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ABSTRACT

Sports training is an essential element in the sporting carcer of any athlete.
Without a correct and effective training program, no athlete can achieve the high level
of success that most athletes aspire to. While training enhances both physical
condition and mental condition, a pootly devised training program can not only fail to
achieve the outcomes required but can cause actual injury to the athlete. A training
program provides both fitness enhancement and fatigue. Thus, the training program
must consider the physiological constraints of training monotony, chronic training
load ramp rate, and daily TRIMP, to ensure that the cyclist does not become over-
trained, with fatigue outweighing fitness gain. A training program based on Banister’s
Training Performance Interaction Model was adopted. Particle Swarm Optimization
was proved to be the successful algorithm in devising an optimal training program.
This was demonstrated in multiple simulations applying the PSO algorithm, Other
techniques, including the Genetic Algorithm and heuristic search algorithms were
included in our simulations but were found to be sub-optimal by failing to consider the
physiological consiramts, To ensure that (he training plan algorithm that we devised
can be used to create a personalized training program, we include the simulation of 20
cyclists who have different characteristic that reflect their starting level of fitness, This
algorithm was shown to out-perform both the British Cycling’s training plan and the
Sufferfest™” s training plan. We consider, however, that further research opportunities
are possible to further study and enhance sports fraining planning include improving
parameters of Banister’s model, an adaptive training plan, and mobile-specific

optimization techniques also discussed.
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CHAPTER 1

INTRODUCTION

Background and metivation

Sports training is one aspect of their sporting activity to which cyclists pay
most attention. Training enhances both physical condition and mental condition, both
of which are needed to ready themselves for competitions. Especially in endurance
sports like road race cycling, race events test participants to the edge of their physical
and mental capability. The Tour De France, for example, the preeminent world famous
road cycling race, has 21 stages with total overall distance 3,360 km. In each stage,
participants must race for 4-6 hours on average, which may include extreme weather

conditions and tough terrain. The participants who race in this kind of event need
training that emphasizes endurance, to raise their athletic performance to the highest
level possible.

Banister et al. (1991) have proposed a mathematical model which describes
training patterns for the enhancement of endurance capability, This model is based on
the interaction between a program of daily training, and athletic performance. The
daily training load is not without its difficulties, in that it can have two quite opposite
effects to the physical condition of the athlete. The positive effect is the enhancement
of physical fitness, whereas the negative effect is the inducement of fatigue.

These opposite effects are gained, or decay, over time, at different
coefficients. The coefficient of the rate of both fitness gain and fitness decay is lower
than the cocfficient of the rate of fatigue gain and the rate of [atigue decay. The
Banister model explains why the performance of cyclists who train too hard, but have
insufficient rest, might drop, contrary to what might be expected. On the other hand,
successful cyclists usually have a good training pattern which includes an appropriate
daily training load but also sufficient rest periods.

For the best training outcomes, cyclists need to apply the training-
performance interaction model for scheduling their training plan in advance. Having a

well-constructed training plan brings several benefits, such as promoting training
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focus and, importantly, avoidance of overtraining, Cyclists who train according to

such a training plan can focus on each specific training session because they know

how and when to train, recognizing that their training pattern will result in a good

progression in raising their athletic performance. In addition, cyclists who follow a

disciplined training plan have less chance of training too hard, which leads to

overtraining, damaging their progress. A sample training plan is illustrated in Table I.

Table 1 Sample of cycling training plan

Week Mon Tue Wed Thu Fri Sat Sun
Weck 1 [ Hr Rest 2 Hrs Rest 2 His Rest 2His
THis  -wamup - Endurance - Endurance - Below FTHR
-FTHR testing training training (@HRO0Yamax
{@HR70%max (@HR70%max - Inferval training
21 5min
Week 2 1 Hrs Rest 25Hms. Rest 2Hrs Rest 3 Hrs
8Hrs  -Recovery -Below FTHR - Below FTHR - Endurance
Ride @HR9amax @ITRIOYemax {raining
@HR50%max - Interval - Inferval (@HRYemax
- Pedal fraihing fraining
technique 2x20min 6x(6+4min)
Week 3 1 Hrs Rest 2.5Hrs Rest 25Hs Rest 2.5Hrs
9Hrs - Recovery - Below FTHR - Race pace - Below FTHR
Ride (@HRS0Yvmax (@HRY0Ymax -
@HR50%emax - Interval Interval training
-Pedaling training 3x20min
technique 2x12 min
Week 4 Rest 2Hrs Rest Rest 2 Hrs Rest 3 Hrs
7Hrs -FTHR - Below FTHR -Below FTTIR
@HRIGYemax (E@HR0Ymax @HRYomax -
- Inferval - Interval Interval training
fraining fraining 2x15min
1x15min 2x15min




A good sports training plan normally is scheduled by experts, such as sports-
specific coaches or sport scientists. Often, though, cyclists have limited access to this
level of expertise and other expert services, either because it is unavailable, or its cost
is too high for the athlete to afford; especially amateur athletes. An affordable sports
training program for cyclists can be found, for free, published by some reliable sports
organizations or software applications that are freely available on the Infernet, or
available from application stores. These training plans do not suit everyone, however.
Cyclists need to personalise these training plans, which is difficult as ordinary cyclists
usually have litfle knowledge of sports science, and making adjustments might lead
the cyclist to overtrain and / or achieve only suboptimal athletic performance.

Another issue that faces ordinary cyclists when attempting to design their
personal sports training plan is their inability to correctly consider the physiological
constraints necessary, and to take these into account. These constraints determine the
appropriate training pattern for the cyelist, and should serve to remind the athlete on
avoiding injuries or overtraining.

Physiological constraints such as monotony, chronic training load ramp rate
(CTL ramp rate), and daily training load have been identified. In our study as the
constraints necessary to support cyclists in their training, and avoiding injury caused
by overtraining. All these physiological constraints are explained in detail in the
‘Physiological Constraints’ section below.

We refer to the techniques used by a computer program to formalise a
training plan as the computational intelligence inherent in the program. This is what
gives the computer the appearance of expertise. A training program is considered as a
scheduling and planning problem, able to be produced by the computational
intelligence of the software. It is the computational intelligence techniques, and its
various components and aspects, particularly the physiological constraints imposed,
that are the focus and subject of this thesis

Researchers have studied and developed computer systems intended to create
personalized cycling training plans to emulate the decision making of sports science
experts. From articles we have reviewed, illustrated in Table 2. We can categorize
these into 2 groups; local search optimization techniques and machine learning

techniques. Local search optimization techniques are discussed in Fister et al. (2015)
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who proposed what they fermed the Bat Algorithm for planning sport fraining
sessions. They described this as an evolutionary algorithm, taking inspiration from the
behavior of a species of micro-bat and its ability in orientation and prey finding, Their
study used real training log data as the initial population data and searched for the
optimal training plan with minimal errors. This plan was then compared against a
training log selected by the coach. Elsewhere, Perl (Perl, 2001) applied the genetic
algorithm (GA) to automatically create a training plan, and Brazostowski (2015)
proposed a model to analyse the interaction between the performance of the athlete
and the training proposed in a training plan. This interaction model was implemented
as a dynamic programming system,

Machine learning techniques were the subject of work by Mezyk et al. (2011)
who combined a fuzzy model with an immune algorithm, terming it the Improved
IFRAIS (Alves et al., 2004). Rygula (2005) developed a computer system that uses
artificial neural networks (ANN) to discover the influences that improve athletic
performance.

By describing the factors that are important when creating a sports training
plan, by using computational intelligence, the objective of our research was to analyze
the sports training planning problem and to design a computer algorithm capable of
generating a personalized sports training plan, taking into account the essential
physiological constraints. We expected our system to be able to support a cyclist in
training by providing a high quality training plan that minimizes the risk of
overtraining and at the same time raises their athletic performance to a level necessary

to enable them to compete successfully in their target racing event.
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The conceptual framework of the research

We have identified the steps necessary to achieve our object: the design and
creation of a computer algorithm capable of generating a personalized sports training
plan. These steps are summarized in the conceptual research framework illustrated in

Figure 1.

Problem
Analysis
"‘/”‘/””,,«~»—z,—"”’;"‘\a,a«ax»»a\‘\\\\\‘\‘\‘.‘
Sum
Probtem Objective Constraints
Fomulation Evaluation Viofation
Evaluation

Variated
Parameters Value

Y Y. Y

I

] ' . Particle Swarm | |

Greedy Algorithm | Genetic Algorithm _i Optimization \Y
|

______ NN

Result Analysis Benchmarking

N2

Proposed
Solution

Figure 1 Conceptual research framework

We identified appropriate sport science articles and books with information
relating to the problem of planning a sports training problem that ensures that the
physiological constraints are acknowledged. We focused on the base training phase for
cycling training. The objective of evaluation methods and the sum constraints
violation functions were determined from the information found in the literature. The
data set for our experiment was derived from simulated cyclist data, which included a

simulated cyclist profile including gender, age, heart rate at resting state, functional



threshold heart rate and maximum heart rate. This profile was then populated with the
simulated data of 20 cyclists, from which were derived personalized training zones
determined according to the characteristics of Coggan’s training zones (Coggan,
2003). Training zones are training effort levels which are determined by the cyclist’s
heart rate.

For our study, we generated a (raining plan for an 8-week (56-day) fraining
schedule. This is an appropriate period for the foundation training of any cyclist
intending to participate in most endurance racing events (Seiler, & Toennessen, 2009).

Having defined the evaluation function and the sum of constraints violation
function, the problem was formulated according to each computational inteliigence
approach, and was based on deterministic optimization techniques and stochastic
optimization techniques. We examined deterministic optimization techniques that
applied a heuristic search algorithm. Heuristic search algorithms are an efficient
technique that successfully solves many optimization problems with less
computational cost. We also examined several stochastic optimization techniques,
including the genetic algorithm and particle swarm optimization. These chosen
techniques are well known by their efficiency and high quality solutions to many
optimization problems.

All techniques studied are compared, later in our discussion, against each
other, to select the most suitable technique for the sports training planning problem. In
addition, the reported training plans produced when using these techniques are
benchmarked against training plans from reliable organizations such as British Cycling
in their publication (Britisheycling, n.d.), and a commercial version of the Sufferfest
application (Henderson, & Cassin, n.d.).

We then chose the approach that produced the best practical training plan that
enhanced the athletic performance to the highest extent. The chosen approach was

analyzed, and is discussed below from several points of view.



Research objectives

1. Discover the optimization technique that best suit a cycling training plan
problem.

2. Create a personalized cycling training plan that regards to cyclist current
fitness.

3. Create a cycling training plan that recognized physiological constraints for

minimize the risk of overtraining.



CHAPTER 1

THEORETICAL BACKGROUND

Principle of endurance sports training

Improvement in athletic performance: super compensation

Our physical body is essentially a biomechanical device that reacts to
upcoming phenomena that affects it. When we are blleeding, for example, the platelets
that flow along blood vessels will close the wound and stop the bleeding.

Training is a phenomenon that places stress on the body, weakening the body.
However, recovery occurs after a period of rest. In this period the physical body adapts
to overcome the stress of the workload applied during the training effort. After rest,
and recovery, the athlete feels stronger and is able to prepare for upcoming training
sessions. However, if training is stopped or discontinued, the body loses the strength
gained in the prior training, and reverts back to the basic fitness level,

This phenomenon is the super compensation effect demonstrated by Ackland
(1999), shown in Figure 2.

When a cyelist exercises, his performance tends to drop from fatigue, which
is the by-product of the effort expended in the training session. By resting after
finishing the training session, the athlete’s physical body recovers, at which point the
athlete’s physical body has adapted to the previous training workload resulting in a
raise in their athletic performance, enabling them to proceed to further, possibly more
strenuous, training sessions. If the cyclist, in this case, stops training for any
significant period of tiine, their performance will drop to the basic level. The details of
this concept of super compensation will be described in the Training-Performance

Interaction Model section.
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Overcompensation or adaption
l (improvement in performance}

£ifort
{1 hr of
exercise}

g

Fatigiie —— A, Recovery

Performance level Reduces If training bouts

re not cortinued

Figure 2 Super compensation

By the overcompensation that has been described in the previous section, we
know that athletic performance can be raised by a proper program of continuous
training with appropriate rest periods. Therefore, a cyclist whose objective is to raise
his performance to a high standard may spend more effort in training with the hope
and intention of achieving that goal. In Figure 3, different training efforts are graphed,

showing the different supercompensation effects resulting from each.

Improved Fitinecs

Fitness

Baguced Fritness

Figure 3 Training effect from different training effort

The green line is considered as the optimal {fraining effort because it raises the
performance level the most as compared to the others. The blue line shows the
performance {rend from an easy training effort, and the orange line shows the
performance trend from a heavy training effort. Both the easy and heavy training

efforts raise the cyclist’s performance above his basic level, but, ultimately, the
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outcome is a much poorer performance than is achieved from the optimal training
effort, Negative outcomes arise from the red black training efforts, which are examples
of bad training efforts that result in a consequential drop in athletic performance to
below the basic performance Jevel.

This clearly indicates that it is necessary to create a sports training plan that
correctly takes into account, and utilizes, the supercompensation effect, to raise
athletic performance in a prolonged training program, which should be planned in
advance. Proper sequencing of training sessions that alternate between heavy sessions,
easy sessions, and rest sessions, will influence the consequential athletic performance

and achieve the objective of high performance (Figure 4 (a),(b),(c),(d) & (¢)).

(a) Tv LA S (@ Tv NG /7
®) T‘(J;U’LKN “ ANEA™ A R
% [T

© =
M~

Figure 4 Sequencing training session and it consequences.

(a) relative long rest session between training sessions;

(b) optimal sequence;

(c) very short resting session between training sessions;

(d) very short resting session between training sessions followed by long
resting period;

(e) long resting period between training sessions.

Training sessions sequenced as illustrated in Figure 4(a) raise performance
only slightly above the basic level because the training sessions are being undertaken
at a time at which the cyclist has lost their original fitness level, perhaps having
stopped training for a period. This training sequence is considered as a suboptimal

training sequence that cannot achieve a significant rise in performance. It is, however,
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appropriate for a cyclist who intends to maintain their current, satisfactory, fitness
level or as preparation for subsequently undertaking heavier training sessions.

Figure 4(b) illustrates a well prepared training sequence in which the cyclist
ramps up their fraining intensity with the objective of gaining a higher level of
physical fitness. Each training session takes place at the time that the cyclist has
almost fully recovered from previous training sessions. This kind of training sequence
make cyclist feel for the accumulated tiredness from incomplete recovery. This period
is very importance and need a well monitoring to avoid the risk of become
overtraining, However, cyclist will significantly become stronger after resting just for
a couple sessions.

If the cyclist undertakes a heavier training session when they are still
suffering fatigue from the previous training session, the cyclist runs the risk of
overtraining, which is potentially damaging to their progress. This fraining session
sequence is shown in Figure 4(c).

Figure 4(d) illustrates the better training sequence pattern where the cyclist
follows a strenuous training session with a good quality rest period. In this training
sequence, athletic performance is accumulatively raised, which is the desirable
outcome required.

Figure 4(e) shows a training sequence that includes easy fraining sessions,
each followed by a sufficient resting period. This sequence is suitable for a cyclist
whose objective is to completely clear muscle soreness, that is, fatigue, from a
previous heavy training session while still maintaining their current fitness level. This
training pattern is normally undertaken in the off-season of competition, as a fitness
maintenance program.

Designing an annual training plan

In an annual training program, that is a plan for a full year ahead, the
scheduled processes should allow the cyclist to continually increase the training load
to their body constantly over the year. This intention to constantly increase their fitness
level will be accompanied by training fatigue, and these must be balanced out to
ensure that the cyclist does not overtrain or detrain. The two main factors that the

cyclist should monitor in their training are training intensity and training volume, both
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of which influence the training load of any particular training session which can affect
the upward trend of athletic performance,

Training intensity is the effort expended in a specific fraining session while
training volume is the amount or extent of training in a specific training session.
Ackland (1999) suggested that a cyclist should have a training pattern as illustrated in
Figure 5.

Volume

Intensity

————— Performance

330y

Figure S Volume vs Intensity vs Performance.

Cyclists should undertake an easy training program at the beginning of the
season. This will have low volume and low intensity, and is the more appropriate
program for initially developing a solid physical condition in the body, which would
include acrobic capacity and tendon, joint, and muscle strength that will be needed in
subsequent training. The training volume and training intensity will increase over time
during those initial period, and, once a strong base level of fitness is achieved, the next
training period will impose higher levels of training intensity. In these more intense
training periods, greater stress on the body will be experienced, so each training
session should be limited in volume and more resting time must be introduced to avoid
overtraining. Training by this pattern raises neuromuscular strength which is converted
to power and speed. The last period before race event should be the shortest, in which
training volume is tapered off, but intensity is maintained. By this means, accumulated
fatigue is reduced or overcome, while maintaining the high level of fitness previously

achieved. The conclusion is that, if the cyclist follows this training pattern accurately,
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they should be at their strongest and highest state of readiness for their target racing
event,

Three phases in a training plan

Bompa, & Buzzichelli (2015) recommended that an annual fraining plan
should be divided into three phases: the preparation phase, the competition phase, and
the transition phase.

1. Preparation phase

For endurance-dominant sports, athletes normally rely on anatomical
adaptation with some sub maximum strength training, Cyclists particularly, are
advised to train mainly at low-intensity and at a steady pace, but also include some
speed work such as interval, time trial and sprints. Suring this phase the cyclist should
aim for anatomical adaptations which will be needed for training in the subsequent
phases. The intensity and volume should be gradually increased to strengthen the
physical body.

Anatomical adaptation is the objective of strength training that is intended
to elicit a progressive adaption of the cyclist’s anatomy rather to achieve an immediate
overload. Anatomical adaptation emphasizes strengthening the body and good
coordination of the skeleton and the muscle so as will prevent the need for
rehabilitation. The main physiological objectives of this training are:

1. To strengthen the tendons, ligaments, and joints, which can be achieved
through a higher volume of training than in the remainder of the year (we are
discussing a year-long program here),

2. Increase bone strength and propagation of the connective tissue.

As well, in this initial phase, the objective is to improve cardiovascular
fitness, strengthening of muscle, and to practice neuromuscular coordination for
strength movement pattern, or muscle memory. Even though this training does not
focus on increasing muscle size, that result still may happened.

The strength of tendons is increased by implementing a time under tension
per set that falls between 30 and 70 seconds (the time under tension that sees the
anacrobic lactic system as the main energy system). The lactic acid releases the
hydrogen ions that stimulate the release of growth hormone and collagen synthesis.

These circumstances are also stimulated by eccentric load (Babraj et al.,, 2005;
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Crameri et al., 2004; Doessing, & Kjaer, 2005; Kjaer et al., 2005; Kjar et al., 2006;
Langberg et al., 2007; Miller et al,, 2005). For this reason, the majority of the time
under tension is spent in the eccentric phase of the exercise (3 to 5 seconds per
repetition). Muscular balance is achieved both by using an equal training volume
between agonist and antagonist muscles around a joint and by making greater use of
unilateral exercises than of bilateral ones.

Maximum strength depends on many factors including the diameter of the
cross-sectional area of the muscles, the ability to recruit fast-twitch muscle fibers, their
frequency of activation, and the capacity to concurrently call into action all the related
muscles involved in a given movement (Howard et al, 1985). These factors involve
both structural and neural flow changes that happen as a function of training with
moderate weights lifted explosively, as well as heavy loads that close to 90 percent of
1RM or more. These adaptive responses can also be triggered by eccentric training
with loads greater than 100% of 1RM, although its practical application is limited to
very few conditions.

A cyclist could benefit from traditional maximum strength training
methods. For example, performing heavy weight with long period resting (3 to 5
minutes) between sets. However, to increase the lifting weight in a training bout over
the time, the key factor is intermuscular coordination training. With time, as the
nervous system learns the movement pattern, fewer motor units get activated by the
same weight, therefore, leaving more motor units available for any activation by
higher weights. In addition, the concentric action should be done with explosive
movement in order to activate the fast-twitch muscle fibers and to achieve the highest
specific hypertrophy.

Thus, intermuscular coordination training is the preferred method for
general strength. It provides the basic level of physical strength for the training in later
phases in which intramuscular coordination is trained by using higher loads and longer
resting period intervals. In addition, periodization of strength continually stresses and
engages the nervous system by altering several factors includes training loads, sets,

and training methods.
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2. Competition phase

In this phase, the objective is to maintain the same level of fraining load
but minimize the training volume for clearing the fatigue and maintain high
performance. The training regime to achieve this goal is replacing some long and slow
steady stage training sessions with some maximal or sub maximal strength training
sessions. The cyclist might need to focus on converting the strength and power that
was gained from the preparation phase into strength and power which is specific to
target sports movement.

Based on particular sport, three fundamental options can be achieved after
a maximum strength phase of the (raining. these fundamental options are: conversion
to power, power endurance, or muscular endurance. Conversion to power or power
endurance can be accomplished through moderate to heavy loads (8% to 40% of
1RM). Keep in mind that the lifting movement should be done as quickly as possible,
with altering the duration of the sets. For engaging the nervous system, speed training
and upper-body or lower-body plyometric training can improve cyclists’ ability to
recruit and engage the high-powered fast-twitch motor units. the solid foundation of
maximuin strength is needed for maximizing the force production rate. As the matter
of fact, even training with high loads that moved at low speed has been shown to
transfer to power gained if the cyclist attempts the movement as fast as possible
(Behim, & Sale, 1993).

Depending on the demands of the sport, muscular endurance can be trained

for different period of durations. Short duration muscle endurance is the main energy

system is anaerobic lactic, whereas medium and long muscle endurance are
predominately aerobic, Development of muscular endurance requires training more
than 15 to 20 reps per set; indeed, it can require as many as 400 reps per set,
implemented along with metabolic training. In fact, metabolic training and muscular
endurance training pursue similar physiological fraining objectives.

The muscular contractions consume energy from the combined efforts of
three energy systems: the anaerobic alactic, the anaerobic lactic, and the aerobic.
Training for muscular endurance requires expanded adaptation of the aerobic and the
anaerobic alactic systems. The objectives of aerobic training include improvement in

several biological parameters, such as metabolic parameters, which result in greater
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use of fat as energy and an increased rate of removal and reuse of lactic acid,
biochemical parameters, such as increased mitochondria and capillary density which
result in greater diffusion and use of oxygen, and heart efficiency. Raising the
neuromuscular and cardiovascular systems physiologically, biochemically, and
metabolically provides invaluable benefit to athletes in many endurance sports. For
athletes in muscular endurance sports, maximum strength training must be followed by
a combination of specific metabolic training and specific strength training in order to

prepare the body for the demands of the sport.

3. Transition phase

The intensity and volume drop in this phase to allow full recovery in
physical and mental conditions. Cyclists may take a long vacation during which they
perform easy workouts that enhance the recovery process and still maintain some
athletic performance.

Once the neuromuscular system has been adapted to maximize athletic
performance, it is time to test the gains. Unfortunately, most cyclists and coaches work
hard strategically as the competitive season approaches but discontinue strength
training when the season begins. As the matter of facts, maintaining a strong and
stable basic formed during precompetitive phase requires the cyclist to continue
strength training during the competitive season. Lack of success to plan at least once-
a-week session that dedicated to strength training may results in declined performance
or early onset of fatigue as the season goes on.

Falling down and then attempting to recover is always harder than staying
up. Periodization of strength includes planning phases fo optimize biological
adaptation and planning to maintain the benefits for the going on season. When the
season is over, fatigued cyclists can take 2 to 4 weeks off to regenerate their physical

condition and mental condition.

Raising the athletic performance: Training-performance interaction model

In order to train precisely according fo training plan, accurate measurement of
training loads is need. Cyclists need some techniques to quantify their fraining load
and to subsequently estimate their performance achieved from their training plan. Two

data elements that are widely used to quantify the training load are power data and
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heart rate data. Power data is mostly used by professional cyclists who demand very
high precision training while other cyclists more often use heart rate data that is more
affordable to acquire and is reliable. Since the cycling power sensors are very high
cost instrument which is not widely adopted in our country, our study apply Banister’s
methods which rely on more affordable sensors, heart rate monitor sensors.

Training load quantification by power data: Training stress balance
(TSB) model

The Training Stress Balance model (Coggan, 2008) is an extended
modification of the Banister’s model which emphasize only on the changes in athletic
performance. The Training Stress Balance (TSB) model uses the terms Chronic
Training Load (CTL), Acute Training Load (ATL), and Training Stress Balance (TSB)
for "fitness", "fatigue", and "performance”, respectively. Both CTL. and ATL are based
on Banisters Training Impulse (TRIMP) model, which shows the effect to athletic
performance is greater on CTL than on ATL. In addition, the TSB mode¢l assumes that
the effect on a given workout reducing over time, but the effect lasts longer on CTL
than on ATL. The TSB model estimates athletic performance by following equation:

Athletic Performance = CLT — ATL (1)

where the CTL and ATL that result from a certain training load have different
decay rates, The CTL and ATL from a series of training sessions are calculated by

following equations:

ATL. = ATL, | +M 2)
CTL,=CIL, , +M (3)
7

where ﬂa and /’Lf are calculated by:

A, =2/ (N, +1) )
A, =2/(N,+1) )
where IV, is the time decay constant for ATL and N, is the time decay

constant for CTL. Normally &V, is 7 days and N ¢ 18 42 days.
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The Training Stress Score (TSS) ( Friel, 2009) in equation 2 and equation 3
represents a workload from a training session. It is a product of the workout’s intensity
and duration. As either of these increases, TSS also increases. The equation for TSS is:

7SS = (chrationx NPx IF}/ (FTPx3600)x100 (6)

where duration is the training duration in seconds, the intensity factor (IF) is
the percentage of the cyclist’s functional threshold power (FTP) where FTP is the best
average power that the cyclist can maintain for a one-hour race or test, 3600 is the
number of seconds in an hour. Normalized power (NP} can be calculated by these
following steps (Allen, & Coggan, 2012):

1. Caleulate a 30-second rolling average of the power data

2. Raise these values to the fourth power

3. Average the resulting values

4. Take the fourth root of the result

Professional cyclists mostly rely on a power sensor which is considered the
most precise sensor for estimating the training load. The power sensor measures the
force that the cyclist applies directly to the bicycle. The power sensor output can be
used to estimate the training load, which is used to estimate athletic performance later.

However, the benefit in precise measurement comes at a very high cost.
Reliable power sensors are normally priced around US$100 to US$500. Many cyclists
cannot afford this very high cost hardware. The low cost but reliable alternative data
that represents the intensity of training is the heart rate data collected by a heart rate
monitor, These are the measurement and measuring device considered and tested in
our research. A heart rate monitor has a cost of between US$10 and US$30, well
within the budget of most cyclists.

How the training load is quantified, and how the athletic performance is
evaluated, when using heart rate data, is described in the following sections.

Training load quantification by heart rate data: Training IMPulse
(TRIMP)

In our research, our emphasis was on cyclists who would be unable to afford
a power meter which, as indicate already, is a high cost piece of equipment. Because

we use a heart rate monitor in estimating the training load, we were able to use TRIMP
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to quantify the training load based on the heart rate data measured as an output of a
specific training session.

Applying TRIMP, the training load for a specific training session can be
calculated. We simulated a training session occurring once a day, and calculated the
arbitrary TRIMP value of the training day 7 in Equation 7,

TRIMP(dly, ;) = d; - """ HR ()& (7
where d; is the duration of the training session in day 7 {(minute), y is the

model constant (1.92 for males and 1.67 for females (Banister, 1991}), H is the
average heart rate throughout a training session in day i, and """HR() is the
normalized value of EE throughout a fraining session in day i, which is determined
by Equation 8,

H_rsstingHR
nax HR___restingHR

”OWHR(??—T—}) 2 (8)

where /17, is the average heart rate during a training session in day i, "“"2HR

is the cyclist’s heart rate at resting state, and "™HR is the cyelist’s maximum heart rate.
Banister’s training-performance interaction model
In our study, we use Banister’s model of elite athletic performance (1991) to

evaluate a training plan. Banisters® model can be stated as Equation 9.
-] ] -1 ]
P = Pot (2 we M) = (k) we ) ©)
i=0 i=0

where p; is the ¢yclist’s performance at day # of a fraining plan, py s the basic
Jevel performance of the cyclist, w; is the training load at day 7 of the training plan, &
is the coefficient of fitness gain, k2 is the coefficient of fatigue gain, r; is the decay rate
of fitness, r is the decay rate of fatigue, and ¢ is the total days of the fraining plan.

The cyclist’s performance at day ¢ (pr) is calculated by including all of the
following aspects: the cyclist’s basic level of performance (pg) which is a positive

1-1
term, or physical fitness gain from training for f days (k,Zw,.e—(’_’)’ T'J which is a
i=0

-1
negative term, or fatigue gained by training for ¢ days (kZZwieﬁ(H)”’z). The

i=0
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coefficient of fitness is ks and k2 is the coefficient of fatigue. The decay rates of fitness
and fatigue are 77 and r2. In this study, all model parameters are defined by the results
of model fitting from Busso et al. (1997).

To sum up, a cyclist physically gains 2 antagonist products after training,
simultaneously; fitness and fatigue. Since k; < k2 and r; <r;, the cyclist gains and loses
their fitness and fatigue in different ratios. The explanation of this is that cyclists gain
faticue more than fitness after training at a certain amount of training load. When
cyclists have a rest, fatigue decays faster than fitness. The simulation that explains this

training-performance interaction is illustrated in Figure 6.

Physiological Gained by sports training
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Figure 6 Physical response through time by a training session at 131,78 training

load.

Figure 6 illustrates the data attained from a 30-year-old cyclist whose heart
rate was 175 bpm, having trained only once for 90 minutes at a certain level of effort.
This heatt rate averaged around 90-95% of FTHR. This training session had a fraining
load of 137.78. After the cyclist finished this training session, the gain in both fitness
and fatigue was relatively equal. The cyclist’s athletic performance dropped to a
negative value by a slightly higher magnitude than the level of fatigue. On the 8™ day,
the performance rose to 0 because fatigue had decayed faster than fitness. After day 8,

athletic performance began to rise to be slightly higher than the basic level, but as the
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cyclist did not continue his training, no additional training outcomes were achieved,
and his fitness and fatigue decayed to his basic level, and therefore the athletic
performance also gradually dropped to the basic level.

This rise in performance is called super compensation. Cyclists can exploit
super compensation {o raise their athletic performance by optimal scheduling of their

training plan.

The personalized training intensity zoning by heart rate

In our research, we used data that had been collected, by others, from cyclists
in the field, in actual events, to create a sample personalized sports training plan, In
sports cycling, field tests are frequently used to define the level of a cyclist’s fitness,
using the parameters of Maximum Heart Rate, Resting Heart Rate, and FTHR.

1. Maximum Heart Rate normally collected by letting the cyclist start
training as usual Normally start with proper warm up and gradually increase the
exercise intensity until ¢yelist cannot progress to more intensities . The maximum heart
rate of this session is considered as his maximum heart rate.

2. Resting heart rate is collected by the time cyclist wake up The more
reliable value should be collected when cyclist is fully recovered.

3. Function threshold heart rate (FTHR) is the heart rate that reflect the effort
intensity which particular cyclist can sustain for fong period of time .In our study, the
FTHR for 1 hour is selected.

Since training at specific heart rate is not conventence to train, especially for
cycling that cyclist also have to pay attention at traffic, not only at heart rate monitor
screen. The range of heart rate can be more safety and efficiency option to train.
Coggan (2003) had propose the training zone which is a proportion to FTHR.
Coggan’s training zone considered as proper approach to defined personalized training

zone because its FTHR dependent. Coggan’s training zone is illustrated in Table 3.
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Table 3 Coggan's training zones which depended on personal FTHR

Intensity }E Description

Level 1 <68% Active recuperation
Level 2 69-83% Endurance

Level 3 84-94% Tempo

Level 4 95-105% Lactate threshold
Level 5 >106% Maximal aerobic power

In our research we applied Coggan’s training zones as the personalized

training zones that reflect the intensity of a training session in the training plan.

Physiological constraints

To minimize the risk of overtraining and injuries, the sports training plan
needs to include related physiological constraints. Three physiological constraints of
the cycling training domain are identified as training monotony (Foster, 1998), CTL
ramp rate (Coggan, 2008} and daily TRIMP.

Monotony

Training monotony (Foster, 1998) is a factor arising from training with a
monotonous pattern which may have the consequence of the cyclist overtraining.

Training monotony can be estimated by Equation 10.

5 TRIMP,
= std(TRIMP) (10)
I

Training _ Monotony =

In our simulations, training monotony was analyzed throughout an 8-week
training plan. The training monotony of the /-th week is defined as the mean of TRIMP
(Equation 8) of the i-th week, divided by the standard deviation of TRIMP for the
corresponding week, so the overall training monotony is the summation of the training
monotony calculated for each of the 8 weeks (Equation 10). Therefore, the training
plan with a very monotonic training pattern will consequently have a high training

monotony value. Due to the many possible variations in different training plans, it is
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impossible to find the appropriate upper bound of the training monotony value, so we
were unable to scale these values for ease of use. We limited the training monotony
value in conformity with Foster’s suggestion that a good training plan should restrict
training monotony to a value less than 1.5 (Foster, 1998).

CTL ramp rate

Coggan {2008) identified CTL RampRate as an essential constraint,
acknowledging that cyclists may risk illness or symptoms of overtraining if they
attempt to increase their Chronic Training Load (CTL) too rapidly. Coggan stated that
increasing the CTL score at a rate of 5 to 7 weekly for 4 weeks is the recommended
maximum. In our current study, the CTL ramp rate was used to restrict the progressive
increase of training load so that cyclists would not overtrain. In equation 11, the
CTL._RampRate (Coggan, 2008) is simply an average of the increment in CTL values
from the i-th day back over the preceding 7 days. A good training plan should not
present any sequence of 7 days where the CTL ramp rate is higher than 5 to 7.
> (CTL —CIL,y)

n—>6

CTL RampRate = (11)

The CTL of the i-th day is defined as the summation of the chronic training

loads from the previous 7 training sessions together with the Training Stress Score
(TSS) from the current training session. With CTL; calculated from equation 11,

TSSTSS is then estimated by Equation 12,

The TSS estimation method was adopted from (Anonymous, n.d.). This
equation replaces the original power data with heart rate data (MRTSS). This is a
pragmatic decision based on the exorbitant cost of a power meter, which has
previously been discussed as being out of the reach of most ordinary cyclists. The
heart rate data from a heart rate monitor sufficed for our study. 7#7SS is determined by

Equation 12:

HRTSS B (FTHR _resrr’nghr) 100
e (FTHR —"*""%h7) - 3600

_ ) _,._reslr'n R
fi , (h’}_resfrng]?r) . (]1}1 87‘” )
(12)
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where ¢ is training the duration in seconds, "*""8HR is the cyclist’s heart rate at
resting state, and FTHR is the cyclist’s functional threshold heart rate. The duration
data is measured in seconds.
Limitation of daily training load
In consideration of the possibility that a GA-based sports training plan can
limit its effectiveness if training sessions exceed appropriate physiological constraints,
we added another physiological constraint for limiting the TRIMP values of each daily
training load so that they did net exceed 450 to 600, which was derived from a UK

cycling training plan (Britishcycling, n.d.)

Computational intelligence: Scheduling techniques

In overview, planning a sports training is about sequencing training sessions
with different effort levels. The objective of the sequencing is to raise athletic
performance as high as possible while maintaining all physiological constraints.
Therefore, planning a sports training plan may be considered as a scheduling problem
with important constraints. Therefore, computational intelligence techniques for
scheduling are appropriate. These techniques are discussed in the following sections.

Deterministic techniques

Deterministic  optimization is a global optimization technique with the
objective of solving the numerical problem while providing the theoretical guarantee
that the reported solution is the global one. The term ‘deterministic’ typically refers to
the complete optimization techniques which converge to the global optima in a finite
time. Deterministic techniques take advantage of the analytic properties of the problem
to generate sequences of searching points. These sequences converge to the global
optima. The disadvantage of these techniques is in the task of the problem analysis
itself. The researcher needs to analyse the problem in-depth in order to generate the
proper sequences of search points that will converge to the global optimal solution,
Because the deterministic optimization techniques normally parse the sequence of
search points in one direction with no backward stepping, which means that poorly
analysed and constructed sequences will not result in the correct global solution. In
addition, the problem size, which must be considered in the formulation of the

sequence, will affect the performance of this approach: the time necessary for the



26

optimization algorithm to process a long sequence and the possibly large number of
search points, may be excessive and therefore impractical.

Heuristic search algorithm

Heuristic search algorithm is the technique that applies the heuristic on its
moves with hope to find the global optimal solution. Heuristic employed in algorithm
as search strategies to tackle the exponential nature of the most problems. This
technique reduces the search space from the exponential number to polynomial
number.

We applied the greedy strategy in our heuristic search algorithm as the
appropriate algorithm for our optimization problem. Using this algorithm, we iterated

through a set of choices of sub-problems in each step. As indicated in the definition

cited above, greedy methods always select the best choice at the current step,

subsequently leading to the globally optimal solution. The greedy sirategy is a
powerful method for wide range of problems, and is the basis of the minimum-
spanning-tree algorithm, and Dijkstras algorithm, for finding shortest paths form a
single source.

The greedy strategy has been applied to many complex problems. For logistic

scheduling problem, Chang et al. (2014) used the greedy strategy to solve emergency
logistic scheduling problems, they demonstrated that it outperformed existing

algorithms in ‘time to delivery’ by between 46.15% and 63.57%. In a renewable

energy problem, Song et al. (2015, 2014) studied the performance of the lazy greedy

algorithm for the optimization of wind turbines positioned above complex terrain.

Their results showed that the lazy greedy algorithm combined with the virtual particle
wake model produce a better solution to the problem, faster than previous bionic
methods. Neil et al. (2014) proposed a greedy strategy to determine how to distribute
tidal energy devices over the northwest European shelf seas. The last example of
greedy strategy application in a sparse unmixing problem. Tang et al. (2014) proposed

the regularized simultaneous forward-backward greedy algorithm (RSFoBaj for sparse

unmixing of hyperspectral data. This algorithm resulted in a more stable result and was
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less likely to be trapped into the focal optimum, with improve the accuracy and time

efficiency.

In order to apply a greedy strategy to arrive at a complete solution to a
problem, the overall problem needs to be analyzed to clarify the possible sub-problems
that will be encountered before arriving at the complete solution. A sub-problem is
considered as a substructure of the complete solution, which will be used as choices
that may be made in each algorithm step. The choice is always made on the best sub-
problem which is evaluated by the problem’s objective function.

Once the sub-problems are defined, the greedy strategy is defined according
to the approach of Cormen et al. (2009) applying the following steps: |

1. Determine the optimal substructure of the problem.

2. Develop a recursive solution.

3. Show that if we make the greedy choice, then only one sub-problem
remains,

4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can
occur in either order)

5. Develop a recursive algorithm that implements the greedy sfrategy.

6. Convert the recursive algorithm to an iterative algorithm.

By using the greedy strategies above, our heuristic search algorithm will
check that its result is derived from locally optimal solution to globally optimal
solution.

Stochastic techniques

Stochastic techniques randomly initiate candidate solutions as search points
cotresponding to the search space in the hope of locating the global optima. The
generated search points are evaluated by the objective function. High quality search
points will be continuously exploited for locating the global optima in the next
iterations.

This technique has been found to be more flexible than deterministic
techniques even though its reported solutions cannot be guaranteed to be the global
optima. However, researchers have successfully adopted stochastic techniques to solve

such complex problems and have reported it to be an efficient method in many ways.
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Genetic algorithms

Genetic algorithms (GA) are classified as metaheuristic optimization
algorithms for solving complex problems by iterative searching among possible
solutions in the search space and to evaluate the quality of each solution found. When
compared against deterministic techniques, solutions presented by a GA might not the
optimal solution, but they usually require less computational time: this is the tradeoff.
GA’s are considered to be practical techniques for very complex problems. Gas are
well-known techniques that have been applied to many diverse combinatorial
problems. One complex problem to which GA’s have been applied is the scheduling of
examinations in a university. Exam schedules must consider the variety of subjects in
which a student must sit an exam, the scheduling of rooms, avoiding time, room and
subject clashes for all students. Tn other words, a complex set of inputs to the
scheduling problem. Traditional techniques would usually demand very high
computational power and time to solve this kind of problem, A better approach is to
search for potential solutions instead of seeking the one best solution. Other problems
of the same potential complexity to which GA’s have been applied include job shop
scheduling (Chen et al, 2012; Wang, 2012; Xu et al., 2014), metaheuristic
applications in structures and infrastructures (Faghihi, Reinschmidt, & Kang, 2014,
Hejazi et al., 2013; Rashedi, & Hegazy, 2015), image enhancement and segmentation
(Hoseini, & Shayesteh, 2013; Kanan, & Nazeri, 2014; Xie, & Bovik, 2013),
management applications (Arif, Javed, & Arshad, 2014; Biethahn, & Nissen, 2012;
Vidal et al., 2013), classification (Devos, Downey, & Duponchel, 2014; Martis et al.,
2014; Welikala et al., 2015).

Studies of intelligent computing by means of scheduling for a sports training
plan are limited in number. Fister et al. (2015) proposed what they termed the Bat
Algorithm for planning sport training sessions, which they described as an
evolutionary algorithm that was inspired by the behavior of a micro-bats particular its
ability to orientate itself, and for locating prey, in the 3-dimensional space. Their study
used real training log data as the initial population sample and searched for the optimal
training plan with minimal errors, as a comparison to a training log selected by the
coach involved in that sample training program. Huang et al. (2015) proposed an

intelligent computing system for scheduling which uses fuzzy logic inference to
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generate diagnostics and prescriptions for a customized physical fitness schedule and
healthcare. These diagnostic and prescription data were intelligent and scheduled by
their genetic algorithm.

For other related problems in the sports domain, many studies adopted
intelligent computing in many aspects in respect to the sports domain. Novatchkov and
Baca ( 2013) proposed an implementation of artificial intelligence (Al) techniques
such as machine learning algorithms based on neural networks (NNs) for the
automated  classification of sensor information gathered from weight fraining
equipment equipped with weight and force sensors, using fuzzy logic techniques for
the evaluation of exercises performed on those exercise machines. Meng et al.(2014)
used GA to optimally assign referees to their preferred time in a volleyball tournament
schedule. Their results show that the proposed algorithm is reliable. Atan, &
Hiiseyinoglu (2017), addressed a scheduling problem relating to football players and
referees simultancously by applying a mixed integer linear program formulation to
games with specific tules, in the Turkish league. Atan, & Hiiseyinoglu (2017) applied
GA methods concerning referee-related workload constraints. Their resulfs show good
performance in terms of computation time and objective function values.

So many studies have been published that proposed an efficient method to
create a good training plan. However, these required some effort in collecting the
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data, an effort that might have affected the extent, and therefore diversity, of
the collected results, which resulted in a struggle to find global maxima. In addition,
methods for constraint handling were not present in these studies.
The overview of genetic algorithm is illustrated in Figure 7.
The algorithm begins with the formulation of candidate solutions for a string
of binary, integer or continuous numbers, which are called chromosomes. The GA
randomly initiates the number of chromosomes, which is called a population. All the
chromosomes in the population will be assigned a fitness- or objective value by
evaluating with a fitness function. Better chromosomes will be selected to be a parent
for producing offspring in the next generation. Reproduction methods are mate and
mutate. Mating will potentially produce an offspring with a large difference to the
parent chromosome (exploration) while mutation will produce an offspring with a
smaller difference (exploitation). Each offspring will replace its parent and the GA
process continues until the exit criteria is meet. |
The pseudo code of GA is:
1 population = initPopulation(popSize)
while not exit criteria {
evaluate (population)
population = select(population)
offspring = crossover (population, CXPB)
offspring = mutation (population, MUTPB)
population = offspring

}

return best(population)

o o0 =1 SN B W

In summary, a GA search produces an optimal solution by moving and
evaluating candidate solutions in the search space. Mating is considered as an
exploration process that emphasizes the discovering of better candidate solutions that
lie in the unknown region. Mutation is considered as an exploitation process that seeks
a better candidate solution that lies nearby the best-known solutions. Successfully
balancing the tradeoff between these processes will increase the opportunity to locate

the global optima.
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Particle swarm optimization

The activity of creating a training plan has become simpler and more
convenient with many sports organizations and companies having published apps for
training planning and training plan creation British Cycling (Britisheyeling, n.d.} and
Trainingpeaks (n.d.) amongst others). These apps are often available on the Internet,
but may have a significant cost. It is our sense, based on our simulations and
mathematical modelling of one of the major training planning apps, that, while the
training plans created according to these apps may include sophisticated training
strategies, they do not achieve a substantial raise in athletic performance. Our
simulation models are described and justified below.

Other researchers have developed computer systems thai generate sports
training plans simply, quickly and efficiently. Brzostowski et al. (2015) use Banister’s
model (1991) as the objective function of their dynamic programming algorithm. The
outcome of this algorithm was an optimal training plan which indicated the same
training load per training day from the beginning of the training plan until tapering off
shortly before the end of the planned training program. While this training plan was
effective in raising athletic performance, it did not consider physiological constraints.
For example, by having no training load variation over most of the training duration,
the plan did not consider the matter of training monotony which has been reported as a
cause of overtraining which is detrimental to training effectivencss and athletic
performance (Foster, 1998), Kumyaito et al. (2017; 2016a) used a genetic algorithm to
generate the optimal training plan using Banister’s model as the objective function,
While the training outcome from the training plan was improved athletic performance,
the system was somewhat impractical with no mechanisms to handle or manipulate
necessary constraints. As well, the computations were complex, and the cost in terms
of required computational time was high.

Considering the drawbacks identified in existing work, a need for an
optimization technique to enhance the quality of the solution (that is, ensuring that
physiological constraints are taken into account), and to reduce computational cost,
was considered essential. Kennedy, & Eberhart (1995) discussed particle swarm
theory, and developed a Particle Swarm Optimization (PSO) algorithm that was

adopted as the main optimization technique: this reportedly gave outstanding
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performance. The PSO algorithm is a population-based heuristic search algorithm
which tries to iteratively improve the candidate solution by a given measure of quality.
Each candidate solution, or each particle in the swarm, in the PSO sense, is moving
within the search space toward a better position by a movement formula that is
influenced by the particle’s known best position and the swarm’s known best position.
At the end of the processing, all particles would be located at the swarm’s best
position. These particles will be decoded to an optimal result by the algorithm. The
PSO algorithm has been successfully applied to solving discrete combinatorial
optimization problems (Jarboui, Ibrahim, Siarry, & Rebai, 2008; Pan, Tasgetiren, &
Liang, 2008; Sha & Hsu, 2008). In a comparison between PSO and GA, in Hassan et
al. (2005), several functions were tested. The results showed that PSO, being a less
complex algorithm than GA, is faster than GA in complex situations while both of
them exhibited the same quality of solution. Although PSO is fast and can find high
quality solutions efficiently, in some cases the velocity of particles may become too
high which may make particles jump out of the feasible region of search space. One
solution to this problem is by controlling the maximum velocity of particles
(Takahama, & Sakai, 2006), but it is very difficult to choose a proper maximum
velocity in advance because the proper maximum velocity depends on the problem at
hand. Thus, the velocity of particles should be adaptively controlled at runtime.

The Particle Swarm Optimization (PSO) algorithm is a population-based
heuristic search algorithm using optimization techniques based on swarm behavior
such as can be observed in the natural behavior of bird flocks and schools of fish. The
PSO algorithm searches the space of the objective function by adjusting the velocity of
individual agents, called particles, which are formed by positional vectors. The
movement of particles in the swarm consists of two components: a stochastic
component and a deterministic component. Each particle moves towards the position
of the current global best pgq and its own best location pig in their history, while the
particle moves at random velocity vie. When a particle 7 finds a location that is better
than any previously found location, this location is set as the new best location of that
particle.

Most implementations evaluate a particle 7 in the neighborhood consisting of

itself and its immediate neighbors, particle /-1 and particle i+1, within an N-length
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array. The variable g is assigned the index value of the particle with the best
performance so far in the neighborhood. That particle’s velocity is changed by the

following formula:
Via = Vig T P(Pig = X30) + PP gy — Xiq) (13)
where ¢ is a random positive number generated for each individual (id),

whose upper limit is a parameter of the system, and the particle’s position is changed
by the following formula:

Xig = X TV (14)

The particle swarm algorithm is robust in solving problems featuring
nonlinearity and nondifferentiability, multiple optima, and high dimensionality
through adaptation which is derived from social-psychological theory (Eberhart, &
Kennedy, 1995). The original pseudocode is:

1 Initialize the population randomly

2 While (population size){

3 Loop
4 Calculate fitness
5 If fitness value is better from the best fitness value (ppesr}in history

then Update ppesr with the new ppes

End loop

6

7 Select the particle with the best fitness value from all particles as gpes
8 While maximum iterations or minimum error criteria is not attained {
9

For each patticle

10 Calculate particle velocity by equation (1)

11 Update particle position according to equation (2)
12 Next

3 }

14}

Constraints handling
In the real world, many optimization problems do not rely on an objective
value alone. The practical solution should emphasize the problem’s constraints. For

example, in project management problem, the solution with the fastest finish time
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might not be a feasible solution because it demands a high workload which may
overwhelm the workers and staff on the project with undesirable quality outcomes. In
sports training, an efficient sports training plan should consider any physiological
constraints that allow the cyclist to avoid overtraining.

For ease of understanding, let candidate solutions a, b, ¢, d, €, f, and x lie in
the problem’s search space, as illustrated in Figure 8.

The gray area is the feasible region which is a subset of the entire problem’s
search space. The white space is the infeasible region which includes any solutions
that violate the problem’s constraints. Let f be the solution that has the best objective
value among a set of other candidate solutions. Tn constrained optimization, the
candidate solution f cannot be considered as the optimal solution because it lies in the
infeasible region which mean that it violates the problem’s constraints. For this reason,
the optimization techniques must handle this issue and select the optimal solution that

lies in the feasible region, ¢ or X in this case.

search space S

unfeasible search space U

feasible search space F

Figure 8 Example of search space in constrained optimization problem



35

The optimization techniques mentioned above must be customized to handle
the problem constraints, According to Takahama, & Sakai (2010), methods for
handling constraints in optimization techniques can be classified by the way the
constraints are treated:

1. Death penalty method.

This approach uses constraints to check whether a search point is feasible

or not The methods in this category usually do not initiate the search points belonging

to the feasible region, and demand high computational time when the feasible region is

very small.

2. The constraint violation
The sum constraint violation is the summation of violations from all
constraints functions and the objective function. The main difficulty is the selection of
appropriate values for the penalty coefficient that adjust the strength of the penalty To
solve this difficulty, some methods adaptively control the penalty coefficient.

3. The constraints violation and the objective function”

Are used separately, and in this category, the optimization is based on the
lexicographic order in which the constraint violation precedes the objective function .
These methods have been successfully applied in various problems.

4, Optimizing the constraints and the objective function together,

Methods in this category take both the constraints function and the

objective function as objective functions which are optimized by the multiobjective

optimization methods But in many cases, solving the multiobjective optimization
instead of the single optimization is more difficult and is an expensive task.

5. Hybridization methods.

Methods in this category combine some of the above methods to solve the
optimization problem.

It has been shown that methods in category 3 have better performance than
methods in the other categories. Especially, the e-constrained method can convert an
unconstrained optimization algorithm into a constrained optimization algorithm. The
modification is achieved simply by replacing the ordinal comparison with the e-level

comparison in direct search methods.
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g-constraint methods

The main idea of the e-level comparison is the lexicographic ordering in
which constraint violations precede the objective value. The overview of the e-level
coniparison can be expressed by following equation.

i <hifhsdy e (15)
(fudh) <. (f2uth) &/ < ool =

8 < &,,0therwise

f; < fifd.h <¢ 7 (16)
() S (L) @/ S 40,10 = ¢,

\§, < @,,otherwise

The strength of the affection of the constraint violation influences the
lexicographic ordering which is controlled by the e-level value. Where the e-level
value is close to zero, the order is virtually arranged by the sum of constraints
violation (¢). As the e-level approaches infinity, the order is arranged by the objective
functions (f).

These comparison methods can be easily modified in existing selection
methods of unconstrained optimization algorithtus. In the early step of mitializing the
search points, the optimization algorithm does not usually generate the feasible search
points. Adaptively adjusting the e-value can promote the use of the summed value of
the constraints’ violations in the eatly steps of the optimization process. This strategy
can enhance the optimizer by allowing it to exploit the search points that may be close

to feasible region.



CHAPTER I11

PROBLEM DESCRIPTION AND FORMULATION

In our study, we used several optimization techniques to create a sports
training plan, and then evaluate the results achieved, to discover the pros and cons of
particular optimizing algorithms, such as heuristic searching, all discussed above, in
producing solutions to the sports training planning problem,

In all of these techniques, the dataset derived {from the problem domain needs
to be analyzed and formulated with regard to each particular optimization technique.
This chapter describes the dataset characteristics and candidate solution formulations

that were used by all the optimization techniques used in our study.

Simulated cyclist

A personalized training plan needs the cycelist’s profile in order to adjust the
daily training load. For our purpose, the profile of the simulated cyclist as illustrated in
Table 4.

Table 4 Characteristics of the simulated cyclists

Cyclist No. Gender Resting HR FTHR Maximum HR
1 Male 45 174 192
2 Female 64 133 202
3 Male 64 132 200
4 Female 44 174 198
5 Male 40 147 196
6 Female 50 168 192

7 Male 73 169 150
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Table 4 (cont.)
Cyclist No. Gender Resting HR FTHR Maximum HR
8 Female 77 135 188
9 Male 55 139 186
10 Female 48 147 184
11 Méle 45 154 182
12 Female 60 149 180
13 Male 75 156 178
14 Female 67 165 176
15 Male 81 156 174
16 Female 45 144 172
17 Male 77 127 170
18 Female 51 151 168
19 Male 55 146 166
20 Female 84 113 162

The gender of the cyclists has an effect on the training load applied in each
training session. Banister’s TRIMP model (see Equation 12), which we used to
quantified training load, has a gender-dependent constant (1.92 for males and 1.67 for
females (Banister, 1991)).

Maximum heart rate and resting heart rate data used to determine "™ HR(),
the normalization of h_I}throughout a particular training session (see Equation 8).
meri FIR() is use to quantify the daily training load in the TRIMP model (see Equation
12).

The Function Threshold Heart Rate (FTHR) is used to classify the personal
exercise program’s intensities zone (see “The personalized level of training intensity

by heart rate” section in Chapter II).
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Training intensity zone and training session duration

For effective training, cyclists need to achieve a certain training load that
depends on the training intensity and training volume appropriate to that cyclist. The
training intensity was classified according to the personalized training intensities
stated in Coggan’s training zones. These training zones can be used to formulate the
candidate solution in the optimization search space. For the training volume, we
observed the cyclist’s behavior and determined the appropriate lower and upper
bounds of the training duration for endurance-dominant sports.

The intensity data and duration data in this problem included heart rate (HR),
which has measured as beats per minute, and duration (D), which has measured in
minutes. We applied Coggan’s training zones to the simulated cyclist’s HR data to
encode the cyclist’s actual HR data into a value from 0 to 9, as shown in Table 5.

The training duration data encodes the observed data in the range from 0 to 9

(Table 6).

Table 5 Simulated cyclist’s heart rate zone

HR Zone HR (bpm) HR (% of FTHR)
0 45 - 82 25.86 -47.13
1 83-118 47.70 - 67.82
2 119-132 68.39 - 75.86
3 133 - 144 75.86 - 82.76
4 145 - 155 83.33 - 89.08
5 156 - 164 89.66 - 94.25
6 165 - 174 94.83 - 100.00
7 175-183 100.57 - 105.17
8 184 - 188 105.75 - 108.05

9 189 -192 108.62 - 110.34
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Table 6 Training duration zone

Duration Zone Duration (mins)
0 30
1 60
2 90
3 120
4 150
] 180
6 210
7 240
8 270
9 300

Total periods of the training plan

The most significant training phase is the preparation phase which builds a
solid base of fitness for endurance-dominant sports. This phase promotes the efficient
use of fat as energy, improves the cardiovascular system, and strengthens bones,
tendons, and ligaments in preparation for the completion phase. Our study focused on
the base training phase for 8 weeks which was considered long enough to substantially

raise the athletic performance of the cyclist (Seiler, & Tennessen, 2009).

Candidate solution formulation

Prior to estimating an optimal solution, the sports training plans consisted of
56 training sessions which were encoded into a string. Since a training session consists
of two data items, each pair of consecutive characters were encoded from these two
data items, the target training HR, and the training duration. Thus, the complete

structure of the candidate solution for M training sessions, can be expressed as
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HR[ D! HR2 D2 HR3 D3 s HRM{ Dj\,j

where HR| is the heart rate zone and D is the duration zone corresponding to

the first training session. As shown in

Table 5 and Table 6, both characters corresponding to the HR and D share the
same upper bound and lower bound values of 0 and 9, respectively. By this encoding
method, the problem domain data was successfully encoded into a chromosome. The
target exercise values of each training session were normalized and transformed into a

pair of genes that was suitable for processing in various local search algorithms.

Athletic performance evaluation

In a cyclist’s performance assessment, the training load of each training
session needed to be quantified. Then, all training loads were used as input into the
athletic performance assessment.

We used Banister’s TRIMP model (Banister, 1991) for quantify the training
loads of daily training sessions. The TRIMP-based training loads from the daily
training sessions were used as input for Banister’s training-performance interaction

model. The details of this corresponding models were described in Chapter I1.

Physiological constraints

To minimize the risk of overtraining and injuries, the sports training plan
needs to include the related physiological constraints. Three physiological constraints
of the cycling training domain were (raining monotony (Foster, 1998), CTL ramp rate
(A. Coggan, 2008) and daily TRIMP. The details of the corresponding physiological

constraints were described in Chapter 11.

Problem’s search space
From the structure of the candidate solution, we can analyze the search space
of this problem. Let a sample 56-days training plan that has a complete structure be as

follows

TrainingPlan; = HR, D, HR, D, HR, D; + -+ HRsg D
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where /R is the heart rate zone and D is the duration zone for each
particular training session. Applying data from

Table 5 and Table 6, the number of all possible data for HR and D is 10
because they have encoded their continuous value to the discrete zones numbered from
0 to 9. The number of all possible combinations in a 56-day training plan is therefore
9% Tt is essential to use efficient searching methods to seek the global optimal
solution in this very large search space.

The search space can be visualized as the overview of how the variations in a
56-day training plan interacts with the consequential athletic performance. Five-
thousand training plans were randomly initiated and the final athletic performance of
each was evaluated. We used principal component analysis (PCA) (Jolliffe, 1986) to
project all 56 training days into 2 components as predictor variables. The response
variable is the athletic performance value that results from 2 predictor variables.

Figure 9 illustrates 2 predictor variables on the x- and y-axes and a 3D
surface that represents the response value on the z-axis. The peaks and valleys

correspond with combinations of x and y that produce local minima or maxima.

C 5
Mpop, ent; © 1

Figure 9 Tri surface plot of 100 samples of candidate solution
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Figure 9 shows that the search space includes many peaks and valleys.
Therefore, traditional techniques, such as simulated annealing and gradient descents,
may not suit this problem, Therefore, examining different approaches for searching for

the global optimal is needed to discover the best approach for the problem of
scheduling a sports training plan.



CHAPTER 1V

HEURISTIC SEARCH ALGORITHM

Overview

Our heuristic search algorithm used the greedy strategy which is the
technique that has been applied in the past for solving scheduling problems. The
advantages of this algorithm are the ecase of implementation and overall performance,
The type of problem to which the greedy strategy is best applied is one in which the
solution’s structure can be broken down into sub-structures. The greedy strategy
always makes a choice based on the local optimal sub-solution and then iterates in the
hope of finding the globally optimal complete solution.

In this chapter, the problem of scheduling a sports training plan is analyzed.
As explained in Chapter 111, the overall situation is analyzed, and then the sub-problem
structure is clarified. Greedy methods make the best choice by using the objective
value which is evaluated by Banister’s training-performance interaction model, The
constraint handling method is also involved in the process of analyzing choices. The
result that we achieved showed that our heuristic search algorithm is capable of
creating a sports training plan that can successfully raise the cyclist’s athletic

performance to a high level.

Experiments

Prior to scheduling a sport training plan with the heuristic search algorithm,
the structures of the candidate solutions must be extracted. The problem analysis
processes are performed in order to design the substructures of the problem candidate
solutions, a complete structure of the problem candidate solutions, and the related
variables, After all components are defined, the heuristic search algorithm iterates
through the sub-solutions to find and select the best sub-solution. The iterations
continue until the complete solution is found. Once all components are defined, the

heuristic search algorithm will process a set of pre-defined variable parameters. The
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results of each variable set is then evaluated to find the best solution found by the
heuristic search algorithm.

Problem analysis

In applying the heuristic search algorithm to scheduling a sports training plan
problem, the initial processes are the problem analysis and the determination of the
sub-solution structures that will subsequently be merged into the complete solution
structure. In order to do this, the objective function and the physiological constraint
violation functions that were used for selecting the best sub-structure should be
analyzed.

1. Objective function.

This function was used to evaluate the quality of the sub-stiuctures, or the
complete structure, in the solution. Banister’s training-performance interaction model
was used to analyze the objective value, that is the athletic performance, of the
structure,

In our study, a sport training plan consisted of a daily training session,

th

which was, therefore, the smallest sub-problem. For the /M day in a training plan,

athletic performance, as calculated in Equation 12 may have the simple form:

gainedathletic perfornance, = gained fitness, — gained fatigue

Since the magnitude of the fatigue gained is greater than the magnitude of
the fitness gained, the performance of the /™ day only will always be a negative value,
But fatigue decays faster than fitness, so the athletic performance will begin to rise
when the remaining fitness is greater than now-decayed fatigue. For ease of
understanding, the 1** simulated cyclist’s athletic performance level over a 14-day,

100-TRIMP training sessions followed by rest, is illusirated in Figure 10.
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Athletic performance over time

0.2
01

-0.1
-02
-0.3
-0.4
-0.5
0.6
-0.7

Performance

0 1 2 3 4 5 5 7 8 9 10 11 12 13 14
Day

Figure 10 Athletic performance risen over time

By including the given parameters of training-performance interaction in -
the Objective Function section, the athletic performance will drop immediately after
the training finishes. Following a 7 or 8 days rest, the remaining fatigue is less than the
fitness gained, resulting in raised athletic performance.

This situation supports the notion that having different sized sub-solutions
will affect the way that the heuristic search algorithm makes choices. Experimenting
with different sub-solution sizes was therefore an appropriate research approach. In
owr study, the experiments on the sub-solution size were done by varying the sub-
solution as 1 day, 4 days, and 7 days, which allowed the distribution of these tests
across the 56-day training plan, divided into equal sized sub-solutions. Another reason
that we had to limit the sub-solution sizes in this way was the problem of the
exponential growth of the number of sub-solution combinations, which could become
too large to process in a timely manner, In the heuristic search algorithm, all possible
daily sessions were generated for all combinations of training session values of HR
and Duration, as demonstrated in

Table 5 and Table 6. Since both HR and Duration range between 0 and 9,
the number of all possible daily sessions is 102 = 100. According to the daily TRIMP
Constraint (described in the physiological constraints function), we could eliminate all
daily sessions that had TRIMP greater than 450, leaving the remaining 61 daily

sessions in the plan, as shown in Table 7.
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2. Physiological constraint vielation function.

The physiological constraints included monotony, the CTL Ramp Rate,
and the Daily TRIMP are functions that were used to evaluate the feasibility of the
sub-solution structure with regard to the domain constraints. Since the objective of the
heuristic search algorithm is to select the local optimal and feasible sub-solution that
will lead to the globally optimal and feasible complete solution, the sum constraints
violation is evaluated against all sub-solutions to determine how feasible each sub-
solution is. Hence, the sub-solution size is considered to be of importance for
evaluating each physiological constraint that is needed on a specific day, to estimate
how this sub-solution violates the physiological constraints, Therefore, the smallest
sub-solution needs to be ignored in the overall feasible solution.

In this experiment, to be able to evaluate the feasibility of the CTL ramp

rate constraint and the monotony constraint, at least 7 training sessions were needed.
3. Constraint handling: e-constraint methods

The efficient sports training plan should include training sessions that take
the physiological constrains in to account. In the heuristic search algorithm, we first
computed the constraint violation corresponding to each physiological constraint,
using the functions defined in Chapter III. All choices made in each iteration of the
heuristic search algorithm are made by the e-constraint methods which compare both
the objective value and sum of constraints violation value against the e-level. The
detail of e-level comparison was described in Chapter II.

Algorithm’s parameters and configurations

Since the most appropriate parameter values can support the heuristic search
algorithm in searching for both the local optimal sub-solution and the globally optimal
complete solution, this experiment should be done to find the most promising
parameter values that will result in a feasible training plan that raises the cyclist’s
athletic performance as high as possible.

The first variable we considered was the size of the sub-problem that was
constructed from possible daily sessions. Since the heuristic search algorithm solves
the problem by iterated appending of the current best sub-solution, until the complete

solution is reached, the sub-solution quality directly affects the complete solution.



438

When making a choice on the most current optimal sub-solution, all sub-solutions
need to be evaluated in both the objective value and the sum of constraints violation.

In the evaluation of the sum of constraints violation value, all possible current
sub-solutions have to be evaluated against all constraint functions. To test all
constraints in this experiment, the CTL ramp rate and the monotony need sub-
solutions for at least 7 training sessions. This limitation makes any sub-solutions that
are smaller than 7 training sessions unable to be included in the feasibility evaluation.
As well, the other physiological constraint, the daily TRIMP score, should be under
450 for any feasible training session.

In order to handle all constraints in this experiment, all feasible training
sessions were limited by the TRIMP score of 450. This limitation reduced the number
of feasible daily sessions from 81 to 61, and also reduced the number of combinations
for each set of sub-solution sizes, as demonstrated in Table 7.

The exponential growth in the number of sub-problem combinations reflects
on the algorithm’s performance. Therefore, in this experiment, another method for
reducing the number of sub-problem was needed. The first step was to generate all
combination of training according to a specific sub-solution size, then sort all sub-
problems by the TRIMP score in descending order. The second step was to divide the
1% step result into 3 equal partitions and then select the sub-problems whose position
met the following criteria: for the maximum TRIMP session, the session at the
boundary between the 1% and 2" partitions, the session at the boundary between the
22 and 3" partitions, and the minimum TRIMP session. As illustrated in Figure 11,
the choice of training sessions to combine in the specific length of the sub-solution
was reduced to 4 or less choices. The choice selected was on the equally distributed
partitioning. Finally, as shown in Table 7, the reduced number of available choices of

training sessions made for faster computation times overall.
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Use this Use this Use this  Use this
/ session / session / session session \
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Equally partitioned Equally partitioned Equally partitioned

Figure 11 Selecting training sessions for heuristic search algorithm

Table 7 Reduced number of sub-solution combination

Sub-solution Number of sub-solution Reduced number of sub-solution
size combination combination
1 day 61! =61 4l =4
4 days 61%=13,845,841 44=256
7 days 617=3,142,742,836,021 47 = 16,384
Pseudocode

By using the structures of candidate solutions and described variables, the
pseudocode of the heuristic search algorithm is:
1 Let fotalDays be the total number of days in the training plan.
2 Let n be the size of the sub-problem.
3 Let 7P be a list of the initial training plan (initial as empty list).
4 Let dailySessions be a list containing possible daily sessions restricted by
the daily TRIMP constraint.
5 Let subSolutionSessions be a list of all possible combinations of training
sessions in the form of the #-day sub-problem.
6 Let subSolutionEvalData be a 2-dimension list that contains {
A sub-problem’s objective value in 1% dimension.,
A sub-problem’s sum of constraints violation in 2" dimension.

}

7 generate subSolutionSession []
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8 While TP’s sessions < =totalDay{

9 Empty subSolutionEvalData.
10 for each member in subSolutionSession{
11 Store the objective value of TP -tcurrent member of

subSolutionSession in 1% dimension of the current
member of subSolutionEvalData,

12 Store the sum of constraint violation of TP +current member of
subSolutionSessio in the 2" dimension of the current

member of subSolutionEvalData,

13 }

14 Sort the 1 dimension of subSolutionEvalData by descending order
while sort 2" dimension subSolutionEvalData by ascending
order.

15 TP =TP +first member of subSolutionSession.

16 }

17 return TP.

Results and discussion

The experimental results were analyzed with the aim of finding the best
variable values that resulted in the training plan that raises the athletic performance the
most, while maintaining the training feasibility according to all the physiological
constraints. We investigated how the difference of parameter values affected both
athletic performance and all the physiological constraints violations. The results were
that each cyclist’s training plan successfully raised the athletic performance to a high
level, as illustrated in Figure 16. Unfortunately, the heuristic search algorithm failed to
discover a feasible training plan for each cyclist that we simulated.

Nonetheless, to demonstrate the results of the heuristic search algorithm, we
selected the 1* cyclist’s training plan as the example case. The rising trend of athletic
performance which resulted is illustrated in Figure 12. The evaluation of the results for

sub-problem size parameter are described in the following section.
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Sub-problem size

Sub-problem size is a critical part of the heuristic search algorithm because it
generally affects the overall performance. The heuristic search algorithm iterates
through the sub-problems, choosing the current best sequence of training sessions and
appending that as its sub-solution. This sub-solution will keep appending the best
sequence until it meets the complete solution. However, if in the early iteration the
current sub-solution is too short, the evaluation of the sum constraint violation cannot
be done and must be skipped. The criteria for choosing a sub-solution must be based
on an objective value. By this circumstance, we cannot guarantee that the current sub-
solution will be satisfied by all the constraints. The sub-solution can be evaluated
correctly only after its length is long enough to be evaluated. If the current sub-
solution is not satisfied by the constraints, the heuristic search algorithm cannot
eliminate some sequence or sequences, nor step back to a previous sub-solution, and
must continue appending the sequence of training sessions that create the new sub-
solution that has both an optimal objective value and optimal sum constraint violation
value. This is the drawback of the heuristic search algorithm, that sometimes it cannot
arrive at the global optimal solution.

In our study, the sub-problem size is the length of days, and we used 1 day, 4
days, and 7 days in our simulations. Since all physiological constraints equations are
directly evaluated by the sequence of training sessions, the sequence length can affect
the value of the constraint violation. Each constraint violation function must have a
minimal length training sequence otherwise it cannot be evaluated. The 7-day
sequence was the shortest sequence length of training session for evaluating the
monotony constraint, and 28 days was the length for evaluating the CTL ramp rate
constraint, while we could a .l-day sequence as the shortest length of sequence for the
daily TRIMP.

In our study, the heuristic search algorithm failed to create a feasible training
plan (sece Figure 14 and Figure 15).

None of the training plans derived using the heuristic search algorithm were
feasible fraining plan. Each training plan violated at least one physiological constraint.
The reason for the failure of heuristic search algorithm was that the building-and-

evaluating process of the heuristic search algorithm was incomplete, even for the
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candidate solution. The reason for this is that in the early iterations of the algorithm,
the incomplete candidate solution cannot be evaluated by the monotony constraint and
the CTL ramp rate constraint, and the heuristic search algorithm skips the
physiological constraints evaluation and selects the training sessions with a very high
training load. This is done to raise the athletic performance as high as possible, This
results in most of the early training sessions of the plan containing a monotonous
pattern while at the same time accumulating a very high CTL (Figure 13). Once the
candidate solution is long enough to evaluate the physiclogical constraint, the summed
constraint violation of the candidate solution has gone too far. The heuristic search
algorithm has no method to trace back the current candidate solution to previous state,
but can only select and accumulate fraining sessions that make the current candidate
solution feasible. As shown in Figure 13, the training load begins to reduce the later
days of the program as the algorithm tried to correct the summed constraint violation.
Unfortanately, the early training sessions still retained the monotonous pattern and the
very high CTL, resulting in the heuristic search algorithm failing to discover a feasible

training plan.
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Monotony constraint viclation
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Conclusion

In this chapter, the sports training plan domain has been analyzed, and a new

lan was

raining p

heuristic search algorithm that we developed for scheduling a sports t
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proposed. The proposed algorithm adopted the e-constraint methods to devise a
training plan that recognized the physiological constraints of training monotony, CTL
ramp rate, and daily TRIMP limitation. The best resulf of our proposed algorithm
outperformed the standard training plan adopted (Britisheyeling, n.d.). Unfortunately,
the best result of our proposed algorithim fails to recognized the physiological
constraints,

In comparison to (Kumyaito et al.,, 2017; Kumyaito, Yupapin, & Tamee,
2018), our proposed heuristic search algorithm consumed less computational resources
and is suitable to be implemented on a specific platform that may have restricted
computational power and energy, such as mobile devices; smartphones, Pads and

otherwise in the Internet of Things environment.



CHAPTER V

GENETIC ALGORITHM

Overview

The Genetic Algorithm (GA) is a well-known method that could be applied to
optimize the effectiveness of a training plan, but such a training plan would still be
subject to certain constraints that can limit ifs effectiveness. Algorithms that do not
acknowledge and include the described physiological constraints which deficient the
algorithms. To overcome these shortcomings, and to ensure the development of an
effective training plan, we modified the GA algorithin to include the e-constraint
method, thereby enhancing the effectiveness of the training plan. The results showed
that an optimized spotts fraining plan, with the ultimate outcome of attaining
heightened athletic performance, can be achieved by applying the GA, modified by the

e-constraint method.

Experiments

Creating a GA-based sports training plan that recognizes and acknowledges the
physiological constraints, while at the same time enhancing athletic performance, can

be achieved by the following processes:
GA with €-constraint method

The population of chromosomes are randomiy initiated and processed through
tournament selection, one-point crossover and uniform integer mutation. The
algorithm is illustrated in the following pseudo code. The physiclogical constraints are
applied to the selection method by using a ranking of candidate solutions that
acknowledge the objective and constraints violation.

1 evaluation(population)

2 fori=1to 500{

3 population =selectTournamentEpsilon (population

, offspringSize=len(population)

, tournamentSize=3)
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4 offspring =crossover(population
, cxOnePoint
, cxProbability=0.6)

5 offspring =mutation (population
, mutUniformInt
, mutProbability=0.009)

6 Evaluate(offspring)

7 population=oflspring

8 }

In our simulations we found that there is little or no improvement in the
objective value beyond 500 generations, so we limited the number of evolutions in the
GA to that figure in our subsequent simulations. The tournament selection method was
chosen since it has shown, in previous research, better performance in increasing the
hit rate of feasible solutions for each generation (Takahama, & Sakai, 2010).
Reproduction methods included the one-point crossover method and uniform integer
mutation method. Due to concerns regarding computing time, we set the rate of
crossover and mutation close to the lower bound of its typical range, 0.6 to 0.9 and
I/population-size to  1/chromosome-length. By experimenting, we found the
appropriate crossover rate to be 0.6 and mutation rate 0.009. These settings achieved
good solutions within acceptable computation times,

Constraints vielations and e-level comparison methods

Takahama, & Sakai (2010) modified the GA by including e-level
comparisons which are defined as an order related on the pair of values, the objective
function value and a constraint violation value. If the constraint violation of a
chromosome 1is greater than the e-level, the chromosome is not feasible and its
worthiness is low. The following is pseudo code for the constraint violation
calculation.

#Calculate sum constraint violation of each chromosome in particular
generation

1 forito total number of chromosome in population {

2 for j to total number of constraints {
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3 chromosome;.constraintjViolation=

evalConstraintjViolation(chromosome;}

4}

53

6 fori to total number of chromosome in population {

7 for j to total number of constraints {

8 normalized chromosome;.constraintjViolation into 0-1 scale by
all chromosomes in current generation

9 }

10 for k to total number of constraints {
11 chromosome;. SumConstraintViolation=+
(chromosomeiconstraint;Violation)? * constrainty Weight

12 }

131

After the summation of the constraint violations for each chromosome has
been achieved, the next step is selecting a chromosome winner of the tournament with
e-level comparisons, which is calculated by the following pseudo code.

#Selecting chromosome with e-level comparison

I for each chromosome; in tournament {

2 if (both chromosome;.SumConstraintViolation and

winner.SumConstraintViolation are <=¢) {
3 winner = {indMaxFitness (winter, chormosome;)
4 telse if (chromosome;. SumConstraintViolation ==

winner.SumConstraintViolation){

5 winner = findMaxFitness (winner, chromosome;)

6 } else {

7 winner = findMinSumConstraintViolation (winner,
chromosome;)

8 3
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Physiological constraints on the sports training plan

Three physiological constraints adopted in this study were training monotony
(Foster, 1998), Chronic Training Load’s ramp rate (CTL._RampRate) (Coggan, 2008)
and daily training load limitation. Foster suggested a standard value for training
monotony not greater than 1.5, and Coggan suggested a CTL _RampRate score of 5-7
for a period of less than 4 weeks. We adopted the daily TRIMP from the
benchmarking training plan of the British Cycling (Britisheycling, n.d.), of less than
600.

Results and discussion

The algorithms mentioned above were developed as Python language scripts,
using the Distributed Evolutionary Algorithms (DEAP) framework version 1.0.2
(Fortin et al, 2012), and the Python scripts were implemented and tested on
WinPython 64-bit version 3.4.3.5. Charts were created using MS Excel® 2016. A
population of 300 chromosomes were evolved for 500 generations by GA as pseudo-
code in the “Constraints violations and e-level comparison methods” section.

The experiment was done by varying the tournament size between 3 to 7, the
crossover rate between 0.6 and 0.9, the mutation rate between 0.00279 and 0.00892.
The best training plan was discovered by using tournament size equals 3, crossover
rate equals 0.6 and mutation rate equals 0.00892. The result of the experiments for the
first person in dataset is discussed under the following headings: Training Pattern,
Athletic Performance, and Constraint Handling,

Training pattern

The TRIMP values from a number of training sessions, calculated by our GA-
based approaches of constrained and unconstrained optimization, are illustrated in
Figure 17. These were adopted from the UK training plan from (Britishcyeling, n.d.)
as out standard plan.

Our tests showed that GA, without the e-constraint method, created the
hardest training plan consisting of many strenuous training sessions. All of these
training sessions exceeded the physiological constraints, For example, most {raining
sessions in the GA-based training plans exceeded the TRIMP value of 600. A cyclist

following this training plan risks injury and overtraining. In the training plan designed
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using GA with e-constraint method, the TRIMP value of each training sessions
remained within the standard constraint values stated above, which reflected the UK

training plan that we used as our benchmark.

1400 T

-~&=-GA B GAde-constraln  —— UK Training plan

TRIMP

123435678 9101MIZI3M4151617181920212223 2425 2627 282930303233 324353537 3839 4D 41 4243 44 4546 47 45 49 50 51 52 53 S{ 8344
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Figure 17 Comparison of TRIMP value between the UK training plan and GA-

based training plans
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Figure 18 Comparison of athletic performance between the UK training plan

and GA-based training plans

This means that they share the same training effort level, which reflects
equality of their efficiency. In the plan derived from the GA without constraints,

TRIMP was well above the acceptable levels.
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Athletic performance

Figure 18 illustrates the estimated athletic performance achievable under the
three plans; unmodified GA, GA with the e-constraint method, and our standard plan,
The highest athletic performance is a result of GA without the e-constraint method.
The training sessions in this plan are hard training sessions that exceed physiological
constraints. As discussed elsewhere, the achievement of outstanding athletic
performance is attended by the risks of injury or overtraining, therefore we suggest
that this kind of training plan should be avoided. We consider that the GA with the e-
constraint method is the more effective training plan since its performance is more

closely related to our standard.

Table 8 Benchmarking between GA-based training plans and the UK training

plan
MEAN SSE RMSE
Dimension GA with GA with GA with
GA ) GA / GA .
e-constramt e-constraint e-constraint

TRIMP 836.535 114700 3943110071 2182486.46 839.123 197.416

Performance (.744 1,262 32714.402 130.661 24.170 1.527

Other comparative analyses of the solution are demonstrated in Table 8. A
compatison of all the TRIMP resuits shows that the GA with the e-constraint method
is a better approach because it creates a better training plan in many aspects: first, the
mean TRIMP of the entire training plan remains under the constraint, and second, the
model provides a lower SSE and RMSE, which means it is more closely related to our
standard. In addition, the comparative results of athletic performance also show that
the GA with the e-constraint method is a better approach because it has results in a
higher mean performance, and lower SSE and RMSE.

Constraint handling

When comparing the outcomes of the three methods, we found that the GA

with e-constraint method produced a sports training plan that better acknowledged the
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physiological constraints and was more closely related to our standard plan. The plan
that could result in higher athletic performance was produced by the GA without e-
constraint method which, however, created a sporfs training plan that violated the
physiological constraints by including extremely intensive fraining sessions. This
clarly implies that a cyclist undertaking a training program should avoid using a sports
training plan that has been produced by the GA without e-constraint method because
of the risk inherent in that plan of becoming overtrained or injured.

By modifying the GA with the e-constraint method, the GA was enhanced by
this action. Existing unconstrained optimizer objective functions do not need to be
extended for constrained optimization because the objective function and the
constraint violation function are used separately. The lexicographic ordering action
and the e-level comparison process of the e-constraint method were applied to the
existing selection operation in the GA algorithm. This gave a more feasible candidate
solution when applied to the comparison between the objective function and the sum
of the constraints violation. In our experiment, the e-constraint method was shown to
enhance the effectiveness of the training plan when consideration of the physiological

constraints was given,

Conclusion

Our results showed that the GA with e-constraint method can create a suitable
sports training plan that recognizes and acknowledges the physiological constraints.
By applying the e-constraint method, an e-level comparison was adopted to modify
existing tournament selections. The constraint violation value was successfully
calculated by adopting the physiological constraints of training monotony, CTL ramp
rate and daily TRIMP. Despite providing lower athletic training performance, the sport
training plan created by GA with e-constraint method has better similarity to the
standard plan which we adopted.

We can therefore say with confidence that our study demonstrated that the
GA with e-constraint method produces a sports training plan that is, overall, more

effective and more suitable for athletic training regimes,



CHAPTER VI

PARTICLE SWARM OPTIMIZATION

Overview
Adaptive Particle Swarm Optimization using e-constraint methods was used

to formulate a spotts training plan by simulating likely performance outcomes,

Experiments

Adaptive Particle Swarm Optimization (PSO) was modified by Takahama, &
Sakai (2006) by including e-constraint methods. We adopted this approach to generate
an optimal cycling training plan. The result was a cycling training plan that enhanced
athletic performance by taking into account the physiological constraints: training
monotony, CTL ramp rate and TRIMP, as well as the daily training load that we
derived from the British Cycling’s training plan,

Adaptive particle swarm with e-constrained optimization

In the sports training plan optimization problem, physiological constraints
should be handled in the optimization processes. Of the constrained optimization
techniques, the techniques that separately evaluate the objective value and constraints
violation value have shown good performance on various problems (Takahama, &
Sakati, 2005; Takahama, & Sakai, 2000, 2003, 2004). Therefore, in our study, PSO use
the e-constrained method (Takahama, & Sakai, 2006) which separately uses the
particle’s objective value and the particle’s constraints violation value, The e-level
comparisons are formuiated as an order related on a pair of the objective function and
constraint violation.

The e-level comparison is used on separated objective values and constraints
violation values to determine which the better particle is. Adjusting the e-level value
close to infinity makes the comparison mainly on the objective value, In contrast,
adjusting the e-level value close to zero makes the comparison mainly on the

constraints violation value. In addition, this method limits the particle’s maximum
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velocity adaptively to decrease the possibility of flying over a feasible region. All

methods have been implemented as following pseudo code.
1 Randomly initiate a particle’s position, x,
2 Evaluate f(v,) and the particle’s 4(x,)

Update p-best’s position, x,

O 8

Update p-best’s constraints violation, g(x))

Randomly initiate the particle’s velocity vector.

Initialize maximum velocity .{ ¥ )

oy

For(i =0;i <T;i++) {

o0 ~1 O L

Update the particle’s velocity, v, limitingto y;,__.

9 Move the particle’s position regarding to its velocity vector.

10 Evaluate the particle’s objective value.

11 Evaluate the particle’s sum of constraints violation

i2 Initiate the particle’s best, xf , and global best, x

13 if(rey< reo)

14 i (£00) <, i) H g = .}
15 2\ SHh,

16 }

17 Update 7 corresponding to ‘current iteration.

18 }
19 Return the global best particle

Results and discussion

For this study, the source code of Pyswarm (Abraham, 2015) was modified

and represented as the pseudo code shown above, and the parameters for the e-

constraint method were defined by the constraint violation being given by the square

sum of all constraints (p = 2). The e-level is assigned the value 0 which means that the

problems are solved in lexicographic order where the constraint violations precede the

objective function. The number of groups Ng= 4, the number of particles in a group ng

= 25, the weight of the number of the currently feasible particle is /) = 0.2, the
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threshold of updating Fp= 0.05. The parameters for PSO are defined as the number of
particles N = 100 (= 4x5), w’ = 0.9, w" = 0.4, the initial velocity is 0, and the

maximum velocity Vw; is adaptively controlled. The maximum number of iterations

is 5,000 (50,000 fitness evaluations). Independent runs were performed 30 times. We
selected and analyzed the run with the best athletic performance. The result of the
experiments for the first cyclist in the dataset are discussed in terms of training
patterns, athletic performance, and constraints handling,. |

Training patterns

The comparison of the PSO training plan against our standard training plan;
the British Cyeling training plan, is illustrated in Figure 19. The training [oad for each
training session in the plan is represented as a bar chart, The solid bars located at left
hand side belong to PSO’s result while the striped bar at right hand side belong our
standard’s training load. As shown in Figure 19, both training plans share the same
training pattern of alternating between high and low intensity training. Thus, the
dynamic time wrapping (DTW) analysis was done as a similarity analysis. We bound
the measured Euclidean distance between two similar agents in the two training plans
at the same position to 1 and the two training plans that furthest apart to 0, PSO
distance from standard training plan at 0.804. When it is close to 1, this indicates that
the fraining plan produced by PSO is very similar to our standard training plan in

terms of training patterns.
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Figure 19 Comparison of PSO training plan against British cycling’s training

plan
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Athletic performance

The athletic performance trend achieved over the training period, calculated
each day, in each of the two training plans, is shown in Figure 20. Even though our
- results are closely related to the simulated standard training plan outcomes, the
generated training plan outperformed the standard by raising athletic performance to a
higher level of achievement. The PSO training plan’s performance is 13.436 while our
standard training plan’s performance is 7.38 at Day 56, the last day. The PSO training

plan satisfied all physiological constraints and achieved high athletic performance.

12 o - Standard Training Plan o
10 4 —*— PSO Training Plan ,g'\%}"f

&
/i RN

Performance

0 10 20 30 40 50
Day

Figure 20 Performance corresponding to particular training plans

constraints handling

The performance of the constraints handling mechanism in our study is
illustrated in Figure 21 which represents the constraint violation values of each
constraint calculated iteratively. In addition, the performance of the constrained
optimization is analyzed in terms of the sum of the constraints violations by different
iterations. In Table 9, we present the statistics of the sum of constraints violations,
including the best, the worse, an average and a standard deviation.

The variation of a particle’s velocity in the early iterations is very fast (Figure
21) with a brief scanning of their nearby area. The particle’s velocity then slows down

in each subsequent iteration as more detailed and fine searching occurs, seeking the
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best potential solution nearby the particle’s current position. The purpose of the
adaptive maximum limit of the particle’s velocity is to avoid flying over better
solutions. Table 9 illustrates the capability of this approach in each iteration. Particles
are able to find feasible solutions and aftract others to move toward their positions,
The best particles satisfying all constraints of monotony, CTL ramp rate and daily
TRIMP restriction. This means that the adaptive PSO generated training plan is
considered as a practical sports training plan that minimizes the risk of becoming

overtrained.

== == Monotony
== Daily TRIMP
—e= CTL Ramp Rate

Average Sum Constraint Violation

lteration

Figure 21 Convergence of summary constraints violation in early iterations

Table 9 All constraint violations in particular function evaluation times (FEs)

Monotony constraint CTL ramp rate constraint Daily Training Load constraint
e Best  Worst  Average S.D.  Best Worst Average S.D. Best Worst  Average S.D.
50 1452 2908 1.531 0.183 0 9 0.227 1.220 0 24 0.307 1.966
500 1.507 2,531 1,522 0.106 0 10 163 1153 0 19 0.22 1.739

50,000 1507 2953 1.522 0.134 0 10 0.093 0.843 0 20 0.186 1.681
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Conclusion

The adaptive PSO techniques for generating a sports training plan were
presented. As the problem domain in our study is a cycling training plan, the cycling
training-performance model and cycling physiological constraints were adopted. This
work was divided into several processes including problem formulation, particle
encoding, athletic performance model implementation as the objective function,
physiological constraints adoption and implementation of an adaptive PSO with the e-
constraint method as the main optimization technique.

Our simulations demonstrated that the PSO-generated training plan
significantly outperformed the standard plan which was based on a training plan from
British Cycling, while satisfying all physiological constraints. These results mean that
applying the Adaptive Particle Swarm Optimization method of deriving a training
plan, and considering certain physiological constraints, produces a safe, high

performance training plan.



CHAPTER VII

DISCUSSION

In this chapter the comparison of the results of the different proposed
approaches is discussed. Several interesting findings are discussed; Personalization,
Convergence, Computational Time, Quality of Solution, and Benchmarking against a
commercial training plan.

Following this point in this thesis, for brevity, we use the simple term GA to

mean the GA with e-constraint methods.

Personalization

In order to illustrate the personalization of our proposed approach for creating
cycling training plans, we simulated 20 cyclists with different physical fitness profiles
(Table 4).

We created a personalized cycling training plan for each cyclist by using PSO
algorithms with the best parameters value from our experiment. The personalized

cycling training for each cyelists is illustrated in Figure 22.

Dally Training Load in each cyclist's training plan
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Figure 22 Daily training load in each cyclist training plan
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Each cyclist was identified by their basic level of physical fitness as a
proportion of their FTHR and maximum heart rate in X axis. The training load
distribution of each cyclist’s training plan was shown in Y axis.

The results showed that our algorithm successfully creates a training plan that
is suitable for them, recognizing the cyclist’s physical fitness level. The algorithm
creates training plans that have a limited low training load for cyclists who have low
physical fitness level while providing a higher training load for a cyclist who has a

higher physical fitness level.

Convergence

In optimization, convergence is the phenomenon where, in both algorithms,
the individual units (chromosome, particle) move from an initial point toward the
global optima until they are all identical. Fast convergence to the result may be
preferred but it does not guarantee that it will result in the optimal solution: fast
moving individuals may step over the optimal solution. Therefore, the algorithm
designer needs to emphasize the trading-off between fast convergence and the
optimality of the solution.

For these reasons, convergence can be considered as an important evaluation
matrix that represents the overall performance of the optimization algorithm. In this
section, we compare the convergence between different optimization approaches.
However, a simplistic comparison of each algorithmic approach, based only on the
number of iterations performed in each algorithm, may lead to a failure to understand
each algorithmic approach, because of the difference of complexity of each
algorithm’s iterative approach which significantly affects the convergence speed.

Therefore, in our simulations we used the number of Function Evaluation
(FEs), which only count the number of times that individual evaluation functions are
called. In our study we had an objective function and a sum constraint violation
function which were called by the algorithm’s selecting operations, FEs are considered
as a fair performance comparison between our proposed techniques, GA and PSO,
because for the same number of FEs, both techniques had almost equal estimated

computation time (Engelbrecht, 2014).
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For GA, the individual evaluation functions are called by the selection
operation. For PSO, the individual evaluation functions are called by individual fitness
evaluation function. Note that heuristic search algorithms use different strategies to
tind the optimal solution and cannot be compared fo stochastic techniques like GA and
PSO. the convergence comparison will be done between GA and PSO only.

First, we analyzed the total number of FEs for any iteration of GA which can

be described by the equation:
FEGA = Ncelecfion (1 7)

where the total number of function evaluations for GA's i-th iteration (FE;) is
equal {o the number of times that the GA’s selection operation (Nserecrion) 18 called. The

number of selection operation executions is described by:

N selection — Mowrnament < ((Sizefamvmmem = 1) X Rovatuation ) (18)

The total number of selection operation executions equals the number of
tournaments (7iournamenr) multiplied by the number of functions called for selecting the
winner in each tournament (sizeoumamens -1 times) multiplied by the number of
functions called for each chromosome evaluation (ievauarion). I this comparison,
Hiournament. €quAals the population total divided by the tournament size, which is
100/3=33.33 (we use the configuration from the simulation that returned the best
result). The #evanasion 1s 2, calling an objective function once and calling a sum

constraints violation function once. Therefore, Nseteciion equals
N stection = 33.33% ((2) X 2) =133.32

Therefore, the total number of function evaluations for any GA’s iteration is:

FE_, =N, . =133.32

selection
For PSO, the individual evaluation functions are called by the PSO’s fitness
function. The total number of function evaluations for any iteration in PSO can be

calculated by:

FEPSO = (Npopzrlra.'ionxNevahmn'm) (19)

The total number of evaluations for any iteration in PSO equals the number of

calls to the individual evaluation functions (Nevatuaior) multiplied by the number of
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individuals in the population. Neauadion 18 equal to 2, by calling an objective function
once and calling a sum constraints violation function once. In the configuration from
the selected PSO simulation with the best result, there were 300 individuals in the
population. Therefore, the total number of function evaluations for any iteration in
PSO equals;

FE 5= (300 x2) = 600

The best performance result from each approach for the first cyelist in the
dataset is shown in Figure 23. The athletic performance by PSO was 13.4511 while the
athletic performance by GA was 6.8877. The athletic performance from PSO
obviously outperforms the athletic performance from GA. In addition the convergence
of the different approaches shown Figure 23, indicates that the GA technique

converges to its optimal solution slightly faster than the PSO technique.
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Figure 23 Performance profile based-on average of best objective value by FEs



73

Athletic Performance error plot by FEs
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Figure 24 Comparison of population’s error by FEs

The main reason to support the fast convergence of GA is the complexity
decrement mechanism that limits the probability of triggers for GA’s key operations,
including the crossover operation, the mutation operation, and the selection operation.
The frequency that these operations perform is limited by their probabilisfic
parameters. For a comparison of the results, see Figure 24.

The operational probability for the crossover operation is 0.6 and for the
mutation operation is 0.01. In addition, the GA’s tournament selection operation with a
setting of about the tournament size, which is equal to 3 chromosomes, also decreases
the complexity to 1/3 of the number of chromosomes in the population. For the PSO
approaches, the convergence happens by the selection of the g-best particle and then
updating the velocity vector for each particle. There is no complexity decrement

mechanism in PSO. Therefore, in terms of convergence, the GA outperforms the PSO.
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The distribution of objective values in the entire population, as illustrated in
Figure 24, were also investigated. In the initial iterations, both techniques share the
commen situation of having their populations’ objective values widely distanced from
their mean value. Through time, each technique continually tries to achieve better
candidate solutions by applying the reproduction, selection and evaluation processes to
their population. These methods provide improved candidate solutions over time, per
iteration, for each member of the population, by means of both the problem objectives
and constraints. Thus, each member approaches the global optima. The iterative
process terminates when the exit criteria are met, and the solution developed at that

point is adopted as the best solution.

Computational time

The computational time that produces the best result is shown in Table 10 and
Figure 25.

In the heuristic search algorithn, the tradeoff is between solution quality and
computational time, meaning that this algorithm outperforms the other algorithms in
computational time, but perhaps provides a less feasible solution that the other
algorithms. The main reason for the fast computational time of the heuristic search
algorithm is in the mechanism by which the algorithm accumulates the current best
sub-problem leading to the complete solution, which is fast because of our propose
methods had reduced the number of possible combination to be computed. In addition,
heuristic search algorithm also benefits from more efficient usage of the available
computer memory by storing the objective value of all possible sub-problems in
memory, minimising the need for recalculating the objective function. For a training
program with a small number of training days, a small amount of memory space is

required, yet still allowing fast computational time, Table 10 and Figure 25
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Table 10 Computation time for different approaches

Approaches  Heuristic Search Genetic Algorithm Particle Swarm
Algorithm (NPOP=100,Tournsize=3,  Optimization

(1day sub-problem, CX=0.6,MUT=0.01)

7days taper period)

FEvaluatior

Time (ms) 0:00:07 0:03:18 0:02:07

Computational Time

250
' 198

200
0
g 150 127
4 ) <y
£ 100
—

50
7
Greedy Algorithm Genetic Algorithm Particle Swarm

Optimization

Figure 25 Computation Time of different approaches

The second fastest algorithm is the PSO algorithm which has moderate
computational complexity. but provided the best quality solution in our study. In
comparison with the GA, the PSO utilises reproduction methods and selection
methods, which are simpler computational mechanisms. A good quality solution is one
that is widely spread across the entire search space which illustrated in Figure 9.

The search for a better solution, by moving particles across the wider search
space, seems to work in this kind of problem. _

In our study, the slowest algorithm was the GA. It has many methods to fine
tune, including the selection methods, the crossover methods and the mutation
methods. The candidate solutions are found by manipulating chromosomes by the
crossover methods when new and better solutions are sought by exploring different

regions of the search space. Mutation is considered as exploitation that looking for
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better candidate solution that lie nearby the best-known solutions, These methods,
however, are computationally more complex, therefore are slower, making this

algorithm unable to outperform others.

Quality of solution

The best results from the 3 difference approaches: the heuristic search
algorithm, GA and PSO, are discussed in this section by comparing the athletic
performance and constraints violations achieved in each approach. The athletic
performance and constraints violations of the best training plan produced by each
approach, together with our standard training plan - the UK training plan, are

demonstrated in Table 11 and Figure 26.

Table 11 Quality of the best solution from different approaches

Approaches  Heuristic Genetic Particle Swarm UK Training
Search Algorithm  Optimization Plan

Evaluation dleorithmn
Athletic Performance 10.83166 7.75507 13.43600 7.38231

Monotony 1.095431 1.26277 1.45200 1.26011

CTL ramp rate
(times) 0 0 0 17

Daily Training Load

(times) 0 0 0 0
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Athletic Performance

u Athletic Performance

UK Training Plan

Particle Swarm Optimization 13.436

Genetic Algorithm 7.75507

Greedy Algorithm

Figure 26 Athletic performance from different approaches

For athletic performance, all approaches found better solutions than achieved
in our standard. The lowest athletic performance was in the training plan from the GA
algorithm with e-constraint methods, which is close to the level of athletic
performance achieved in our standard training plan. However, the GA. algorithm with
e-constraint methods provided a better solution in terms of feasibilities. The GA
algorithm with e-constraint methods found the best solution with regard to all of the
physiological constraints.

The second best solution in athletic performance was the result of the
heuristic search algorithm which raised athletic performance by 10.83, which is
46.72% higher than our standard plan, with regard to all physiological constraints.

The best solution that raised the highest athletic performance among all
proposed approaches while properly taking regard of all physiological constraints, was
the plan produced by the PSO algorithm. That training plan raised athletic
performance by 13.436, or 82.01%, higher than our standard.

Benchmarking with a commercial training plan

Several commercial applications present some good training plans, such as
Sufferfest®, TrainingPeak®, and Today’s Plan®. For our benchmarking action, we
used the 8-WEEKS UCI GRAN FONDO TIME TRIAL training plan (Henderson, &
Cassin, n.d.), provided by Sufferfest®, as a benchmarking training plan. The

Sufferfest®’s training plan was preprocessed and analyzed by the same method as the
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British Cycling’s fraining plan. The comparison between the British Cycling’s training
plan and the Sufferfest®’s training plan is shown in Table 12 and Figure 27.

The Sufferfest®’s training plan raised athletic performance higher than the
UK training plan by 38.42% while, at the same time, properly considering the
monotony constraint and CTL ramp rate constraint. However, The Sufferfest®’s
training plan presented many high training load sessions which had TRIMP up to 850.
This is the reason for the very high athletic performance arising from the Sufferfest®’s

training plan.

Table 12 Comparison beftween British cycling's training plan and sufferfest

training plan

Training plan Performance Monotony CTL ramp rate
(times)
Sufferfest’s Training Plan 10.21891 0.93583 3
UK’s Training Plan 7.38231 1.26011 17

Result comparison between British Cycling vs SUFFERFEST

CTL ramp rate (times) F 17

j

1.26011
0.03583

Manotony E

Performance

10.21891

0 2 4 6 8 10 12 14 16 18

Figure 27 Result comparison between British cycling vs Sufferfest application
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In our proposed approach, we needed to adjust the daily TRIMP constraint’s
threshold to 850 before benchmarking against the Sufferfest®’s training plan. The
result of our proposed approach, after adjustment, is shown in Table 13 and Figure 28,

Our modifed approach outperformed the Sufferfest®’s training plan by
raising athletic performance by 80.2 1%, while taking proper regard of all physiological

constraints.

Table 13 Comparison between revised PSO training plan and sufferfest training

plan
Training plan Performance Monotony CTL ramp  Daily TRIMP
rate (times) (times)
Sufferfest’s 10.21891 0.93583 3 0
Training Plan
PSO Training Plan 18.41585 1.35790 0 0

Result comparison between
customized PSO and SUFFERFEST application

Daily TRIMP. (times) 9

CTL ramp rate (times)

Monotony

Performance

Figure 28 Result comparison between customized PSO and Sufferfest

application



CHAPTER VIII

CONCLUSION

Summary of research

In our study, we used several algorithmic approaches to develop an optimal
cycling training plan for developing a high level of athletic performance. We included
the requirement for all physiological constraints, training monotony, CTL ramp rate,
and daily TRIMP limitation, to be considered in the training plan.

We first carefully studied the problem of scheduling a sports training plans,
Coggan’s training zone, emphasising personal heartrate, was used to encode the
personalized training data. Banister’s TRIMP, based on average heartrate, was used fo
quantify the training load of a training session. Then, Banister’s Training-Performance
Interaction Model was used to estimate the potential rise mn athletic performance
achievable in a sequence of fraining sessions prescribed in a training plan.

We identified and studied several optimization techniques that have been
previously published, including the heuristic search algorithm, the genetic algorithm
(GA), and the Particle Swarm Optimization algorithin (PSO). Each technique applies
the e-constraint method as the constraint handling method.

In our comparative analysis, we determined that the heuristic search
algorithm, a deterministic technique, results in a sports training plan that raises athletic
performance substantially. However, this algorithm does not consider the
physiological constraints. As well, the heuristic search algorithm outperforms all
others techniques in terms of computation time. A further drawback of this algorithm
is that the researcher needs to spend considerable effort on problem analysis, which is
critical in deterministic optimization, and requires significant expertise on the part of
the researcher.

The two other techniques, GA and PSO, are stochastic optimization
techniques which also showed good potential in searching for the optimal sports
training plan. The proposed GA algorithm resulted in a training plan that raised

athletic performance to the same level as our standard plan that was based on the
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British Cycling organisation’s standard plan, and also outperformed our standard in
terms of proper consideration of all physiological constraints The overall best sports
training plan, which potentially raised athletic performance to a high level, while

properly handling all constraints, was the PSO algorithm.

Contribution of PhD research

1. Based on our benchmarking, the PSO algorithm presented the best training
program. This algorithm can be applied to the creation of spotts training plans for any
athletic activity, especially endurance dominant sports such as running, swimming and
cycling. The algorithm can be customized to meet user-defined criteria, such as
training plan length, desired athletic performance outcomes, and considering the
remaining time until their goal event.

2. The PSO algorithm can create sports training plan that considers any given
physiological constraints potentially experienced in a training program. These
constraint parameters can be modified to meet the user’s requirements, such as
matching daily training load with the athlete’s starting level of physical fitness. The
approach can also optimise the e-constraint method by adjusting the e-level value. This
fine-tuning mechanism enables the algorithm to emphasize the objective value or the
sum constraint violation. The result from this approach can be very flexible in meeting
the user’s requirements while ensuring that the training plan minimizes training risk.

3. The PSO algorithm can also be applied to other combinatorial problems
that adaptively negotiate the strength of constraints handling, in real-time, in some

cases,

Recommendations for future research

Training-performance interaction model

Before using the PSO algorithm in the real environment, the athlete should be
aware that this fraining-performance interaction model was fitted by collecting data
from samples which were cyclists who had extensive fraining experience. Choosing
the parameters values, such as decay rate of both fatigue and fitness and gained
coefficient of both physical body fitness and fatigue, is preferred to ensure the

precision of the model result. The parameter values that we adopted from the original
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work from the British Cycling organization are acceptable for estimating the current
fitness, fatigue, and athletic performance.

However, if the difference of the decay rate of fatigue between the athlete,
and Banister’s sample, is too large, the athlete will run the risk of becoming
overtrained or detrained, both undesirable outcomes, even though the athlete trains
according to the plan.

Future research on this fopic could consider using some biological markers
that represent the fatigue level, and develop the method to transform this marker into a
user- defined model parameter,

An adaptive training plan

Cyclists normally have ‘a day job’, which requires their attendance at their
place of work during normal business hours. Many athletes are likewise family people,
with family and home activities. This may mean that, sometimes, they must skip some
training sessions because of matters arising in their job, such as unexpected overtime
job, or family tasks arising from schooling, or children’s illness. These unexpected
tasks delay the peak performance time. The training plan should be automatically
adjusted to use the remaining time until the race day to raise the athletic performance
as high as possible.

Mobile-specific optimization techniques.

Mobile computing, via smartphones, tabs and lightweight laptops are now
prevalent, allowing AnyTime/Anywhere access to online services and apps which are
also now available in great number and style for mobile platforms. These platforms do,
however, have some operational limitations, such as relatively limited battery life,
lower computing powet, and small screen area. Given that the PSO algorithm that we
recommend demands quite high computational power, we need more efficient and
highly optimized languages if we are to develop a PSO-based app for mobile devices.

Alternatively, as we have demonstrated in our benchmarking of the traditional
approach, it consumes less CPU power due to its less complexity. Further research into
the analysis and design the ftraditional algorithm to make it more effective is
suggested. This would approach the mobile platform conundrum stated from the
direction of algorithmic ability while taking advantage of its low demands for

computing power, for resource-limited platforms.
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GLOSSARY



Athletic Performance

Fitness

Fatigue

Physiological Constraints

GLOSSARY

Medical thesaurus that governed by U.S. National
Library of Medicine or Medical Subject Heading
(MeSH®) had defined Athletic performance as
“Carrying out of specific physical routines or
procedures by one who is tfrained or skilled in
physical activity. Performance is influenced by a
combination of physiological, psychological, and

socio-cultural factors.”

Positive outcome from physical exercises. Human
gain fitness by the adaptation as preparation to
upcoming training load. The coefficient of fitness
gain is less than the coefficient of fatigue gain.
However, decay rate of fitness is less than decay
rate of fatigue. Therefore, cortectly training and
sufficient resting can elevate the athletic

performance.

The negative that gained by physical exercise. It’s
both coefficient of gain term and decay rate are
greater than fitness. Thus, training too heavy and

too often can cause an overtraining.

These constraints determined as threshold that
limit to physical body. Training patterns that go
beyond this limitation  consequence an
overtraining or an injury, Cyclists may need to
extend their resting period and delay their peak
performance. In severe case, cyclist may need a
long complete rest period and eliminate all racing

events entire season.



Constrained Optimization

Heuristic Search Algorithm

Genetic Algorithm

GLOSSARY (CONT.)

Methods or procedures in searching for a global
optimal solution with regarding to problem’s
constraints. Constraints can be classified as

equality constraint and inequality constraint.

This algorithm is classified as deterministic
algorithm which search for a global optimal
solution in efficient manner. Heuristic search
algorithm begins by divide a complete solution’s
structure into sub structures. The main process is
evaluating all possible current sub structures and
select the best current sub stiucture. The selected
sub structure will append to previous
substructures to construct the complete solution,
Finally, the complete solution will be determined

as the solution of heuristic search algorithm.

An optimization  algorithm that classified as
stochastic technique. This algorithm is based on
Charles Darwin’s evolution theory. Its results are
estimated by selection methods and reproduction
methods. The algorithin continues their processes
until the exit criteria is meet. The best solution in
the final iteration determine as genetic algorithm’s

solution.



Particle Swarm Optimization

Training Plan

Reliable Organization

GLOSSARY (CONT.)

A stochastic algorithm that inspired by nature, a
swarm of birds or a school of fishes, in moving all
members to their target destination. The concept
of PSO begins by randomly initiate all individuals
as vectors within search space. The fitness of
individuals will  be iterated evaluate and
consequence as an update of individual’s the
direction and velocity toward the current best
individual. When exit criteria 18 meet, the best

individual will be selected as a solution.

Sports fitness training plans are the strategies for
achieving peak performance. The objective of
training plan is to reach a high level of
performance {(peak performance) and an athlete
has to develop skills, biomotor abilities and

psychological traits in a methodical manner.,

A well-known organization in sports cycling, such
as national cycling organization and the owner of
the famous application for cycling training, In this
research, British Cycling and Sufferfest® is

defined as reliable organization.
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