — ) (onllenll)®,
this implies that
(2 = 7)(@illenf)® < flwn — 2?7 — s, — <*|1%

So
(2 — 1) Ea0d (0 llen ) < flwn — 22 — By, — 2",
Taking the limit n -3 oo and the definition of «,, o, we obtain that

lim o, leill =0 for each i=1,2,...,N. (5.3.13)

1

Since the limit of {||z, — 2*||} exists, {¢,} is a bounded sequence, From Lemma

5.2.6, we obtain that {y}} is also bounded. From step 3. and (5.3.13) yield

lim fil2h, ) zfgingo[ai|lefl]|] =0 for each i =1,2,...,N. (5.3.14)



By the Algorithm 3. and f is a equilibrium bifunction, we have

0= fi(‘z:lnz:';) = f(zriu (1 - 77n)$n + nny:t)

< (1 - 7?n)fi(zfn $n) + 7?nfi(zfuy:1)'
So

fi(zfu ﬂ;n) 2 nn[fi(zgin :Un) B fi(zrin y:;)]

g :
> gl — il

From (5.3.14), this implies that

lim 7*)|&, — v%)> =0 foreach i =1,2,..,N.
n—od

We now consider two distinct cases

Case 1. limsup,_,., 7" > 0.
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Then there exist 77 > 0 and a subsequence {n™*} < {n™} such that #™ > 7 for each

k. From (5.3.15), we get

klgigo &n, = ¥, ll =0 for each i=1,2,..,N.

(5.3.16)

Since {a,} is a bounded sequence, there exists a subsequence {2, } of {z,} such

that {xn, } converges weakly to &* as & — oco. From limg 60 Tp, = = and (5.3.16),

we have limy_,., y,fzk = z* for cach i = 1,2,...,N. For each y € (] for each i =

1,2, ..., N, by the definition of ¥},

1
204,

Uy, = arg mind fi(n,, y) +

we have

, . 1 ) )
0 6 82.}(;(‘1}:1;‘! y:’!x) + ;;;_(y:th - ‘rl;nk) + NCI (y:l;,_)'

ny

So there exists &, ¢ 02 fi(2n,, 5, ) such that

1

oy —yh )+ p {4, — Ty — ¥k, = 0 for each y € Ci=1,2, ...

g

lly — @, I* 1y € Ci,
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Combining this with
fi(:l“ﬂk’y) - fi(fﬂnk,yik) 2 (éf—lksy - y:::k) for each ye Gi:i = 1: 2’ ey N,

yields

. 1 . ; .
f‘i(mnkjy)_fi(:pnk)y:;k)—l_pT(y::k'—wﬂmy_y;;k) Z 0 for each Y C Ci,’ﬂ = 1) 2: "'7N'
T
(5.3.17)

Since
Wi~ Ty — Vi) < Ny — @ lllly — 90, 1,

by (5.3.17), we get that

. 1 ] ] .
fi(mnkay)"'fi(mnmy:zk)+pTlly::k_mﬂk””y_y:;k“ >0 foreach y€ Cy,i=1,2,..,N.

("

(5.3.18)
Taking the limit of & — oo and by the continuity of f;, we obtain that
fi(z*,y) = fi(z*,2*) > 0 for each y € C;,1=1,2,...,, N,

Hence fi{(z*,4) > 0 foreach y ¢ Cy,i =1,2,...,N. So a* € ﬂfil Sol(C;, ;).
Case 2. limsup,,_, 7" = 0.
From the boundedness of {y}}, then there exists a subsequence {y } C {y},} such
that {y} } — 7 as k — oo. Replacing y by 2}, in (5.3.17), we have
, 1 .
Fil @ v, )+ = lvh, — 2n, ] <O foreach i =1,2,..,N. (5.3.19)
Pay,

In the other hand, by the Armijo linesearch rule, for m,,_,, there exists zf;mmnk_l

such that

) . , 0 ,
fi(z:’lk,mnk—l’a;"k) - fi(z‘rtlk,mnk_l’y:lk) < 2p1 “y:z;. - :E?lkHZ'
ny

By (5.3.19), we obtain that

, 1 . 2 . . .
Fi@n Yng) < o~ el = im0 Ynd) = FilZn a1 B )] (5:3.20)

Ty



According to the algorithm, we have

Z =(1- ?i'm"“_l)ﬂv’nk + Tim“*_lyfw

g Miny, —1

Since 5™t - 0,a,, converges weakly to @* and y,, converges weakly to §, we

have z*

& e I orver {1 |l R . :
i, — T 88 k — oo. Moreover, {F‘k”yﬂk — %, ||*} is bounded, without

loss of generality, we may assume that limg_, ||y, — @, ]I* exists.

Taking k —» oo in {5.3.20), we obtain that

L W G NN
£ie",3) S = i =k, P < 55",

=400 o,
Therefore, fi(x*,7) = 0 and limy_, 4 ||, =@, [|I* = 0. By Case 1., it is immediate
that z* € ﬂfil Sol(C;, f;). In addition, for each § = 1,2, ..., M, by using Cauchy-

Schwartz inequality gets that

=
VAN

g5(wh,v) + M, (w], — Aty v = w])

AN

gj(TU?J‘;’ U) =N )\fz“w?z R Aﬁn””” - wfz”
Since {M } and {||v — wi||} are bounded sequences for all § = 1,2, ..., M, we have
0 < liminf g;{w?,v), forall v e Qy,j=1,2,.., M. (5.3.21)
n—oo .

Under upper semicontinuity of g(-,v), wf;',‘c*' — Az* for all j = 1,2,..., M and

(5.3.21), we obtain that
g;(Az*,v) > limsup g; (wf{i.*‘,v) >0,
n—o0

for all v € Q;, §j = 1,2,..., M. Therefore Az* € ﬂ;‘f__l Sol(Q);,g;} and we can
conclude that 2* € 2.

Finally, we prove that {z,} converges weakly to &*. Suppose that there
exists a subsequence {zp, } of {.} such that =, — T with «*+# 3.
By Opial’s condition, we obtain that

li#t{l_}iggf “‘,B”m - ‘T'“ < lgrlgl)iol;f ”:Eﬂm - '(L‘*”
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= liét_légf [0, — 7]
< llig‘lxl}f l#n, — Zll

= h,gl;lo%f |I$"m - {ﬁ”

This is a contradiction and so {x,} converges weakly to z*.

It is immediate from (5.3.10), we also have u!, — z*, for all ¢ = 1,2,..., N.
Therefore @i, — z* and A%, — Az*. Consequently by (5.3.12), wi* — Az* for all
F=1,2,.., M. |

A particular case of the multiple set split equilibrium problem is the split
equilibrium problem, that is N = M = 1, then C; = C and Q; = @), we get the
following corollary immediately.

Algorithm 2 Parallel Extragradient-Proximal Methods with linesearch

Initialization. Let zy € C, choose constants 1,0 € (0,1),0 <p<pand 0 <y <

7 < 2. Choose parameters {p.} C [p, 7], € [p,7), {an} C [, @ and 11 € (0, 17m)-

Step 1. Solve N strongly convex optimization programs in parallel
. 1 9
¥ = arg min{ f(a,, ) + gny —anl|® 1y € C}L (5.3.22)
n
If y, = z, then set z, =, and go to back step 4. Otherwise go to step 2

Step 2. Armijo linesearch rule. Find m,, as the smallest positive integer number

. such that

Zam = (1 = 9™)T0 + 7Yy, (5.3.23)

f(zn,nu mn) - f(zn,mayn) 2 'Q“f;:”w?l - 'yn”2-

Set 1, € ™, 2 = Zngn,-

Step 3. Select €, € 82f(2,,z,) and compute o, = ﬂﬁ‘—“’"ﬁ and u, = Pz, —

lenll

Y O'ngn) .
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Step 4. Solve M regularized multiple set equilibrium programs in paraliel

g(wm y) + )\n(wn - Aﬂm y - wn) 2 0 y € Q'

Step 5. Compute z,+1 = Poli, + pA*(w, — Ady)).

Set n =n + 1 and go back Step 1.

Corollary 5.3.5. Let C and € be two closed and convex subsets of real Hilbert
spaces H; and H», respectively. Let f be a bifunction consistent with assumptions
A on C and ¢ be a bifunetion consistent with assumptions Bon Q. I.et A: H; — H,
be a bounded linear operator with its adjoint A* and {\,} be a bounded sequence

such that {A,} < (kp—1, +00) for all n € N, In addition the solution set

Q= {rf;* € Sol(C, f): Az* € Sol(Q,g)} 4@,

then the sequences {z,}, {u,} converge weakly to an element z* € Q and {w,}

converges weakly to an element Az* € Sol(Q, g).

We now present the following example for supporting Theorem 5.3.4

Example 5.3.6. we define the bifunction f; : C; x C; — R, = 1, 2,3, which apply
in the Nash-Cournot equilibrium model in [69]. We define by

flm,y) = (P + gQi)f‘? 1+ Qiy + ¢i,y — @) + {di, arctan(z — y))

where P, and Q; are symmetric positive semidefinite. Define ¢; == (1,1,0,0,2,0)7,
g2 ={1,2,0,1,2,00, g3 = (1,0,2,0,2,1)" and d; = rand(1,6) for alli = 1,2,3. We
set arctan(z—y) = {arctan{@—y1), ..., arctan{xzs —ys))’. Since fi(z,y)+ fily, ) =
—(y — x)P(y — ) — (y — )3Qily — =), and P; and Q; are symmetric positive
semidefinite, we get that the bifunction f; satisfies both condition Al, A2 and A3,
We choose pf, = 0.5.

We define A : R® — R3 by

Ay, 22, %3, T4, T, Te) = (T1 — T2, T3 — T4, T5 — Tg),
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A is bounded linear operator such that ||Az| < ||z||.

Next we consider the bifunction g; : @; x 5 — R which define by
g5(@,y) = ((4; + Bj)z + Bjy + 5,y — )

where A; and B; are symmetric positive semidefinite. Define ¢y = (1, 2, 1)*. Since
a(z,y) + a1y, z) = —(y — x)A1(y — x) and Ay is symmetric positive semidefinite,
we get that the bifunction g; satisfies condition Bl, and we easy to check B2, B3
and we get that 0 is the underinonotone constant of g;.
We choose A, = ||B; — A;j|| if B; # A; and A, = 0.5 if B; = A;. Define
zp = (0.5,1.2,1.7,1.5,0.5, 1.8), wp = (2,2,2.5) and
3
C=(Ci={zrcR™:0<m < 2%k=1,2,34,5,6},
i=1
Q=Q={zcR®:0<a, <Zk=1,2,3}
We implement Algorithml in Matlab R2015b running on a Desktop with

Intel(R) Core(TM) i5-4200U CPU with 1.60GHz 2.30GHz, 4 GB Ram. We use the

stopping criteria % < ¢ for terimanation of Algorithm 1 and set £ = 1075,

The results are reported in the table below

error  j v iterative Cpu(s)

0=t 05 025 10 11.8438
0.25 0.25 41 72.8125
0.25 0.5 806 5.6563
025 1.5 278  19.26566

Algorithm 3 Hybrid Parallel Extragradient-Proximal Methods with line-
search
Initialization. Let 2y € C = ﬂf‘;l C;, choose constants 7,8 € (0,1),0 < p <
pl<a<@<land0<y<¥<2 Foreachi=1,2,..,N,j=12,.., M, choose

parameters {p},} C [p,7), 7 C [p, P}, {0} C [, @], B 10f, = 1 and p € (0, 17p)-
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Step 1. Solve N strongly convex optimization programs in parallel

1

2 lly — zal®: ¥ € Ci}, (5.3.24)
n

y:'l = arg Il'lill{fi(ﬂ;my) +

for ¢ == 1,2,..,N. If ¥, = @, then set z, = u}, and go to back step 4.

Otherwise go to step 2.

Step 2. Armijo linesearch rule.

Find m,, as the smallest positive integer number m such that

2t = (L= 9™z, + 0™y, (5.3.25)

ff(zvil,miwﬂ) - fi(zfz,nuyja) 2 %”'Ln - y;:1”2'

e 1 o i
Set 7, = ™, 2y = it

Step 3. Select =i € &y fi(7h, z,) and compute of, = £&o2) and wf = Py, (w0, —

liehH*

,Y?lg:!,e:.l)'
Step 4. Compute i, = YN adub,
Step 5. Solve M regularized multiple set equilibrium programs in parallel

gi(wl,y) + M {wl - A,y —wl) >0 ye @y, j=1,2,..,M.

Step 6. Set @, = argmax{||wl — Au,|:7=1,2,...,M}.
Step 7. Compute t, = Po(i, + pA*(0, — Al,)).

Step 8. Take ©,41 = FPo,,, (%), where

Cr = {'U € Chy: ”tn - 1)” < i — o)l < [ln — U”}

Set n =n+ 1 and go back Step 1.

Theorem 5.3.7. Let C; and @); be two closed and convex subsets of real Hilbert
spaces H, and Hy for all 4 = 1,2,...,N,j = 1,2,..., M, respectively. Let f; be

a bifunction consistent with assumptions A on C; for all ¢ = 1,2,...,N and g;
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be a bifunction consistent with assumptions B on @; for all j = 1,2,..., M. Let
A : Hy — Hy be a bounded linear operator with its adjoint A* and {M} be a
bounded sequence such that {M} C (x,-1,+00) for all n € N. In addition the

solution set

N M
Q= {ﬂ;* c ﬂSOl(Ci; fi) : Ax® € ﬂ SOE(QJ"Q.‘)')} # 0,

i==] i=l1
then the sequences {z,}, {ué}, 1 = 1,2,..., N converge strongly to an element &* €

Qand {wl}, j =1,2,..., M converges strongly to an element Az* € ﬂ;il Sol(Qy,94).

Proof. Fistly, we observe that Ci, 1 is a nonempty closed convex set for all n € N,

Let a* € 2. Then

e ﬁSoE(Ci, fi) and Az* € ﬁSOE(Qj,gj)-
i=1 =1
For each i = 1,2, ..., N, by the proof of Theorem 5.3.4, we have
lldf, = 2* 17 < e — 272 = 7(2 ~ w){onllenl)?, (5.3.26)
and
1 — @ < Tyapllur, — 2 I < Jlon — 271, (5.3.27)

Suppose that 5, € {1,2, ..., M} such that W, = wi. Since Az* € ﬂfil Sol(Qy,95),

by the same process of a proof in Theorem 5.3.4, we get that

flAe® —wdr|f? < [[Az” — Amy|| ~ lwlr — A, (6.3.28)
and

(AT, — 2%), @, — Atly) < —||©, — Atin|*. (5.3.29)

By the definition of t,, and (5.3.29), this implies that

It =27 = 1 Poltin + pA* (@ = Alln)) — Poa”|]
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< g — &t 4 pA* (@, — A,

= |l — &1 + @} A (@n —~ AT + 2T, ~ &, AN (D — ATn))
= |l#n — " * + 2N AlPll@n — Atin|® + 2p( A, — &%), B — Atl)
< M — 21 + 2| AP D — A - 2], — AR|)?

= ”ﬁn - 3’*”2 - #(2 o N"A”?)”mn - Aﬂ'n”2- (5-3-30)

By hypothesis of y, it follows that

lItn — &l < 1, — 2*I%, (5.3.31)
and combine with (5.3.27), we get from

It — 2" < 1@ — 217 < o — 2 (5.3.32)

Therefore § € C,,;. From the definition of C,,, it implies that z, = Fg,(20). By

Proposition 2.3.4 and &4 € Cyy1, we have
|2n41 = @all + l2n — wol* < Henis — woll?, (5.3.33)

it follows that

o 0lP < [fzass =zl
Similarly to @, € Pe,, (@) and 2% € Chyg, we get
lent1 —aoll® < [l2* = =oll*.
This implies that
27 = 2ol < [lensa — woll® < Iz — aol. (5.3.34)

Consequently, the sequence {||z, — zg||} is a nondecreasing and bounded sequence.
Then the limit of the sequence {||z, — ||} exists and {z,} is a bounded sequence.
By Lemma 5.2.6 obtain that {3} is also bounded for all i = 1,2,..., N. From

(5.3.33) and the limit of the sequence {||z, — xo|} exists, we get

?}an}o 2ns1 — 2all = 0.
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Next, we will show that 2* € 2. Since x,41 € Cpry1, we obtain that

|Znt1 = tall £ |2ns1 — Tt < [[Tn41 — Tufl.

Since
”tn —zall < |lta — Tnptll + [|@ng1 — 20|
< 2lntr — 24, (5.3.35)
@, = 2all £ 8= @ppall + f2ni — |
< 2fwn — zalls (5.3.36)
it follows that
lim ¢, — @a| = lim (|G, — @, = 0. (5.3.37)
n—oea n—00

In view of (5.3.27) and {5.3.30), we get that
It — &1 =llitn ~ @[> — 122 ~ p Al @0 ~ Agialf?®
<ln =" = (2 = A, — Al (5:3.39)
This implies that
M2 — JLL”AHQ)”@-n = Aﬁn”2 < len = '73*”2 =tn~ 37*”2
L (e = 27| + [Itz — 2" Dlzn — tall.

Taking the limit 7 — oo, we have

?}l}nolo V@, - At,|| = 0, (5.3.39)
by hypothesis of @, we get
lim |jwir — A2ty =0, forall j=1,2,..., M. (5.3.40)
n—=00

By the same way in the proof of Theorem 5.3.4, we obtain that

lim o€’ || =0 for each i =1,2,...,N. (5.3.41)
o0
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From step 3. and (5.3.41) yield

lim fi(zh,@,) = lim [oy]leh ] = 0 for each i=1,2,..., N. (5.3.42)

n—00

By the algorithm 4. and f is a equilibrium bifunction, we have

0= [ilzh ) = flzn (L= 1")wn + 0",

<(1—- ?]n)fi(z,i, g n-nfi(zriw yviz)'
So

Filzhy wn) = 0" [filzhs @) — Filzn yn))

0 -
2 5,0 len = wnll™

From (5.3.42), this implies that
lim fl@, — yi[|* =0 for each i =1,2,..., V. (5.3.43)
n—ro0

Next, we will show that any weak accumulation of {,} belongs to £2. Suppbse
that the subsequence {z,, } of {x,} converges weakly to z* that is z,, — z*. From
(5.3.37) and (5.3.40) we have ¢, — 2*, 4, — z* and wir — Aa”.

By (5.3.43), we get that

klim 2" ||@n, — 45, |7 =0 foreach i=1,2,.,N (5.3.44)
i— o0

We now consider two distinet cases
Case 1, limsup, 1" = 0.
Then there exist 77 > 0 and a subsequence {n™*} C {#"} such that ™ > 7} for each

k. From (5.3.44), we get
lm ||z, — 2. || =0 foreach i =1,2,..,N. (5.3.45)
k—o0 &

Since x,, — z* and (5.3.45), it follows that 4}, — " for each ¢ =1,2,...,N. For

each y € C; for each 7= 1,2,..., NV, from Theorem 5.3.4, we get that

. 1 . ; .
fi(i:nk:y)—fi(wnmyr!lk)—}'pT(y:zk_ﬂ;nmymy:zk) >0 for each ye Ci’?' = 1)21 "':N:

n



114

(5.3.46)

and

fi(xnk!y)_fi(‘rgnkiy:zk)+pTlly:LkH$71k””y*y:ak” >0 foreach y€ Ci=1,2,..,N.

(L

(5.3.47)
Taking the limit of £ — co and by the continuity of f;, we obtain that
filz",y) — fi(z*,2*) > 0 foreach y € Cj,i=1,2,...,N.

Hence fi(z* y) = 0 for each y € Cy,i = 1,2, ..., N. Therefore 2* ¢ ﬂfil Sol(Cy, fi).
Case 2. limsup,_, " =0.
From the boundedness of {3}, then there exists a subsequence {% } C {y.} such
that {3} } — 7. Replacing y by o, in (5.3.46), we have
f‘i(a:nk: yrzzk) % —';—”y:u i mnkllg <0 foreach i= 1: 2: st N. (5348)
g
In the other hand, by the Armijo linesearch rule, for my,, 3, there exists 2} p—
such that
i i : 0 2
fi(znk,mﬂk_l‘lmﬂk) — fi(znk,mnk_liynk) < W“'ynk - a:ﬂk” '
T
By (5.3.48), we obtain that

1
e

. . 2 . ; .
f,'(ﬂ?nk,‘y;k) < _P ”y:lk_m”k” < 'é[fi(z:lk,mnk_l’y:zk)—fi(z:zk,mnk_l)3"711;)]' (5'3'49)

g

According to the algorithm, we have

i _ i, —1 Mny, — 1,4
zﬂkv"nnkfl m (1 - ?] "k ):Enk + 77 Tk y”k'

Since n™n 1 — 0, %, converges weakly to a* and y,,_ converges weakly to ¥, we

i
have z;, P

— a* as k — oo. Moreover, {p%”y}u — @, JI*} is bounded, without
ny

loss of generality, we may assume that limg_,, ||yflk — Ty, ||* exists.

Taking & — oo in (5.3.49), we obtain that

_ R 2 3
fi(m*,y) 2 _kll)gloo pi ”y;k — Ty, “2 = b"fi(w*}y)
i,
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Therefore, fi{z*,%) = 0 and limg_ 4o {|35,, —2n.||* = 0. By Case 1., it is immediate
that z* € ﬂf\;l Sol(Cy, fi). In addition, for each j = 1,2,..., M, by using Cauchy-

Schwartz inequality gets that

o
IA

gj(wvjn U) + )‘-:L <’£U$; — Aﬁ.m 9 — 'w,jl

IA

gi{wh, v) + M |lw), — Atn|[lv = w].

Since {M } and {|lv — wi||} are bounded sequences for all j = 1,2, ..., M, we have
0< lini;nfgj(wf;,v), forall ve @;,j=1,2.,M. (5.3.50)
n o0

Under upper semicontinuity of g(-,v), lim, s wi’ﬂ' = Ag* for all § = 1,2,...,. M

and (5.3.50), we obtain that

gi{ Az, v) > limsup gj(wi';*‘ ,v) > 0,

n—ca

forall v e @4, 7 = 1,2,..., M. Therefore Az* € :;'il Sol((2;, g;). We can conclude
that &* € N, Sol(Cy, f;) and Az* € N}L; Sol(Q;, 95)-

Finally, in view of (5.3.34), we have ||z, — xo|| < |l&* — @o|| where z* =
Pa(zp). It is immediate from Lemma 2.4.9 that {z,} converges strongly to z*.
From (5.3.43) and (5.3.37), we also have {3} and {u} converge strongly to an

element o* & £ for all 4 = 1,2,...,N. and {w?} converges strongly to an element

Az* € )%, Sol(Qy,gy) for all j = 1,2, ..M by (5.3.40). 0

The following result is an immediate consequence of Theorem 5.3.7 when
N =M =1, then Cy = C and ¢y = @, we get the following corollary.
Algorithm 4 Hybrid Parallel Extragradient-Proximal Methods with linesearch

Initialization. Let zy € C, choose constants 7,8 € (0,1),0 < p < p and
0 < v < ¥ < 2. Choose parameters {p.} C {p, 5,7 C [p,7], {on} C [a, @] and

1€ (0, i)

Step 1. Solve N strongly convex optimization programs in parallel

, 1
Yn = argmln{f(wmy) + g”y - 'Lnliz ye G} (5'3‘51)
n
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If y, = xp, then set x, = u, and go to back step 4.

Step 2. Armijo linesearch rule. Find m,, as the smallest positive integer number

m such that

Znm = (1 - 'Um)wn + 7]mym

(5.3.52)
f(zn,tm wn) - f(zn,m:yn) Z gpin“'l'n - yn“2‘
Set T = T?m" yZn = Znmyp, -
Step 3. Select g, € &f(zy,®,) and compute o, = £ Elz’;’!"‘l:; and u, = Pa(z, —

YnOnEn)-

Step 4. Solve M regularized multiple set equilibrivin programs in parallel

glwn, y) + Aalwn — Auy,y —wy) 20 y € Q.

Step 5. Compute t, == Pe(i, + pA* (w, — Auy,)).

Step 6. Take xp41 = Fo,,,{®0), where

Copr=1{v € G, Itn —v|| £ |[utn = vl < e, — vil}.

Set n =n+ 1 and go back Step 1.

Corollary 5.8.8. Let C and @ be two closed and convex subsets of real Hilbert
spaces H; and Hs, respectively. Let f be a bifunction consistent with assumnptions
A on C and g be a bifunction consistent with assumptions Bon Q. Let A: Hy — H;
be a bounded linear operator with its adjoint A* and {A,} be a bounded sequence

such that {A,} C (kn_1,+00) for all n € N . In addition the solution set

0= {ﬂ:* € Sol(C, f) 1 Ax* € Sol(Q,g)} # {,

then the sequences {z,}, {u,} converge strongly to an element z* €  and {w,}

converges strongly to an element Az* € Sol((), g).
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CHAPTER VI

CONCLUSION

In this chapter, we present all results of this thesis including lemmas and

theorems.

6.1 Iterative methods for a hybrid pair of generalized I-asymptotically
nonexpansive single-valued mappings and generalized nonexpan-

sive multi-valued mappings in Banach spaces

In this section, we present our results about the weak and strong convergence
theorems of an iterative method for a hybrid pair of generalized I-asymptotically
nonexpansive single-valued mappings and generalized nonexpansive multi-valued
mappings in Banach spaces. This results improve and extend the several results in

(30, 29, 33, 63, 55, 82].

Theorem 6.1.1. Let D be a nonempty closed convex subset of a Banach space
X. Let {#}I, be a finite family of generalized I;-asymptotically nonexpansive
single-valued mappings on DD with sequences {k,} C [I,00) and {s,} C {0,00)
such that >0 (rd — 1) < 0o and Y ov, 8, < oo and {L;}¥, be a finite family of
asymptotically nonexpansive single-valued mappings on D with a sequence {w,} C
[1,00). Let {T;}, be a finite family of quasi-nonexpansive multi-valued mappings
of D into CB(D). Assume that F = X, Fiz(t;) NN, Fiz(L) NN, Fiz(T) is
nonempty closed and Tip = {p} forall p € Fandi=1,2,...,N. Let &1 € D and

the sequence {z,} be generated by

() D n, @ @
= Tp + E Bn'Il'zn’, zn’ € Tiw
on N =1 " (6.1.1)

Tyl = an fbﬂ + ZPI an)t”ym n e N,

where {of)} and {BP} are sequences in {0,1] for all 4 = 1,2,.., N such that

E:VO ol =1 and Zi:‘) ﬁ,(f) = 1. Then the sequence {z,} converges strongly to a
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point in F if and only if liminf, . dist{z,, F) = 0.

Next, we prove weak and strong convergence theorems of the proposed it-
erative method in a uniformly convex Banach space. Moreover, we add uniformly
L-Lipschitzian of mappings {¢;}, and {7;}Y, satisfy condition (F) in order to

reduce closedness of F.

Theorem 6.1.2. Let D be a nonempty compact convex subset of a uniformly
convex Banach space X. Let {#}¥ be a finite family of uniformly L-Lipschitzian
and generalized I-asymptotically nonexpansive single-valued mappings of D into
itself with sequences {k,} C [1,00) and {s,} C [0,00) such that } 7, (r — 1) <
oo and Y07 sn < oo and {L;}; be a finite family of uniformly I-Lipschitzian
and asymptotically nonexpansive single-valued mappings of D into itself with a
sequence {1, } C [1,00). Let {73}Y, be a finite family of quasi-nonexpansive multi-
valued mappings of D into CB(D) satisfying condition (#). Assume that F =
MY, Fiz(t)NNOY, Fie(L)NOL, Fie(T:) is nonempty and Tip = {p} forallpe F
and 7 =1,2,..., N. Let 1 € D and the sequence {x,} be generated by

v = 80, + 30, g0, ) € T,

(6.1.2)
-'Ln-l-l — (1'7(1 )ﬂ:n + Zz =1 an)tn’yn, T E N

where {3} and {B"} are sequences in [0,1) for all i = 1,2, ..., N such that
0<a<a?pd <b<l, T a0 =1and YN, 8% = 1. Suppose that
liMposeo |28 — IP2|| = 0 for all ¢ = 1,2, ..., N. Then the sequence {z,} converges

strongly to a point in F.

Theorem 6.1.3. Let [J be a nonempty closed convex subset of a uniformly con-
vex Banach space X with the Opial property. Let {;}), be a finite family of
uniformly L-Lipschitzian and generalized [;-asymptotically nonexpansive single-
valued mappings of D into itself with sequences {k,} < [1,00) and {s,} C [0,0)
such that 3700 (k3 — 1) < oo and 32, 8, < oo and {L;}I, be a finite family of

uniformly I-Lipschitzian and asymptotically nonexpansive single-valued mappings
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of D into itself with a sequence {1} C [1,00). Let {Ti}/X; be a finite family of
quasi-nonexpansive multi-valued mappings of D into K C(D) satisfying condition
(E). Assume that F = "X, Fize(t;) NN, Fiz(L) NN, Fiz(T}) is nonempty and
T = {p} forallpe Fandi=1,2,..,N. Let &1 ¢ D and the sequence {,} be

generated by

Yo = B0y + o BOIPAY, 2D € Ty

(6.1.3)
Tnyr = Q’w('lo)q/n + Z =1 Of( }t"yn, n e N,

where {0’} and {8} are sequences in [0,1] for all i = 1,2,..,N such that
0 <a<ap? <b<i, Zl Oan =1 and Zi:D ﬁ;(f) = 1, Suppose that
lim, e Hz(') Ii(i)zn) | =0foralli=1,2,.., N. Then the sequence {x,} converges

weakly to a point in F.

6.2 CGeneralized extragradient iterative methods with regularization
for solving split feasibility and fixed point problems in Hilbert

spaces

In this section, we introduce iterative methods by combining Generalized extra~
gradient iterative methods with regularization due to Ishikawa and Mann iterative
methods in solving split feasibility and fixed point problems. Moreover, we prove

the weak convergence theorems for proposed iterative methods in Hilbert spaces.

Theorem 6.2.1. Let H; and Hy be two real Hilbert spaces and let C and ) be
two nonempty closed convex sets of H; and Hy, respectively. Let A: Hy — Hj be
a bounded linear operator with its adjoint of A*. Let S : (J = @ be a nonexpansive

mapping and let 7' : C — C be an L-Lipschitzian pseudo-contractive mapping. For
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Ty € Hy arbitrarily, let {x,} be a sequence defined by

y = Po (q, (A - SPR)A+ oan):vn),

zZn = Po (ﬂ;n - )\"(A*(I - SPQ)A + C"nI)yn):

{ wn = (1 - JTl)zn + U;;Tzn, (6.2.1)
Sp = (1 - ﬁn)zn + BuTwn,

Tptl = (1 - 711)211 + ’TnTSm

\

where {\,} C [, 7] for some k,7 € (O,ﬁ"A”z), {an,} C (0,0), 240, < 00
andl<a<y <b<fh<c<o,<d< _ﬁ—fﬁ%—m Then the sequence {z,}

generated by algorithm (6.2.1) converges weakly to an element of I.

Theorem 6.2.2. Let H; and H, be two real Hilbert spaces and let €' and ¢ be
two nonempty closed convex sets of Hy and Ho, respectively. Let A : II; — Hy be
a bounded linear operator with its adjoint A*. Let S : @ — @ be a nonexpansive
mapping and let T : ¢ — C be a continuous pseudo-contractive mapping. For

xg € Hy arbitrarily, let {z,} be a sequence defined by

Y = Po (wn —MlA*(I = SPo)A + anI)mn),

= Po (.q;n — (A" — SPR)A+ anI)yn), (6.2.2)

Tni1 = OpzZn + BT %0 + Yan, 1 20,
where {A,} C [k, 7] for some w, 7 € (0, an_+2!W)’ {an} € (0,00), 57 o, < 00 and
{1}, {8}, {oa} C (a,b) € (0,1) such that v, + Bn + 0, = L. Then the sequence
{z,} generated by algorithm (6.2.2) converges weakly to an element of I,

6.3 Parallel extragradient-proximal point methods for multiple set
split equilibrium problems of pseudomonotone mappings in Hilbert

spaces

In this section, we introduce iterative methods by combining the extragradient
method with proximal point method for solving multiple set split equilibrium prob-

lem when both equilibrium bifunctions are pseudomonotone to obtain weak and
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strong convergence theorems of the proposed iterative methods in Hilbert spaces.

In order to solving the multiple set split equilibrium problem {MSSEP}, we
assume that f: H; x Hy — R with f(z,z) = 0 for all & € ( satisfies the following
conditions:

Assumption A

(A1) f is pseudomonotone on C with respect to Sol(C, f);

(A2) f(z,-) is convex, lower semicontinuous and subdifferentiable on C' for all

x €

(A3) f is weakly continuous on C' x C: that is, if z,y € C and {z.},{y.} C C

converge weakly to 2 and ¥, respectively, then f(x,, y.) = flz,y) as n = oo.
(A4) f is Lipschitz-type continuous on C with constants Ly > 0 and Ly > 0.
Moreover, we assume that g : Ha x Hy — R with g{u, u) = 0 for all u € () satisfies
the following conditions:
Assumption B
(B1) g is pseudomonotone on (J;
(B2) g(u,-) is convex and lower semicontinuous for all u € @
(B3) ¢(-,v) is upper semicontinuous for all v € @
(B4) There exists § > 0 such that g(u,v) + g(v, u) < 8)lu — v for all w,v € Q (g

is called undermonotone and ¢ is the undermonotonicity constant of g).

Algorithm 1 Parallel extragradient-proximal point methods for multiple set split
equilibrium problem.
Initialization. Let 29 € C = ﬂf__l Cf;, choose constants 0 < p <P < min{z—}d, ﬁ}, 0 <

@ <@ <1 Foreach i =1,2,..., N, choose parameters {p},} C [p, 7], {o}} C la, d],

yod, =1 and p € (0, ip)-
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Step 1. Solve 2N strongly couvex optimization programs in parallel
yh, = argmin{ fiwa, y) + gy — @al® 1y € G,
7y = argmin{fi(vh, v) + 5 ly — wal® 1w € Cil
fori=1,2,.., N.

Step 2. Compute 2, = Y. iz, and wi = Az,

Step 3. Solve M regularized multiple set equilibrium programs in parallel

g;(wi,v) + Ml — Az, v—wi) >0, forall ve @y j=1,2,..,M.
Step 4. Set @, = argmax{||[wl — Az,)]:7=1,2,..,M}.

Step 5. Compute 2,y = Po(Z, + pA* (@, — AZ,)).

Set n == n + 1 and go back Step 1.

Theorem 6.3.1. Let C; and J; be two closed and convex subsets of real Hilbert
spaces H; and Hy for all i = 1,2,...,N,j = 1,2,.., M, respectively. Let f; be
a bifunction satisfying assumption A on C; for each ¢ = 1,2,...,N and g; be a
bifunction satisfying assumption B on @Q; for all j =1,2,...,, M. Let A: Hy — Hy
be a bounded linear operator with its adjoint A* and {M} C (8,7], for some ¥ > 8
for all j = 1,2,..., M. In addition the solution set

N M
Q) = {:c* € ﬂSol(C,-,fi) : Az* € ﬂ SOl(Qj,gj)} # 0,
; i1

i=1
then the sequences {z,}, {#i},{z.}, ¢ = 1,2,..,N converge weakly to an ecle-

ment z* €  and {wi}, j = 1,2,..., M converges weakly to an element Az* €

Ny Sol(Q;, 97)-

Algorithm 2 Hybrid parallel extragradient-proximal point methods for
multiple set split equilibrium problem.
Initialization. Let o € C' = [, Ci, choose constants 0 < p < p < min{y;-, 7},
0 < a<@< 1 Foreachi= 1,2..,N, choose parameters {p}} C [p, 7],

{ad} C o, 6], 20, =1 and p € (0, pfp)-
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Step 1. Solve 2N strongly convex optimization programs in parallel

y::'c = arg min{f,;(:c,,,,y) + i,%”y - mn”2 CYE Cz};
7, = avgmin{ fi(yh, y) + g lly — =all® 1y € Ci},

fori=1,2,..,N.
Step 2. Compute z, — Zf\;l a7t
Step 3. Solve M regularized multiple set equilibrium programs in parallel

ai{wd )+ X (w? — Az, y — wi) >0, forall y€ @, 7=1,2,...,. M,
i [ n ]

Step 4. Set @, = argmax{|jwl — Az} 17 =1,2,..,M}.
Step 5. Compute &, = Pgo(Z, + pA* (@, — AZ,)).
Step 6. Take z,41 = P, (o), where

Crpr ={v € H : ||tn = 2| < |70 — vl < [|len =]}

Set n = n+ 1 and go back Step 1.

Theorem 6.3.2. Let C; and @; be two closed and convex subsets of real Hilbert
spaces H; and Hy for all i = 1,2,...,N,7 = 1,2,..., M, respectively. Let f; be
a bifunction satisfying assumption A on Cj for all ¢ = 1,2,...,N and g; be a
bifunction satisfying assumption B on @; for all j = 1,2,..., M. Let A: H) — Hp
be a bounded linear operator with its adjoint A* and {M,} C (6,7}, for some > 8

for all 7 =1,2,..., M. In addition the solution set
N M

0= {3}* c mSOl(Ci,ff) t Azt e ﬂ SOl(Qj,gj)} £ @,
i=1 j=1

then the sequences {z,}, {v.},{z.}, ¢ = 1,2,..., N converge strongly to an ele-

ment z* € Q and {wi}, § = 1,2,..., M converges strongly to an element Az* €

N1 Sol(Q;, 7).
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6.4 Parallel extragradient-proximal point methods with linesearch for
multiple set split equilibrium problems of pseudomonotone map-

pings in Hilbert spaces

In this section, we introduce iterative methods by combining the extragradient
method with linesearch proximal point method for solving multiple set split equi-
librium problem when both equilibrium bifunctions are pseudomonotone to obtain
weak and stroug convergence theorems of the iterates generated by the proposed
iterative methods are obtained under certain for equilibrium bifunctions and pa-
rameters in Hilbert spaces.

In oxder to solving the multiple set split equilibrium problems (MSSEP), we
assume that f: ) x H; — R with f(z,z) = 0 for all z € C satisfies the following
conditions:

Assumption A

(A1) f is psecudomonotone on C with respect to Sol(C, f);

(A2) f(=,:) is convex, lower semicontinouns and subdifferentiable on C for all
v e
(A3) f is weakly continuous on C x C: that s, if z,y € C and {z,},{y} C C

converge weakly to & and ¥, respectively, then f(z,, v,.) — f(z,¥) as n = 0.

Moreover, we assume that g 1 Hy x Hy — R with g{u,u) =0 for all u €
satisfies the following conditions:
Assumption B
(B1) g is pseudomonotone on

(B2) g{u,-) is convex, lower semicontinuous for all u € ¢},

(B3) ¢(,v} is upper semicontinuous for all v € @}
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(B4) There exists « > 0 such that g(u,v) + g(v,u) < sllu —v||? for all w,v € Q (g

is called undermonotone and x is the undermonotonicity constant of g).

Algorithm 3 Parallel Extragradient-Proximal Methods with linesearch
Initialization. Let oy € C = ﬂf; C;, choose constants 7,8 € (0,1),0 < p <
p0<a<a<landl <y<¥<2 Foreachi=1,2,..,N,j= 1,2,..., M, choose

parametess {p}} C (7% C (o7, {0} © fo 3, SNy, = 1 and g € (0, pi)-
Step 1. Solve N strongly convex optimization programs in paraliel
i : 1 2
Y = a'rgmln{fi(wm y) + ﬁ”y e wn” AS Ci}; (6'4'1)
n

Ity i rded o F TN

Step 2. Armijo linesearch rule. Find m,, as the smallest positive integer number
m such that
G = (1= 1) + 0"y,

fi(z:iz,m’mn) - fi(zfl,mz ?}:1) > "2%“1’71 o yfl

> (6.4.2)

i

Set n, = ™", z;‘; = Zn

Step 3. Select &), € 8, fi(2}, #n) and compute a;, = ﬁﬁ—?;i—’lr%) and v, = Po(z, —
YnOhEn)-

Step 4. Compute &, = >, ald,.

Step 5. Solve M regularized multiple set equilibrium programs in parallel

gj(wguy) + )\fl(w% - Aﬁn)y_w%) 2 0 (/S Qj: .7 = 1}2: '"'sﬂ/f‘

Step 6. Set @, = argmax{|lw) — Au,fl: 5 =1,2,..,M}.

Step 7. Compute zpy1 = Po(tl, + pA* (0, — Atly)).

Set n =n+ 1 and go back Step 1.
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Theorem 6.4.1. Let C; and Q; be two closed and convex subsets of real Hilbert
spaces Hy and H, for all ¢ = 1,2,...,N,§ = 1,2,..., M, respectively. Let f; be
a bifunction consistent with assumptions A on Cj for each ¢ = 1,2,.., N and g;
be a bifunction consistent with assumptions B on @y for all j = 1,2,..., M. Let
A 1 Hy — H, be a bounded linear operator with its adjoint A* and {X,} be a
bounded sequence such that {M.} € (xkp-1,-+o0) for all n € N . In addition the
solution set

N M
Q= {q, e [)Sol(Cy, fi) : Ax* € (] Sal(Qs, gj)} + 1,
i=1 j=1

J

then the sequences {z,}, {v}}, i = 1,2, ..., N converge weakly to an clement z* €

and {wl}, 4 =1,2,.., M converges weakly to an clement Az* € ﬂ?il Sol(Q);, g5)-

Algorithm 4 Hybrid Parallel Extragradient-Proximal Methods with line-
search
Initialization. Let @y € C = ﬂil C;, choose constants 7,6 € (0,1),0 < p <
p0<a<ao<land0 <y<7¥<2 Foreachi=1,2,.,N,j= 1,2,..., M, choose

parameters {p%} C [, 7], 7 C [p, 7], {el} C [, @], 2,0, = 1 and p € (0, ;Zm)-

Step 1. Solve N strongly convex optimization programs in parallel
1

2‘0;‘ ”y - T‘TIHQ ‘Y€ Ci}) (64.3)

y:'; = arg IILiIl{f,;({IJ,,, y) =
fori=1,2,...,N.

Step 2. Armijo linesearch rule.
Find m,, as the smallest positive integer number m such that
Zhn = (L= 020+ 0"y,

fi(zjz,nvmn) - fi(zfl,miy‘fl) 2 '2“,‘%”"’" - yjlllzﬁ

(6.4.4)

—— i
Set 17, = 7", 2 = Zn -

Step 3. Select &, € &afi(2L,z,) and compute of, = M“%;""’T") and u}, = Pg,(wy —

’Ynajzeiz)
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Step 4. Compute &, = Yo | alud,.
Step 5. Solve M regularized multiple set equilibrium programs in parallel

gy(w}?ny) + /\%(’wﬂ - Aﬁn)y - wg:) > 0 yc Qja .7 = 11 2: "")M'

Step 6. Sct @, = argmax{|jwl — Ai,]|: 5 =1,2,..,M}.
Step 7. Compute t, = Po(iin, + pA* (0, — Aliy)).

Step 8. Take x,41 = Fg, ;. (o), where
Cosr = {v € H 1 [[tn — vf| < ||ty = o] <lzn — o]},

Set n == n+ 1 and go back Step 1.

Theorem 6.4.2. Let C; and Q; be two closed and convex subsets of real Hilbert
spaces Hy and Hy for all i = 1,2,..,N,j = 1,2,..,M, respectively. Let f; be
a bifunction consistent with assumptions A on C; for all 4 = 1,2,...,,N and g
be a bifunction consistent with assumptions B on @); for all j = 1,2,..., M. Let
A : H;y = H, be a bounded linear operator with its adjoint A* and {M.} be a
bounded sequence such that {M} C (ka-1, Foo) for all n € N. In addition the
solution set

N M

Q= {q, € [ Sol(Cy, 2} : Az € [ ) Soz(Qj,gj)} + 0,

i=1 i=1

then the sequences {z,}, {u}.}, i = 1,2,..., N converge strongly to an element z* €

Qand {wi}, = 1,2, ..., M converges strongly to an element Az* € ﬂ;‘il Sol(Q4,9;)-
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