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ABSTRACT

Newton-equivalent Hamiltonians arc Hamiltonians whose classical dynam-
ics agree with those from the standard Hamiltonian. In this work, we in particular
are interested in its prescription for quantum harmonic oscillator. A modified
perturbation theory is used to evaluate energy spectra and wavefunctions of this
Hamiltonian. The energy spectra we obtain seem to agree with those of the stan-
dard Hamiltonian. We also study this Hamiltonian with additional term az? to
obtain the Newton-equivalent anharmonic oscillator Hamiltonian. Its spectrum

depend on the one-parameter family (3).
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CHAPTER I

INTRODUCTION

1.1 Background and motivation

We first review quantization, which is the process to obtain quantum the-
ory from classical theory, There are two approaches which are canonical and non-
canouical approach. For more extensive review, see for example [1]. Canonical
quantization consists of Poisson bracket, such as {x,p} = 1, which has definition

in canonical coordinates.

In their onc-dimentional version, the canonical commutation relation, is
given by
[&, 9] = ih. (1.1)

Then one will consider the simple but important example: the harmonic oscillator

with the classical Hamiltonian given by
-

P 1 D 9
Hp — — 4+ = s 1.2
B~ + 2mw z (1.2)

Promoting it to quantium case, one will obtain the quantuim Hamiltonian
= ]“)2

1
Hg = i —2—7n.w2;£’2. | (1.3)

Besides the Hamiltonian composed by kinetic energy and potential energy
eq.(1.2), which has a separable dependence on x and p, one has the form in multi-
plicative case written as

H(z,p) = F(p)G(), (14)
which is given by

V(z)

2mae?

2me

1/2
H,(z,p) = dmc*p cosh (—p——) (1 + ) ;¢ € (0,00). (1.5)



This one-parameter Hamiltonian as a limit casc is Hg (e, p)
i z,p) — dme?) = Hg(a, p).
clgg(ﬂc(a,,p) ime?) = He(a,p) (1.6)

In quantuin case, there are ordering problem, but we in particular are interested in
the form chosen by [2] which is based on physical insight of [3]. The Hamiltonian

is given by
= om ((1 + i3mwd) 2 exp(—ihBA) (1 — ifmwd)/? + (i —» wz.)), (1.7)
where 3 = (2me)™

Then we will discuss about another approach which is noncanonical ap-
proach. An important example of noncanonical approach is noncommutative ge-
ometry (NCG) which is an approach or a model to explain quantum spacetime,
Another important example is Wigner’s idea [4], [5], [6]. It is not based on phase
space variables but based on configuration space variables. The algebraic relation
for &, § = d&/dt and H is given by

i - AN,
= [H,9], [&0]=— L
G, (@0 =—F(H), (L8)

~ 5 s 2 a
= —=|H,z|, —wd
h[ ]
where the last commutator is a consequence of the Jacobi identity, and F(H) is an
arhitrary function, [7], [8], [9]. In the usual quantum harmonic oscillator F(H) = 1,

A

but in the case of one-parameter family Hamiltonian (1.7}, F'(H) is given by

F(H) = H/4mc®. (1.9)

However, there are other alternative Hamiltonians [10}, [11], [12], [13]
which lead to the same Newton equation of motion. The investigation of Newton-
equivalent Hamiltonian was presented in {14], and in the bihamiltonian description

of physical system [15],

In this work, perturhation theory is considered in order to study the quan-

tum Hamiltonian (1.7). ﬁg is treated as the perturbed Hamiltonian of the standard



unperturbed Hamiltonian (1.3). Then we find energy spectra and eigenfunctions

of this Hamiltonian. For simplicity, we consider a Hamiltonian
H=H 4+ A '+ X%+ .. (1.10)

to obtain the first and second-order correction to the n'* eigenvalue of the Newton-

equivalent Hamiltonian (E}, E2). We therefore obtain the energy spectra. In ad-

(Al
dition, we also add the potential term (az?) into H (4) to obtain the appropriately
perturbed Hamiltonian of A (B). This gives the Newton-equivalent anharmonic os-
cillator (NEAHO) Hamiltonian (H(8,«)). We define the Hamiltonian in pattern

of the factorised Hamiltonian [16], [17] which is simple factorised form in discrete

quantum mechanics [18], [19].

Finally, we find the first and second-order correction to the n'' eigenvalue
of the Newton-equivalent anharmonic oscillator Hamiltonian (B}, E% ) and obtain

the energy spectra.

1.2 Objectives

In this work, we review the onc-parameter family Hamiltonian of cquan-
tum hamornic oscillator obtained by [2]. Then, we study perturbation theory for
finding encrgy spectra and wavefunctions of the Newton-equivalent Hamiltonian
(H(B)). Moveover, we study NEAHO Hamiltonian (H4(8,a)) and also find its

energy spectra.

1.3 Frameworks

Firstly, in chapter 1, we show background and motivation of this thesis.
We review the one-parameter family Hamiltonian of quantum hamornic oscillator
and its quantum case in chapter 2. Then, in chapter 3, we study quantum harmonic

oscillator, in which the energy spectra and wavelunctions is obtained. In chapter



4, we write down perturbation theory in the form which will be suitable to our
study. We start from reviewing the standard perturbation theory, then discuss
the case where the Hamiltonian is expressed as a polynomial of one parameter.
Next, we consider perturbation theory of Newton-equivalent Hamiltonian to find
the first and second-order correction to the energy in any state. In chapter 5, we
use the perturbation theory in the form discussed in chaptor 4 to study NEAHO.
We start by writing down the anharmonic oscillators (AHO) and show graph of
the potentials. Then, we find the first and sccond-order correction to the energy in

any state of NEAHO Hamiltonian. Finally, we conclude this thesis in chapter 6.



CHAPTER 1II
ALTERNATIVE HAMILTONTIANS

Tn this chapter we will review part of the Newton-equivalent Hamiltonians
for the harmonic oscillator [2] which gives a one-parameter family of Hamiltonians
whose classical version satisty Newton equation for usual simple harimonic oscillator.
One obtains the Hamiltonian which can be applied in the perturbation theory

{Chapter 4).

2.1 The one-parameter family of Newton-equivalent Hamiltonian

The first of all one knows that the motion of a classieal mechanical system
with one degree of freedom is given by the Newton equation. The integration of its
equation provides the time dependence of the coordinate x(t) of a particle of mass
m in the potential V(z)

d
7 — /’ : ey
mi + d.:vl (x) = 0. (2.1)

In the Newton equation, one considers the second derivative of 2 in term of the

Hamiltonian by using Hamilton cquation

3 NN OH{x,p)
—r 7 V=g,
p Oz

Onc obtains

OHN dz 8 (OH\ dp

(Bp‘ﬁ o) 23)
om\ (01 | 0 (oiy (_on
ap Bp 8 I dx )’

oH on oo
Axdp Op  Ip? Oz

therefore

(2.4)



One substitutes this second derivetive into eq.{2.1), one will obtain the Newton

equation in term of the Hamiltonian

O 0N OHOH | 10V(s)
drdp Op  Mp? Ox  m Oz

=0 (2.5)

However, H has as a separable dependence on @ and p, one studies two cases. The
first case is the additive case which is H(z,p) = F(p) + G{=x), and the sccond case

is the multiplicative case which is H{z,p) = F(p)G{x).

In the first case H(x, p) = F(p) + G(x), eq.(2.5) is rewritten as

1
—F"(p)G’(m)—l-EV’(:L‘) = O (2.6)
Then, one obtains
V()
F'ip) = —2"" =24 .
) mG'(z) ’ (27)

where A is an arbitrary constant, then one obtains F(p) by integrating twice, which
gives

F(p) = Ap*+ Bp+C (2.8)

where B and C' are arbitrary constants.

One obtains G(z) from the second equlity of eq.(2.7) by integrating once,

1
2mA

G(z) = —V(2) + D (2.9)

therefore, from H(z,p) = F(p) + G(x) one gains

Viz
H(z,p) = Ap* + Bp+C + Eﬂ(l% + D. (2.10)

To compare this Hamiltonian equation with the well-known Hamiltonian, one
chooses A = 1/2m, B = C = D = 0, henee, one obtains Hamiltonian of har-
monic potential system

12
H(z,p) = 2]% + V(z). (2.11)



One substitutes this Hamiltonian into Hamilton equation (2.2) to obtain Newton

equation.

Next, considering the second case H(z,p) = F(p)G(x), one substitutes

this Hamiltonian into eq.(2.5). One obtains
1
(F'(p)* — F(p)F"(p)) G(2)G'(z) + EV’(:L’) = {. (2.12)

One obtains the nonlinear second-order differential equation F'(p)* — F(p)F*(p) =
—A, which is to be solved for F(p). For positive A this sccond order ordinary
differential equation (ODE) is solved by F(p) = ¢ cosh(eap + c3) with ¢?c2 = A,
and for negative A by F(p) = ¢y sinh(cop+c3) with c?el = —A. Then, one will find

G(z) from

—AG()G () + ;%V’(:c) — 0

) = (2};(;) . D)1/2. (2.13)
Hence, one obtains
H{z,p) = F(p)G(x)
= ¢y cosh{cyp + ¢3) (QKS{J + D) ¥ (2.14)

W ( 1/2
= ¢y cosh(cap + ¢3) (f.rnc‘g‘c2 / D) '
163

One chooses ¢; = dmc?, ¢y = cs = 0and D = 1. Finally, one obtains the

2me?

Hamiltonian in the one-parameter family

p Viz)\'"*
H.(x,p) = 4mc® cosh (ﬂ) (1 + ) . (2.15)
m

2me2

The one-parameter family includes Hg(z, p) as limit case

lim (H,(z,p) — dme*) = Hp(z, p), (2.16)

o0

n(n ])1

wherec:osh(;t;)=1+‘?§+‘-ﬁ%+‘..and (I+a)'=14+na+ +....



2.2 The quantumn case

One got the one-parameter family Hamiltonians in harmonic oscillator sys-

tem, then one defines the parameter 3
B = (2mc)~ L, (2.17)
Thercfore, Newton-equivalent Hamiltonians is given by

H.= H(§;z,p) = cosh(fp) (1 + Brn2w?z?) /2, (2.18)

1
/3%m
In one-parameter family: there is ordering problem in quantization, but we in
particular are interested in the forin chosen by [2] which is based on physical insight
of [3]. The Hamiltonian is given by the canonical quantization prescription p —

Y

P = —ihd,, ¥ — &, one obtains the Newton-equivalent Hamiltonian in the form

~

H(B) =

26%m ((1 + iffmwd)/? exp(=ihBoe) (1 — ifmwd)V? + (i — —z)) (2.19)
-

Then, we will take this Hamiltonian inte perturbation theory in chapter 4.



CHAPTER IIT
QUANTUM HARMONIC OSCILLATOR

The quantum harmnonic oscillator is rather natural system directly inspired
by the classical harmonic oscillator. In the one-dimensional motion of a particle
of mass m which is attracted to a fixed centre by a force /' proportional to dis-
placement x from that centre. One chooses its origin as the centre of force. Thus,
the restoring foree is given by F = —ka, where k is the force constant. The

corresponding potential energy is given by
V(z) = -ka®. (3.1)

One then obtains the Hamiltonian operator of quantum harmonic oscillator which
given by

¥ (3.2)

where w is the angular frequency of the harmonic oscillator (w = ﬁ), P is the
momentunt operator (p = —iha%), and & is the position operator (& = z). Then,
substituting the IHamiltonian operator in the time-independent Schrodinger equa-

tion, one obtains

D e UL Y(x) = Ey(x). (3.3)

The wavefunction ¢{x) should be single-valued, continuous, differentiable and finite

everywhere. For this, it is convenient to make use of dimensionless quantities.

me) Y/

2 . . . : :
+ 2 and using this variable, the differential

More explicitly, one defines y = (

equation (3.3) can be written as

d? 9
<@ — 3+ /\> W(y) =0 (34)

where
2K
A= —.
fiww



10

If one know the constant A, one then know the energy E. For large valucs of y, the

constant A can be ignored as compared to y2. So eq.(3.4) can be approximated as
;g%ff)(y) ~ y*(y), (3.6)

which has the approximate solution
Wly) = Ac™V' 12 4 Bet’/?, (3.7)

& : . 2 ft
The wavefunction ¥(y) has to be bounded everywhere but the expression e¥*/?
blows up as || = oo. Therefore one sets coefficient 3 equal to 0. Consequently,

the satisfactory asymptotic solution of the wave equation is
B(y) > AV, (3.8)

It is then reasonable to assume that the correct solution of the wave equation (3.4)
Is

¥(y) = e ¥ (3.9)
where f(y) is a power series expansion in y. Substituting this solution into eq.(3.4),

one obtains the differential equation for the function f{y)

F ) = 2uf )+ (A~ Df(y) = 0. (3.10)

Then one expands f(y) by using a power series expansion

o0

) =) ay. | (3.11)
j=0

Differentiating the series, one obtains

) =Y day™™, (3.12)
=0
and
ad n

@y =D G+ 100+ 2ajy. (3.13)

=0
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Substituting these series in eq.(3.10), one obtains

((F+ 1) + 2aje2 — 2ja; + (A — Daj)y? = 0. (3.14)
i=0

Then, one finds that the equation will be satisfied only if the coefficients of indi-

vidual powcers of y vanish,
(] -+ 1)(]‘ + 2)(Lj+2 — Zj([,j -+ (/\ — l)fl.j = U, (315)

and one obtains a recursion relation between the cocflicients which can be written

as
(2j+1-2)
G+ +2)7

It is found that all of the coefficients can be expressed in terms of ag and a;. If

(SR (316)
g is set cqual to zero, the series will contain only odd powers of y. On the other

hand, if ¢ is zero, the series will contain only even powers of y.
¥ H 0

3.1 Energy levels

For large j, the recursion relation eq.(3.16) gives

- 2
Gt CA (3.17)
a; J

. 2 f
Then, the series f(y) behaves as e, since that

P e Y
¢ _Z = > G/ (3.18)

n=0 ’ j€even

This series has coefficients b; = ﬁ for even j, oue then show that

by (/212
by G T (3.19)

2 . .
One obtains the wavefunction eq.(3.9) which behaves as e¥ /2. This is not accept-

able and so the power series of the normalizable solutions must terminate after a
finite number of terms (n), such that ¢, = 0. From eq.(3.16) and cq.(3.5), one

obtains
28

A:ﬁw

=2n+ 1. (3.20)
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This leads to the energy levels for the quantum harmonic oscillator which is given

by
1 . .
E.,=|n+ 3 fiw, for n=012,..., (3.21)

where n is the quantum number of the harmonic oscillator. Cousequently, the

energies are quantized and the cnergy levels are evenly spaced.

3.2 Wavefunctions

In the wavcfunction eq.(3.9), f(y) will be a polynomial of degree n in .

So the correct solution is given by

?ff)rt (y) = Aneuy‘zﬂf(y) — Ane_yzﬂﬂz (y)’ (3'22)

where 4, is the normalization constant to be determined and T,(y) is the (physi-
cists’) Hermite polynomials

Ti
P

7 ) —?2
To(y) = (—1)"eY @;e ¥ ond #F0M ke (3.23)
It satisfies the differential equation
T, (y) = 2T, (y) + 20T (y) = 0, (3.24)
and the orthogonality relation
o 0 T
| ey = (3.25)
i V2" nl i1 = k.

Then we show the (physicists’) Hermite polynomials of n = 0,1,...,6 in Table 1.
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If the wavefunctions ), (y) are normalized such that
glo o]
/ iy (e a)da = 6,4, (3.26)
— o

1/2 , . .
where y = (2 / 4, then the normalized function v, (x) is given by the wavefunc-
I ’ n g A

tions
mwy 41 2 ,
'(l[)n(m) B (ﬂ'ﬁ) WTH(U)B Y /2) n=012... (‘527)

Table 1: List of the (physicists’) Hermite polynomials

n T.(y)

0 1

1 2y

2 4y? — 2

3 8yt — 12y

4 16y* — 4847 + 12

5 329° — 160y* + 120y

6 GAy® — 480y -+ 7202 - 120



CHAPTER IV

PERTURBATION THEORY

Perturbation theory is the theory in quantum mechanics. It is used in order
to approximate cnergy spectra and wavefunctions of some complicated systems
that cannot be solved exactly, In later ehapter, we will use this theory to analyse

Newton-equivalent Hamiltonian,

4.1 Extensions of time-independent non-degenerate perturbation theory
4.1.1 Standard perturbation theory
As a first step we will consider the time-independent Schrddinger equation

which is given by

Hd)n T En'd)na (41)

where n is a discrete label of state. From this chapter to the last chapter, we will
ignore the hat symbol () that placed on top of variables for simplicity. Then, we

consider a Hamiltonian of the form
H = H°+ A", (4.2)

where, one refers to H? as the unperturbed Hamiltonian, H! as the perturbation

Hamiltonian and A as a small parameter. H° is the Hamiltonian that satisfies

HOYO — B (43)

n?

where the unperturbed energy E? and the nnperturbed wavefunction 2 are those
of simple harmonic oscillator in eq.(3.21) and eq.(3.27) respectively. In addition,

eigenenergies (,) and eigenfunctions (1,) can be written in series of A



and

E,=E)+ AE} + N°E% ... (4.5)

Then one substitutes eq.(4.2), cq.(4.4) and (4.5} into cq.(4.1), onc obtains

(I + MY+ Moy A E b ) = (ES+ NER+NEER - )0+ Mp) 4 X224 )

(4.6)
and writes them in term of power of A
N 7Y% = BN (4.7)
A HO%YL 4+ 0 = Bl BLyO (4.8)
N H o HYy, = Byl + By, + B2 (4.9)

Next, Let us find the first-order correction to the n'* cigenvalue (E1). Taking the

inner product of eq.(4.8) with 42, one obtains

Com| H2[n) + Cwb| H' [wn) = Exlynlin) + B (dnlus, (4.10)

which gives

E?ll (17)?11 H |tf[}?l (4‘11)

Then let us consider the first-order correction in the n'* eigenfunction (¥1). One

defines

Wy, = Z iy, (4.12)
m¥#n

and substitutes it into eq.(4.8), one obtains

S H — QS  —( — B (4.13)
myn
Taking the inner product of eq.(4.13) with ¢?, one obtains

o

D BN = BN = — (9f| H' [90) + ENln). (4.14)
men
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One considers in two cases

l=n ; Ey = (yn| H" |¥5) (4.15)

[£n 5 (B — B = — (| H' [40), (4.16)

which gives

(,(”) ({r)I }Hl |wn>

, (4.17)
l n EIO
Therefore, eq.(4.12) can be rewriten as
, bl A 19
o = Z W al o (4.18)
m#n I m

th

Next, Let us find the second-order correction to the n'” eigenvalue (E?). Taking

the inner product of eq.(4.9) with 92, one obtains

(ul H° [o2) + (ym] H 1) = En(ynln) + EL(Walvn) + BX(vnlen)  (4.19)

which gives

| wm| HY [y}
Z g ¢ (4.20)
mn n m
Then let us consider the second-order correetion in the n'” eigenfunction (¢02). One
defines
o0
v = dys (4.21)
pFn

and substitutes it into eq.(4.9}, one obtains
SO dEOHY B = —(H — B+ B2 (1.22)
p#n

Taking the inner product of eq.(4.22) with ¥}, one obtains

2 @O H 90 :
S dE - B eed) — BL S ORI o 4 macyieny

pEn m#n n m

( m|‘B‘r |d)u ( Xy 1
§ el (R HY )
= En. EO { m

(4.23)
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One cousiders in two cases

| (l,DmIHl [¥) I”
=0 4.24
{ no; J;l FO ( )
n 7\/)101 H '@I’)n
A0 d ’(E?—ES)=%(¢PIH1 9

b | H Y |
—~ Z M(w | H' 90),  (4.25)

s n m

which gives

1 0 11,40 1 H!
dgn) Z (’iT)ml H |’¢Pn (vl | H |wm) (ir)nl H Ip ) ( i M"n) ) (426)

— E)(E - E) (B - EQ)°

m

in#£n

Therefore, eq.(4.21) can be rewritten as

ﬁz Z <1f)m| HI |un (’J) I’Hi Iwm ’7)3) = i (¢)g| *HI W) (’1[) Iﬁrl W)n d’p

(EQ — ED)(FL — BR) (B — BR)°

p#EN m#En p#ER

(4.27)
4.1.2 Perturbation theory for one-parameter Hamilfonian
In our case, we consider the one-parameter Hamiltonian of the form
H=H + H + 0?4 (4.28)

Then the next steps are similar to the standard perturbation theory, we substitute

eq.(4.28), eq. (4.5) and (4.4) into eq.(4.1). We obfain

(HO + NH A+ XPH? ) (4 + My + NP0 +--0)

(4.29)
= (Bp + AL, + X255+ )+ My + A%+ ),
then
AT Hy = By (4.30)
N L Y = g+ B (431)

Mo HY%R 4 HYWE o+ B0 = ENW2 + Bl + B0, (4.32)



18

The first-order correction to the nt* eigenvalue and eigenfunction are given by

EL = (0 H |90), (4.33)
and
o0
, (Yl H' 15) ,
U= TEO_EY - (4.34)
m#n m

th

Next, let us find the second-order correction to the n™ cigenvalue (E2). Taking the

inner product with ¥? into cq.(4.32), we obtain

(| HO [)+ (| 7 [ah) + ol H2 [y = Eo (gl + B (i ln) + B (95 1),

(4.35)
which gives
HI
E?’H
m#En
Then let us consider the sccond-order correction in the n'* eigenfunction (¥2). We
define
o0
’r22 - Z (n)lr)p (4'37)
pFn
and substitutes it into eq.(4.32).
D SUH — ) = —(H' = By~ (H? ~ B (4.38)
p#n

Taking the inner produet of eq.{4.38) with 7, we obtain

. o~ (vl H' [vn
> B I = B E‘ E'O ><-¢?|¢2,>
p#ER m;én ' m
Hl
N m

~ {yf| H* |«,bn )+ B2y} ).
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We consider in two cases

Y| L 4
l=n: Z| | ]|;0) +<¢’|H2 40
m#En m
R Hl'yp
[ #n; C,( )(E[O - Eﬂ) SEM (w[ l it M’
" (4.40)
(S HY e
=50 Al (o s
m#n m
= ([ H )
which gives
) 2y SO ) (WOLE W) GRII 10) WPLA L)
i (B BB - B Gy (1.1
{eRL H? )
Ep — E}

Therefore, eq.(4.37) can be rewritten as

E v,,,lH‘lvn Y| H |90y o0 SN () H ) (0] 1 |40 4
IR R (- (B9 — Q)2

pE mFEN PER

LSS
0 __ 0 '
P B E”

(4.42)

4.2 Perturbation theory of Newton-equivalent Hamiltonian

We got the energy and the eigenfunction in the first-order correction. Then,
we will expand the Hamiltonian (H(f)) to determine the perturbation Hamiltonian

(H'). From our one-parameter family of Newton-equivalent Hamiltonian,

1

H(p) = 232m

((1 + iBmwz) /2 exp(—ihBo,) (1 — ifmwz)? + (i — Hi)), (4.43)
it is convenient to make use of dimensionless quantities. More explicitly, we define

- (%)1/2 2. (4.44)
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Then, eq.(4.43) can be rewritten as

1 . ho\2 12 o (W M2
H(ﬁ)ZZﬁ%n (14 ifmw — y) % exp(—ihip (?) dy)

1/2
(1 —ifmw (i> )2 (- ~z)>

e (4.45)

1 G
= 25m ((1 + i3 (mwh) 2y) 2 exp(—iB(mwh) V20,)
(1~ iB(muwh) ) (i - i)).

In the calculation, we use the property of exponential function of 9, to shift f(y)
to f{y+a)

exp(£ady) f(y) = fly £ a), (4.46)

therefore, the Hamiltonian becomes

&
H(3) = Y- ((l + iB8(mwl) Py 21 = i B(mwh) ' (y — iB(mwh) 1))/
' (4.47)
exp(—iB(mwh)?8,) + (i — —-i,))‘
Using series expansion, we obtain
1 PN 53
") = m3? 3 (_5 7 Y wh
+ —1—|~£——y1—1—ﬂ—@—kﬁ+a—;i mAwih?
8§14 =8 2 4 4 24, (1.48)
ol 8 % 90, W% v VO
=10 > o T0__ 12 8 48
1 v'o, v 8 9 9 294,313 1 O(5°
4 T I s qw) O
From our Hamiltonian in series of A in eq.(4.28), we therefore obtain
-
o_ (¥ _ %
o= (4 - %) un
1oyt oyt oye, YRR o2 o .
gt 24 L2 2Ty 7 Y Y T ) 8422
(8+4 3 5 1 +4+24 mf wh®,
4 (4.49)

PO UL Ta G R O B L)
- 16 16 16 16 4 12 8 48 4
402 2 [2 %} 15}
+ 7% % + % % O m2 3wt
16 ' 16 48 720 : '
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We discard 872(1/m) and —wfi/2 which are constants. Their only effect is to in-
crease all the energy spectra with the same amount. This is not physically relevant
as we only care about difference of energy between different levels. Then we will
check that our unperturbed Hamiltonian (H®) is cqual to the simple harmonic

oscillator (HE)

2 82
H® = (%_ - m2~"i) wh
4.50
PQ Uiy ( )
- % Sl §mw gy

this will make sure that the unperturbed Hamiltonian is indeed simple harmonic

oscillator (Hyg).

Then we consider the first-order correction to the ground state eigenvalue

using eq.{4.33), we obtain
E(]) = <‘/"8| H ]1/18) = /#ﬁg*Hldjg dz. (4.51)

Let us caleulate the perturbation Hamiltonian acting on unperturbed ground state

wavelunction

mwy L4 o

This gives

1 . / mw YL g
1,.0 vy 12 152 212 2y 02 ‘ 4y 722 —42/2
HT}O—24H?{U h(=3(—1+y") 6( 1+y)0y 12y0y+8y)[)’ ( Ii) e ¥/

~ m{Bwh)? rmwNTA e, L
= () e,

Hence, the first-order correction to the ground state energy is given by

By = (Vo] H [v0)

[ (o) g
oo\ (4.54)

[ m{Buwh)? 1 © e
= (‘771'1/2 *LTS [m dy € T4T0

=0
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where we used the property of the Hermite polynomials (3.25). By direct caleula-

tions, we obtain

. =32
quT(]e—?"z/2 — (H_m(i(gh) )jh(iﬁy?/?, (455)
. 1 1
H'Te V' = m(Buwh)? (—ET; - —IgTs) eV, (4.56)

Therefore, we can define
H'T, (y)e ¥ 2 Zan ,,T,,e (4.57)
n=0
where a,, arc constants. We have calculated ay, for n = 0,1,...,40 and 5 =
0,1,...,44. In Table 2, we show the list of a,, where n - 0,1,....7and 5 =
0,1,...,10. By using cq.(4.57), we obtain the first-order perturbation Hamiltonian
acting on the unperturbed ground state wavefunction (H¢9) in order to calculate

the energy spectra and the wavefunctions.

Moreover, by direct calculations we obtain

. \ . 1 1 13 g
B0 = mPB =Ty + —Tot = Ta+ Ty J eV /2, (458
0 PR h 24“+162+64‘+f760 e n (458)

HQTLG—?’.2/2 E— ’1‘712,84u)3h—,3 ( 4 Tl B ¥ T; + /i T5 =l 4

Ty | e V12 (4,
16°° 960" ° " 5760 7) (4.69)

Therefore, we can define
H*T, (y)e—y2/2 = Z bn,:rﬂreﬂﬁ/z} (4.60)

where by, are constants. We have calculated by, for n = 0,1,,..,40 and n =
0,1,...,46. In Table 3, we show list of b,, where n = 0,1,...,6 and 7 =
0,1,...,10. By using eq.(4.60), we obtain the first-order perturbation Hamilto-
nian acting on the unperturbed ground state wavefunction (H'/?) in order to

calculate the energy spectra and the wavefunctions.
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Table 2: List of a,,

n\n 0 1 2 3 4 5 6 7

0 |0 0 0 0 —83 0 0 0

1 0 0 0 —25 0 —408 0 0

2 10 0 0 0 ~83 0 12050
30 LB 0 0 0 ~203 0 —2808 - - -
4 | -xB0 0 0 0 408 0

5 10 —~Lp 0 ~13 0 0 0 _708 -
6 |0 0 —B 0 13 0 0 0

7T 0 0 0 ~1B 0 -8 0 0

8 |0 0 0 0 ~LB 0 —-i8 0

9 |0 0 0 0 0 ~LB 0 —L

10 10 0 0 0 0 0 L5 0

where B = mf4w?ht, n=0,1,2,.,.,7and n=0,1,2,...,10

Next, let us find the first-order correction to the n'* eigenvalue (E}), in

similar method to k], using eq.(4.33) and eq.(4.57), let us consider

0 g7l |,50 BN e iy
(WPl 2 |y = /d_y — W (H Y. (4.61)

s



Table 3: List of b,

m\n 0 1 2 3 4 5 6
0 =B 0 B0 68, 0 10473,
1 0 B 0 9% 0 583 0
2 LA 0 A3 0 206, 0 2580,
30 36 0 A5 0 6051 0
! ﬁﬁz 0 15251 0 Z;‘,éi 0 22551
5 0 26 0 S/ 0 Big 0
6 Fegh O b 0 95 0 LBy
70 .60 28 0 85 0
8 0 0 LB 28 0 13
9 0 0 0 36, 0 8 0
10 0 0 0 0 260 338

where 8 = m2B%W3B, n=0,1,2,... .6 and 7=0,1,2,...,10

Therefore, we obtain

1 = "
<'¢’?| o W’2> - (2F [l r)i/2 E :a.n',,./e YT Ty (y)dy
n=0

1 o0
= (21 1 pl )1/ Zfln,n(\/f_r?’?;!d,ﬂ)
n=0

1 (/T2

N IR R

21 \ '
= G (2"71!) '

The first-order correction to the n'* eigenvalue following eq.(4.62) and Table 2 is

(4.62)




given by

By = (0| H" |40)

= lnn (463)
=0,
wheren = 0,1,2,...,40.
Next, let us consider 45, using eq.{4.34), we obtain
~ (R )

k#n

Then we calculate them by using eq.(3.21), eq.(3.27) and eq.(4.62), we finally obtain

1 _ 'm.w)lfi d an& e —2/2 465
7] (ﬂ,h mz hw k(y)e : ( ' ‘))

Then, let us find the second-order correction to the n'" eigenvalue (E2). In

eq.{4.36), let us first consider

wo| H |0 wn| H' 90 (| B |90y
O8] 2 AN = ol 2 o) G 1) -
= (ol [ o )
Using eq.(4.62), we obtain
|<¢g| Hl ’7}[#})]2 = Un kG p- (467)

Theun, let us consider the sccond term of eq.(4.36) by using eq.(4.60), we obtain

O 172 10 2\ |
(1’bl IH i’l’/}n> = b"’l gl * (4'68)

50
<¢2| H2 |77/)2> = bn,rv (469)

Therefore, we rewrite eq.(4.36) which calculated from Table 2 and Table 3, is given
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by

, PO HY [40))?
Ei:ZK Elo 0 + (| H? [n)
k#n n k

= Z o AGA - bn n (4?0)

]’? —
k#n

=0,

where n=0,1,2,...,40.

It can be concluded that the result agree with that of the paper (2], namely
the energy speetra do not depend on 3. Higher values of n can also be checked, and
we expect that the expression remains true for these cases. Although we do not
have an explicit proof that this is indeed valid for any given n, the result should
be sufficient to convince that perturbative calculation is working as expected. Let
us then proceed to perturbatively analyse Newton-equivalent Hamiltonians for an-

harmonic oscillator.



CHAPTER V

NEWTON-EQUIVALENT ANHARMONIC
OSCILLATOR HAMILTONIAN

5.1 Anharmonic Oscillator

Anharmonie oscillators {AHOY) is an oscillator that does not oscillating in
harmonic motion. It can be approximated to harmonic oscillator. Perturbation
theory is usually applied to AHO with small anharmonicity. For a large anhar-
monicity, we have to use other numerical techniques in calculation. The usual

anharmonic oscillator potential is given by
Vi) = 1, 2,2 pd 5.1
(x) = Smw e +aat. (5.1)

For this, it is convenient to make use of dimensionless quantities. More explicitly,

we define two new variables

2 ANl
) = - = 5.2
Viy) fiw 3 m%ﬁo (5:2)
E¢.{5.1) can be rewritten as
~ yQ
Viy) =5 +éy’ (5.3)

Figure 1 shows graph of V (y) for & lower than 0, Figure 2 shows V (y) for & equal

to 0 and Figure 3 shows 1lﬁf(y) for & greater than 0.

Let us consider AHO Hamiltonian (H,) which is given by
2
r 1 9 2 4
o, = “mwta? + 5.4
« =g + gmwe + av (5.4)

Perturbation theory is used to find cnergy spectra and wavefunctions. The unper-

turbed Hamiltonian H? is usual harmonic oscillator Hamiltonian and the pertur-



Figure 1: Graph of V(y) where & < 0
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Pigure 2: Graph of V(y) where & = 0
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Figure 3: Graph of V(y) where & > 0
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bation Hamiltonian H* equal to azt. So by using eq.(4.33), we obtain

By = (0| H' [¢))

OO h A 0771 /0
:L dy(m‘) | nH ’I/)n (05)

3202 4 2n + 1) ali®
4 m2w?’

By using eq.(3.21), we obtain enorgy spectra of usual anharmonic oscillator Hamil-

tonian

1 3(2n? +2n+1) ah? .
Fi) s (n + 5) Fiw + 1 — - (5.6)

where n = 0,1,2,.. ..

5.2 NEAHO

Let us now discuss Hamiltonian for Newton-equivalent anharmonic oscil-
lator (NEAHOQ). Back to chapter 2, eq.(2.19), the Newton-equivalent Hamiltonian
for simple harmonic oscillator was considered. In order to obtain the Hamiltonian
for NEAHO (H,), one needs to add the potential term ax? into this Hamiltoniaa.

Let us consider

(14 i8mwa) (1 — ifmwz)? = (1 4+ 262mV ()2, (5.7
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2

where V(2) = $mw’r?. Then we add term aw? into the potential V{z) and obtain

(14 1(B2m w22 + 26%max)Y2)V2(1 — i(B2m%w?a? + 28%maaYVA) 2. (5.8)

We substitute this term into H(f) eq.(2.19), namely replacing (1 + ifmw2)"/? by
(1 + i{(FPmPw?2? + 282 maat) /Y2 and (1 — iBmwz)'? by (1 — i(fPm?wa? +
28%max?)}/2)1/2 Therefore, Hamiltonian for Newton-equivalent anharmonic oscil-

lator (NEAIO) can be written as
1
Hy = 27m ((1 + i/ 2mV (2N exp(—ihpd) (1 — i/ 2mV (x)) /2
+ (i — —-zi)),

(5.9)

where

1
Viz) = E-mwzmz + az®, (5.10)

The Hamiltonian follow the pattern similar to that of the factorised Hamiltonian

[16], [17], which is simple factorised form in discrete gquantum mechanics [18], [19]

H = JA(2)e? /A () + VA (2)e PV A(z) — Alx) — A*(2), (5.11)
where
Alz) = 1 +i(B2mPw?a? + 26%mazt)/?
A*(2) = 1 —i(B2mPwe? 4 28%maat) 2

rT=p

p = —thd,.

(5.12)

However, our Hamiltonian does not have the last two terms (—A(z), —A*(x)). We

would like to know the pattern of this two terms. Therefore, we obtain Hamiltonian
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which added of the constant 1/8%n into H.(5)

HA(B)

= 982, ((1 +i(FPmiwia? + 2,6’2771(1':34)‘/2)1/2 exp(—ihpa,)

(1 — #(F*miw?s? + 288 maa)HV2 + (i = =) + 2)

B 1
282m

((1 +i(F2m2wa? + 282mar YD1 — (P mPw(x — ihB)?
+ 28%ma(x — ihB))YY2)2 exp(—ihB0,) + (i — —i) + 2) :
(5.13)

The difference of this Hamiltonian eq.(5.13) and ec(.(5.9) is just the constant 1/5%m.
It does not effect to the Hamiltonian. We therefore use this Hamiltonian eq.(5.13)

to evaluate the energy spectra and wavefunction.

5.3 Perturbation theory of NEAHO

In perturbation theory, we obtain the Hamiltonian, cigenencrgies and

eigenfunctions in series of &

Hy=H+ ckHy + &2 HY+ - (5.14)
'lfbfl” . ‘d)?hz + H'T[)‘{ln + F‘"Qd)in T, (515)
Ban = Egy + KB4+ KB+ (5.16)

where « is a bookkeeping parameter which will be set equal to 1 in the end of the

caleulation. Using eq.(4.4) and eq.(4.28), we define

HY = H+AH' +---, (5.17)

P = Ynt+ Myt (5.18)
In addition, H% is the Hamiltonian that satifies the equation

HoWan = Eanhin. (5.19)
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By using cq.(4.33) and eq.(4.36), we obtain

Ey, = {'efﬁanilv’&J (5-20)
- Hd’,gﬂ |¢An)|

Erhl = Z 7] +<T/”An|HA TJ’JAn) (521)
In An Al

Then we consider H4 by using Taylor series expansion in dimensionless quantitics,

we obtain

9 02 1 2 4 a 62 '2()2 011
o _ (¥ _ Y RO A N L Rt V) st h?
e ( )wh+( §7 4 8 2 a4 4 +24)m' o
4

2 4 4 2 2 4 P nw

: = =y 402 :

2oosyt b 3yd , 3202 192\ g3
+(1_9£__§_5L_y__+ﬂg2930y+ Y y_y y)ﬁh o

2 8 2 2 2 8 m3w

Next, we follow the caleulation similar to the case of NEAHO Hamiltonian. We

then consider

nzw)l/l (_ 18%h° T+ (3 h? 9 ﬁ2h3) -

ah 4 mw 8miw? 16 nmw

2 3 ﬁ?h 1 2 10
Tt T e /%
(lﬁmgwg 16 mw) 16 6) : (5
( 18, (3 B ﬁzfﬁ) '
s T

mw Sm2w? 16 mw
1 K2 L 2a 1
— T, — T\ "/2
(1 6miw? 16 mw ) ' 64 6)6 ’

and similar to HTy(y)e ¥/2, H\Ty(y)e /% and so on, we therefore define NEAHO

+

HATl ’y Hy

e

Hamiltonian, acting on T, (y)e ¥'/2 is given by
o0
L —y2/2 —y2/2
HA’]:?.(U)C v = § Cn,njjrje v/ 3 (524)
=0
where ¢,, arc constants. We have caleulated ¢, for n = 0,1,...,40 and 5 =
0,1,...,46. In Table 4, we show list of ¢,, where n = 0,1,...,4 and =

0,1,...,10.



Table 4: List of ¢, ,
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n\n 0 1 2 3 4
0 ~16, 0 3h — 253, 0 9241 — 720,
1 0 Sh— 36, 0 21h — 813, 0
2 h- 25, 0 Gh — £, 0 66h — 1773,
3 0 Th—213, 0 Zh — 315 0
4 ki35 0 Up- 535, 0 24h — A3,
5 0 Lh— 28, 0 5~ 1 0
N N B S M P
7 0 — LB 0 Th— & 0
8 0 0 —L5 0 Lh-Up,
9 0 0 T 0
10 0 0 0 0 —L 5

where 3 = il iy - mgi‘“ n=0,1,2,...,4and n=0,1,2,...,10

mw !



Table 5: List of d,,
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\n 0 1 2 3
0 Gih - ii—gf;s 0 lffll - 241!5‘3 0
1 0 Bhy — 4955, 0 Bhy — 2323,
9 E fuy — 213, 0 195 h1 _ 2699 ,8; 0
3 0 % ]}1 - %i_? B?» 0 475 hl . q.;zq ﬁ%
4 Ry — 80 0 Bphy - AP 0
5 0 1a9{.3J 0 %f?l _ 45{‘]ﬁ3
6 2063& 0 hy - 2635’3 0
7 0 — 2555 0 oy — 3% B
8 —LBs 0 — 2.5 0
s (o i 0 v
10 0 0 — s 0
11 0 0 0 — 253
12 0 0 0 0
where ,éd = %, hy = ”’;wa, n=0,1,2,...,3and n=10,1,2,...,12

In a similar way to eq.(4.57), eq.(4.60) and cc.(5.24), let us define

HAT, @) V2 = duyTye V72, (5.25)
n=0

40 and n = 0,1,...,48. In Table 5, we

We have calculated d,,, for n = 0,1,...,

show list of d, , where n = 0,1,...,3 and n=0,1,...,12.

th

Next, let us find the first-order correction to the n'* eigenvalue of the
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Newton-equivalent anharmonic oscillator Hamiltonian (E},). We obtain
An = (11"'/1n| H |1/" 1n>
= (W + My o | H i+ My ) (5.26)
= (vl i [ihn) + (nl Ha[n) + (] Ha [y +
where using ¥9 and ¥} in eq.(3.27) and eq.(4.65) respectively. We consider EL up

to order 47 and a,p in 1) was written in term of 5%, So we consider just only the

first three terms in eq.(5.26). Let us start from (| H} [#})
hO\ 2
(ot 15 gy = [ o (—) oy,

Iy ke _g2/n L /2
(2”'”1571’7 y1/2 Z (n k) huw /dyTg(-y)(—: VR (HLT(y)e 12,

(5.27)

where in oq.(5.24) H\Ti{y)e v /% = Z credee™ 2 ¢g ¢ are constants, We obtain
(=0

1 i, a!l
<?’U?|Hil |?Pf,> (2’+rzl!nl7r 1/2 Z (n — kafH/@f’ i T(y)e(y)

(ty, L
(Ql-i—nﬂnlﬂ— V172 Z Z"AC (Vr21oq) (5.28)

=0

Un, ke I
(21+nilnlﬂ- )72 Z 5) Ck,z(-ﬁ2 1,

therefore,

(01| Ha ln) = Z - 20y " (5.20)

q” 2npl ' '

Since (9| H |why = (WP Hj [¢h)" = (v,,| HY |49y, so from eq.(5.26), we obtain
B = (Wu| Hy [¥n) + 2 (00| H [¥n) - (5.30)

Next, let us consider (2| HY [4/2) which is the same calculation as (¢f| H} [49)

from eq.(4.62), using eq.(5.24), we obtain

2\
(W81 A 108) = ens (o)

(5.31)
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Then we substitute eq.(5.29) and eq.(5.31) into eq.(5.30). Therefore, F}, is written
as

(8]
O,k Chon
EL =cu, 2% —_— 5.32
An = Cun ot & (71,—k:)ﬁw (5:52)

In Table 2 and Table 4, we finally obtain £} in terin of 8

At

327 R 127 e ,
E e — — e U 5_,4)._,... R E v f'“
An ( (O’ 2’6’ 2’ ) w2t ' (U 2° 7 2 ) mw | O(F) Jor (5:33)

where n=0,1,2,3,...,40.

Next, let us find the second-order correction to the n'* eigenvalue of the

Newton-equivalent anharmonic oscillator Hamiltonian (E%,,), we knew that

Fa

H
An Z | (d)m[ 4 !Z;g") l T,"/'An| H2 hbf!n> . (534)
I£n o

Let us first consider
| (% | H 00500 17 = (| Hoa |90 (95| Ha [¥5)°
B’ (]ﬁbAl| HA |7’[An d)An| HE& |lr"AL') (535)
= (07 oy | Ha o by ) (w0 + ) HA [ + 41

and we consider E%, up to order 52, therefore eq.(5.35) leave only three terms

An
(| Ha [n) 1P = (| # [ () HLA 4
+2 (| i |t (] H4 [ (5.36)
2y | 1 k) (o] i ) -
Then substitute eq.(5.29) and eq.(5.31) into eq.(5.36), we obtain

o
A1 1 ChnCn, &y kCEICL; ‘
| <¢AI| H |¢An> |2 Cu ICln + 2 E Lk F\A)rUJI ]‘z#n ﬁ)—i;i‘;. (537)

Next we consider the second term of eq.(5.34) that similar method to E}, in

eq.(5.32), using eq.(5.25), we obtain (1%,,] HA {¥9,,)

(?,)AR{H MAn — "”+QZ anuhn (5.38)

n—
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th

Therefore, the second-order correction to the n'" eigenvalue of the Newton-equivalent

anharmonic oscillator Hamiltonian are

. bt H
A = Y LUAEARAIE (g8, 3 ot

I£n
— i___l_ e +22 & (Ck, n(’ni i Up kCi i Clin
o (n—hw mithr (- K)hw Z4 (n— ke
n., d T
I n+22 e (5.39)

(n — k)hw

Follow the Table 2, 4 and 5, we can calculate the spectra

51 153 969 2
B, = ((O’ 8 40 8 ) metub

2311 ‘613 ﬂ2h
+ (U, _6’_7’__7’.“) Y o ))

where n =90,1,...,40.

(5.40)

In addition, in oq.{5.19), we obtain EY, equal to 4(??, + %) Jww. By using

eq.(5.33), cq.(5.40), and £Y, , we finally obtain the cuergy spectra

EA?! - EAn <& hE*ln *® ‘L"'2EAII

=(2,6,10,14, -+ ) fiw

9 2 1 2r3
+ 0}§369—73'“ L'*‘ 0}_:4:gzy"' [5 ' +O(/34) x
2 2 m2w? 9 2 W (5.41)
i 0 hl 7153 _9_69 i
8’ 47 87 tw®

234
n (0,—6,—@ 513 ) G +0(/34))a-2

47 27 mBuw!
where n=0,1,...,40 and we set t = A = 1.

Higher values of n can also be checked, and we expect that the expression

remains equal to term of 3.



CHAPTER VI

CONCLUSIONS

Newton-equivalent Hamiltonian in quantum case is considered. Because of
its complication we thercfore find its energy spectra by using perturbation theory.
We also use the (physicists’) Hermite polynomials (7, (y)) to evaluate the energy
spectra. In perturbation theory, we use modified Hamiltonian H = H® 4+ AH' +

th

A2H24. .. to obtain the first and second-order correction to the n* cigenvalue of the

Newton-equivalent Hamiltonian (£}, E2). E} equal to 0 and E2 also equal to 0 for
n=20,1,2,...,40. However, they do not depend on the one-parameter family ().
Therefore, the energy spectra equal to B, :-(‘n + %) fuww where n = 0,1,2,...,40,
which agree with those of the standard Hamiltonian. In anharmonic oscillator
Hamiltouian, we add potential term (az?*) into the Newton-equivalent Hamiltonian
in pattern of the factorised Hamiltonian [16], [17] which is simple factorised form in
discrete quantum mechanics [18], [19]-. Finally, we obtain the first and second-order

correction to the n!" eigenvalue of the Newton-equivalent anharmonic oscillator

Hamiltonian (£, F%,) written in term of 5.

So as a future work, one may wish to proceed by using the perturbation the-
ory to analyse more complicated NEAHO Hamiltonians, for example those whose

potenitials are of the form

1 )
V(iz) = -ﬁ??'lw2;132 + ozt + a9 + aga® 4+, (6.1)

Eigenenergies and wavefunctions for NEAHO corresponding to this potential can

be obtained by using perturbation theory.



REFERENCES



(3]

4]

(5]

[6]

[7]

8]

[9]

REFERENCES

Horzela, A. (2004). Alternative hamiltonians of classical mechanics and non-

canonical quantizations.

Degasperis, A., & Ruijsenaars, S. (2001). Newton-equivalent hamiltoniang for

the harmonic oscillator. Annals of Physics, 295(1), 92-109.

Ruijsenaars, S. (1987). Complete fntegrability of velativistic calogero-moser sys-
tems and elliptic funetion identities. Communications in Mathematical

Physics, 110(2), 191-213.

Wigner, E. P. (1950}. Do the eguations of motion determine the quantum

mechanical commutation relations? Physical Review, 77(5), 711.

Regniers, G., & Van der Jeugt, J. (2010). Wigner quantization of some one-
dimensional hamiltonians. Jouwrnal of Mathematical Physics, 5§1(12),

123515.

Horzela, A. (2000). Wigner approach to noncanonical quantizations. Czechoslo-

vak Journal of Physics, 50(11), 1245-1250.

Daskaloyannis, C. (1991). Generalized deformed oscillator and nonlinear alge-

hras. Journal of Physies A: Mathematical and General, 24(15), L789.

Arik, M., Atakishiyev, N. M., & Wolf, K. B. (1999). Quantum algebraic struc-
tures compatible with the harmonic oscillator newton equation. Journal

of Physics A: Mathematical and General, 32(33), L371.

Irac-Astaud, M., & Rideau, G. (1999). Deformed harmonic oscillator algebras
defined by their bargmann representations. Reviews in Mathematical

Physics, 11(05), 631-651.



[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

41

Horzela, A. (2002). On alternative hamiltonians. Crzechoslovak jowrnal of

physics, 52(11), 1239-1245.

Cislo, J., & Lopuszanski, J. (2003). Quantum harmonic oscillator presented
in a nonorthodox approach. Reports on Mathematical Physics, 52(1),

35-41.

Blasiak, P., & Horzela, A, (2003). Quantization of alternative hamiltonians.

Czechoslovak journal of physics, 53(11), 985-991.

Hojman, S., & Urratia, L. F. (1981). On the inversc problem of the caleulns

of variations. Journal of Mathematical Physics, 22(9), 1896-1903.

Cislo, J., and Lopuszanski, J. (2001). To what extent do the classical equations
of motion determine the quantization scheme? Journel of Mathematical

Physics, 42(11), 5163-5176.

Marmo, G., Morandi, G., Simoni, A., & Ventriglia, F. (2002). Alternative
structures and bi-hamiltonian systems. Jowrnal of Physics A: Mathe-

matical and General, 35(40), 8393.

Grunbaum, F. A., & Haine, L. (1997). Bispectral darboux transformations: an
extension of the krall polynomials. Internotionel Mathematics Research

Notices, 199%8), 359-392.

Infeid, L., & Huli, T. (1951}. The factorization method. Reviews of modern
Physies, 23(1), 21.

Odake, S., & Sasaki, R. (2011). Discrete quantum mechanics. Journal of

Physics A: Mathematical and Theoretical, 44(35), 353001.

Nikiforov, A. F., Uvarov, V. B., & Suslov, S. K. {1991). Classical orthogonal
polynomials of a discrete variable. In Classical Orthogonal Polynomials

of a Discrete Variable (pp. 18-54). New York: Springer.



	title
	abstract
	content
	chapter1
	chapter2
	chapter3
	chapter4
	chapter5
	chapter6
	references



