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ABSTRACT

Let T(X) denote the full transformations semigroup on a nonempty set X,

For an equivalence relation o on X, let
T(X,a) ={o € T(X):Va,y € X,(z,y) € ¢ huplics (za,ya) € g}

Then T(X, ¢) forms a subsemigroup of T(X). In this thesis, we consider a gener-

alization of the semigroup T'(X, o} as follows:
T(X,0,p) = {a € T(X):Vz,y € X,(z,y) € v inplies (zx, ya) € p}

where ¢ and p are equivalence relations on X with p C ¢. The purpose of this thesis
is to find characterizations of the regularity of elements in 7'(X, o, p). Moreover, we
present a necessary and sufficient condition under which the semigroup T'(X, o, p)
is regular, inverse and abundant. Besides, necessary and sufficient conditions for
two elements of T'(X, o, p) are inverse of each other are investigated. Finally, the

Green’s relations on the semigroup T(X, o, p) are described.
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CHAPTER I

INTRODUCTION

For an arbitrary nonempty set X, let 7°(X) denote the semigroup {(under com-
position) of all full transformations on X (that is, all mappings a : X — X). It is
well-known that every semigroup is isomorphic to a subsemigroup of some full trans-
formation semigroups. Hence in order to study structures of semigroups, it suffices to
consider in subseimigroups of T(X'). Therefore, several researchers are interested in char-
acterizations of subsemigroups of the full transtormation semigroup.

Omne of great important topics in semigroup theory is vegularity consideration.
For an element @ ol a semigroup S, a is called regular if there exists z € S such that
@ = uze. We call that a semigronp S is veguler if every element of S is regular. Regular
semigroups were introduced by Green {1] in his influential 1951 paper *On the structure
of semigroups”. The concept of regularity in a semigroup was adapted from an analogous
condition for rings, already considered by Neumann [2]. Tt was Green's study of regular
semigroups which led Lim fo define his celebrated relations. According to a footuote in
Green 1951, the suggestion that the notion of regularity be applied to semigroups was
first made by Rees [3, 4]. This property of regular elements was first observed by Thierrin
[5] in 1952.

Another important kind of the regularity was introduced by Clifford [6] in 1941,
who studied elements ¢ of a semigroup S having the property that there exists x € § such
that @ = awa and az = ®a, which we call now completely regular elements, and semi-
groups whose any element is completely regular, called completely reqular semigroups.
The complete regularity was also investigated by Croisot {7] in 1953, who also studied
clements a of a semigroup § for which e € Sa? (resp. @€ a?9), called left regular (resp.
right regulur) elements, and semigroups whose every clement is left regular (resp. right
regular), called left regular (vesp. right regular) semigroups. Notice that for any elements
of a semigroup S which is both left and right regular is also regular in 5 but the converse
is not true in general. In particular, the regularity, the left regularity, the right regularity

and the completely regularity are coincide in commutative semigroups.



If o is a regular element of a semigroup S, then the element =, whose existence
was postulated by the definition of the regularity, can be chosen such that @ = aza and
© = maxz, and any element x satislying this condition, which is not necessary unique, is
called an inverse of a. A regular semigroup whose any element has a unique inverse is
called an inverse semdgroup. Inverse semigroups were fivst defined and investigated by
Vagner (8, 9] in 1952 and 1953, who called them generalized groups, and independently
by Preston [10, 11, 12] in 1954.

An element a of a semigroup S is called idempotent if a? = a. If there exists %
i .5 such that ez is idempotent of 5, then we call an clement a of § that F-inversive.
A semigroup S is called an E-inversive semigroup if every element of S is E-inversive.
Clearly, regular semigroups and finite semigroups are FE-inversives, The concept of E-
inversive semigroup was introduced by Thierrin [13] in 1955 and the basic properties of
F-inversive semigroups wore given by Catino and Miccoli [14], Mitsch [15] and Mitsch
and Petrich [16, 17].

Auother one topic is Green’s relations. These were relations on semigroups in-
troduced in 1951 by Green [1]. Let S be a semigroup and a,b € S. If ¢ and b generate the
same left principal ideal, that is, S'a = S0, then we say that @ and b are £ relate and
write (a,0) € £. If @ and b generate the same right principal ideal, that is, aST = bS1,
then we say that a and b are R relate and write {(a,b) € R. If a and b generate the same
principal ideal, that is, S'aS' = §'0S!, then we say that a and b wre J relafe and write
(a,0) € T. Let H = LNR and P = L o R, It is well-known that these five relations are
equivalence relations and called Green’s reletions on S.

On a semigroup S, the relations £* and R* on § arc generalizations of the fa~
miliar Green's relations R and £ which first introduced by Pastijn in [18] and adopted
by Fountain in [19, 20]. The relation £* is defined by the rule that (a,b) € £* if and
only if a and b are related by the Green's velation £ in a semigroup T such that S iy
a subsemigroup of 7. The relation R* can be defined dually. In a regular semigroup
L* = L and R* = R. For instance, Fouutain [20] pointed out that a seuigroup S has
the property that for every a € S the left ideal S'a is projective if and only if every
L*-class of S contains idempotent. We call such scmigroups left abundant (they are also

called rpp semigroups in the literature). Right ebundant semigroups are defined dually.



A semigroup is abundant if it is both left and right abundant. It is known that a regular
semigroup is abundant but the converse is not true. For example, Umar [21] showed that
the semigroup of order-decreasing finite full transformations is abundant but not regular.
The property of being abundant can he considered as a wide generalization of regularity.

A gsubsemigroup @ of a semigroup S is called a quasi-ideal of S i SQNQS C Q,
and we say a subsemigroup B of S is a bi-ideul of S it BSB C B. Then quasi-ideals are
a generalization of one-sided ideals and bi-ideals are a generalization of quasi-ideals. The
notion of quasi-ideals for semigroups was first introduced by Steinfeld [22] in 1956 while
the notion of bi-ideals for sanigroups was infroduced carvlior by Gouod and Hughes [23] in
1952, Kapp [24] used BQ to denote the class of semigroups whose sets of bi-ideals and
quasi-ideals coincide in 1969, A semigroup S is called a BQ-semigroup if S € BQ. In
1961, Lajos [25] showed that every regular semigroup is BQ@Q-semigroup. Also, in 1972,
Mielke [26] described the structure of Green's relations on BQ-semigroups. Later in 2001,
Kemprasit and Baupradist [27] showed that for any positive integer n, the multiplicative
semigroup Z,, has the property that the set of bi-ideals and the set of quasi-ideals coincide
if and only if either n = 4 or n is square-free (there is no @ ¢ Z such that @ > 1 and
a®|n) and [28] considered BQ-semigroup on the multiplicative interval semigroup and the
additive interval semigroup on R in 2004.

Many years passed, subsemigroups of T(X) have been studied by a mamber of
semigroup theorists. Particularly, characterization of the regularity, the left regularity,
the right regularity, the completely regularity, Green’s relations, inverse semigroups and
abundant semigroups on subsemigroups of 7(X) have been investigated, see [21], [29-42].

Let o be an equivalence relation on a nonempty set X. In 2005, Pei [29] has

studied Green’s relations and the regularity on a subsemigroup of T(X) defined by
T(X.0)={o e T(X): Va,y € X,(z,y) € ¢ implies (za,ya} € o}

and call it the semigroup of trunsformations that preserve un equivalence on X, In 2013,
Namnak and Laysilikul [30] gave necessary and sufficient conditions when elements of
T{X,0) to be left regular, right regular and completely regular. Pei and Zhou [31]
proved that T(X, o) is abundant but not regular if the equivalence relation ¢ is simple

(there is exactly one o-class A (# X} containing more than one point and the other



o-classes are singletons) or 2-bounded (the cardinality of every o-class is not move than

2). Later, Deng, Zeng and Xu [32] introduced a subsemigroup of T(X) defined by
T(X,0*) = {a e T(X) Va,y € X,(z,y) € ¢ if and only if (za, ya} € 7},

the so-called semigroups of transformations that preserve double divection equivalence on
X. They investigated the regularity and Green's relations on T(X, 0¥}, Later, Laysilikul
and Namnak [33] investigated a nceessary and sufficient condition for the left regularity,
the right regularity and the completely regularity of elements in 7'(X,¢*}. Deng [34]
discussed the Green's *-rvelations, certain *-ideal and certain Rees quotient semigroup
for the semigronp T(X,0%) and proved that regular and abundant in the semigroup
T(X,0*) coincided. Mendes-Gongalves and Sullivan [35] introduced a subsemigroup of

T(X) defined by
E(X,0) ={a e T(X) :Va,y € X, (z,y) € o implies (@,y) € keral,

where kera = {(z,y) € X x X : za = ya} and call it the semigroup of transformations
restricied by an equivalence o. F'he anthors characterized Green’s relations on the largest
regular subsemigroup of F(X,¢). They also showed that if |X| > 2 and ¢ # Ix =
{(m,) : & € X}, then E(X,o) is not isomorphic to 1'(Z) for any set Z. Sun and
Wang [36] proved that FE(X, o) is right abundant but not left abundant whenever the
equivalence o on the set X (X > 3) is non-trivial.

The semigroups T{X, o) and F(X, ¢) motivate us to define T'(X, 7, p) as follows:
T(X,0,p)={acT(X):Ve,y € X,(z,y) € o implies (za,ya) ¢ p}

where ¢ and p are equivalence relations on a nonempty set X with p C o. It is easy
to see that T(X, e, p) is a subsemigroup of T(X). Notice that the identity transfor-
mation on X, namely {x, contained in T'(X,¢) but need not belong to T(X,a,p). If
c=Ixorp=XxX, then iy € T(X,0,p). In particular, if c = Iy or p = X ® X,
then T'(X,0,p) = T'(X), if p = o, then 1'(X,0,p) = T(X,0) and if p = Ix, then
T(X,0,p) = E(X,0). Hence T(X,0,p) is a generalization of T'(X, o) and E(X, o).

The purpose of this thesis is to find characterizations of the regularity, the left
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regularity, the right regularity and the completely regularity of elements in T'(X, ¢, p) and
to find a necessary and sufficient condition for two elements of T(X, 7, p} are inverse of
each other. Moreover, we aim to study the Green’s relations on the semigroup T(X, ¢, p)
and to present a necessary and sufficient condition under which the semigroup T(X, o, p)
is regular, left regular, right regular, completely regular, inverse and abundant.

Let ¥ be a fixed nonempty subset of X. In 1975, Symons [37] considered the
subsemnigroup of T(X) defined by

TX,Y)={aeT(X): Xa C Y}

The author described all the automorphisms of this semigroup. Moreover, he determined
when the two sewigroups of this type are isomorphic (see [37]). In 2005, Nenthein,
Youngkhong and Kemprasit [38] characterized regular elements of T(X,Y) and deter-
mined the numbers of regular elements in T(X, ') for a finite sct X. Morcover, Nenthein
and Kemprasit [39] proved that T'(X,Y) is a BQ-semigroup. In 2008, Sanwong and
Sommance [40] deseribed T(X,Y) to be regular and determined the Green's relations on
T(X.Y). Also, a class of maximal inverse subsemigroups of 7'(X, Y} is obtained,

For equivalence relations ¢ and p on a nonempty set X with p € o. In this
thesis, we show that T(X, e, p) can be embeddable in T(Y, Z) for some sets ¥, Z with
Z C Y but not isomorphic to T(V, Z}.

Furthermore, we also consider the subsemigronp of T'(X) which introduced by

Aratjo and Konieczny [41], namely,
T(X,0,R) = {acT(X): Ra C R and Vz,y ¢ X,(x,y) € o implics (za, yo) € o},

where It 1s a cross-section of the partition X/¢ induced by o. Tt is called the semi-
groups of transformutions preserving an eguivalence relution and a cross-section. Clearly,
T(X,0,R) C T(X,0). They have been proved that the semigroups T(X, o, R) arc pre-
cisely the contralizers of idempotents of T'(X). After year, they discussed the structure
of T(X, 0, R) in terms of Green’s relations, described the regular elements of T(X, o, R)
and determined the following classes of the semigroups T'(X, o, R): regular, abundant,
inverse and completely regular in {42].

In this thesis, we define a new subsemigroup of T(X, o) as follows:

Th(X,0) ={a € T(X): Re= R and Vu,y € X, (z,y) € ¢ implies (za,ya) € o}



where R is a cross-section of the partition X/ induced by an equivalence o and call it the
semiyroups of transformations preserving an equivalence relution and fix a cross-section.
However, the regularity, the left regularity, the vight regularity, the completely regularity,
Green’s relations, inverse and abundant arve described on the semigroup TR(X, o).

The remainder of this thesis cousists of six chapters. Chapter I contains precise
definitions, notations and some useful results which will be used in the later chapters.
In addition, we give svine relationships between some subsemigroups of T(X) in the last
section. In chapter 111, we present characterizations for the regularity, the left regularity,
the right regularity and the completely regularity of elements and semigroups in some
subsemigroups of T'(X}. In chapter IV, Green’s relations on some subsemigroups of T'(X)
are deseribed. We investigate some algebraic structres on sonie subsemigroups of T(X)

in chapter V. Chapter VI, we conclude the results of the thesis.



CHAPTER II

PRELIMINARIES

In this chapter, we give some precise delinitions, notations and basic results
which will be used in our study. Moreover, we will show some necessary propositions
that we usually refer to and we show some relationships among subsemigronps of T{X)

in the rest of this chapter,
2.1 Elementary concepts

A binary operation - on a nonempty set S is a function from § x § into 5.
A semigroup (9,) is a nonempty set S with a binary operation denoted by -, called

multiplication, satisfying the associativity law:
a-b-c)=(ab)c

for all a,b,c € 5. Generally, the symbol for multiplication will be omitted, so, the
product of elements a and b from S will be denoted by juxtaposition ab. But, when

several operations ave present, we may write ac b and a* b.

A nonempty subset ' ol a semipgroup S is a subsemigroup of § if T forms a

semigroup under the same binary relation on 5.

Theorem 2.1.1. [43] Let T be « noncinply subscl of a semigroup S. Then T is u

subsemigroup of S if und only if for every a,be T, abe T,

An element a of a semigroup S is reguler if a = aza for some z € 5. An element
a of S is left (right) reqular if @ = za® {a = a’z) for some @ € 5. An element a of
S is completely reguler if @ = axe and aw = za for some x € S, A semigroup S is a
(left, right, completely) regular semigroup if all its elements are (left, right, completely)

regular.

Theorem 2.1.2, [44] Let S be a semigroup and a € S. Then a is completely regular if

and only if a is both a left and a right regular element of S,



An element x of a semigroup S is an inverse of an element a in S if @ = aza and
& = zax. The relationship between regularity and inverses is given by following simple

result,
Lemma 2.1.3. [45] An element a of o semigroup S hos an inverse if and only if o is
regulur,

A semigroup S in which every element has a unique inverse is an inverse seni-
group.

An element @ of a semigroup S is idempotent if o = o?.
Theorem 2.1.4. [45] A semigroup S is an tnverse semigrowp if and only if it is regular

and its idempotents commute.

An element a of & semigroup S is E-inversive if there exists « in S such that az
is idempotent of §. A semigroup 8 is called an F-inversive semigroup if every element

of S is E-inversive.

Theorem 2.1,5, {16] Every reyular element of ¢ semigroup S is E-inversive.

An element a of a semigroup S is left zero (right zero) if az = a (za = a) for all
z € 8. An element a is zere if it is both a left and a right zero element. A semigroup S
is a left zero (right zero, zmero) semigroup if every element of S is a left zero (right zero,

zero) element.
The next lemma is casy to verity.
Lemma 2.1.6. The following statements hold,
(1) EBuvery left (right) zero of « semigroup S is regular.
(2) EBuvery left (right) zero of o semigroup S is left regular.
(3) Every left (right) zero of a semigroup S is right reqular.
(4) Lvery left (right) zero of a semvdgroup S is complelely regulur.

(5) FEvery left (right) zero of a semigroup S is E-inversive.



Let A and B be subsets of a semigroup §. Denote
AB={ab:a e Aand b e B}.
It A = {a}, then we also write aB instead of {a}B and similarly A{b} = Ab it B = {b}.

Let S be a semigroup. A nonempty subset A of 5 is a left (right) ideal of S
if SAC A (AS C A). A lett or a right ideal of S is often called a one-sided ideul of a
semigroup S. Further, A is an (two-sided) ideal of S if A is both a left and a right ideal
of S, le. f SAUAS € 4. A subset A of S 15 a quasi-ideal of § if SANASC A A
subsemigroup 4 of S is a bi-ideal of 5 if ASA € A. It is easy to prove that a subset A of
S is a quasi-ideal if and only if A is an intersection of left and right ideals of S. Clearly,
every quasi-ideal of 5'is a bi-ideal of S, every left (right) ideal of S is a quasi-ideal of &

and every ideal of 5 is a left and a right ideal of S.

The intersection of ideals of a semigroup S is again an ideal of S if it is a

nonempty set. We now introduce the following notions.

Let a be an clement of a semigroup S. The principal left idea of S yenerated by
an element o is the interseetion of all loft ideals which contain @, and it is denoted by (a);.
The principal right ideal, principal (two-sided) idedl, principal quasi-idec], principal bi-

ideal of § arc analogously defined and are denoted by ()., (@), (a), and (a);, respectively.

Lemma 2,17, [43] Let a be an element of a semigroup S. The following statements

hold.
(1) (a) = {a} UaS U SaUSas.
2) (a)i = {a} U Sa.
3) (a)r = {a} U aS.
(4) (a)y = {a} U (@S Sa).

(5) (a)y = {a,a*} UaSa.
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A relation o on a set X is a subset of X x X. To simplify notation, we write
zoy instead of (z,y) € o, for any elements x and y in X. A special relation that is worth

mentioning here is the identity relation on X,
Ix ={(z,2): 2 € X}

that is, twa elements are related if and only if they are equal. Also we have the universal

relation X x X, in which everything is related to everything.
Let X be a nonempty set and ¢ a relation on X. Then
(1) o is reflexive if (z,2) € o for all @ € X.
(2} o is symunetric if (z,y) € o implies (y,x) € o forall z,y € X.
(3) o is unti-symmetric if (x,y),{y,¢) € ¢ imply & =y for all z,y € X.
() o is transitive if {2, y), (y,2) € o Imply (z,2) € ¢ for all @,y,2 € X.

If o satisfies (1), (3) and (4), then o is a partially order on X. And we call o an equivalence

relation on X if ¢ satisfies (1), (2) and (4).
Let X be a nonempty set and ¢ an equivalence relation on X, we denote
Xjog={{z e X :(z,0)€0}:ac X}

and call A € X/o an equivalence class ov o-class. Denote by zo the o-class containing
z for all x € X. A cross-section R of the partition X /e induced by o is a set consisting

exactly one point in each g-class.

An equivalence relation o on X is said to be T'-relation if there is at most one
o-class containing two or more elements. For every » € N, an equivalence relation o on

X is said to be n-bounded it the cardinality of every o-class is not more than n.

Let 7 be a collection of nonempty subsets of X. We say that « is a partition of

X if 7 satisfies the following conditions.
(1) Ur =X and

(2} for every A,Bem, AN B # ) implies A = B.
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Let P and @ be two partitions of a set X. we write P < @ if for every P € P,
there exists 2 € @ such that P C ¢}, It is obvious that = is a partial order on the set of
all partitions of X.

Theorem 2.1.8. [50] Let ¢ be arbitrary equivalence relation on o nonempty set X. Then
X/o is @ partition of X.
Theorem 2.1.9. [50] Let m be a partition of a nencmpty set X. Then o = U (A x A)

Aew
is an equivalence relation on X and X[o =w.

By using principal ideals of certain elements of a semigroup S, we can define
various very important relations on 5. Let a,b € 9. Relations 7, £, R, D and H defined

on S by
(a,b) €T & (a)=(b),
(.)€ L < (a) =),
(@b cR < (a)y= ()
D = LoR=TRoL,

H Q=0 GOTRA

are Green's velutions or Green's equivulences. For any element a of a semigroup 5 and

T e {J,L,R,D,H}, the T-class of S containing a is denoted by 7.

Theorem 2.1.10. [45] Let a be u regular element of ¢ semigroup S. Then for every

x € Dy, a is regular,

Let S be a semigroup, which has no an identity element. Find a symbol not in

S, call it 1. We now extend the definition of = on S to SU {1} by
1xl=11lxs=sxl=sforallseSandaxb=abforalla,be 5.

Then * is associative. Thus we have managed to extend multiplication in § to SU {1}

For an arbitrary semigroup §, the semigroup with identity S' is defined by

gl S if § iy a semigroup with identity,

SU{1} if S has no identity.
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Green’s relations for any semigroup 9 are well known [45].

Theorem 2.1.11. [45} Let a and b be elements of a semigroup S. Then the following

statements hold.
(1} {a.b) € L if and only if there exist x,y € SY such that a = zb and b = ya.
(2) (a,b) € R #f and only if there exist v,y € S* such that a = bz end b= ay.

(3) (a,b) € T if and only if there exist w,z,y,7 € S' such that a = wbr and b = yaz.

Let § be a semigroup. ‘The relation £7 is defined by the rule that (@, b) € L* on
S if and only if @ and b are related by the Green's relation £ in a semigroup 7" such that

S is a subsemigroup of T". The relation R* can be defined dually.

The [cllowing and its dual give a characterization of £ and R*.

Lemma 2.1.12, [20] Let S be v semigroup and a,b € S. Then the following stutements

are equivalent:
(1) (e.b) e L on S,
(2) For every @,y € §1, ax = ay if and only if bz = by.

Lemma 2.1.13. (20} Let S be ¢ semigroup and a,b € S. Then the following stutements

are equinvalent:
(1) {a,b) € R* on 5.

(2) For every =,y € St ma = ya if und only if vb =yb.

A semigroup S is left (right) abundant if every £%-class (R*-class) of S contains

idempotent. A semigroup 5 is abundant if it is both left and right abundant.

Theorem 2.1.14. [20] Bvery reyulur semigroup is abundunt.

For a nonempty subset A of a semigroup S, (A), and (A), denote respectively
the quasi-ideal and the bi-ideal of S generated by A, that is, (4), is the intersection of all
quasi-ideals of S containing A and (A), is the intersection of all bi-ideals of &' containing

A. We have the following proposition.
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Proposition 2.1.15. [45] For o nonempty subset A of a semigroup S,

(A), = AU (SAN AS) and (A), = AUAZU ASA.

A semigroup § is a BQ-semigroup if every bi-ideal of 5 is a quasi-ideal.
Calais [46] gave a characterization of the BQ-semigroups as follows.

Proposition 2.1.16. {46] A semigroup S is a BQ-semigroup if and only if ({z,y})s =
({z,y})q for allz, y € S.

Lemma 2.1.17. [39] Every bi-ideal of « regular semigroup is @ BQ-semigroup.
A map @ X — Y is a subset of X x Y such that for every z € X, there exists
exactly one element y € B such that (z,y) € p. The domain of ¢ is
dom = {z & X : (2,y) € @ for some y € Y}
and the émage of the map is
Xp={yeY:(x,y) € lor some z € X}

I z € dom ¢, then zyp is called the image of = under . We denote the kernel of ¢ by

keryp and define it by
ker = {(z,y) € X x X : wp = yp}.
A special mapping that is worth mentioning here is the identity mupping on X,
ix = {{w,z) : 2 € X} that is, two clements are related if and ounly if they are equal.

A map o : X — X is a constant mapping if there exists a € X such that zov = a

for all z € X,

Throughout this thesis, maps are written on the right and composed left to
right. The composition of two maps is the usual composition, namely, let ¢ : X = ¥

and ¥ : Y — Z be two mnaps, then we define a new map gogp: X = Z by

2(ip o) = (wp)ip.
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This new map is called the composition of ¢ and .

Let ¢ : X — Y be a map and A C X then ¢la: A = Y is also a map which is
defined by

apla = ap forall w € A,

and called the restriction of ¢ to A.

A map @ : X Y is injective (or one-to-one, or is an injection) if w1 # @
for any two different elements @1 and xo of X. The map ¢ is surjective (or onto, or
is a surjection) if X = Y. The map ¢ Is bijective (or is a bijection or a one-to-one

correspondence) if it is both injective and surjective.

Theorem 2.1.18. 48] Let X o finite set and let ¢ : X — X be a map. Then the

following statements wre equivalent.
(1) @ s injective.
(2) @ is surjective.
(3} @ is bijective.
The maps ¢ : X = ¥V and ¥ ¥ — X are mutually inverse bijections if pip = ix
and i = iy,

A map ¢ : 8§ — T where (S, ) and (/%) are semigroups, is a morphism (or

homomorphism) if, for all z,y ¢ S

(@ v = (2p) * (yo).
A wmorphism @ : § — T is an isornorphism if it is a bijection. We say that S
and T are tsomorphic us semigroup.

Theorem 2.1.19, Let ¢ : S — T be an isomorphism of semigroups. If S is u BQ-

semigroup, then T' is also a BQ-semigroup.
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2.2 Subsemigroups of full transformation semigroups

For a nonempty set X, the map o from X to itself is called a transformation
on X. The set of all maps « : X — X forms a semigroup under the composition of
maps. This semigroup is called the full transformation semigroup on X and is denoted

by T{X). Subsemigroups of T'(X) are called transformation semigroups.
Tf X is a finite set {x1,22,..., 2.}, and if ¥1,92, ..., ¥ ave elements of X, not
: YLy ¥ )

necessarily distinet, then we shall use the classical notation

r1 Bz ... XTp
Y1 Yo .. Un

to mean that o is the transformation of X defined hy
=gy foralli=12,...,n
Let o and p be equivalence relations on X with p € o and R a cross-section of

the partition X /e induced by . The following subsemigroups of 7°(X) are cousidered as

in [29, 32, 35, 41], respectively, which defined by

T(X,0) = {ocT(X):Va,ye X,(xy)c o implies (va,ya) € o},
E(X,0) = {a€T{X):Vz,y€ X, (z,y) ¢ o implies xa = ya},
T(X,0%) = {a€T(X):Va,y€ X,(w,v) € aifand only if (za,ya) € ¢} and -

T(X,00R) = {aeT(X,0): Ra C R}

Hence T(X,0), T(X,o*) and T(X, o, R) clearly contain ix. Now, we define new subsets
of T'(X) by

T(X,0,p) = {a € T(X) : Va,y € X, (z,y) € o implies (wa, ya) € p}

and

TR(X,0) = {a € T(X,0) : Ra = R}.

Theorem 2.2.1. Let o and p be equivalence relalions on a nonempty set X with p C o.

Then the following statements hold.
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(1) T(X,0,p) is ¢ semigroup.
(2} Tr(X, o) is a semigroup.

Proof. (1) Since T(X, o, p) contains a constant map, we deduce that T'(X, 0, p) # @ Let
a, B8 € T(X,0,p) and let z,y € X be such that (z,y) € 0. Then (za,ya) € p. Since
p C o, (va,ya) € o. 1t follows that (zaf, yafB) € p. Therefore aff € T'(X,a,p). Hence
T(X, o, p) is a subsemigroup of T(X).

(2) Clearly, ix € Tr(X,0) and so T#(X,0)} # 0. Let o,f € Tp(X,0) and
let z,4 € X De such that (z,9) € o. Then {va,ye) € o. Therelore (vaf, yaf) € o.
Hence o € T(X,o). Since a, 8 € Tp(X, o), Ra = R and Rp = R. This implies that
Raff = R = R. Hence aff € Tr(X, o). We couclude that TR(X, o) is a subscmigroup
of T'(X). O

Next, we will brielly recall some characterizations for above semigroups and

introduce some notations that will be used in the sequel.

Proposition 2.2.2. Let 0 and p be equivalence relations on a nonempty set X with

p Co. Then the following statements hold.
(1) iy € E(X,0) if and only if o = Ix.
(2) ix € I'(X,0,p) f and only if 0 = p.

Proof. (1) Suppose that ix € B(X,0). Let z,y € X be such that (z,y) € ¢. Then
r=uaxix =yixy =Y. Hence o = Iyx.

Conversely, assume that ¢ = Ix. Let @,7 € X be such that (z,y) € o. Then
wiy — @ =y = yiy. Hence iy € B(X,0).

(2) Assume that ix € T(X,0,p). Let @,y € X be such that (z,y) € ¢. Then
(z,y) = (zix,yix) € p and hence o = p.

Conversely, if o = p, then ix € 1'(X, 0} =T(X, o, p). |

The next proposition is easy to verily.
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Proposition 2.2.3. Let o and p be equivalence relations on a nonempty set X withp C o
and R a cross-section of the partition X /o induced by o. Then the following statements

hold.
(1) B(X,0) CT(X,0,p} C T(X,0).
(2) Tr(X,0) C T(X,0,R) C T(X,0).
For a nonempty set X and a € T(X), m(a) denotes the decomposition of X

induced by o, namely

ala) = {ya™* y € Xa}

and define oy : 7{a) = Xa by
Pay, = xa for each P € 7(a) and © € P.
Then w(a} is a partition of X with w{a} = X/ker« and o, is a bijection.
For a nonempty subset A of X and a € T'(X), we write

mala) ={P €n(a): PNA+#G}.

For arbitrary equivalence relation o and o € T(X), we denote
wy(a) = {da"!: A € X/o and Aa ' £ 0}.
Then 7,(a) is a partition of X.

For an equivalence ¢ on a set X and ¢+ 4 = B whore A, B C X, we say that

w is o*-preserving if (x,y} € ¢ if and only if (xe, yp) € o for all v,y € A.

Let o, 8 € T(X,0,p) and ¢ a map from w(a) into w(F). If for each A € X/o,
there exists B € X/p such that

(ma{a))e € ma(6),

then ¢ is said to be op-admissible. Note that, if ¢ = p, then  is said to be o-admdssible.
If ¢ is a bijection and both ¢ and ¢! are op-admissible, then ¢ is said to be (op)*-

admissible and if o = p, we say that @ is sald te be o*-admissible.
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Proposition 2.2.4, Let ¢ and p be equivalence relations on X with p C o and let
a, 8 € T(X,o,p). Then ¢ : w(a} — w(B) is op-admissible if and only if for every
A€ X/o, there exists B ¢ X/p such that BN Pp #§ for all P € ma(a).

Proof. Suppose that ¢ : w{a) — 7(8) is op-admissible. Let A € X/o. Then there exists
B € X/p such that
(ra{e))e € mu(B).

Let P € ma(a). Then Py € wg(B). Hence BN Py # .

Conversely, supposc that for each A € X/o, there exists B € X/p such that
BN Py # 0 for all P € ma(a). Let A € X/o. Then there exists B € X/p such that
BN Py for alt P € wa(a). Let P € ma(a). Then Py € w(5) and BN P #§. Thus

Py e wg(f). Hence (ma(a))e C wp{fA). a

Lemma 2.2.5. Let ¢ and p be equivalence relations on X with p € 0. Then a C
T(X,o,p) if and only if for every B € X/a, there exists B' € X/p such thut Ba C B'.

Consequently, for each A € X/o, the set Aal s either O or o union of some o-classes.

Proof. Suppose that o € T(X, 0, p). Let a € X. Then there exists b € X such that ao =
b. Let y € (ao}a. Then y = za for some z € ac. Since (a,%) € ¢ and a € T(X, 0, p), we
have (b,y) = (e, za) € p. This means that y € bp. Hence (ag)a C bp.
Conversely, suppose that for cach A € X/a, there exists B € X/p such that
Ao C B. Let &,y € X be such that (z,y) € ¢. By assumption, there exists b € X
such that mo,ya € (za)a C bp. It follows that (za,ya) € p. Hence a € T'(X, o, p), as
required. ]
Corollary 2.2.6. Let o be an equivalence relation on X ond « € T(X). Then the
following stutements hold.
(1} o € T(X,0) if and only if for every B € X/o, there exists B € X/o such that

Ba C B,

(2) o € B(X,0) if aund only if for every B € X/o, there evists © € X such that
Ba = {z}.

Proposition 2.2.7. Let o und p be equivalence relelions on X with p C o. Thena s ¢

vight zero element of T(X, o, p) if und only if o is constant.
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Proof. Suppose that « is nonconstant. Then there exist distinct elements a,b € Xa.
Thus a = o’ and b = Vo for some o/, b’ ¢ X. Define g € T(X) by
2f — o if (0, V) € o,

b otherwise,
Then (Vo)B = {a'} C a'p and Ag = {¥'} C b'p for all A € X/o \ {Vo}. By Lemma
2.2.5, we deduce that 8 € T(X,a,p). Since o = d'a = a # b = b'a, we conclude that

Ba # o. This proves that « is not a right zero element of T'(X, o, p). ]

Corollary 2.2.8. Let o be an equivalence relation on X. Then the following statements

hold.
(1} o is a right zero element of T'(X,0) if and only if o is constunt.

(2) « is a right zero element of E(X,o) if and only if o 1s constant.

As a consequence of Proposition 2.2.7, a necessary and sufficient condition for

T(X,0,p) to be a right zero semigroup can be given as follows,

Corollary 2.2.9. Let a and p be equivalence relutions on X with p C o. Then T(X,0,p)

1s @ right zero scindgroup if and only if o = X x X and p=Tx.

Proof. Assume that 17'(X, o, p) is a right zero semigroup and ¢ # X x X, Then there

exist a,b € X such that ac # bo. Thus a # 4. Define o € T(X) by

a if (z,a) €0,
PGt =
b otherwise.

By Lemma 2.2.5, o € T(X,0,p). Since aac = e and ba = b, 0,0 € Xo and hence o
is nonconstant. By Proposition 2.2.7, we obtain that « is not a right zero clement of
T(X,o,p). This is a contradiction. Hence ¢ = X x X. Next, we will show that p = I .

Let ¢,d € X be such that (¢,d) € p. Define o € T(X) by

c ifz=c¢
o=
d otherwise.

As a result (¢,d) € p, we get that o € T(X,0,p). It then follows by assumption and

Proposition 2.2.7 that o is constant and hence ¢ = d. Therefore p = Iy,
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Conversely, assume that ¢ = X x X and p = Ix. It's an obviously fact that
every element of T(X, o, p) is constant. It follows readily from Proposition 2.2.7 that

T(X,o,p) is a right zero semigroup. O

Corollary 2.2.10. Let o be an equivalence relution on X. Then the following statements

hold.
(1) T(X,0) is a right zero semigroup if and only if | X| = 1.
(2) E(X,0) is a right zero semigroup if and only if o = X x X.

Lemma 2.2.11. [50] Let o be an equivalence relation on X and o € T(X,0%). If

P e w(a), then there evists A € X/o such thut P C A
Lemma 2.2.12. (82] Let « € T(X,0*). Then wy(a) = X/o.

Lemma 2.2.13. Let o an be equivalence relation on X and R a cross-scction of the
partition X/o induced by o. Suppose that o € T(X,0,R) and r,s € R. Ifz € ro with

zw € so, then (ro)a € so and ra = s.

Proof. Suppose that = € ro with @ € so. Let y € ro. Then (z,y) € o. Since
a € T(X,0), {za,ya) € ¢ and thus ya € so whence (ro}a C so. Since rar € se N R, it

follows that ra = s. A

2.3 Relationships between some subsemigroups of the full

transformation semigroups

In this section, we characterize the conditions under which some subsemigroups

of T(X) are equal.

Theorem 2.3.1. Let o and p be equivalence relations on o nonempty set X with p C o
and R a cross-section of the partition X/o induced by o. Then the following statements

hold,
(1) T'(X,0,p) = E(X,0) if and only if p = Ix.

(2) T(X,0,p) =T(X,0) if and only if o = p.
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(3) T(X,0,p) =T(X,0} if und only if p= X x X.
(4) T(X,0,p) = T(X,0,R) if and only if o = Ix.
(5) T(X,0,0) = Tr(X,0) if and only if |X| = 1.
(6) T(X,0,p) =T(X) if und only if o = Ix or p= X x X,
Proof. (1) Tt follows from E(X,0) = T{X,0,Ix).
(2) Cleatly.

(3) Assume that T(X,0,p) = T(X,¢*). Since ix € T'(X, a*) = T(X,o,p} and
by Theorem 2.2.2, we have p = ¢. Let z,y € X. Define o € T(X,0,p) by za = x for all
z € X. By assumption, o € T(X,¢*) and by the definition of «, we get that v = yo,
so (za,ya) € 0. From a € T(X,0*), it follows that (x,y) € 0 = p. Hence p = N x X,

Conversely, assume that p = X x X. Then o = p. Thus T{X,¢%) C T(X,0) =
T(X,0,p) by (2). Let a € T(X,0,p). Then by (2), we have a € T(X,s). Since
o = X x X, we deduce that (z,y) € ¢ for all 2,y € X with (za,ya) € 0. Therefore

o € T(X,0*). Hence T(X, 0, p) C T(X,0*). We conclude that (X, o, p) = T(X,0%).

(4) Assume that T'(X,0,p) = T(X,0, R). Let 2,y € X Dbe such that (z,y) € 0.
Define a € T(X,0,p) by za = z for all z € X. By assumption, we have o € T(X,0,R).
Then {x} = Ra C R. By symmetry, we can show that y ¢ R. Since {(z,y) € o and by
the definition of R, it follows that # = y. Hence o = Ix.

Conversely, assume that ¢ = Iy. Then 0 = p and R = X. By (2), we have
T(X,0,R) C T(X,0) = T(X,0,p). For cach a € T(X,0,p). we have that o = Xa C
X = R. This implies that T(X,e, R) = T(X, 5, ).

(5} Assume that T(X,0,p) = Tr(X,0). Let v,y € X. Define o € T™(X,0,p)
by za = x for all 2 € X. By assumption, we have o € Tr{X,c}). Therefore R = Ra C
Xa = {x}. This implies that B = {z}. Similarly, we can show that y € R and hence
x = y. We conclude that |X|=1.

The converse is clear,

(6) Assume that T(X,0,p) = T{X) and ¢ # Ix. Let 2,y € X. Suppose that
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(z,y) ¢ p. Since o # Iy, there exists A € X/o such that [A] = 2. Let a,b € A be
distinct. Define o € T{X) by

x ifz=aq,
20 =
y otherwise.

By assumption, we get that o € T(X,a,p). But (a,b) € ¢ and (aa,ba) = (¥} € p,
which is a contradiction. Hence (z,y) € p. We conclude that p = X x X

The converse is clear. [l

Corollary 2.3.2. Let o be an equivalence relation on a nonempty set X and R a cross-

section of the partition X/o induced by o. Then the following statements hold.
(1) T(X,0) = E(X,0) if and only if 0 = Ix.
(2) T(X,0) =T(X,0*) if und only ifc = X x X.
(3) I'(X,0)=T(X.0,R) if and only if o = Ix.
(4) T(X,e) =Tr(X,0) if and only if | X} =1.
(6) T(X,0) =T(X)ifend onlyif o =Ix or o = X x X,
(6) E(X,0) =T(X,0*) if and only if | X| = 1.
(7) B(X,0)=T(X,0,R) if und only if 0 = Ix.
(8) B(X,0)=Tr(X,0) tf and only if IX| = 1.
(9) E(X,o) =T(X) if end only if o = Ix.

Theorem 2.3.3. Letl o be an equivalence relation on a nonempty set X and R a cross-

section of the partition X/o induced by o. Then the followiny statements hold.
(1) T(X,o") = T(X,0,R) if and only if | X| = 1.
(2} T(X,0*) =Tr(X,0) if end only if I is finite and 0 = Iy

(3) T(X,o0*)=T(X) ifund only if o = X x X,
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Proof. (1) Assume that T(X,0*) = T(X,0,R) and |X| > 1. Let r € Rand x € X\ {r}.
Define o € T(X) by zao = for all z € X. Then a € T(X,0). Thus R = {r} C R and
we then have a € T(X, 0, R). By asswmption, we obtain that o € T'(X, ¢*). Claim that
= X x X. For each a,b € X, we have aa = ba. It follows from o © T{X,¢*) that
(@,b) € o. This implies that ¢ = X x X. Hence & ¢ K. Define § € T(X) by 28 = = for
alze X. Asaresult o = X x X, Be 1T(X,0*) andso 8 € T'(X,0,R). But rff =z ¢ R,
which leads to a contradiction with B8 C R. Hence |X] = 1.

The converse is clear.

(2) Assume that T'(X,0*) = Tr(X,). Supposc that R is an infinite set. Then
R has a countable infinite subset {r, : n € N}. Define o : X — X by

1 @€ rpo forall ne N,
Ty =

it otherwise,

Then (r,0)a C ryq10 for all n € N and (wo)a C zo for all wo € X/o \ {r,o : n € N},
By Theorem 2.2.6, we have a € T(X,o). On the other hand, let @,y € X be such that
(za,ya) € 0. If (za)o € {rao : n € N}, then (x,7;) € o for some k € N\ {1}. By the
definition of a, we then have &,y € 7p_10. Therefore (z,¥) € 0. I (za)o & {r,o :n € N},
then (z,7) = (va,ya) € o. Hence a € T(X,0%). By asswnption, we obtain that
a € Tr(X, ). This implies that r; ¢ R = Ra C Xa. This is a contradiction. Hence R
is finite.

Next, we will show that o = Iy. Let a, b € X be such that (u,b) € ¢. Then

there exists v € R such that a,b € ro. Define o, §: X — X by

-

a ifx€ra,
T =
& otherwise,
and
b ifx€ro,
xf =
z otherwise.

Then (zo)a C xo and (yo)B € yo for all z,y € X. This implies that o, # € T(X,0*). By
assumption, we obtain o, 8 € Tr(X,0). By Lemma 2.2.13, a =ra=rand b =r8 =r.

This jmplies that « = b and hence ¢ is the identity relation.
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Conversely, assume that R is finite and ¢ = Ix. Let o € TR(X,¢). Then
a € T(X,0). On the other hand, let z,y € X be such that (wza,ya) € ¢. Then
za, Yo € ro for some v € K. By Lemma 2.2.13, rpo = r and rya = 7 for some 74,7y € 1
with (@,7¢), (y,7y) € 0. Since «|p : B — R is a swjection on R and R is finite, it
follows that «|lgp + B — R is also an injection. This hnplies that r; = r, and thus
(x,y) € ¢. Hence Tp(X,o) C P(X,0%). For the reverse inclusion, let & € T(X,0%).
Then o € T(X, o). Let r € K. Then ra € so for some s € K. Since o is the identity
relation, re == s and so Ra € R. Therefore o|p is a mapping from K into 2. Claim that
a|g : B — Ris aninjection. Let 71,79 € I be such that rjae = rocr. Thon (o, rea) € 0.
Since a € T(X,0*), (r),72) € o. By the definition of R, we¢ have that r; = rg. So we
have the claim. As a result R is finite, we obtain that |z : R — R s a surjection. Hence
Ra = R. This shows that o € T(X,¢) and hence Tr(X,o) C T(X,¢*). We conclude
that Tr{X, o) =T(X,c*).

(3) Assume that T(X,0*) = T(X). Let x € X. Define o € T(X) by 2o = z for
all z € X. Thus o € T(X,0*). For each a,b € X, we have ac = ba. This implies that
(a,b) ¢ . Hence 0 = X x X.

The converse is follows from (2) and (5) of Corollary 2.3.2. O
Theorem 2.3.4, Let o be an cquivalence relution on o nonempty set X and R a cross-

section of the purtition X/o induced by o. Then the following stutements hold.

(1) T(X,0,R) =Tr(X,0) if und only if 0 = X X X.
(2) T(X,0,R)=T(X) tf and only if o = Iyx.
(3) Te(X,o) =T(X) if end only if | X} =1.

Proof. (1) The necessity is clear. To prove the sufficiency, we assumne that T(X, 0, R) =
Tr(X,0). Let r € R. Define a ¢ 1'(X) by aa = 7 for all € X. Then a € T'(X,0).
Therefore Ra = {r} C R, we then have « € T(X, 0, R). By assumption, we obtain that

a € Tp(X, o). Therefore {r} = Ra = R. It follows that o = X x X.
(2) Follows from (3) and (5) of Corollary 2.3.2.

(3) Follows trom (4) and (5) of Corollary 2.3.2. O



CHAPTER III

REGULARITY FOR SOME SUBSEMIGROUPS

OF FULL TRANSFORMATION SEMIGROUPS

In this chapter, we characterize the regular, left regular, right regular and com-
pletely regular elements of some subsemigroups of T'(X). Moreover, we give a necessary
and sufficient condition for some subsemigroups of T(X ) to be left regular, right regular

and completely regular semigroups.

3.1 Regularity for the full transformation semigroups

In this section, we describe the regularity, the left regularity, the right regularity
and the completely regularity for 7°(X). The following results are quoted from [49)]

Theorem 5 and [50] Theorems 3.1.2, 3.1.3 and 3.1.4, respectively.

Theorem 3.1.1. [49) Every element of T(X) is reqular. Hence T'(X) is a regular semi-
group.

Theorem 3.1.2. [50] Let « € T(X). Then o is left regular of T'(X) if und only if for

every P € wla), PN Xa #£0.

Theorem 3.1.3. [50] Let a € T(X). Then o is right regular of T(X) if and only if a|xa

i an injection,

Theorem 3.1.4. [50] Let o € T(X). Then a is completely vegular of T(X) if and only
if for every P € w(e),|[PNXa| =1,

By Theorem 3.1.1, T(X) is a regular semigroup. But not necessary for the left.
regular semigroup, the right regular semigroup and the completely regular semigroup.

As we see in the next example.
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Example 3.1.5. Define o : N — N by

—

ifwe {1,2},
ga=14¢ 2 ifz=3,

x otherwise.

Clearly, & € T(N). We set P = 2a7! € m(a). Then P = {3}. Since Xa = N\ {3},
PN Xa =0 By Theorem 3.1.2, we get that o is not a left regular elenient of T(X).
Hence T'(X) is not a left regular semigroup. We note that 1,2 ¢ Xa and 1o = 20. It
follows from Theorem 3.1.3 that (X)) is not a right semigroup. Also, « is not completely

regular by Theorem 2.1.2.

Next, we characterize the semigroup T(X) which is a left regular semigroup, a

right regular semigroup and a completely regular semigroup, respectively.
Theorem 3.1.6. T'(X) is a left regulur semigroup if and only #f | X| < 2.

Proof. Assume that 7'(X) is a left regular semigroup. Suppose that | X| > 2, Then there

exist distinct elements a, b, ¢ € X. Define o : X — X by

a itz ¢ {a,b},

b otherwise.

Then « € T(X). Since ca = b, ba~! € w(a). Note that ba~! = X\ {a,b} and KXo =
{a, b}, we obtain ba= N Xa = §. It follows from Theorem 3.1.2 that « is not a left
regular element of 7'(X). This is a contradiction. Hence |X| < 2.

Conversely, suppose that |[X| < 2. If |X| = 1, then T'(X) contains only the
identity transformation on X. It is obviously that T'(X) is a left regular semigroup.

Suppose that | X| = 2, say X = {a,b}. Then

7(X) a b a b a b a b
aa’ab b a b b

By virtue of Theorem 3.1.2, every element of T(X) is left regular. Hence T(X) is a left

regular semigroup. 0l

Theorem 3.1.7. 1'(X) is a right regular semigroup if und only if |X| < 2.
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Proof. Assumse that 7'(X} is a right regular semigroup. Suppose that [X| > 2. Then

there exist distinct elements ¢, b,c € X. Define a € T(X) as in the same proof of

Theorem 3.1.6. Since a,b € X« and ao = ba, afxq is not injective. Theorem 3.1.3 tells

us that o is not right regular. This is a contradiction. Hence |X| < 2.
Coouversely, suppose that |X| < 2. It is easy to verify by Theorem 3.1.3 that

every clement of 7'(X) is right regular. a

As an imnediate consequence of Theorems 2.1.2, 3.1.6 and 3.1.7, we have the

following

Corollary 8.1.8, T'(X) is a completely regular semigroup if and only if |X| < 2.

3.2 Regularity for the generalization of semigroups of trans-

formations preserving equivalence relations

Thronghout this section, let o and p be equivalence relations on a nonempty set

X with p Co. We recall
T(X,0,0) = {a € T(X) : Va,y € X,(z,y) ¢ o implies (zev, ya) € p}.

The purpose of this section is to give necessary and sufficient conditions for elements
in T(X,0,p) to be regular, left regular, right regular and completely regular. Also, the
relations o and p for which T(X, o, p) is a regular semigroup, a left regular semigroup, a

right regular semigroup aud a completely regular semigroup are considered.

Firstly, we describe the regularity, the left regularity, the right regularify and

the completely regularity for clements of the semigroup T'(X, o, p), respectively.

Theorem 3.2.1. Let a € T(X,0,p). Then a is reguler of T(X, o, p) if aund only if for
every A € X/o, there exists B € X/p such that AN Xao C Ba.

Proof. Supposc that a is regular of (X, o, p). Then « = afa for some 8 € T(X, 0, o).
Let A € X/o. By Lemma 2.2.5, A3 C B for some B ¢ X/p. If AN Xa = B, then

ANXa C Ba. Assume that ANXa #£ 0. Let y € ANXa. Then y = zo for some & € X
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and hence yf3 € AB C B. Therefore ¥y = za = zafSa = yfua € Ba. Hence ANX«a C Ba.
Conversely, assume that for each A € X /o, there exists B ¢ X/p such that.
ANXa C Ba. Let A € X/o be such that AN Xa # §. By assumption, we choose and
fix A" € X/p with AN Xa C Aa. For each y € AN Xa, we choose and fix an element
y' € A such that y = y'a. Let 24 € A, Define 84 : A — A’ by
2 ifxe Xa,

T =
%4 obherwise.

Let 5: X — X be defined by

Ba fFANXa £ 6,
Bla=
C'4 otherwise
for all A € X/o and C4 is a constant map from A into X. Since X/g is a partition of
X, B is well-defined. By the definition of 8, we get that A C A’ for all A € X/o with
ANnXa £ @ and A8 C {x} for all A € X/o with AN Xa =@ and ¢ € X. By Lemma
2.2.5, we obtain that 8 € T(X,0,p). And zafa = (za)o = za for all @ € X, This

shows that « is a regular clement of T(X, o, p), as desired. ]

Corollary 3.2.2. Let o be u regular element of T'(X, 0, p). Then the following stutements
hold.

(1) For cvery A € X/p, there exists B € X/p such that AN Xa C Bo.
(2) For every A € X/o, there exists B € X/o such that AN Xa C Ba.

Corollary 3.2.3. [29] Let a € T(X, ). Then a is veqular of T(X, o) if und only if for

every A € X/o, there exists B € X/o such that AN Xa C Ba.

Corollary 3.2.4. Let o € (X, 0). Then o is reyulur of E(X,0) if and only if for every
Ae X/o, |ANXa| <1.

Proof. Suppose that a is regular of B(X, ). By Theorem 3.2.1, there exists B ¢ X/Ix

such that A Xa C Ba. As a result |[Bf = 1, we then have |[AN Xa| < |Ba| =1,
Conversely, assume that [AN Xa| < 1 forall 4 ¢ X/o. Lot A € Xfo. If

[AN Xaf = 0, then AN Xa =@ Thus AN Xa C Ba for some B € X/Ix. If

|ANXea| =1, then there exists a unique ¢ € AN Xa. Thus ¢ = b for some b € X. This



29

implies that {b} € X/Ix. Since o € E(X,0), we deduce that {d}a = {a} = AN Xa.
Hence AN Xa € Ba for some B € X/Ix. It follows that Theorem 3.2.1 that o is a

regular element of (X, o). O

Theorem 3.2.5. Let o € T(X,0,p). Then « is left regular of T(X,0,p) if and only if
for every A € X/o, there exists B € X/p such that for each P € wa(a), va € P for

some © € B.

Proof. Assume that a is left regular of T(X, ¢, p). Then o = Ba? for some g ¢ T'(X,0,p).
Lot A € X/o. By Lemma 2.2.5, there is B € X/p such that A3 C B. Suppose that
P c ma(a)and let x € PN A, Since A C B, we have that v € B. Hence za = wfa? =
(xBa)a which implies that z8a € P as we wish to show.

Conversely, for each A € X/o, we choose A’ € X/p such that for every P €
ma(a), e € P for some w € A'. Let @ € X, Since X/o and w(a) are partitions of X,
there exist A € X/o and P € w(a) such that v € A and # € P. Hence P € ma(a). By
assumption, we choose 2’ € A’ such that #’a € P and A" ¢ X/p. We also have that
T'aa = ga. Define §: X — X by 28 =o' for all » € X. Then 8 is well-defined. Let
2,y € X be such that (z,y) € . Then there exists A € X/o such that v,y € A. By
the definition of 3, 3,43 € A’ where A’ € X/p. Hence f# € T(X,0,p). It x € X, then

zf3a? = 2'aa = mo which gives a = fa”. Therefore o is left regular, as required. O

Corollary 3.2.6. [50] Let o € T{X,0). Then o is left regulur of T(X, o) if and only
if for every A € X/o, there exists B € X/o such that for each P € wa(a}, xa € P for

some x € 13,

Corollary 3.2.7. Let o € E(X,0). Then o s left regular of (X, o) if und only if for
every P € w(a), PN Xa# B

Proof. The necessity is clear from Theorem 3.1.2. To prove the sufficiency, we suppose
that PN Xa # 0 for all P € w(a). Let A€ X/o and P € wa(a). Then P € n(a). Since
o € B(X,0), Aa == Pa. This implics that A C (Pa)a™ = P. Hence wala) = {P}. By
assumption, P N Xo # @ and so 2a € P for some v € X. Let B = {¢} € X/Ix. For
each P ¢ ma(a), zaw € P for some z € B. By Theorem 3.2.5, we conclude that « is loft

regular of E(X, o). a
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Theorem 3.2.8. Let o € T(X,0,p). Then o is right reqular of T(X, o, p) if and only if

the following statements hold.
(1) aly. is an injection.
(2) For every o,y € Xa, (zo,ya) € o implics (z,y) € p.

Proof. Assume that « is right regular of T'(X,o,p). Then a = a’B for some f €

T(X,0,p). Tt follows from Theorem 3.1.3 that o

¥o 15 an injection. Let z,y € Xa
be such that (za,ya) € oo Thus ¢ = 2'e and y = '« for some o',y € X. Since

IB < T(X:o'ap)a we have (fUC"ﬁ,yﬂ'ﬁ) €p Hence
(wy) = (@'avy'a) = (&'a®B,y'a®B) = (zaf, yaB) ¢ p

which means that (2) holds.

Conversely, assume that the conditions (1} and (2) hold. Tet A € X /o be such
that AN Xa? # §. We choose and fix an element 24 € ANX a?. Tor each ¢ AN Xa?,
there exists a unique @' € Xa such that ¥ = 2’a by ajx, is injective. We observe that

(#'a, /ya) = (#,74) € o. It follows from (2) that (2/, 7)) € p. Define fa: A = X by

o ifz e Xa?
:L'ﬁ,; =

:I';’A otherwise,

Then we define the map g: X — X by

Ba it AnXa®#0,
Bla=
4 otherwise,

for all A € X/o and C4 is a constant mapping from A into X'. Since X /o is a partition
of X, B is well-defined. Let @,y € X be such that (#,y) € 0. Then z,y € A for some
A € X/o. By the definition of 8, we have (z8,yf) = (xfla,yBla). L AN Xa? =9,
then z8 = yf and so (z8,y8) € p by reflexivity of p. f ANX a? # |, by the definition
of Ba we then have (284, 2Y), (¥Ba, 2y} € p. By transitivity of p, (xf,y8) € p, hence
gel(X,o,p).

Finally, to show that o = o?f, let © € X, s0 za? € Xa?. Then there exists
A € X/o such that wa? € A, By the definition of 84, za?fy = (za?) where (za?) o =
za? = (za)a. Since (za?)’ is unique, (za?) = za. Thus o = za’B, = xza. Therefore

w is right regular, as asserted. O
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Corollary 3.2.9. [50] Let « € T(X,0). Then o is right regular of T'(X,c) if and only
if the following statements hold.
(1) «|xa i an injection.
(2) For every =,y € Xe, (za, ya) € o implics (z,y) € 0.
Corollary 3.2.10. Let o € E(X,0). Then the following statements are equivalent.
(1) « is right regular of E(X,a).

(2} o

Xa 1§ an injection.
(3) For every @,y € Na, (va,ya) € o implies v =y.

Proof. (1) = (3) It follows from Theorem 3.2.8.

(3) = (2) Assumie that (3) holds. Let @, € Xa be such that 2o = ya. Then
(wa,ya) € o. By assumption, we deduce that ¢ = y. Henee afx, 15 an injection.

(2) = (1) Suppose that {2) holds, Let @,y € X« be such that (vo,ya) € 0.
Then wae — yoo. By assnmption, we have that wa = yo and @ = y. Tt follows from

Theorem 3.2.8 that « is a right regular element of E(X, o). O

Theorem 3.2.11. Let a € T(X,0,p). Then a is completely regular of T(X, 0, p) if und,
only if for every A ¢ X/o, there exists B € X/p such that |P N Ba| = |PNXa| =1 for
all P € wa(a).

Proof. Suppose that o is completely regular of T'(X, ¢, p). Then by Theorem 2.1.2, we
have « is both a left and a right regular element of T'(X, 0, p). Let A € X/o. By Theorem
3.2.5, there exists B € X/p such that for cach P € m4(a), xa € P for some ¢ € B, Thus
f#£PNBaC PNXa+#{toral Penry(a) Let Pemg(a) and let z,y € PN Xa.
Then za = ya. By Theorem 3.2.8(1), we get that & = y and hence [P N Xa| = 1. It
follows from BN Xea C PN Xa that |[PN Ba| = |PNXa|=1.

Conversely, suppose that for every A € X/e, there exists B € X/p such that
PN Bal=|PNXal =1 forall P € ra(a). We will show that o is completely regular
by using Theorem 2.1.2. Firstly, let A € X/o. Then there exists B € X/p such that

|P N Ba| = 1 for all P € m4(a). Thus for cach P ¢ wa(a), za € P for some z ¢ B.
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Applying Theorem 3.2.5, we have a is left regular of T'(X, o, p).
Finally, we will show that o is right regular by using Theorem 3.2.8. Let
2,9 € Xo be such that xa = ya. Thus x,y € PN Xa where P = (o)t € ma(a) and

A € X/o with & € A. By assumption, we get |P N Xa| = 1 and so = y hence afxa

is an injection. Let 2,9 € Xa be such that (za,ya) € 0. Then za,ya € A’ for some

A’ ¢ X/o. By the hypothesis, there exists B € X/p such that
IP'NB'a| =P NnXa|=1forall P' e mala)

Lot Pl = (wa)oa ™t € mu(a) and Pj = (ya)a~™ € my(a). Thus & € PN Xa and
y € PjN Xa. By assumption, we get that [Py B'a| = 1P| NXa| =1 and [P;NBa| =
|PiN Xa| = 1. Since & € P{ N Xa and P{ N Ba € P|N Xa, we deduce that = = Yo for
some b, € B'. Similarly, y = bho for some by € B, Since (8,45} € 0 and o € T(X, 0,p),

it follows that (z,y) = (M a,bye) € p. ]

Corollary 3.2.12. [50] Let o € T(X,0). Then a is completely reyulur of T(X, o) if und
only if for every A € X/fo, lhere evists B € X/o such that (PN Baf = |[PNXa| =1 for
all P € ma(a).

Corollary 3.2.13. Let o € E(X,o0). Then o is completely regular of E(X, o) if and

only if for every P € m(a), [PNXal=1.

Secondly, we show that the semigroup 7'(X, ¢, p) does not necessary for the lett
regular semigroup, the right regular semigroup and the completely regular semigroup.

As we see in the next example.

Example 3.2.14, Let X = {1,2,3,4,5,6,7,8}, X/o = {{1,2,3},{4.5},{6,7,8}} and
X/p={{1,2},{3},{4,5},{6,8},{7}}. Let a € T(X,0,p) be defined by

123456738
6 8 6 3 3 2 1 2

Since {6,7,8}a € Ba for all B ¢ X/p and by Theorem 3.2.1, we deduce that o is not
a regular element of 7'(X, o, p). Note that 6,8 € Xa and 6 = 8. By Theorem 3.2.8,

we have that a is not a right regular element of 7(X, o, p). Next, we will show that « is
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not a left regular element of 7'(X, o, p) by using Theorem 3.2.5. Let A = {4,5}. Then
ma(a) = {A}. Since ANXa =0, za ¢ A for all @ € X. This implies that o does not
satisfy Theorem 3.2.5. Hence a is not a left regular element of T'(X, 0, p). Also, « is not

a completely regular element of T'(X, o, p).

Finally, we give necessary and suflicient conditions for the semigroup T(X,0,p)

to be regular, left yegular, right regular or completely regular.

Theorem 3.2.15. T(X, o, p) is a requlur semigroup if und only if one of the following

statements holds,
(1) o=1Ix.
(2) p=AN x X.
(3) o=XxX und p=1Ix.

Proof. Assume that T(X,0,p) is a regular semigroup, ¢ # Iy and p # X x X. Firstly,
we will show that ¢ = X x X. Suppose that ¢ # X x X. Since ¢ # Ix, there exist
distinct elements a,b € X such that (a,b) € o. Then a,b € A for some A € X/o. Define
a: X =+ X by

a ifzeA,

To =

b otherwise,
Then Aax C ap and A'a C bp for all A" € X/o \ {A4}. By Lemma 2.2.5, we have that
o € T(X,0,p). It follows from assumption that  is regular. By Theorem 3.2.1, there
exists 3 € X/p such that AN Xa C Ba. Since o # X x X and a,b € A, it follows that
AnXa = {a,b}. Thus @ = za and b = ya for some x,y € B. By the definition of «,
we get that 3 € A and y € X \ A. These imply that BN A # @ and BN(X\A) £, a
contradiction. Therehy ¢ = X x X.

Finally, to show that p = Iy, supposc not. Then there exist distinet elements

¢,d € X such that (c,d) € p. Then ¢,d € A for some A€ X/p. Define o : X' — X by

c ifze A,
o=
d otherwise.
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Since (¢, d) € p, a € T(X, 0, p). By assumption, we get that ¢ is regular and by Corollary
3.2.2(1), there exists B € X/p such that AN Xa € Ba. Since p# X x X and ¢,d € 4,
we get that AN Xa = {¢,d}. Thus ¢ = za and d = ya for some x,y € B. Therelore
v ¢ Aand y € X\ A, which implies that BN A # @ and BN (X \ A) # 0. Thisis a
contradiction. Heuce p = Ix.

Conversely, assume that one of the converse conditions holds. If ¢ = Ix or
p =X % X, then by Theorem 2.3.1(G), we have T(X,7,p) = T(X). Thus T(X,0,p) is &
regular semigroup by Theorem 3.1.1. If o = X X X and p = I'y, then T(X, 0, p} is a right
zero semigroup by Corollary 2.2.9. We conclude that 1'(X, 0, p) is a rcgular semigroup

by Lemma 2.1.6(1). O

Theorem 3.2.15 can be summarized as follows:
Corollary 3.2.16. T(X, o) is a regular semigroup if und only if o = 1x oro =X X X,
Corollary 3.2.17, E(X,a) is a regular semigroup if and only if o = Ix or o = X x X.
Theorem 3.2.18. If |X| < 2, then T(X,0,p) is a left regular semigroup.

Proof, Suppose that [X| < 2, Then o,p € {Ix,X x X} It ¢ = p, then by Theorem
2.3.1(6) we have T(X,0,p) = T(X). It follows from Theorem 3.1.6 that T'(X,o,p) is
a left vegnlar semigroup. If o # p, then ¢ = X x X and p = Iy. By Corollary 2.2.9,
we obtain that T(X,o, p) is a right zero semigroup. Hence by Lemma 2.1.6(2), we have

T(X,0,p) is a left regular scrigroup. O

Theorem 3.2.19. Let | X} > 3. Then T(X,0,p) is u left regular semigroup if and only
fo=XxXandp=1Ix.

Proof. Suppose that o £ X x X or p # Ix. We consider two cases as follows:
Case 1. 0 # X x X. Then there exist A, B € X/o with A # B. Let a € A and
b€ B. Since |X| > 3, there is an clement ¢ € X \ {a, b}
Subcase 1.1 Either ¢ € 4 or ¢ € B. Without loss of generality, we may

assume that c € A. Defing o X — X by

a ize A,
TO =
¢ otherwise.
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Then o € T(X,0,p). Suppose that o is a left regular element of T°(X,0,p). Since
A # B, Xa = {a,c}. Let P =ca™! € n(e). Then P = X \ A and P € wp(a). Since
a,c € AN Xa and by the definition of «, we have that PN X« = 0. By Theorem 3.2.5,
there is B’ € X/p such that za € P for some x € B’. This is a contradiction. Hence o
is not a left regular element of T(X,a,p).

Subcase 1.2 ¢ ¢ A and ¢ ¢ B. Then there is C € X/ such that c € C.
Thus C ¢ {A,B}. Define 8: X — X by

a ifrxe AUB,
zff =

b otherwise,

Thus B ¢ 4'(X,,p). Suppose that 3 is left regular of T(X, 0, p). Let P = b=t € w(B).
Then P —= X \ (AU B) and P ¢ ng(f8). By Theorem 3.2.5, there is €' € X/p such that
xf € P for some z € C'. This is a contradiction with PNX 8 = (X\(AUB)}N{a,b} = 0.
Hence /4 is not a left regular element of T(X, o, p). '
Case 2. p # Ix. Then there are distinct elements a,b € X such that (a,b) € p.

Define v: X - X by

a ifze{a,b},

Ty =

b otherwise.
Since (a,b) € p, we have that v € T(X,0,p). By |X| = 3, we obtain that b € Xvy. Let
P =ty 1 Then P € w(y). Since Py = {b}, p & {a,b} for all p € P. This implies that
PN Xy=0. By Theorem 3.1.2, we deduce that v is not a left regular element of T'(X).
Consequently, ~ is not a left regular element of 7'(X, o, p).
From the two cases, we conelude that 7'(X, e, p} is not a left regular semigroup.

The converse necessarily follows from Corollary 2.2.9 and Lemma 2.1.6. 0

Theorems 3.2.18 and 3.2.19 can be summarized as follows:
Corollary 3.2,20. The following statements hold.
(1) T(X,a) is a left regular semigroup 4f and only #f | X| < 2.

(2) E(X,0) is o left regular semigroup if and only if |X| <2 oro = X x X,

The proof of the next result is similar to Theorem 3.2.18.
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Theorem 3.2.21. If | X| £ 2, then T'(X, 0, p} is a right regular semigroup.

Theorem 3.2.22. Let | X! > 3. Then T(X,0,p) is u right reqular semigroup if and only

fo=XxX and p=1Ix.

Proof. Suppose that o = X x X or p # Ix. We consider two cases as follows.
Case 1. ¢ # X x X. Then theve exist A, B € X/o with A # B. Let e € A and
b€ B. Since |X| > 3, there is an clement ¢ € X\ {a,b}.

Subcase 1.1 Either ¢ € 4 or ¢ € B. Without loss of generality, we may
assume that ¢ € A. Define o € T(X,0,p) as in the same proof of Theorem 3.2.19. Since
a,c € Xa and aa = ca, a|x, is not injective,

Subcase 1.2 ¢ ¢ A and ¢ ¢ B. Define g € T(X,0,p) as in the same
proof of Theorem 3.2.19. Since a,b € X3 and af = bf, Blxpg is not injective.

Case 2. p # Ix. Then there exist distinct elements a, b € X such that (a,b) € p.
Define v € T(X,a,p) as in the same proof of Theorem 3.2.19. Since |X| > 3, a,be X,
Note that ay = by, which imiplies that «y|x~ is not injective.
From the two cases, they follow from Theorem 3.2.8 that T'(X, o, p) is not a right regular
semigroup.

The converse necessarily follows from Corollary 2.2.9 and Lemma 2.1.6. O

Theovems 3.2.21 and 3.2.22 can be summarized as follows:

Corollary 3.2.28. The following statements hold.

(1) T(X,0) is @ right regular semigroup if and only if | X! <2,
(2) E(X.0) is a right reqular semigroup if und only if |X| <2 oro = X x X.
As an immediate conscquence of Theorems 2.1.2, 3.2.18, 3.2.19, 3.2.21 and
3.2.22, we have the following

Corollary 3.2.24. T(X,0,p) is a completely regular semigroup if and only if one of the

following statements holds.

(1) Xl =2

2) o=XxX and p=Ix.
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Corollary 3.2.24 can be summarized as follows:
Corollary 3.2.25. The following statements hold.
(1) T(X,0) is o completely reyulur semigroup if and only if |X| < 2.

(2) E(X,0) is a completely regular semigroup if and only if [X|<2o0ro=AXxX.

3.3 Regularity for the semigroups of transformations that

preserve double direction equivalence

In this section, let ¢ be an equivalence relation on X. We recall
T(X,0*} := {a € T(X) : Yo,y € X, (2,y) € o if and only if (ve,ya) € a}.

Deng et al. [32] have given some characterizations of the regularity for elements on
T(X,0*). Later, Laysirikul and Namnak investigated the left regularity, the right regu-
larity and the completely regularity for elements of T(X,0*). Hence ;vc give a necessary
and sufficient condition for T(X,0™) to be left regular, right regular and completely

regular.

The following results are quoted from [32] Theorem 2.7.2 and [50] Theorems
3.4.4, 3.4.5 and 3.4.6, respectively.

Theorem 3.3.1. [32] Let o € T(X,0*). Then o is requlur of T(X,0™) if und only if for

cvery A € Xfo, A0 Xa # B

Theorem 3.3.2. [50] Let o € T'(X,0*). Then o is left regular of T(X, ) if and only
if for every P € w(a). PN Xa # 0.

Theorem 3.3.3. [50] Let o € T{X,0*). Then « is right regular of T(X,07) if and only
if the followiny stutements hold.

(1) alxa is an injection.

(2) If there exists A ¢ X/o such that AD Xa? = B, then there exists an injection

p:{AeX/o:AnXa? =0} »{Ac X/o: AnXa =10}
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Theorem 3.3.4. [50] Let a € T(X,0*). Then o is completely regulur of T(X, ™) if and

only if for every P € w(a), |[PNXa|=1.

Now, we show the semigroup T(X,0*) does not necessary for the left regular
semigroup, the right regular semigroup and completely regular semigroup. As we see in

the next example.
Example 3.3.5, Let A = {1}, 42 = {2,3}, A3 = {4,5,6} and forn > 4

n—n
AHZ{IEEN:£¥E<:ESE§L—1)}.

Define o = U(Ag x A;). Clearly, o is an equivalence relation on N. Now, we define

i
a:N— Ny

2o = min Ay, for all z € A, and for each A, € N/o.

Since N/o is a partition of N, « is well-defined. To show that o € T(N, 07), since Aqa ©
Ay for all 7 € N and by Corollary 2.2.6, o € TN, ). On the other hand, let z,y € Nbe
such that (za, ya) € o. By the definition of «, we then have xor = ya = min A, for some
n € N\{1}. Therefore &,y ¢ 4,1 and hence (z,y) € g. We deduce that @ ¢ T(N,0*) as
required. We note that alw, is injective but since {A € Njo : AN X a? =0} = {A;, Az}

and {4 € Nfo: AN Xa =} = {A:}, there is no injection from
[AcN/o: AnXo® =0} to {AeN/o: AN Xa =0},

Therefore o does not satisfy condition (2) in Theorem 3.3.3. Hence « is not right regular
of T(N,c*). Also, o is not completely regular of I'(N,0*). Since 2 € Na, 2070 € w(a)
and so 2a~1 = {1}. It follows from 1 ¢ Na that 2o~ N Na = §. By Theorem 3.3.2, we
get that o is not left regular of T(N, ¢*).

Theorem 3.3.6. [32] T(X,0*) is a regular semigroup if and only if X /o is finite.

Theorem 3.3.7. T(X,0*) is a left regular semigroup if and only if X/a is finite and o

is both a T-relation und 2-bounded.

Proof. Assume that T(X,c*) is a left regular semigroup and X/o is an infinite set. Then

X /o has a countable infinite subset {4, : n € N}. For cach = € N, we choose and fix an
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element o, € Ap. Define o : X = X by

gy Mz e€ Ay forallnéel,
ra =

T otherwise.
Then A,a C Anpgr foralln € Nand Ao C Aforall A € X/o\{A, : n € N}. By Corollary
9.2.6, we deduce that & € T(X, o). On the other hand, let (wer,ya) € 0. Then za,ya € A
for some A € X/o. If A € {A, :n € N}, then A = A, for some n € N with n > 1.
Therefore =,y € Ap_1 and so (x,y) € 0. If A¢ {4, :n € N}, then (z,y) = (za,ya) € 7.
Hence o € T(X,o*). Note that 4; N Xo = 0 and Ay = aze! ¢ m(a). By Theorem
3.3.2, we get that o is not left vegular. This is a contradiction. Hence X/o is finite.

Suppose that o is not a T-relation. Then there are disjoint A, B € X/o such

that |A|,|B| > 2. Let a1, a2 € A and by, b2 € B be such that a) # a2 and by # by, Define
B:X 3 X by
a; itz e B,
by i &= aq,

by if we A\ {ai},

zf =

T otherwisce.
Then A € B, BA C A and C8 C C for all C € X/o \ {4, B}. By Corollary 2.2.6,
we then have o € T(X,0). On the other hand, let (z8,y3)} € ¢. Then z8,y8 € C for
some € € X/o. If C = A, then z,y € B and so (,y) € o. Similatly, if C = B, then
x,y € A and so (z,y) € o. Otherwise, (z,y) = (28,y8) € o. Therefore § € T(X,0).
Since A\ {u1} = 0B € 7(B) and A\ {ay} N X = B and by Theorem 3.3.2, we have
that 4 is not left regular. This is a contradiction. Hence o is a I-relation,

Next, we will show that o is 2-bounded. Suppose that o is not 2-bounded. Then
there exists C' € X /o such that |[C| > 3. Lel ¢, ¢, c3 be all distinct elements of C'. Define
v: X = X by

c; ifze{a,eal,
ey =14 ¢y ifx=cy,
& otherwise.
Then Dy C D for all D € X/o. We can sce that v € T(X,0%). Since {3} = e =
m(7} and ¢z ¢ X+ and by Theorem 3.3.2, we get that v is not left regular. This is a

contradiction. Hence ¢ is 2-bounded, as required.
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Conversely, suppose that X /o is fimite and ¢ is both 2-bounded and a T-relation.
Let o € T(X,0") and P € w(a). From Lemma 2.2.11, there exists A € X/o such that
P C A. By Theorems 3.3.6 and 3.3.1, An Xa # 0. Since o is both 2-bounded and a
T-relation, |A| = 1 or |[A] = 2. If |A] = 1, then A = P and hence PN Xa = AN Xa # 0.
Suppose that |4] = 2 and PN Xa =@ Let w ¢ AN Xa. Then z ¢ P. Since |A] = 2,
we get that P has only one element, say, P = {p}. This implies that (za,pa) € o
and za # pa from = ¢ P. Sinee o is a T-relation, A is only one o-class such that
|A| > 1. Thus {za,pa} = A and so P C {za,pa} € Xa. This is a contradiction.
Hence P 1 Xa # 0. By Theoretn 3.3.2, we obtain that « is left regular of T(X,0%).

Consequently, we conclude that T(X, 0*) is a lett regular semigroup. O

Theorem 3.3.8. T(X,0%) is a right regular semigroup if und only if X/o is finite and

7 is both a T-relation and 2-bounded,

Proof. Assume that T(X,c*) is a right regular semigronp and X/c is an infinite set.
Define o € 1'(X,6*) as in the same proof of Theorem 3.3.7. By the definition of a, we
get that {4 € X/o : AN Xa =8} = {41} and {A € Xfo : AN Xa® = 0} = {41, A2},
Then there is no an injection ¢ : {A € X/o : AnXa? =8} - {A e Xfo: AnXa=0}.
By Theorem 3.3.3, « is not right regular. This is a contradiction. Hence X /o is finite.

We will show that ¢ is a T-relation. Suppose not. Then there are disjoint
A, B € X/o such that |A|,|B| = 2. Let ay, a2 € A and b1,b2 € B be such that ay # ag and
b1 # by. Define 8 € T(X,¢*) as in the same proof of Theorem 3.3.7. Since by, by € X
and b3 = b2f3, f)xs is not injective. By Theorem 3.3.3, we have that 4 is not right
regular. This is a contradiction. Hence o is a T-relation.

Finally, we will show that ¢ is 2-bounded. Suppose that o is not 2Z-bounded.
Then there exists € € X/o such that |C| > 3. Let ci,¢a,¢3 be all distinct elements of
C. Define v € T(X,0%) as in the same proof of Theorein 3.3.7. Since ¢, e € Xy and
1y = ¢, ¥|x+ is not injective. By Theorem 3.3.3, we have that «y is not right regular.
This is a contradiction. Hence ¢ is 2-bounded.

Conversely, assume that X /o is a finite set and ¢ is both 2-bounded and a
T-relation. Let o € T(X,0%). For cach z,y € Xa. If xza = ya, then (za,ya) € o.

By the definition of o, we have (z,y) € o. Suppose that z # y. By the definition of
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o, we get that {z,y} € X/o and it is only one element of X/o with containing more
than one point. Since z,y € Xa, x = ¢'a and y = y'or for some 2’y € X. This
implies that (2/,y) € o and &' # y'. Therefore {z,y} = {",¢'}. W a = z', then
y = ¢ and hence x = za = yo = y. o # 2, then « = 3 and y = @'. Thus
= a'o =ya =z = y'a = y. This is a contradiction. Hence © = y. Cousequently,
o x, is an injection. Since a? € T'(X,0*) and X /o is finite, by Theorems 3.3.6 and 3.3.1,
it follows that A Xa? # B for all A ¢ X/o. By Theorem 3.3.3, « is right regular.

Consequently, 7'(X,o*) is a right regular semigroup. d
As a consequence of Theorems 2.1.2, 3.3.7 and 3.3.8, we have the tollowing.

Corollary 3.3.9. T'(X,0%) is a completely regular semigroup if and only if X /o is finite

and o is both a T-relation und 2-bounded.

3.4 Regularity for the semigroups of transformations
preserving an equivalence relation and a cross-section

In this section, let o be an equivalence relation on X and 1t a cross-section of

the partition X/ induced by o. We recall that
T(X,0,R) = {a € T(X): Ra C Rand Ya,y € X, (x,y) € o implies {(wor,ya) € g}

Aratijo and Konieczny [42] have given some characterizations of the regularity for cle-
ments on T(X, o, R). We characterize the left regularity, the right regularity and com-

pletely regularity on T'(X, o, R).

Firstly, we investigate the condition under which an element in 7'(X, 0, R) is

regular, left regular, right regular and completely regular, respectively.

Theorem 3.4.1. [42] Let o € T(X,0, R). Then a is regular of T(X,0,R) if und only if

for every A € XJo, there ezists B € Xfo such that AN Xa € Ba.

Theorem 3.4.2. Let o € T(X,0,R). Then a is left regular of T(X, 0, R) if and only
if for every A € X/a, there exists B € X/o such that for each P € mala), za € P for

somex € B.
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Proof. The necessity follows from Corollary 3.2.6. To prove the sufliciency, we suppose
that for each A € X/a, we choose A’ € X/o such that for every P € wa{a), o € P for
some x € A'. Let o € X. Since X/o and w{o) are partitions of X, there exist A € X/o
and P € n(a) such that

zec Aand x € P,

so P € ma(a). If ¢ R, then by assumption, we choose an element &’ ¢ A’ such that
P € P and A € X/o. We also have that z/ac = za. I w € R, then there exists
y € A’ such that ya ¢ P and thus zo = yaa. Let r € A'N R. Then (yao, raa} € o
Yince raa € R and za € R, we then have raa = za. Thus we choose @’ = 1. Define
g:X X by
wf =a forall z ¢ X.

Clearly, R C R. Let =,y € X be such that (z,) € ¢. Then there exists A e X/o such
that @,y € A. By the definition of §, we obtain that w8,y € A’ where A’ ¢ X/o. Hence
BeT(X,0,R). lf x € X, then wfa? = z'aq = za which gives o = fa?. Therefore « is
left regular, as required. O
Theorem 3.4.3. Let a € T(X,a,R). Then a is right reyulur of T'(X, o, R) if and only
if the following statements hold.

(1) a|xa s an injection.

(2) For cvery =,y € Xa, (wo,yo) € o implies (o,y} € 0.
Proof. The necessity follows from Corollary 3.2.9. Fo prove the sufficiency, we assume
that (1) and (2) hold. Let A € X/o be such that AN Xa® # @ Then ANKN Xa? #10.

We choose and fix an element x4 € ANRNXa? Foreachwe ANX o?, there exists a

unique ' € Xa such that @ = @'a by «

Xa 18 injective. We observe that (@'c, 2'ja) =
(z,24) € 0. It follows from assumption that (2’,%;) € o. Define S4: A - X by
7 ifee Xa?
xPa=

“L'A otherwise.

Then we define the map 8: A = X by

B = Ba fANXa?#0,

14 otherwise,
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for all A € X/o. Since X/o is a partition of X, # is well-defined. Let @,y € X be
such that (z,7) € o. Then 2,y € A for some A € X/o. By the definition of §, we
have (z8,y8) = (2Bla,yBla). F ANXa? =@, then (z8,y) = (wia,yia) = (z,¥) € 0.
If AN Xa? s @, by the definition of 34 we then have (zfa,2!y), (¥Ba,2}y) € 0. By

transitivity of o, (#8,78) € &, hence g € T(X,0). Since Ro € R and o

Xa 18 Injective,
it follows that B8 C R. Consequently, 8 € T(X, 0, R).

Finally, to show that a = o2, let © € X. Then za? € Xa? and there exists
A € X/o such that zo® € A. By the definition of 84, xa?84 = (za?) where (za®Ya =
za? = (za)a. Since (za?) is unique, we get that (za®) = za. Thus w0l = waBy =

xo. Hence o is vight regular, as asserted. O

As a consequence of Theorems 2.1.2, 3.4.2 and 3.4.3, the following resulé follows

readily.

Corollary 3.4.4, Let o € T(X,0,R). Then « is completely regulur of T'(X, 0, R) if and
only if for every A € X/o, there exists B € X /o such that {P N Ba| = [P Xa| =1 for

all P € mwala).

Secondly, we show that the semigroup T'(X, o, 1?) does not nccessarily for the
left regular semigroup, the vight regular semigroup and completely regular semigroup.

As we sce in the next example.

Example 3.4.5. Let X = {1,2,3,4,5,6,7.8}, X/o = {{1,2,3},{4,5},{6,7,8}} and
R ={1,4,6}. Let e € T(X, 0, R} be defined by

1 23 45 6 7 38
6 8613121

Since 6,8 € Xa and 6a = 8a by Theorem 3.4.3, we have that o is not a right regular
element of T'(X, 0, R). Next, we will show that o is not a left regular element of T'(X, o, R}
by using Theorem 3.4.2. Let A = {4,5}. Then ma(c) = {{4,6,8},{5}}. Since 5 ¢ Xa,
5 # wa for all # € X. This implics that o does not satisfy Theorem 3.4.2. Hence v is not
a left regular element of 1'(X, o, R). Furthermore, v is not a completely regular element

of T(X,0,R).
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Finally, we investigate the conditions under which the semigroup T(X,o,R) is

regular, left regular, right regular and completely regular, respectively.

Theorem 3.4.6. [42] T'(X,0, R) is a regular semigroup if and only if o is a T-relution
or 2-bounded.

Theorem 3.4.7. If |X| <2, then T(X, 0, R) is u left regular semigroup.

Proof. 1f |X| =1, then done. Suppose that {X| = 2, say X = {a,b}.
Case 1. |R| = 1. Assume that a € R. Then

a b a b
T'(X,0, R} =
T o a b
Then every clement of T(X, o, R) is left regular. Hence T(X,0,R) is a lett regular
SeNlgroup.

Case 2. |R| = 2. Then o is the identity relation. By Theorem 2.3.4(2) and

Theorem 3.1.6, we conclnde shat T(X, o, R) is a left regular scmigroup. |

Theorem 3.4.8. Let |X| > 3. Then T'(X, 0, R) is a left regular semigroup if and only #f
|X| =3 and |R| = 2.

Proof. We will proceed proof by contrapositive of the necessity. We now consider three
cases as follows.
Case 1, |R| =1. Then o = X x X. Let r € R. By assumption, there exist

distinet elements ¢,b € X \ {r}. Define a: X — X by

P NBL A
]
b otherwise.

Since ¢ = X % X and ra = r, we get that o € T(X, 0, R). Let P =ba~! € m(). Then
P = {a}. Note that ¢ ¢ Xa, that is, za # « for all # € X. Since |X/o| = 1, it follows
that o is not satisfy condition of Theorem 3.4.2, which implics that o is not left regular.
Hence T'(X, o, ) is not a left regular semigronp.

Case 2. |R| =2 and |X| > 3. Then there exists 7 € R such that |rg| > 2. Let
a€ro\{r} and s € R with v # s. Define §: X = X by

r ifwxe {rsa},

a otherwise,
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Since (a,r) € ¢ and rf = s = r € R, we have that § € T(X,0, R). Noting that | X| > 3,
we obtain a € XB. Let P =af ™' € n(#). Then P = X\ {r,s,¢} andso PNAf = .
Therefore 3 is not satisly condition of Theorem 3.4.2, Consequently, A is not left regular,
Hence T(X, o, R) is not a left regular semigroup.
Case 3. |E| > 3. Let r,8,¢ € R be distinct elements. Define v : X — X by
r ifx€reUso,

Ty =
s otherwise.

Clearly, Ry C R and by Corollary 2.2.6, we obtain v € T'(X, 0, R). Let P = sy T en(y).
Then P = X \ (ro U so) and thus P N Xy = §. Therefore « is not satisty condition
of Theorem 3.4.2 and thus « is not lett regnlar. Hence T(X, 0, R) is not a left regular
SeMIgroup.

Conversely, suppose that |X| = 3 and |R| = 2. Let X = {a,b,c}. Without
loss of generality, we may assume that X/o = {{a},{b,c}} and R = {a,b}. Therefore
T(X.o, R) is the set

T a b ¢ v Hh—e a b ¢ a b c a b e

a a a a b b a b c b a a bbb’bbc

By virtue of Theorem 3.4.2, every element of (X, g, R) is left regular. Hence T(X, 0, R}

is a left regular semigroup. O

The proof of the next result is similar to Theorem 3.4.7.
Theorem 3.4.9. If | X| < 2, then T(X, 0, R) is a right reqular semigroup.

Theorem 3.4.10. Let |X| > 3. Then T(X, 0, R) is a right regular semigroup if and only
if |X] =3 and |R| = 2.

Proof. The necessity is proved by contraposition. We distinguish three cases as follows.
Case 1. |R| = 1. Let r € R. By agsumption, there exist distinet clements
a,b € X\ {r}. Define o € T'(X,0,R) as in the same proof of Theorem 3.4.8. Since
r b e Xo and ra = ba, a|xa is not injective.
Case 2. |R| = 2 and |X| > 3. Then there is r € R such that |ro| = 2. Let

o € ro\ {r} and s € R with r # 5. Define § € T(X,0,R) as in the same proof of
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Theorem 3.4.8. Since |X| > 3, we have s,a € Xj3. Note that s = afi. Thus B|xp is not
an injection.

Case 3. |R| > 3. Let r,s be distinct elements in R. Define v € T(X, 0, R) as

in the same proof of Theorem 3.4.8. By the definition of 17, we have r,s € XN and so

ry = s7. Therefore a|x, is not injective.
From the three cases, they follow from Theorem 3.4.3 that T'(X,0, ) is not a right
regular sentigroup.

Conversely, suppose that |[X| = 3 and |R| = 2. Let X = {a,b,c}. Without
loss of generality, we may assmnc that X/o = {{a}, {b,c}} and R = {a,b}. Therefore

T(X, 0, R) is the set

a b ¢ a b ¢ a b ¢ a b ¢ a b c a b ¢

1 1 H H 1

) a b b a b ¢ b o a bbb b b ¢

It is easy to check that every clement of T(X, o, R) is vight regular by using Theorem

3.4.3. Hence T(X, 0, R) is a right regular semigroup. O
As an immediate consequence of Theorems 2.1.2, 3.4.7, 3.4.8, 3.4.9 and 3.4.10,
we have the following.

Corollary 8.4.11. T(X,0, R) is a completely regular semigroup if and only if ene of the

following statements holds.
(1) [ X]<2.

(2) 1X|=3 aend |R|=2.

3.5 Regularity for the semigroups of transformations

preserving an equivalence relation and fix a cross-section

In this section, let ¢ be an equivalence relation on X and R a cross-section of

the partition X/ induced by o. We review again that

Tr(X,0) = {a ¢ T(X): Ra = R and Vz,y € X, (z,y) € o implies {za,ya) € o}
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The aim of this section is to present necessary and sufficient conditions for elements of
Tr(X,0) and the semigroup Tr(X, ¢} which is regular, left regular, right regular and

completely regular.

Theorem 3.5.1. Let o € Tr(X, o). Then « is vegular of Tr(X,0) if and only if alp is

an injection.

Proof. Suppose that o is regnlar. Then there exists 8 € Tr(X,0) such that o = afo.
Let 7,5 € R be such that ra = sa. Since g € Tr{X,0), Ef =R and hence r = '3 and
s = ¢/ for some v, 8" € R. Since Ra = R, there exist v, §" ¢ Rsueh that ' = a and

s’ = 5", We have that
1
v = "a =1"aBa =1 Ba = ra = sa = §'Ba = s"afa = o= s

“This implies that r = '8 = ¢’ = 5. Hence alp is an injection, as required.
Conversely, assume that a|g is an injection. Claim that for every r € R, there
exists ' € R such that 7o N Xa = ('o)a. Let 7 € R. Since Ra = R, thereis v’ € R

such that 7 = o Since a € T'(X, o), it then follows that
(r'o)a CronXa.

For the veverse inclusion, if ¥ € 7o N Xa, then y = zo for some x € X. This tmplies that
z € so for some s € B and so sa = r. By assmption and sa¢ = 7', we have s = T,
Hence y € {r'o)c. This shows that ro N Xa = (r'o}a. So we have the claim.

For cach r € R, we choose ' ¢ R such that ro N Xa = (Fo)a. Thus r = ra.
For each y € (ro N Xa)\ {r}, we choose and fix an element y' € r'o such that ya=y.
Define B, 1 ra — v'o by

' ifwe Xa,
=

' otherwise,

Then S, is well-defined, (ro)B, C r'e and 78, =’ € R. Let §: X — X be defined by
Blrs = By for all r € R. Since R is a cross-section of the partition X/o induced by o, 8
is well-defined. By Corollary 2.2.6, 8 € T(X,0). Obviously, RS C R. Let r € R. Then
rov = s for some s € R. Thus sBs = &' for some s’ € R with §'a = s. Therefore s'a = ra.

By assumption, we have that s’ = r and thus s8 = sp|ss = s8s = 8’ = r. It follows that
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RfB = R and therefore 8 € TR(X, o). Let € X. Then xa € 7o for some r € R. Thus
pvafa = (za)blea = (va)fa = (z0) o = 2o
and therefore o = affa. Hence « is regular. O

Theorem 3.5.2. Let o € Tr(X,0) be such that alp is un injection. Then o is left

reqular of Tp(X,0) if and only if for every P € w(w), PN Xa # §.

Proof. The necessity is clear from Theorem 3.1.2. To prove the sufficiency, we suppose
that PN Xa # 0 for all P € #(a). We will construct 8 € TR(X, 0} with o = Ba?. For
each z ¢ X, there exists a unique By € n(a) such that & € P,. By assumption, we have
PenNXa# 0 Ifx¢ R, then we choose and fix an element 2p, € PrN Xa and :Eipr e X
such that @l & = @p,. If 2 € R, then z € P N Xa. Thus we select wp, = ®. Since

Koo = R, we can select :r;’PI € I with a;"PIa- — wp,. Define §: X — X by
zff = ap_for all z € X.

Then A is well-defined. Since Ra = R and «afg is injective, we deduce that B = H.
Let ©,y € X be such that (z,y) € ¢. Then @,y ¢ ro for some r € R. Since m{a) is a
partition of X, we note that x € F,. and y € P, for some Py, Py € w(a). It z € Py, then
2a = za and z € so for some s € R. It follows from Lemma 2.2.13 that ra = sa. By
the definition of a, ¥ = & and thus P, C ro. By symmetry, we also have P, C ro. Since
xp, € P, and zp, € P, we then have (ap,,2p,} € 0. Claim that (a;};r,a;’Py) € o. Let
zp € s and :u};y € to where s,t € B. Since (:v},za,:t:’Pya) = (zp,,2p,) € o, it follows
that sa = to. Thus s = ¢ by alg is injective. So we have the claim. Hence we conclude
that (z6,y8) = (:U};I,;E'};y) € . Consequently, § € Tr(X, ).

Finally, to show that o = Sa?, let x € X, Then

Gnd el A2 C— gy
xfa” = zp o = xp o=z,

which implies that a = fa?. Therefore « is left regular. )
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Example 3.5.3. Let X = Z, X/o = {{0,1}}U {{z} : 2 € Z\ {0,1}} and R = Z\ {0}.
Define o, : X — X by

1 ite <1,
ra =4 -% itz €N,
'—L—gﬂ otherwise,

and

-

& if z € {-1,0,1},
20— 1 if x> 2,
-z if # € —2HN,

otherwise.

\

z—1
P
It is easy to check that a, 8 € T(X, o). Note that (2N}a = —N, (2N + 1) = N\ {1} and
(-NU{1}Da = {1}, imply that

Ra = 2N)a U 2N+ Da U (-NU{1})a = -NU N\ {1})u {1} =Z\ {0} = R.
Thus o € T(X, o). Consider
(—1,1}8 = {~1,1}, (N\{1})8 = {3,5,7, ...}, (=2N) 8 = 2N and (2N -1)§ = —N\{~1}.

This means that B8 = R, hence 8 ¢ Tr(X, o). We will show that a = Ba?. Let z € X.
If z € {~1,0,1}, then xfaa — zaa = la=1==za.

If > 2, then 2z — 1 € {3,5,7,...} and hence

zfaa = (2 — 1)aa = (W) o= (-222) a = .

If x € —2N, then 2 = —z € 2N so zfa = —(5¢) < 1. Thus zflac = 1= =za.
Ifx e {-3,-5,-7,...}, then 8 = '—211 < 1, so that zfaa = 1la =1 = za,
From the above discussion, we conclude that « is left regular. But a|g is not an injection
because Lo == —1a,
Example 3.5.4. Let X = N, X/o = {{1,2}} U {{z} : 2 € X withx > 3} and R =
N\ {2}. Define o X — X by
1 ifze{1,2,3},

T =
xz— 1 otherwise,
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It is easy to check that o € Tg(X,¢). Note that Xa =N\ {2} and (o) = {{1,2,3}}U
{{z} : @ = 4}, Thus PN Xa # @ for all P € n{a). Suppose that o = fo? for some
A€ Tr(X, o). Since

1 if w e {1,2,3,4},

za’ =
@~ 2 otherwise,

we have that 18,38 € 1(e®)' = {1,2,3,4} and zf = o+ 1 for all @ > 4. Since
18,38 € R, there exists 7 ¢ {1,3,4} such that r # g for all z € B. Therefore r ¢ Rf3.

This is a contradiction with RS = R. Hence « is not left regular.

Next, we give a characterization of right regular elements in Tr(X, o).

Theorem 3.5.5. Let o € Tr(X,a). Then a is right regular of Tr(X, o) if and only if

alxa 18 an injection.

Proof. The nccessity is clear from Theorem 3.4.3. To prove the sufficiency, we suppose

that a|ys is an injection, Tet A € X/o. Then AN RN Xa® # §. We choose and fix an

clement »4 € AN RN Xa? For each v € AN Xao?, there exists a unique =’ € Xa such

that @ = 2'a by alxq is injective. We observe that ry € Rand (z'a, r)ya) = (z,74) € 0.
If &' € so for some s € R, then sar = 14 = 1y, s0 that s = vy by uniqueness of 1/,
Hence (', 7%y) € @. Define 4 A — rljo by

2 ifze Xa?,

Bfa =
'y otherwise.

Then we define the map 3 X — X by Bla = 4 for all 4 € X/o. Since X/o is a
partition of X, £ is well-defined. By Corollary 2.2.6, we have f§ ¢ T(X,0). We now
show that Rf = H. Let r € K. Then r = ' tor a unique v ¢ Xa. Since Ra = R,
rB =7 € R. On the other hand, let 7 ¢ 2. Then 7a = s for some s € R and so s = s'av
for some s’ € Xo. By uniqueness of s’ and 7 € R = Ra, we have that r = §', so that
sp = s = . Hence RS = R. Conscquently, § € Tgr(X, o).

Finally, we will show that a = o2, let ¢ X, so za? € X a®. Then there
exists A € X/o such that wa® € A. By the definition of B4, za?84 = (za?), so that

2

(za?)a = za? = (za)a. Since (za?)’ is unique, (za?) = za. Thus vo?f = za?fa = za.

Therefore o is right regular, as asserted. ]
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Now, we give a characterization of completely regular elements in Tr(X, o).

Corollary 3.5.6. Let o € Tgr(X,0). Then o is completely regular of Tr(X,0) if and
only if for every P € w(a), |PNXa| = 1.

Proof. The necessity is clear from Corollary 3.4.4. To prove the sufliciency, we suppose
that for every P € #(a), [P Xa| =1, Let z,y € Xa be such that xa = ya. Then

z,7 € PN Xa for some P € w{a). By assmnption, we obtain that = == y, so that a|xq

is an injection. By Theorem 3.5.5, we have o is right regular. Since «

xa is an injection,
also is a|g. Tt follows from asswmnption and Theorem 3.5.2 that « is left regular. Hence

« is completely regular, O

From Example 3.5.3 and by Theorem 3.5.1, we get that Tr(X, o) is not regular.
We also have the following theorem for which characterizes when Tr(X, o) is a regular

semigroup.
Theorem 38.5.7. Tr(X, o) is a requlor semigroup if and only if R is finite.

Proof. Assume that Tr(X,¢) is a regular semigroup and R is an infinite set. Let r € R.
Then R\ {r} is also infinite and R\ {r}| = |R|. Thus therc cxists a bijection ¢ : R\{r} —
R. Choose and fix v’ € R\ {r}. Definea: X — X by

roilzero,
Ta =

s ifz € so.

By Corollary 2.2.6, a € T(X, o). Since rae = ' and ¢ : R\ {r} — R, we get that Ra C R.
Let s € R. Since  is surjective, s = te for some t € R\ {r}. Thus t # r, it follows that
ta = tp — s. Therefore I € Re. Hence o € Tr(X,0). Since ¢ € [, v ="y for some
" € R\ {r}. This implies that 7" # r and 7"a = r"¢ = 1’ = ra. Consequently, a|r
is not injective. By Theorem 3.5.1, we have « is not regular, which is a contradiction.
Hence R is finite.

Conversely, suppose that R is finite. Let « € Tr(N,0). Then Ro = R and so
a|p : R — R is a surjection. By the finiteness of R and Theorem 2.1.18, alp is injective.

From Theorem 3.5.1, o is regular. We conclude that TR(X, &) is a regular semigroup. U
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The following theorem characterizes the equivalence relation ¢ on X for which
the semigroup Tr(X, ¢) is loft regular.
Theorem 3.5.8. Let R be u finite set. Then Tr(X,0) is « left regular semigroup if and
only if o is a T-relation and 2-bounded.
Proof. Assume that Tr{X, o) is a left regular semigroup and ¢ is not a T-relation. Then
there exist distinct elements r,s € R such that {ro|,|so| > 2. Let @ € ro \ {r} and
beso\{s}. Define f: X - X by
v if © € g0\ {b},
a ifz =0

s ifz€reo,

o otherwise.
Then 8 is well-defined and 3|z is injective. Since (ra)f € so, (s0)8 C ro and (to}B C to
for all £ € R\ {r,s}, we dednce that g € I'(X,o) by Corollary 2.2.6. Since +8 = s and
sf :l rand t8 = t for all € R\{r, s}, it follows that 3 ¢ Tr(X, ). Let P = o™ € m(B).
Then P = {#} and PN X3 = . By Theorem 3.5.2, we have § is not left regular. This
is a contradiction. Hence o is a Y'-relation.

Next, we will show that ¢ is 2-bounded, suppose not. Then there is an element

r € R such that {re| > 3. Let a, b be distinct elements in ro \ {r}. Define y: X — X by

r it x e {ral,
ry=4 a ifz=0,
x  otherwise.

Since (r,a) € o, v € Tr(X,0). Clearly, v|g is injective. Sct P = ay™! € 7(7), so that
P ={b} and PN X~ = 0. It follows from Theorem 3.5.2 that y is not left regular. This
is a confradiction. We conclude that o is 2-bounded,

Conversely, assume that o is a 7-relation and 2-bounded. Let o € Tr{X, ).
Then by Theorems 3.5.7 and 3.5.1, we have that «g is an injection. Since Ra = R and
by assumption, we get that Xa = R or Xa = X. If Xa = X, then PN Xa # 0 for
all P ¢ w{e). If Xoo = R, then since Ra = R, we have PN Xa # @ for all P € =(a).

Hence by Theorem 3.5.2 we have that o is left regular. Thus Tr(X, o) is a left vegular

semigroup. £l
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From Example 3.5.3 and by Theorem 3.5.5, we get that Tr(X, ¢) is not regular.
We also have the following theorem for which characterizes when Tr(X, o) is a right

regular semigroup.

Theorem 3.5.9. Tr(X,0) is @ right reqular semigroup if and only if R is finite and o

25 a T-relution and 2-bounded.

Proof. Assume that Tp( X, o) is a right regular semigroup. For cach a0 € Tr(X, o}, by

assumption and Theorem 3.5.5 we have o

Yo is an injection. Since R = Ra C Xa, a|g
is also injective. Using Theorems 3.5.1 and 3.5.7, we conclude that It is finite.

Next, to show that ¢ is a T-relation, suppose not. Then there exist distinct
clements +, s € R such that |re|,|so] > 2. Let o € ro\ {r} and b € so \ {s}. Define
B € Tr(X,o) as in the same proof of Theorem 3.5.8. Since 7,a € X and rf§ = s = af,
o

Tg(X,o). This is a contradiction. Hence ¢ is a T-relation.

xp 18 not injective. By Theorem 3.5.5 we have that 3 is not a right regular element of

Finally, we will show that o is 2-bounded. Suppose that ¢ is not 2-bounded.
Then there is an clement r € R such that |re| > 3. Let @, be distinct elements in
ro \ {r}. Define v € Tr(X,0) as in the same proof of Theorem 3.5.8. Since r,a € Xy
and ry = r = @7y, ¥|xy is not injective. It follows from Theorem 3.5.5 that « is not a
right regular element of Tx(X, o). This is a contradiction. Hence ¢ is 2-bounded.

Conversely, suppose that R is a finite set and o is a T-relation and 2-bounded.
Let a € Th(X, o). Since Rae = R and by the definition of o, it follows that Xa = R
or Xa=X. If Xa = R, then since K is finite by Theorems 3.5.7 and 3.5.1, we deduce
that o

¥o 18 an injection. If XYoo = X, then o is surjective. By assumption, we obiain
that X is finite. Using Theoremn 2.1.13, o is injective. Hence o is right regular elemnent

of Tpr(X, o) by Theorem 3.5.5 and thus T;(X, o) is right regular. M

Theorems 2.1.2, 3.5.8 and 3.5.9 can be summarized as follows:

Corollary 3.5.10. Tr(X,0) is a conpletely regulur semigroup if and only of R is finite

and o is a T-relation und 2-bounded.



CHAPTER IV

GREEN’S RELATIONS

In this chapter, we present Green's relations on T(X), (X, 0,p), T(X,c*),
T(X,0,R) and TR(X,0). We investigate characterizations of left principal ideal, right
principal ideal and prineipal ideal on T(X, 7, p} and Tr(X, 7). And then we determine

when elements of 7(X, o, p) and Tr(X, o) are equivalence respect to Green's relations.

4.1 Green’s relations on some subsemigroups of the full

transformation semigroups

In this section, we deseribe Green'’s relations on the semigroups T(X), T{X, ™)
and T(X, 0, R). Throughout this section, let o be an equivalence relation on X and K a

cross-section of the partition X /o induced by o.

Firstly, the following results are quoted from [45] Lemma. 2.5, 2.6, 2.8 and The-

orem 2.9, respectively.
Theorem 4.1.1. {45] Let a, 8 € T(X). Then the following stutements hold.
(1) (a,8) € £ on T(X) i and only if Xoo = X 3.
(2) (a,B8) € R on T(X) if and only if ker a = ker 3.
(3) (o, 8) € D on T(X) if and only if | Xa| = |XB|.
4) J="D.
Secondly, we focus our attention on Green's relations for the semigroup T(X, ™).
Belore starting the first result, we need the following terminology.
For every o € T(X,0*). Denote

Zla)={Ae X/o: AN Xa =10}
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Theorem 4.1.2, [32] Let o, 8 € T(X,0*). Then the following statements are equivalent.
(1) (a,B)€ L onT(X,0%).
(2) Xao=X3.
(8) There exists a o*-admissible bijection @ : () — w(B) such thal oy = @f;.
Theorem 4.1.3. [32] Let o, 8 € T(X,0%). Then the following stutements ure equivalent.
(1) (o, 8) € R on T'(X,0%).
(2) kera = ker 8 und Z(o) = Z(85).

(3) There exists A € T(X,0*) such that N xo : Xa— X8 is a bijection and f = al
and there exists p € T(X,0*) such that plxp + X = Xo is a bijection and

a=Pu.
Theorem 4.1.4. (32] Let oo, B € T(X,0*). Then the following statements are equivalent,
(1) (e,8) €D onT(X,c*).

(2) |Z(a)| = |2(8)| and there exists A € T(X, %) such that Alxa : Xa = X isa

bijection.
Theorem 4.1.5. [32] Let &, 8 € T(X,0%). Then the following stutements ure equivalent.
(1) (o, 8) € T on T(X,0%).
(2) |Xa| = | X8| and there exist N\, € T(X,0*), for every A € X/o, Ao C BBA and
AB C Cayp for some B,C' € X/o.
Finally, we describe Green’s relations in the semigroup T(X, o, R).

Theorem 4.1.6. [42] Let o, 8 € T(X,0,R). Then (o, 8) € £ on T(X, 0, R) if end only
if for every A € X /o, there ezist B,C € X/o such that Aa C B and A C Ca.

Theorem 4.1.7. [42] Let o, f € T(X, 0, R). Then (o, f) € R on 1'(X, 0, R) if and only

if ker a = ker .
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Theorem 4.1.8, [42] Let o, 8 € T(X,0,R). Then (e, ) € D on T(X, 0, R) if and only
if there exist a bijection ¢ : Xa — X satisfying
(1) (XanR)p CR and

(2) for every A € X/o, there exist B,C € X/o such that (Aax)p C B and AP C
(Ca)e.

Theorem 4.1.9. [42] Let o, 8 € T(X,0,R). Then (o, 3) € J on T(X, 0, R) if and only

if there ewist mappings ¢ : Xa — X and 3 : X5 — Xa satisfying
(1) (XanR)p C R,
(2) for every A € X/o, there exist B,C € X/o such that A C (Ba)yp C C,
(3) (XanR)Y C R and

(4) for every A € X/a, there exist B,C € X/o such that Aa C (BB)¥ C C.

4.2 Green’s relations on the generalization of semigroups

of transformations preserving equivalence relations

We let X be a nonenipty set and let o and p be equivalence relations on X with
p C o. Green's relations on 7(X, 0, p) are studied in this section.
The first, to describe L-relation on T'(X, 7, p), the following lenmia is needed.
Lemma 4.2.1. Let o, € T'(X,0,p). Then the following statements are equivalent.
(1) a = AB for some N € T(X,0,p).
(2) For every A € X/o, there exists B € X/p such that Aw C Bf.
(3) There exists op-admissible ¢ : w(a) — w(B) such that . = @Ps.

Proof. (1) => (2) Assume that a = Mg for some A € T(X,0,p). Let A € X/¢. Then
by Lemma 2.2.5, we have AA C B for some B € X/p. By assumption, we obtain that

Ac = ANG C Bj.
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(2) = (3) Suppose that (2) holds. To show that Xa C X, lei y € Xc. Then
y = za for some z € X. Thus € A for some A € X/o. By (2), there cxists B € X/p
such that
y==za € Aa C B C X3,
Therefore Xo € X 3. For each P € w(a), we have Pa, = za € Xa € X forallz € P.

Define ¢ : w(a) — w(8) by
P = (Pa,)p~* for all P € w(a).

Then ¢ is well-defined. Let A € X/o and let Iy = {i € Xa : ioa7' N A # 0}. For each

i€ I, welet P;:=ia~t. Then
mala)={F i€} and i = P, for all i € L4

Let @ € Iq By (2), we have i € Ao € B for some B € X/p. Then BN Dp =
B0 (Pay)Bt=Bn i8~1 # 0. Hence ¢ is op-admissible by Proposition 2.2.4. Finally,
we will show that a, == @B Let P € w(a) and p € . Then pa € Xo € XS and so

pa = xf for some z € X. Thus v € (pa)~t = (Pa,)B~! = Pyp. Therefore
Pa, = pa = af = Ppp.,

as required.

(3) = (1) Suppose that ¢ : w(a) — 7(8) is ap-admissible such that oy = pfs.
Let A € X/o. Then (wa(a))e C ma(B) for some A’ € X/p. For each z € A, we let
P, = (za)a~! € ma(a). By assumption and Proposition 2.2.4, we have Py N A £ 0,

We choose and fix an element @' € Pup N A Define Ay : A — A’ by
ahg = forall w € A

Let A € T(X) be such that Ala = A for all A € X/o. Since X/o is a partition of X,
X is well-defined. Since AN = Adgq € A’ for some A’ € X/p and by Lemma 2.2.5, we
then have A € T(X,0,p). Let © € X. Then = € A for some A € X/o. By Proposition
2.2.4, there is A’ € X/p such that £A = zA|4 = @' € Pyp N A’ where P € wa(w). Since

vy = PP, We obtain that za = Pyas = PepBe = «'8 = zAB. Hence a = AS. d

Using Theorem 2.1.11 and Lemma 4.2.1, we can establish the next result.
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Theorem 4.2.2, Let o, 8 € T{X,0,p). Then the following statements are equivalent.
(1) (e,8) € L on T{X,0,p).

(2) Either a = B or for every A € X/o, there exist B,C € X/p such that Aa C
Bf ond AS C Cao.

(3) Hither a = 3 or there exists a (op)*-admissible bijection ¢ : nw(a) — w(B) such

that o = .

As an immediate consequence of Theorem 4.2.2, we have the following.
¥

Corollary 4.2.3. Let o, 8 ¢ T(X,0,p) be such that (o, 8) € L. Then Xa = XB.

The following lemma is used for characterizing the R-relation on T(X, o, p).

Lemma 4.2.4. Let o, 8 € T(X,0,p). Then o = B for some p € T(X,0,p) if and only

if the following stutements hold.
(1) ka8 C kerav.
(2) For every x,y € X, (xf3,yp) € o implies (za,yo) € p.

Proof. Suppose that o = fu for some p € T(X,0,p). Let (z,y) € ker . Then zf = yf3
and so za = wfp — yPu = ya. Thus (z,y) ¢ kera and hence ker 3 C kera. Let
. 2,y € X be such that (z8,y8) € o. Since & = fp and p € T(X, 0, p), it follows that
(mav,ya) = (xfp, yBu) € p, as required.

Conversely, assume that the conditions (1) and (2) hold. For each y € X8, there
exists ' € X such that y'f — y. Let A € X/o besuch that ANXS £ (. We choose and
fix an element x4 € AN Xa. Define p1g : A = X by

2’ ilwe XS,

THA =
a'so  otherwise.

Let z,5 € A be such that @ = . If 2,y € X8, then there are x',3’ € X such that

@ =a'f and y = ¢'B. Thus (a',y") € ker 8 and so @’a = y'a by (1), which implies that
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Tpa = ypa. I xy ¢ XB, then wpg = a'yo = yua. Hence py is well-defined. Define
X = X by
pa EANXB#D,
fla =
Ca  otherwise
for all A ¢ X/o where Cy is a constant map from A into X. Since X/o is a partition of
X, we have that p is well-defined. To show that p € T(X,0,p), let A€ X/o.
Case 1. ANXB # B Then 2y € AN XB with m4 = z/, 8 for some 'y € X.
For each @ € AN Xa, we have o' = x and 2/, 8 = x4 are elements in A where 2’ € X.
Since A € X/ and by (2), it follows that &'« and @’ycr are elements in the same p-class.
We conclude that Ap € B for some B € X/p.
Case 2. ANXE = §. Then by reflexivity of the relation p, we have (zu,yp) =
{(2C4,yCa) € p. Hence Ay C B for some B € X/p.
From the two cases and by Lemma 2.2.5, we deduce that ¢ € T(X,0,p). Let xz € X.
Then z3 € X8 and 28 € A for some A € X/o and so (z8)' = zf3 for some (z8) € X.
Thus ((zB)’, %) € ker 8 so that za = (zf)a = (@f)pa = xBp by (1). This shows that

o = e, as required. O

As an immediate consequence of Theorem 2.1.11 and Lemma 4.2.4, we have the

following.

Theorem 4.2.5. Let o, 8 € T(X,0,p). Then (o, 8) € R on T'(X,0,p) if and only if

cither o = 8 or the Jollowing statements hold.
(1) ker 8 =kera.
(2) For every z,y € X, (xf8,yB) € o implies (za,ya) € p.

(3) For every z,y € X, (za, ya} € o implies (z,y8) € p.

However, to describe R-relation again, the following leimina is required.

Lemma 4.2.6. Let o, f € T(X,0,p). Then a = B for some p € T(X,0,p) if and only

if there exists a mapping @ : X — Xa satisfyiny

(1) & = Py and
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(2) for every z,y € Xf, (z,v) € o implies (zp,yp) € p.

Proof. Suppose that « = Su for some p € T(X,0,p). For each y € X 53, there exists

y' € X such that y = ¢'8. Define ¢ : X — Xa by
wp = z'a for all z € X

Let =,y € X/ be such that & = y. Then &'f = ' for some a’,4’ € X. Since o = S
and by Lemma 4.2.4(1), which implies that (2/,7') € ker 8 C kera. Thus zp = z'a =
y'o = yp. Hence ¢ is well-defined. Let x € X. Then a8 = (25)'8 for some (z8) € X

and so (z, (z8)") € ker § C ker . Therelore
za = (zf) o = zfe.

Hence a = By. Let x,y € X8 be such that (z,y) € 0. Then @ = o'f and y = y'B
for some o',y € X. Thus (2'8,7¥'8) = (x,¥) € 0. By Lemma 4.2.4(2), we deduce that
(w,yyp) = (v'a,y'a) € p. Hence the necessity follows.
Clonversely, suppose that ¢ : X8 — X« is a mapping satisfying the conditions
(1) and (2). Let A € X/o be such that AN XA # 0. We choose and fix an element
24 € ANXA. Define pa: A— X by
we it ze Xf,

THA =
walp  otherwise.

Let p: X — X be defined by

pa it ANX B £ B,
pla =
4  otherwise

for all A € X/o and C, is a constant map from A into X. Since X/o is a partition of
X, we have that p is well-defined. Let A € X/o.

Case 1. ANXJB # 0. We note that z4 € A. For each x € AN XS by (2}, it
follows that zy and @ are elements in the same p-class. We conclude that Ay € B for
some B € X/p.

Case 2. AN XA = 0. Then by reflexivity of the relation p, we obtain that

(g, ) = (2Ca, yCa) € p. Hence Ap C B for some B € X/p.
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From the two cases and by Lemma 2.2.5, we deduce that g € T'(X, o, p). Finally, we will

show that a = Bu. Let # € X. Then zf € A for some A € X/p. Thus by (1), we obtain

#Bp = (xf)us = xByp = za,

as required. ‘ (|

The following theorem is a direct consequence of Theorem 2.1.11 and Lemma

4.2.6.

Theorem 4.2.7. Let o, 5 € T(X,0,p). Then (o, ) € R on 1'(X,0,p) if und only if

either oo = B or there exists a bijection ¢ : XB — Xa satisfying
(1) a=fe,
(2) for every x,y € X3, (x,y) € o implics (zp,yp) € p and

(3} for every z,y € Xcv, (x,y) € o implies (o™, yp~t) € p.

To describe the J-relation on T{X, 7, p}, we first give the following lemma.

Lemma 4.2.8. Let «, 3 € T(X,0,p). Then o = A3 for some M\, € T'(X,0,p) if und

only if there exists @ : X7 — X satisfying
(1) for every z,y € X8, (z,y) € o implies (xp,yyp) € p and
(2) for cuery A € X/, there evists B € X/p such thut Aa C (Bf)y.

Proof. Suppose that o = A3y for some A, p € T(X,0,p). Let p = p

xpandletz,y € X

be such that (z,y) € ¢. Then since € T'(X, 0, p), we have

(2o, yo) = (Cplxg, vl xp) = (@yp) € p.
Let A ¢ X/o. By Lemma 2.2.5, there exists I3 € X/p such that AN € B. Thus
Aa = ANBu C B = BBulxp = (BB)e.

Conversely, assume that there exists ¢ : X3 — X satisfying the conditions (1)

and (2). Let A € X/o be such that AN XS # 0. By (1), (AN XA)p C B for some
B e X/p. Fix some by ¢ B and define 14 : 4 — B by

xp ifxe X3,
T =
by otherwise,
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Let p: X — A be defined by

_ pa fANXE#D,
pla=
C4 otherwise

for all A € X/o and C, is a constant map from A into X. Since X/ is a partition of
X, it follows that p is well-defined. From (1) and Lemma 2.2.5, we have u € T'(X, o, p).

For each A € X /o, by (2) we choose and fix By € X/p such that Ao C (Baf)y.
Tet x € A. Then we choose and fix b, € B4 such that za = (b,.8)e. Define A1 X = X

by @\ = b, for all € X. Then A € T(X,e,p). Furthermore, for z € X,
AL = b P = (beff)p = war,

which implies that « = Mg, as desired. O

By Theorem 2.1.11 and Lemma 4.2.8 are useful to obtain this vesult.

Theorem 4.2.9. Let o, 8 € T'(X,0,p). Then {a,B) € J on T(X,a,p) if and only if

either o« = 3 or there exist mappings ¢ : X — X and ¥ : Xa =+ X satisfying
(1} for every z,y € X8, (z,y) € a implies (xp,y¢) € p,
(2) for every =,y € Xa, (=, y) € o implies (xh,y) € p and

(3) for every A € X/o, there exist B,C € X/p such that Aa C (BB)y and A C
(Cayp.

Theorem 4.2,10. Let o, 8 € T(X,0,p). Then {a,B) € D on T(X,0,p) if and only if
either o = 3 or there caist a (op)*-admissible bijection @ @ w(a) — w(8) and a bijection

¥ Na — X3 salisfying
(1) for every z,y € Xa, (x,y) € o implies {zh, y3h) € p,
(2) for every z,y € XB, (z,y) € o implies (zyp ™,y 1) € p and

(3) o) = s

Proof. Suppose that (a,8) € D. Then (a,v) € R and (v, 8) € L for some v € T(X,0,p).

By Theoren: 4.2.5 and Corollary 4.2.3, we have w(a) = w(7y) and X = Xy, respectively.
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Since (r,v) € ‘R and by Theorem 4.2.7, there exists a bijection 9 : Xa — X3 satislying
(1), (2) and

v = ay.
Let P € m(y) = m(a) and @ € P. Then Py, = @y = zayp = Pa,y and hence 7y, =
astp. Since (v,8) € £ and by Theorem 4.2.2, there exists a (op)*-admissible bijection
@ w{a) — 7 (8) such that

Yo = P
Hence a.% = @f, and the assertion follows,

Conversely, assume that ¢ : w(a) —+ 7(8) is & (ep)’-admissible bijection and

¥ Xa — XB is a bijection satisfying the conditions (1), (2) and (3). Define v € T(X)
by avy = (za)y for all v € X. Then v € T(X, ¢, p) by (1) and

¥ = at.
Next, we will show that 7(a) = 7(v). Let ¥ € Xa. Then {yp} = (ya Hay = (ya™)7.
Thus ya* € (ya=yy™! C (y)y~! € =(y). Hence m(a) < w(vy). On the other hand,
let 2 € Xv. Then {297} = (v ! = 2y Moy = (v Heixa = (277 e
Thus zv~! C (zp~a~! € 7(e) and hence m(y) < w(a). Consequently, n(a) = 7(y).
Let P € w(y) and @ € P. Then

Py, = ay = waty = Payy,

it implies that 7y, = a,p. By (3), we obtain that Yo = 1) = ff,. By Theorem 4.2.2, we
have that (v, 8) € £. It follows from Corollary 4.2.3 that X+ = X§. This implies that
¥ : Xa — Xy such that v = atd. From (1} and (2), it follows from Theorem 4.2,7 that
(ov,7) € R. Hence (a, 8) € D, as required. O

4.3 Green’s relations on the semigroups of transformations

preserving an equivalence relation and fix a cross-section

In this section, let & be an equivalence relation on X and R a cross-scction of
the partition X/¢ induced by ¢. We focus on Green’s relations for regular clements of

the semigroup T'r(X, 7).
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In the case of R-relation, we study [or arbitrary elements. First, we need the

following lemma.

Lemma 4.3.1. Let a, 3 € Tr(X, o). Then o = By for some p € Tr(X,0) if and only if

ker 8 C kera.

Proof. Suppose that a = Su for some p € Tr(X,0). Let (2,y) € ker 8. Then zf = yf
and so za = 2fu = yBu = ya. Thus (x,y) € kera and hence ker 8 C keravr,

Conversely, assume that ker 8 C kera. For each y € X\ R, there exists yeX
such that y = 3/3. For each r € R, we choose ' € R such that r = '3 from R = RS.

Let r € R. Define y, : v — X by

vo itxe XS,
By =

r'a otherwise.
Define y : X — X by plre = i for all # € R. Since R is a cross-section of the partition
X/o induced by o, we have that p is well-defined. To show that € T(X,0}, let r € R.
Then r = r'f8 for some v € R. We will show that (ro)u C (»'a)o. Let y € ro. If
y & X8, then yp =y, = v'a € (Fa)o. Ky € X, then y = 33 for some ¢ € X. Thus
3 € so for some s € R. Since 3 € so and ¥/ = y € ro by Lemma 2.2.13, we get that

58 =r =1'B. By assumption, we have sce = r'a. This implies that
yp = yur = y'a € (so)a C (sa)o = (r'a)e.

Hence (ro)p € {(#'a)o. 1t follows from Corollary 2.2.6 that p € T'(X, o). Since Rf = R,
rpo= r'o € Rfor all r € R. Henee Ry C R. For the reverse inclusion, let r ¢ Il Then
soe = 7 for some s € R. Thus sf =t for some £ € R and so there exists ¢ € R such that

sf =t = '3, By assumption, we deduce that
r = sa = o=ty =t

It imiplies that B € Ry and hence p € Tr(X, o). Finally, we will show that o = fp.
Let x € X. Then 28 € X8 and 28 € ro for some r € R and so (zf)'8 = = for some
(z8) € X. Thus ((28)', z) € ker 8 so that za = (x8)' o = (xB)i, = xBye by assumption.
This shows that o = Su. (]

Using Theorem 2.1.11 and Lemma 4.3.1, we can establish the next result.



Theorem 4.3.2. Let a,8 € Tr(X,¢). Then («,f) € R on Tr(X,0)} if and only if

ker oo = ker 3.

Next, we consider the relation £, the following lemma is needed.

Lemma 4.3.3. Lei o and 8 be reqular elements of Tr(X, o). Then the following state-

ments ure equivalent.
(1) @ = A3 for some A € Tp(X, 7).
(2) For every A € X/o, there exists B € X/o such that Aa C Bf.
(3) Xa C Xg.

Proof. (1) = (2) Assume that o = Ag for some A € Tr(X,0). Let r € R. By Corollary
9.2.6, there exists s € R such that (re)A C so. By assumption, we have (ro)a =
(ra)AB C (so)f.

(2) = (3) For each y € Xa, there is € X such that y = za. If z € A for
some A € X/a, then by (2) we have y = za € Aa C Bf C X where B € X/o. Hence
XaC X5

(3) = (1) Suppose that Xa C Xf. For each & € X \ I, we choose and fix an
element o' € X such that xa = 2’8, If x € R, then za € R = R = RB. Thus we choose

and fix an element ' € R such that za = 2’4, Define A: X — X by
gh =" forallz ¢ X,

Let (z,9) € 0. Then (2/8,9'8) = (za,ya) € o where 2',y' € X. If o’ € ro and ¢’ € so
for some 7, s € R, then v = s8 by Lemma 2.2.13. It follows from Theorem 3.5.1 that
r = s. Hence (zA,yA) = (z/,3") € ¢. Consequently, A € T(X, o). Clearly, RA C . On
the other hand, let + € R. Then +8 € R and rf = sa = s’ for some s,5' € 1. By
Theorem 3.5.1, » = &, hence 7 = s’ = s\, Thus A € Tr{X,0). Finally, it z € X, then

sAf = 2'f = za. Hence o = AS. O

The following theorem is a direct consequence of Theorem 2.1.11 and Lemma

4.3.3.
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Theorem 4.3.4. Let a and 3 be regular elements of Tr(X, o). Then the following

statements are equivalent.
(1) (a,8) € L.
(2) For cuery A € X/o, there exist B,C € X/o such that Ao € Bf and Ap C Ca.

(3) X = X§5.

We now observe a sufficient coudition for two arbitrary regular elements of

Tr(X,o) to be D-related.

Theorem 4.3.5. Let o and 8 be regulur elements of Tr(X,o). Then (a,5) € D on

Tr(X,a) if and only if there is a bijection @ : Xa - X3 satisfying
(1) Rp=R and
(2) for every A € X/o, there exists B € X/o such that (Aa)p C Bf.

Proof. Supposc that (v, 8) € D on Tr(X, o). Then there exists 4 € Tr(X, o) such that
(ayy) € R and (4,8) € L on Tp(X,0).
 Next, we shall constriet a bijection ¢ : Xa — X8 such that Ry = R and for
every A € X/o, there exists B € X/o such that (Aa)p C BB. By Theorem 4.3.4, we
observe that X8 = X«v. For cach za € Xa, define p : Xa = X by (zajp = ay. If
zor = ya, then (x,y) € ker o and so (za)p = zy = yy = (ya)y from ker o C ker. Hence
 is well-defined. Similarly, since ker v C kera, we can show that ¢ is an injection. Since
w7y = (za)p for all @ € X, ¢ is a surjection. Next, we will show that Ry = R. Letr € R.
Since Ra = R, r = sa for some s € R. Therefore rp = (sa)p = sv € 1. On the other
hand, if » € R, then there is s € R such that r = sv. This implies that sa € /¥ and
(sa)g = sy =r. Hence Rp = R. For each A € X /o and by Theorem 4.3.4, there exists
B € X /o such that {Aa)p = Ay C Bp.
Conversely, assume that ¢ : Xa - X is a bijection satistying (1) and (2).
Define v : X = X by o7 = (za)p for all # € X. Let v € K. Then ra € R and
so ry = (rayp € Rp = R whence Ry C R. For the reverse inclusion, let r € R.

Then there exists s € R such that r = sp and so s = te for some ¢ € R. Therefore
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v = (ta)p = s@ = r. This means that Ry = R. Moreover, if A € X/o, then by
(2), theve exists B € X/o such that (Aa)y € Bf. By Corollary 2.2.6, Bf © C for
some C' € X/o. It follows from Corollary 2.2.6 again that v € T(X,0). Consequently,

v € Tr(X,0). Since @ is injective, for each =,y € X we have
wy =y & (za)p = (ya)p & zo = ya.
This shows that kera = kery. Since @ is surjective, Xy = (Xa)e = X3. Hence by

Theorems 4.3.2 and 4.3.4, (o, y) € R and (%, 4) € £, which give (o, 8) € D. |

In any semigroup S, if D is an arbitrary D-class in § containing a regular
element, then every clement of D is regular. In the relation [J, this result is not true,

but in the semigroup Tr(X, ), this result holds for the relation J.

Lemma 4.3.6. Let o, 8,0, 10 € Tr(X,0). If o = ABp and « is regular, then B is regular.
Proof. Suppose that o = ABu and o is regular. Let 7,5 € R be such that 78 = s8. Then
rBu = sBu. Since RA = R, there are +/,s' € R such that 7 = /A and s = s'A. By
assumption, we get that o = 7 Afu = s'Afp = s'a. By Theorem 3.5.1, 7" = s’ and thus
¢ = 5, Therefore, 8 is regular by Theorem 3.5.1. O

This translates immediately into the following theorem.

Theorem 4.3.7. If J i an arbitrary J-class in a semigroup Tr(X,0) containing «
regqular element, then every element of J is regular.

Finally, we characterize Green's relation J for regular elements of Th(X, 7).

Lemima 4.3.8. Let o« und f be requlur elements of Tr(X,0). Then o = Afiu for some

M i€ Tr(X, o) if and only if there is a mapping @ : X — Xa satisfying
(1) w|r: R— R is a bijection,
(2) jor cvery x,y € XB, (x,y) € o implies (zp,yp) € 0 and

(3) for every A € X/a, there exists B ¢ X/o such that Aa € (Bf)p.
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Proof. Assume that o = A\Fu for some A\, u € Tr(X,0). For each x € X, we let v, € R

with (z,7;) € o. Define ¢ : X — Xa by

ap ifz e XAB,
T =

Tyt otherwise.
Let ¢ € XA, If z € X\B, then @ = ©'AS for some @’ € X. By assumption, we have
o = ap = o' Afp = 2'a € Xa. f o ¢ XAS, then r, € XAS and s0 7, = sAf for some
s € R. By assumption, we obtain that xg = ruu = sASu = sa € Xo. This shows that
¢ indeed maps X8 to Xa. If r,s € R such that rp = sp, then v = su by B = RA3.
Thus +'ac = s’ such that + = +'Ag and s = &'AB where v/, ¢ € R. By the regularity
of a, 7" = &, so that r = 5. Since Ru = R, we have that Ry = Ru = R. Therefore
@|lr : R — R is a bijection. Let &,y € X be such that (z,y) € 0. Then vy = »y and
%,y € ryo. By Corollary 2.2.6, there is A € X/o such that zu, yp, rept € (rpo)p € A,
This implies that @@,y € A, that is, (2@, yp) € o. Finally, let A ¢ X/o. By Corollary
2.2.6, there exists B € X/o such that A\ C B. By assumption and the definition of ¢,
we then have Ao = ANSp C(BAN XAB)u = (BN XAZY C (BB)y-

Conversely, assume that ¢ : X3 —+ Xa is a mapping satisfying the conditions

(1), (2) and (3). Let r € B. By (2), (ro N XB)p C B, for some fix B, € X/o. Define

iy 1o — B, by
e ifoe X,
Tty =
re otherwise.
Let 1 : X — X Dbe defined by iy = g for all » € R. Since R is a cross-section of the
partition X /o induced by o, it follows that g is well-defined. For eachr € R, (ra)ur, C B,
for some By € X /o and by Corollary 2.2.6, we have p € T(X, 0). It follows from (1) that
Ry = Ry = R. Hence € Tp(X,0).
For cach r € R, by (3) we choose and fix ' ¢ R such that (ro)a C ((r'o)B)¢.
If (B)e = ac for some a € X, then since ¥'8 € R and Ry = R, aa € R and so
(ro)a € ((Fo)B)e C (aa)o. Thus ra = aa = (1'B)e by Lenma 2.2.13. Let @ € ro.
Then we choose and fix an element by € #'o (if ¥ = r, we choose by = ') such that
o = (byfBlp. Define A : X' = X by A = b, for all v € X, Tor cach r € TN, we get
that (ro)A C r'o. By Corollary 2.2.6, we obtain that A € T(X,0). Obviouwsly, RA € R.

On the other hand, let € R. Then »fg € R and so {rff)¢ = s« for some s € K. Thus
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(rB)p = sa = (bsf3) where b, € s'o and s’ € R. Since @|g is injective, rf3 = by and by
the regularity of 5, it follows that r = bs;. Hence sA = by = r, which implies the equality.

This prove that A € Tr(X, o). Furthermore, for & € X,
TALp = by = (bmﬁ)ﬁo = T,

which implies that a = AfFpe. O

By the above lemma, we have the following result immediately.

Theorem 4.3.9, Let o and B be regular elements of Tr{X,0). Then (a,8) € J on

Tr(X, o) if and only if there exist mappings 0 : X = Xa and ¢ Xa — X[ satisfying
(1) @|g,¥|r : B R are bijections,
(2) for every z,y € XB. (z.y) € o implies (z0,yp) € 0,
(3) for every x,y € Xa, {,y) € ¢ implies (x,y3) € o and

(4) jor every A € X/o, there exist B,C € X/[a such that Aa C (138)¢ and A C
(Ca)y.



CHAPTER V

SOME ALGEBRAIC STRUCTURES OF
TRANSFORMATION PRESERVING

AN EQUIVALENCE RELATION

In this chapter, let o and p be equivalence relations on a nonempty set X with
p C o and R a cross-section of the partition X Jo induced by 0. We investigate conditions
for the semigroups T(X, o, p), T(X,0%), T(X,0,R) and TR(X,o) which is an inverse
semigroup and an E-inversive semigroup. Moreover, we present a characterization of
abundant semigroups for T(X, o, p), T(X,¢*), T(X,0,R) and Tr(X,0). Also, we prove
that the semigroup 7(X, o, p) can be embeddable in T'(Y, Z) for some sets Y, Z with

Z C ¥ and it does not necessary bo isoworphic.

5.1 Inverse semigroups

In this section, we find necessary and sufficient conditions for the semigroups

T(X,a,0), T(X,0*), T(X,0, ) and TR(X, o) which is an inverse semigroup.

The first, we investigate a condition under which two elements of T'(X, o, p) are

inverse of cach otlier. The following lemma is needed.

Lemma 5.1.1. Let o, 8 € T(X,0,p). Suppose thut o and 3 ure inverses of each other.

Then the following stuternents hold.

(1) For every A € my(ex), there euists a unique B € X/;J such that A C BB~ and
B C Aa~l,

(2) For every A € n,(a), there exists a unique B € X/o such that A C Bg! und
B C Aot

Proof. (1) Suppose that a = affe and 8 = faf. Let A € wy(a). Then A € X/p and
Aal # 0. Thus § # Aola C A. By Corollary 2.2.6(1), there is a unique B € X/p
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such that A8 C B. Thus 4 € BB~ By Corollary 2.2.6(1), we have Ba C C for some
C ¢ X/p. Therefore

Aata = Aa"tefa C ABa C Ba C C.

This implics that AN C # @, so that A = C. Hence B C (Ba)a™! C Ca™tl = Ao, as
reguired.

(2) By the symmetry of the proof (1). ]
Theorem 5.1.2. Let e, 3 € T{(X,q,p). Then the following stutements are equivalent.
(1) a and B are inverses of cach other.

(2) Both of and o are idempotents and there is a bijection ¢ : mpler) = ’ﬂ‘p(ﬁ}.
satisfying UaB = Upf for all U € wp(a) end Va = Ve~ la for all V € mp(f).

(3) Both aff and P are idempotents and there is o bijection ¥ : 7e(a) = 7w (B)
satisfying UaB = U for all U € mo(a) and Vo = Vi~la for all V € w,(5).

(4) For every A € X/p with A\ = AN Xa # 0, there exists B € X/p with B' =
B X3 # O sueh that Bla - A" — B and alg + B' — A are mutually inverse

bijections.

(5) For cvery A € X/o with A' = AN Xa # B, there eaists B € X/o with B' =
BNXB # B such that Bla : A' = B and alp : B' — A" we mutually inverse

bijections.

Proof. (1) = (2) Suppose that o = afa and g = BaB. Then af = afaf and fa =
Bafa hence o and Be are idempotents. For each A € X/p with Aot #£ 0, By Lemma
5.1.1(1), we let A’ € X/psuch that A C A/~ and A’ C Aa~". Define ¢ : wp(a) — mp(55)
by
(Ao~ D = A'g7L tor all Ao~ € mp(e).

By the uniqueness of 4’, we get that ¢ is well-defined. Let U,V € m,(a) be such that
Up=Vyp. Then U = Ao~ and V = Ba~?! for some A, € X/p. Thus Ap~1 =Bt
where A’, B’ € X/p. Therefore A’ = B'. By the uniqueness, we obtain that A = B and

lence U = V. We conclude that @ is an injection. Let V € m,(f8). Then V = A for
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some A € X/p and so V3 C A. By Lemma 5.1.1(1), there is a unique B € X /p such that
AC Batand B C AB~L. Since f # A' C Ao~ Aot € mp{a). By the uniqueness of
A', we have A = A'. Therefore (Ba™ )y = A/~ = AfB~! = V. Hence ¢ is surjective.
We conclude that ¢ is a bijection.

Let U € mp(a). Then U = Aa~! for some A € X/p and so U € A. By Lemia
5.1.1(1), there is a wnique A’ € X/p such that A C A8~ and A’ C Aa~t. Thus

Uaf C ABC AP 1B = (Ao )pp = Upp.
Since 2 = faf, it follows that
U = (Ao~ Vg = A= Ap fap € A'aB C Aa" aff = Uap.

This shows that Uaf = Upf.
Let V € 7,(f8). Then there exist A4, A’ € X/psuch that V3 C A" and (Aa= ) =
A'B~1 = V. By the definition of ¢, we have that A € A1 and A’ C Aca~t, Thus

Va C Ala C Ao o= (A Dy la =VyTla.

Since a = afa, we have Vo~ la = Ao'a C Aa'afBa € ABa C AB~ 1B = VBa.
Hence Vo la =V ja,

(2) = (4) Suppose that both af and Be are idempotents and ¢ : mpler} = mp(B)
is a bijection satisfying Uap = Upf for all U € my(a) and V3o = Vo laforall Ve
7,(B). Let A€ X/pwith A'=ANXa # 0, Then A" = Ao o and Aa! = Aa1 £ 0
so Aot € m,(a). By assumption, there exists B € X/p such that (Aa Yy = BB 1 £40
and we then have

Aa""aB = Aot = BRTIB.

Let B = BN X3, Then B' = B8 # B and so A'B = Aalap = B'. Let z € A"
By the definition of p, B'a = (B ™1)Ba = (B ¢ la = Ao la = A’ and so there is

b € B’ such that z = ber. Thus b = af for some a € A'. Since Sa is idempotent, we have
af|pvalp = 2fa = bafa = afafa = afa = ba = .

Let y € B'. Then y = af for some o’ € A and so o/ = Vo for some ¥ € B. Since aff is

idempotent, we deduce that ya|p fla = yaff = dBaf = Vafaf =Vaf =dB =y It
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follows that 8|4 : A’ — B’ and a|p : B’ — A’ are mutually inverse bijections.

(4) = (1) Suppose that (4) holds. Let z € X. Then za € A for some A € X/p.
Thus za € AN Xa = A'. By assumption, there exists B € X/p with B' = BN X3 # 0
such that 8 : A/ = B and a|g : B' — A’ are mutually inverse bijections. This implies
that 8|aa|p = iar. Therefore zafa = (za)flaalp = (za)iy = va. Hence a = affa.
Similarly, 5 = faf.

Furthermore, in the same way we can show the equivalence of (1), (3) and (6). O
From Theorem 5.1.2, we certainly have the following corollary.
Corollary 5.1.3. Let a, 8 ¢ T(X, ). Then the following stutements are equivalent.
(1) a and B are inverses of each other.

(2) Both apf and o are idempotents und there is o bijection ¥ : mela) = we(B)
satisfying UaB = Uy Jor all U € no() and Vo = Viplo for all V € m{8).

(3) For every A € X/o with A/ = AN Xa # 0, there enists B € Xfo with B =
BN XB £ 0 such that Blar + A' = B and alp : B’ — A’ arc mutually inverse

bijections.
Theorcm 5.1.2 and Corollary 3.2.4 can be sunmarized as follows:
Covollary 5.1.4, Let o, 3 € E(X,0). Then the following statements are equivalent.
(1) « and B are inverses of each other.

(2) Both aff and Po are idempotents and there is a bijection ¢ : mola) = me(B)
satisfying UaB = Upf for allU € my(a) and Vpa = Vig~te for all V € me(8).

| (3) Both af and Bo are idempotents and there is a bijection ) : w(a) — w(B) satisfying
Uaf = UA Jor al U € 7(a) and VBa = Vi~ ta for all V € n(8).

(4) For every A € X/o with A' = AN Xa # 0, there exists B € X/o with B' =
BN XB # B such that Blar » A — B' and o|p : B' = A wre mutually inverse

bijections.

(5) a|xa:Xa— X3 and 8

xp: XB — Xa wre mutually inverse bijections.
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From Coroltary 5.1.3 and Lemma 2.2.12, we can conclude the following corollary.
Corollary 5.1.5, Let o, B € T(X,0*). Then the following statements are equivalent.
(1) « and 3 are inverses of each other.

(2) Both off and Ba are idempotents and there is a bijection v : X/o — X/o satisfying
Uaf = Upf and VBa = Vi ~la for al U,V € X/o.

(3) For every A € X/o with A' = AN Xa # B, there exists B € X/o with B' =
BNXB # B such that Bl + A" = B' and alg : B’ — A" are mutually inverse
bijections.

As an immediate consequence of Corollary 5.1.3, we have the lollowing.
Corollary 5.1.6. Let o, 8 € T(X,0, R). Then the following staternents are equivalent.
(1} « and B are inverses of each other.

(2) Both ap and Bo are idempotents and there is a bijection @ : olo) = we (B}

satisfying Uaf = Upf for dlU € my(a) and VBa = Vo la for all V € nq(8).

(3) For every A € X/o with A' = AN Xa # @, there evists B € Xfo with B’ =
BNXA 4D such that Blar: A — B and a|p : B = A’ are mutually inverse

bijections.
As an immediate consequence of Corollary 5.1.3 and Theorem 3.5.1, we have the
following.
Corollary 5.1.7. Let o, 8 € Tr(X,0). Then the following statements are equivalent.
(1) « and 8 are inverses of each other.

(2) Both of and Bo ure idempotents und there is a bijection ¢ : X/o — X/o sutisfying
Uaf = Upf end VBa = Vi la for dl UV € X/o.

(3) For every A ¢ XJo with A' = AN Xa, there exists B € X/o with B' = BnXp

such that Bla : A’ — B’ and a|p : B' —» A" are mutually inverse bijections.
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The second, we find a necessary and sufficient condition for the semigroups
T(X.o,p), T(X,0), BE(X,0), T(X,0%), T(X,0,R) and Tgr(X,o) which is an inverse

semigroup.

Now, we investigate the condition under which the semigroup T(X,0,p) is an
inverse sewligroup.
Theorem 5.1.8, T(X,a,p) is an inverse semigroup ¢f and only if | X| = 1.
Proof. Suppose that T'(X, e, p} is inverse. Let a,b€ X. Define o, B:X — X by
za=cgforallze X and yf=bforally € X.

Then a, g € T(X,0,p), @ = afa and § = fof. Thus a and [ are inverses of each other.
Since a is idempotent, a is also an inverse of . By assumption, « = 3. Hence a = b.

We conclude that [X|= 1.

For the converse, if | X| = 1, then T(X, 0, p) contains only one element. It is
clear that T'(X, o, p) is an inverse semigroup. O

Theorem 5.1.8 can be summarized as follows:
Corollary 5.1.9. The following stutements hold.
(1) T'(X,a) is an inverse semigroup if and only 4f | X &

(2) E(X,0) is an inverse semigroup if and only if |X| = 1.

According to next result, the class of semigroups 7'(X,0") is an inverse semi-
group.

Theorem 5.1.10, T(X,a*) is an inverse semigroup if end only if X/o is finite und
o = Ix.

Proof. Suppose that T(X,0*) is an inverse semigroup. Then T(X, 0*) is a regular semi-
group. By Theorem 3.3.6, we have that X/o is finite. We will show that ¢ = Ix. Let

a,b ¢ X such that (a,b) € o. Thus a,b € A for some A € X/o. Define a,f: X — X by

a ifzec A,

z otherwise
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and

b ifac A,

aff =

@ otherwise.
Then Ba € B and C3 C C for all B,C € X/o. This implies that o, § € T(X,¢*). For
cach z € X, if z € A, then zac = ae = a = zo and if @ ¢ A, then oo = za. Therefore
a is idempotent. Let B € X/o with B’ = BN Xa # §. For each x € B'. If B = A, then
B' = {a} and

afpraly = af|palp = afa=ba=a=u.

If B+ A, then B’ =B and
eflpalp = wfa =va =z

Hence o and f satisfying the condition (3) of Corollary 5.1.5 which implies that « and
3 are inverse of each other. It follows that o and § are inverses of o. By assumption, we
obtain that o = 5. Hence a = aa = aff = b. We conclude that o = Ix.

Conversely, assume that X /o is finite and o is the identity relation, By Theorem
3.3.6, we obtain that T(X, ™) is regular. Thus every element of T'(X,0*) has an inverse.
Let o € T{X,0*). We will show that « is a bijection. Let =,y € X be such that za = ye.
Then (zo, ya) € o. Since a € T(X,0*), {z,¥) € ¢. By assumption of ¢, & = y. Hence
« is an injection. Since X /¢ is finite and ¢ is the identity relation, it follows that X is
finite. Using Theorem 2.1.18, we get that a is also surjective. I'hus we conclude that o
is a bijection. Hence a has a unique inverse. We conclude that T(X, o*} is an inverse

semigroup. ™
Now, we give a characterizabion for the semigroup T{X, ¢, /) is an inverse semi-

group in terms of the cardinalities of X and a cross-section RH.

Theorem 5.1.11. T(X, 0, R) is an inverse semigroup if and only if |X| < 2 and |R| = 1.

Proof. Assume that T(X,, R) is an inverse semigroup. To show that [B] = 1, let
r,g € K. Define o, f: X — X by

za=rand y3 = s lorall &,y € A.
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Clearly, o, 8 € T(X,0,R) and o, are idempotents. By Corollaxy 2.2.8, we get that
o = afa and 8 = Baf. This implies that o and 3 are inverses of a. By assumption,
a = f and hence r = 5. Therefore |R| == 1. Suppose that |X| # 1. Let r € K. To show
that | X| =2, let a,b e X\ {r}. Define A, pt: X — X by

r fae=r,

TA =

a otherwise

and

r ifw=r,

Ery?

b otherwise.
Since |R| = 1 and by Corollary 2.2.6, we have A, p € T(X,g). Note that rA = r
and 7y — r. This implies that A\,p € T'(X,0,R). For each z € X, if & = r, then
AN = rA =7 =z and if @ # 7, then xAN = a\ = @ = x\. Therefore A is idempotents
and thus A is an inverse of itself. Let A’ = {a,r} and B’ = {b,7}. Then bAu = ap = band
rAp = e = . Similarly, ap) = @ and rp = r. Therefore A and p satisfy the condition
(3) of Corollary 5.1.6. Hence A and g are inverses of each other. By assumption, A = §.
Therefore a = aX = ap = b. Hence | X| = 2.

Conversely, suppose that |X| < 2 and |R| = 1. Then ¢ = X x X. If [X]| =1,

then T(X, o, R) contains only one element and so T(X,0, IY) is an inverse semigronp.

Assume that |X| = 2, say X = {a,b} and ¢ € R. Then

a b a b
T(X,o,R) = ,
1 it a b
It easy to check that 7'(X, e, R) is an inverse semigroup. ]

Finally, we characterize the equivalence relations o on X and a cross-section R

for which the semigroup Tr(X, o) is inverse. The following lemma is required.

Lemma 5.1.12. Let a € Tr(X,0). If a is idempotent, then (ro)a Cro for wdlr € R.

Proof. Suppose that o is idempotent. Let r € B, Then 7 = sa for some s € K. By
assumption, ra = saa = sa. By Theorem 3.5.1, r = 5. If a € ro, then aa € ra = ro.

Heunce (ro)a C ro. O
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Theorem 5.1.18. Tr(X,c) is an inverse semigroup if and only if R is finite und o is

2-bounded.

Proof. Assume that Tr(X, o) is an inverse semigroup. Then Tr(X, o) is a regular semi-
group. By Theorem 3.5.7, we have that R is a finite set. To show that & is 2-bounded,

let r € Rand a,b€ro\ {r}. Definea,f:X > X by

a ifzero\ {r}
T =
x otherwise

and

of = b ifzere\{r}

x otherwise.

Then {so)a C so, sa = s, (to)B C to and {8 =t for all 5,t € R. By Corollary 2.2.6, we
obtain a, 8 € Ty(X, o). For cach v € X, il w € 7o \ {r}, then zao = aa = a = za and if
z ¢ ro \ {7}, then zoa = za. Hence o is idempotent and thus & is an inverse of itself. Tt
casy to check that a and 3 satisfy the condition (3) of Corollary 5.1.7 which implies that
« and f are inverse of each other. It follows from assumption that o = f. This implies
that @ = ace = a8 = b. We conclude that o is 2-bounded.

Conversely, assume that R is finite and o is 2-bounded. By Theorem 3.5.7, we
have that Tr(X, o) is a regular semigroup. Let o, § € Tr(X,o) be idempotents. Let
¢ X. Since o is 2-hounded and by Lenmma 5.1.12, we consider two cases as follows.

Case 1. za =x. If &8 — =, then zaf = xfa. I 0 # x, then 25 = r for some
r € R. Thus z € o and ra@ = rf = 7. Therefore zaf = 2 = ra = zfa.

Case 2. o # . Then za = r for some 7 € R and so z € ra. Il 2f = 7, then
done. If zf # r, then 8 = z. Thus 78 = r. Hence zaf =78 =r =ra = zfa.

From the two cases, we conclude that af = Bo. By Theoramn 2.1.4, Tr(X, o) is an inverse

semigroup, as reqguired. O

5.2 F-inversive semigroups

In this section, we present the characterization of FE-inversive for elements of

the semigroups T(X, o, p), T{(X, %), T'(X,0, R) and TR(X, o) and give a necessary and
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sufficient condition for the semigroups T(X, o, p}, T(X,0%), T(X,0, R) and Tr(X, o) to

be E-inversive.

If S is any one of the semigroups T(X, o, p) and 7'(X, o, R). Then 5 contains a
constant mapping. By Proposition 2.2.7 and Corollary 2.2.8, we have S contains a right.

zero element. Hence the following results follow directly from Lemma 2.1.6.

Theorem 5.2.1. Let S be any one of the semigroups T(X, 0, p) and T(X, o, R). Then
S is an E-inversive semigroup. Consequently, T(X,o) and E(X,0) are K-inversive

SETRAYTOUPS.

We have mentioned that every regular clement is F-inversive. But there exists
an F-inversive clement of a semigroup § which is not regular as shown in the following

example.

Example 5.2.2. Let X = {1,2,3,4,5,6,7} and X/o = {{L1,2,3},{4,5},{6,7}}. Define
a € T'(X) by

12 3456 067

6 7.6 3 3 2 1
Then o & T(X, ), hence o is E-inversive. Let A = {1,2,3}. Then Aa—t = {4,5,6,7}.
Since {4, 5} = {3} and {6,7}a = {1,2}, AN Xa € Ba for all B € X/o. By Corollary

3.2.3, o is not a regular element of T(X, o).

Next, the following lenmna is needed for proving the next theorem.

Lemma 5.2.3. Let o € T(X,0%). If a is idempotent, then Ao C A for all Ae X/o.

Proof. Suppose that o is idempotent. Then a’=qa. Let A€ X/o and a € A, Then
aa® = aa and hence {aw, (ax)a) € o. Since « € T'(X,0%), it follows that (a,aa} € 0.

From a € A, we deduce that aa € A. Therefore Aa C A. O

Theorem 5.2.4. Let a € T{X,0*). Then a is E-inversive if and only if AN Xa # 4§
forallAc X/o.

Proof. Suppose that o is B-inversive. Then there exists 8 € T(X,0™) such that of is

idempotent. Let A € X/o. Then AB C B for some B € X/o. By Lemma 5.2.3, we
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deduce that Baf C B. Let b € B. Then baff € B. If a € A, then a3 € B and so
(baf,aB) € o. Since # € T(X,0*), it follows that (ba,a) € 0. Thus bo € A. Hence
Ba € A. Consequently, AnXa # 0.

The converse follows from Theorems 3.3.1 and 2.1.5. O

The next result follows immediately from Theorem 3.3.1 and Theorem 5.2.4.

Corollary 5.2.5. T(X,0*) is an E-inversive semigroup if and only if il is a regular

semigroup.

Finally, we describe B-inversive for elements and semigronps on Tp(X, o).

Theorem 5.2.6. Let a € Tr(X,0). Then « is E-inversive if and only if a|r is an

injection.

Proof. Suppose that o is F-inversive. Then there exists § € Tr(X,o) such that of
is idempotent. Let 7,5 € R be such that ra = sa. Then raf = saf. Since af is
idempotent, it is regular. By Theorem 3.2.1, we deduce that (af)|r Is njective and
hence 7 = 5. Thereby a|p is an injection.

Conversely, if ag is injective, then « is regular by Theorem 3.5.1. Therefore o

1s F-inversive, [

As a conscquence of Theorem 5.2.6 and Theorem 3.5.1, the following result

follows readily.

Corollary 5.2.7. Tr(X,a) is un E-inversive semigroup if and only if it is @ regulur

semigroup.

5.3 Abundant semigroups

In this section, we describe Green’s *-relations £* and R* on the semigroups
T(X,0*), T(X,0,p), T(X,0,R) and Tg(X,0). Moreover, we prescnt a nccessary and
sufficient condition under which the semigroups T(X,0*), T(X,0,p), T(X,0,R) and

Tgr(X,0) are abundant.
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Firstly, the following results are quoted from [34] Theorems 3.1, 3.2, 4.1, 4.3 and
4.6, respectively.
Theorem 5.3.1. [34] Let o, 8 € T'(X,0*). Then the following statements hold.
(1) (a,B) € L£* if and only if Xa = Xf.
(2) (a,B) € R* if and only if ker &« = ker .
Theorem 5.3.2. [34] The following statements hold.
(1} The semigroup T(X,o*) is left abundunt if and only if it is regular.
(2) The semigroup T'(X, 0%} is right abundant,
(3) The semigroup T(X,o*) is abundant if and only if it is regulur.
Secondly, we investigate the relations £* and R* for the semigroup T(X,a, p)

and then we study the condition for the equivalence relations o and p unnder which

T(X, o, p} Is abundant.
We begin with the £*-relation for elements of the semigroup T'(X, o, p).
For every ¥ C X, we denote
Y={Ac X/o:ANY # 0}

From {36], Sun and Wang described the relation £* for elements of the semigronp

T(X,0,p) where p = Ix, as follows:

Theorem 5.3.3. (36] Suppose p = Ix. Let o, € T(X,0,p). Then (o,8) € L* on
T(X,0,p) if and only if cither of the following staterments holds:

(1) @, 8 are not regular on X and Xoa = Xf.
(2) Xa=Xj.

Theorem 5.3.4, Suppose p # Ix. Leta, B € T(X,0,p). Then(a,B) € L* onT(X,a,p)
if and only if Xa = Xj.
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Proof. The necessity follows from Theorem 4.1.1(1). To prove the sufficiency, we suppose
that (a, 8) € £*. Let y ¢ Xa. We can asset that y ¢ X . Indeed, if there is some y/ € X

such that ¢/ = y. Since p # Ix, there exists wp € X such that

zop| > 2. If o € yp,
then (y,x0) € p and so yp \ {xo} # 0. If wo ¢ yp, then yp\ {wo} # . For each A € X/o,
if A = yo, then we choose and fix an element x4 € yp \ {zo}. Otherwise, we choose and

fix an element x4 € A. Define 7,2 : X — X by
Ty = Ege for all x € X

and
wp o=y,
Tyg =
zy;  otherwise.
Then v, € T(X,0,p). Since (zye,y) € p, we deduce that 72 € T(X,0,p). Let x € X.
Since y ¢ X, we have zo # y and so waye = zay. Therefore ay = ay. By

assumption and Lemma 2.1.12, we deduce that gy = 2. This implies that

Cye = Y71 =Y P11 =V B = yv2 = @0,

which leads to a contradiction. Hence y ¢ X3 and thus X5 C X«a. By symmetry, we

have Xa € XA. Consequently, we have Xa = X3, as required. O

Next, we investigate some conditions wnder which the semigroup T(X, 0, p) is
left abundant. Pei and Zhou [31] proved that 7'(X, o) is a left abundant semigroup. We

then have the following.

Theorem 5.3.5. The semigroup T(X,o,p) is left cbundant if and only if o = p or
og=Xx X.

Proof. Assume that T(X, o, p) is a left abundant semigroup and ¢ # p. Then there exist
a,b € X such that (a,b) € o and (a,b) ¢ p. Suppose that ¢ # X x X, Definea: X' = X
by
a if (z,a) € o,
Ba =
b otherwise.

Then by Lemma 2.2.5, we have a € T(X,0,p). By assumption, there exists idempotent

1 € T(X,0,p) such that (o, g} € £*. Since p is regular and by Theorems 5.3.3 and 5.3.4,
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it follows that Xa = Xu. From ¢ # X x X, we get that a,b € Xa = Xpu. Therefore

a=a'p and b= b’y for some o', € X. Thus

(a,b) = (1,0’ 1) = (@ pepe, b pupe) = (ape, bp) € p.

This is a contradiction. Hence 0 = X x X.
Conversely, assume that ¢ = p or ¢ = X x X. If ¢ = p, then done. Suppose

that 0 = X x X. Let a € T(X,0,p). Fix z € Xa. Define 1: X — X by

x ifee X,
Tp =

z otherwise.
Then p is well-defined and Xa = Xp. Since ¢ = X x X, X/o = {X} and by Lemma
2.2.5, we have X = Xa C A for some A € X/p. Therefore pp € T(X,0,p). For each
z € X, we have g € X = Xa and thus app = . Therefore p is idempotent and
regutar. By Theorems 5.3.3 and 5.3.4, we obtain that (o, ) € £% Hence T(X, 0, p) is
left abundant. a

Next we consider the relation R*.
Theorem 5.3.6. Let o, 3 € T(X,0,p). Then (a,B) € R* on T(X,0,p) if und only if
ker oo = ker f.

Proof. The necessity is clear from Theorem 4.1.1(2). To prove the sufficicncy, we assune

that (o, 8) € R*. Let a,b € X such that (¢,0) € kera. Fixz € X Definey,79: X = X

by
a itz € acUbg,
Ty =
z otherwise,
and
b ifx €arlUbo,
Tyy =

z otherwise.
Then by Lemma 2.2.5, we get 11,92 € T'(X,0,p). Let @ € X. If & € ao U bo, then since
(a,b) € kerq, we have that zyia = ao = b = . If ¢ ¢ ao U be, then we have
TyLa = za = wypa. It follows that yia = vaar. Applying the characterization of R* from

Lemma 2.1.13, we obtain that 3 = v 5. Therefore

aff = amp = anf = bp.
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This implies that (a,b) € ker 3. Therefore ker oo C ker . By symmetry, ker 3 C kera.

Hence kera = ker . |

Now, we describe right abundant for the semigroup 7T'(X, ¢, p). The following

results are quoted from [36] Corollary 2.4 and [31] Theorem 2,15, respectively.
Theorem 5.3.7. [36] E(X, o) is right wbundant.

Theorem 5.3.8. [31] 1'(X, o) is right abundant if and only if o is one of the following

three cases.
(1) o =X x X.
(2) o is 2-bounded.
(3) o is e T-relation.

Theorem 5.3.9. The semigroup T(X, e, p) is right abundant if and only if T(X, g,p) =
E(X,0) or T(X,0,p) =T(X) or the following stutements hold:

(1) T(X,0,p) =T(X,0} and
(2) o is a T'-relation or 2-bounded.

Proof. The necessity follows from Theorems 5.3.7, 5.3.8, 3.1.1 and 2.1.14. To prove the.
sufliciency, we assume that 7(X, o, p) is right abundant and T'(X, o, p) is neither E(X, o)
nor T(X). By (1) and (8) of Theorem 2.3.1, we get that p ¢ {Ix, X x X'} and ¢ # Ix.
Suppose that p # o. Then there exist y, 2 € X such that (y,2) € ¢ and (y,2) ¢ p. Since

p # Iy, there exist distinct elements a,b € X such that (e,b) € p. Define o : X - X by

a if (z,y) € p,
T =

b otherwise.
Since (a,b) € p, we deduce that a € T(X,0,p). By the hypothesis, there exists idem-
potent p € T(X,0,p) such that (o, p) € R*. From Theorem 5.3.6, ker a = ker p. Since
(y,2) ¢ p, wle) = w(i) = {yp, X \ yp}. Thus yp = e~ and X \ yp = dp™" for some
¢,de X. Since (y,2) € o and (y,2) ¢ p, we deduce that (¢, d) = (yp, zp) € p. Therefore:

cpo=ypgt = yp= ¢ and dy =z = zZp = d,
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so that c € e = yp and d € du~' = X \ yp. This is a contradiction with (c,d) € p.
Hence o = p. Accordingly, T(X,o,p) = T(X,0). Since ¢ = p ¢ {Ix,X x X} and by

Theorem 5.3.8, we have o is a T-relation or 2-bounded, as required. O

The following conclusion readily follows from Theorems 5.3.9 and 5.3.5,

Theorem 5.3.10. The semigroup T(X,0,p) is cbundunt f and only if one of the fol-

lowing statements holds.
(1) T(X,0,p) = B(X, X x X).
(2) T(X,a,p) =T(X,0) and ¢ is a T-relation.
(3) T'(X,0,p) =T(X,0) and ¢ is 2-bounded.

(4) T(X,0,p) =T(X).

Next, we characterize Green's *-relations £* and R* on the semigroup T(X, o, R).
Furthermore, we present a necessary and suflicient condition under which the semigroup

T(X, o, R) is left abundant, right abundant and abundant.

We begin with the £*-relation. For every @ ¢ X, we let 7, € R be such that

(z,72) € 0.

Theorem 5.3.11. Let o, € 1(X, 0, R). Then {x, ) € £* on T'(X,0, R) if and only if
Xa= X[j.

Proof. The necessity follows from Theorem 4.1.1(1). To prove the sufficiency, we suppose

that (@, 8} € £¥ on T(X,0,R). Fix 7' € R. Define y: X — X by

T ifze Xa,
ry =< r, if 3¢ Xa and reo0 N Xa # B,
‘o othierwise.
Then ~ is well-defined. For each r € R with ro N X # §. Then y € ro N Xa for some’
y € X. Thus y = y'a. By Lemma 2.2.13, we have 7 = rya. Therefore r € Xao. This

implies that Xo = Xv. Let z,y € X be such that (z,y) € 0. Then z,y,74, 7y € 0.
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If roo N Xa # @, then (zy,y7) € 0. I 750 N1 Xa = @, then done. Hence y € 1'(X, o).
Let r € R. If o N X # @, then by above fact, we have r € Xo and sory =vr € R.
If re N Xa = B, then ry = r'a € Ra € R. Consequently, v € T(X,0,R). Let z € X.
Then we have zav = za and so ay = «. By assumption, we deduce that gy = 8. For
cach 2 € X, we have z8 = ©8y € X = Xo. Hence X C Xa. By synunetry, we have

Xo C XB. Consequently, we have Na = X 5. O

The next result shows that there exists idempotent in each £*-class of T(X, o, R).

Theorem 5.3.12. Bvery £*-class of T'(X, o, 1) contains idempotent. Consequently, the

semigroup T(X, 0, R) 1s left ubundant.

Proof. Let o € T(X, 0, ). Define v € T(X,0,R) as in the same proofl of Theorem
5.3.11. Then Xo = Xv. By Theorem 5.3.11, (a,7v) € £*. For each # € X, we have

ay € Xy = Xa and so zyy = 2. Hence v is idempotent, as required. 0

Theorem 5.3.13. Let o, 3 € T(X,a,R). Then (a,f) ¢ R* on T(X,a, R) if and only if
ker o = ker 3.

Proof. The necessity follows from Theorem 4.1.1(2). To prove the sufficiency, we assunie

that (a, 8) € R*. Let a,b € X such that (a,b) € kera. Define y1,72: X — X by

a ifx€rgo\ {r:},
ey =14 b ifzerna\{mn}
x obtherwise,
and
b itz €rue \ {ra},
a if.’CETbO'\{‘?"b}:
Ty =4 7, ilz=r,,

re it x=ry

x  otherwise.
Then +; and 93 are well-defined and (vo)y; C ro for all r € R and (reo)7 & no,
(ryo)y2 © reo and (ra)yg C 7o for all v € R\ {rq, 7}, By Corollary 2.2.6, we have that

71,7 € T(X,0). As aresult ry; = r for all r € R, we then have Ry, = R and hence
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41 € T(X,0,R). Since roy1 = Th, Tby2 = 7o and ryg = 7 for all » € R\ {rq,mp}, we
get that Ry, = R. Consequently, v, € 1(X, 0, R), as required. Since aa = ba and by
Lemma 2.2.13, 7,a0 = e which implies that @y = yee for all x € X. It follows that
e = ypa. Applying the characterization of R* from Lemmnia 2.1.13, we have v18 = 72/3.
Next, we will show that af = 8. We distinguish four cases as follows.

Case 1, a =1, and b = rp. Then aff = a1 8 = ayff = bB.

Case 2. a« =1, and b # rp. Then B8 = tm 8 = by = af.

Case 3. a # rq and b =75. Then eff = ay1ff = ayff = bf3.

Case 4. a # r, and b # rp. Then b8 = by B — byaf = af.
Trom the four cases, it follows that (a,bd) € ker 8. Therefore kera C ker 8. By symmetry,
ker f C ker . Hence ker oo = ker 8, ]
Theorem 5.3.14. The semigroup T(X, @, R) is right abundunt if and only if it is regular.
Proof. The necessity follows from Theorem 2.1.14. To prove the sufficiency, we assume
that 7(X, o, R) is right abundant. Let o € T(X,0, R). Then there exists idempotent
i € T(X,e,R) such that (e, ) € R*. By Theorem 5.3.13, we have keraw = kerge. It
follows from Theorem 4.1.7 that (o, 1) € R. Since p is regular and by Theorem 2.1.10,

we deduce that a is also regular. Hence T(X, o, R) is a regular semigroup. [

The following conclusion readily follows from Theorems 5.3.14 and 5.3.12.

Theorem 5.3.15. [42] The semigroup T'(X, o, R) is abundant if and only if it is regular.

Finally, we investigate the relations £* and R* for the semigroup T'r(X, o) and

then we show that regular and abundant in the semigroup Tr(X, ) coincided.

We begin with the L¥-relation.

Theorem 5.3.16. Let o, 8 € Tr(X,o). Then (a,B) € L* on Tr(X,0) if and only if
Xa=X5.
Proof. The necessity follows from Theorem 4.1.1(1). To prove the sufficiency, we suppose
that (o, 8) € £* on Tr(X,0). Define y: X — X by

z ifxe Xa,

Ty =
7e otherwise.
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Then « is well-defined. Since R = Ra € Xa, Xa = Xy and ry =7 for all r € R.
Therefore Ry = R. Let z,y € X be such that (@,%) € o. Then z,y,7,ry € Tzo and
so (vy,y7) € 0. Hence v € Tr(X,0). Let z € X. Then we have say = xa and so
av = a. By assumption, we deduce that Sy = . For each & € X, we have 8 = affy €
X~ = Xa. Hence X3 C Xo. By symmetry, we have Xa C X Consequently, we have

Na=XgS A

The next result shows that there exists idempotent in each £*-class of Tr(X, o}
Theorem 5.3.17. Bvery L' -cluss of Tr(X, o) contains idempotent. Conscquently, the
semniyroup Tr(X, o) is left abundunt.

Proof. Let a € Tr(X,o). Define v ¢ Tr(X,0) as in the same proof of Theorem 5.3.16.
Hence (o, ) € £* by Theorem 5.3.16. For each € X, we have 2y € Xv = Xo and so

@yy = . Hence v is idempotent, as required. [

Next, we consider the relation R*.

Theorem 5.3.18. Let a, 8 € Tr(X, o). Then (o, B) € R* on Tr(X,0) if end only of

ker a0 = ker 3.

Proof. The proof is similar to Theorem 5.3.13. 1

Now, we investigate some conditions under which the semigroup Tr(X,0) is

right abundant.
Lemma 5.3.19. Let o, 8 € Tr(X,0). If a is regulur und (o, B) € R* on Tr(X, o), then
B s regular.

Proof. Suppose that « is regular and (o, ) € R*. Let r,s € R be such that rfJ = sf.
Then (r,s) € ker 8. By Theorem 5.3.18, we have ra = so. From Theorem 3.5.1, we
obtain that alg is an injection. This implies that r = s. Therefore 3 |r is an injection.

Hence by Theorem 3.5.1, we have 3 is regular. O

The result of Lemma 5.3.19 is not true for the relation £, for example
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Example 5.3.20. Let X be the set of all positive integers, X/o = {{3n+1,3n+2,3n+
3}:n e NU{0}} and R = {1,4,7,...}. Define o, § € Tr(X, ) by

z fae{l,2,3},

Lo =
re otherwise,
and

1 it z € {1,4},
2 il &€ {2,3},

of = {2,3}
3 if v € {b,6},

[ T 3 otherwisc.

Then Xa = X 3. By Theorem 5.3.16, we have (o, #) € £*. By the definition of o, it easy
to verify that a is regular by using Theorem 3.5.1. Since 1,4 € R and 18 = 45, 8 |p is

not an injection. From Theorem 3.5.1, we get that 3 is not regular.

Theorem 5.3.21. The semigroup Tr(X, o) is right abundant if and only if it is regular.

The following conclusion readily follows from Theorems §.3.21 and 5.3.17.

Theorem 5.3.22, The semigroup Tp(X,0) is abundant if and only if it is regular.

5.4 Embedding

In this section, we begin recall that
TX,Y)={aeT(X): XaC Y}

where Y is a fixed nonempty subset of X, The purpose of this section, we show that
the semigroup T'(X, o, p} is embedded in the semigroup T(Y, Z) for some sets ¥, Z with

Z C Y and it does not necessary to isomorphic,

Theorem 5.4.1. The semigroup T(X, o, p) can be embeddable in T'(Y, Z) for some sets
Y, Z withZCY.

Proof. Let Y = o and Z = p. Then Z C Y. For each o € T(X, 0, p}, we define g, € T(Y)
by

(. 9)Ba = (we, yo) for all (z,y) €Y.
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Since & € T'(X,0,p), it then follows that Y3, € Z. Hence f3, is well-defined. Define
¢ T(X,0,p) = T(Y,2) by

ad = B, for all a € T(X,a,p).

Let g, as € T(X,0,p) be such that ay¢ = az¢. Then Suy = fa,. If z € X, then
{(z,z) €Y and

(zay, za)) = (2, 2)Ba; = (@, 2)fa, = (waz, zag).

Hence oy = zay for all # € X and so a1 = o9, This shows that ¢ is injective. Next,

claim that Baas = Bagfas. If (®,9) € Y, then

(2, 9)Baras = (vo1ag, yaras) = (mo, yo)Bas = (€,9)Bar Bas>

as required. [

Nenthein and Kemprasit [39] proved that T(X,Y) is a BQ-semigroup. As a

consequence of Theorem 2.1.19, the following result follows readily.

Corollary 5.4.2, If T(X,0,p) 2 T(Y, %) for some sets Y, Z with Z C Y, then T(X, a,p)

is «a BG}-semigroup.
Secondly, we characterize when T'(X, g, p) is & B(J-semigroup in terms of equiv-
alence. The following lemmmnas are needed.

Lemma 5.4.3. [35] E(X,0) is a right idee of T(X).

From Lemmas 5.4.3 and 2.1.17 yields the following result.
Corollary 5.4.4. If p = Iy, then T(X,0,p) is a BQ-semigroup.

Lemma 5.4.5, Let a € T'(X,0,p). If for every A € X/o therc ewists B € X/o such that
AN XaC Ba, then (a)p = (@),

Proof. Suppose that for cach A4 € X/a, there exists B € X/o such that AN Xa C Bo.
Let 8 € (a)g If B = a, then done. Assume that § # . Then § = ay = Ao for some 7,
A€ T(X,0,p). Let A € X/o be such that AN X« # 0. Then AN Xu C A’ for some fix
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A € X/o. For each y € AN Xa, we choose and fix an element ' € A’ such that va=y.
For fix by € A" and define prg : A — X by
¢’ ifzc Xa,

Tla =
bah  otherwise,

Let g X — X be defined by

pa if AN Xa # 0,
ptha =
4 otherwise

for all A € X/o and €y is a constant map from A into X. Since X/¢ is a partition of
X, pis well-defined. For each A € X /o with AN Xa # 0, by Lenima 2.2.5 we have that
Apy € A'AC C for some C € X/p. It follows from Lemma 2.2.5 that u € T(X,0, 0)-

Let z € X. Then za € A for some A € X/o. Since § = ay = Aa, we deduce that
zapa = zapac = (va) Aa = (za) oy = zay = z8.
This means that 3 = apa and so g € (a),. Hence (a); C (o). We conclude that
(a)g = (@)o- O
As a consequence of Lemma 5.4.5, the following result follows readily.

Corollary 5.4.6. Ifo = X x X, then (o) = (a)q for all o € T(X,0,p).

The following theorem for which characterizes when 7'(X, o, p) is a BC)-semigroup.

Theorem 5.4.7. T(X,0,p) is « BQ-semigroup if end only if one of the jollowing state-

ments holds.
(1) o =X x X,
(2) ¢ =1Ix.
(3) p=XxX.

(4) P = Ix.
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Proof. Suppose that o, p & {X x X, Ix}. Since p # Ix, there exist distincl elements a,
b € X such that (a,b) € p. It follows from p C o that @, b € A for some A € X/o. Since

o # X x X, there is B € X/o such that A # B. Let ¢ € B. Define o, 5, v: X = X by

a ifxeA,
T = 4

0 otherwise,
“

’

@ ifw=0h,
W=
b otherwise,
ad 2
c ifze A,
Ty =

fr otherwise,
\

By Lemma 2.2.5, it follows that o, v € 1(X,a,p). Since (a,b) € p, f € T(X,0,p). We
will show that aff = ya. Let # € X. Tf o € A, then zaf = af = b = ca = aya. I
x ¢ A, then aaf = b8 = a = ba = zya. This means that aff = ya € (o), Supposc that
(a)g = (@)p. Since aaf = aff = b # o = aa and eaf = b # a = aa = aaw, it follows
that B # o and aff # a® By Lemma 2.1.7, (a)p = {a,a?} U aZ'(X, 0, p)or and then
there exists p ¢ T(X, o, p) such that af = apa. Therefore b = aaf = eapa = apa and

a = caxfl = cuapiev = bua. I follows that

ap € ba™t and by ¢ act,

Since p € T'(X,o,p) and (a,b) € p C o, we deduce that (au,bp) € p. Then there is
C € X/p such that ap, b € O Thus CNaa™! # @ and CNba™' # §). Therefore a,
b € Ca. This is a contradiction. Hence (o) # (). By Proposition 2.1.16, we conclude
that T(X, o, p) is not a BQ)-semigroup.

Conversely, assume that the converse conditions hold. If ¢ = Iy or p= X x X,
then by Theorems 2.3.1 and 3.1.1, we have T(X,0,p) = T{X) is a rcgular semigroup.
Thus T(X, 0, p) is a BQ-semigroup. If p = Iy, then T(X, o, p) is a BQ-semigroup by
Corollary 5.4.4,

Supposc that ¢ = X x X. Let a, g € T(X,0,p). If a = 5, then by Corollary
5.4.6 we have (a), = (o), Assume that a # 3. Let v € ({o, 8}}y. We consider four



93

cases as follows.
Case 1. v ¢ aT(X,0,p) NT(X,0,p)a. Then by Proposition 2.1.15, we have
v € (a),. Since ¢ = X x X by Corollary 5.4.6, v € (a)y = {a)p. By minimality of (a)s,
we deduce that v € ({a, 5})s.
Case 2, v € AT(X,0,p) NT(X,7,p)8. Then v € (B} Since ¢ = X x X by
Corollary 5.4.6, v € (8)g = (8)p. 1t follows that v € ({a, B} ).
Case 3. v € oT{(X,0,p) NT(X,0,p)8. Then v = aa’ = §'8 for some o',
B € T(X,0,p). For each y € Xa, we choose and fix ' € X such that y = y'e. Define
o X -2 X by
" ifz € Xa,
Tt =
2 otherwise,

Since ¢ = X x X and 8’ € T(X,0,p), we have that p € T(X,0,p). Let x € X. Since

v =qaa’ = '8, we deduce that
zaph = (zaYf'p = (za) ad = zad’ =y

Therefore v = apB € aT(X,0,0)8 T ({a, 5}s

Case 4. v € ST(X.0,p) NT(X,0,p)a. Then v = a’a = B for some o,
B € T(X,e,p). For each y € X3, we choose and fix y' € X such that y = ¢/8. Define
pr X =X by

o’ ifz e Xa,

Tit =
za’  otherwise.

Since X/o = {X} and o' € T(X,0,p), we deduce that g € T(X,0,p). Let z € X,
Since v = a’a = B, we obtain that xBuc = (z8)o’a = (xf)Y BB = xpB = zv. Then
v = Pua € fT(X,o, p)a € {{a,B})s.

From the above discussions, we deduce that ({¢, 8})s = ({«, }),, it follows from Propo-
sition 2.1.16 that T(X, o, p) is a B@Q-semigroup. O

The following result follows immediately from Corollary 5.4.2 and Theorem 5.4.7.



Corollary 5.4.8. If I'(X,0,p) 2 T'(Y, Z) for some sets Y, Z with Z C Y, then

(1) o=X %X or
(2) o =Ix or
3) p=AxX or

(4) p=1Ix.

Finally, we give a necessary condition for the semigroups T'(X, o, p) and T(Y, Z)

to be isomorphic.
Theorem 5.4.9. [45] T'(X) = T(Y) if and only #f | X| = |Y].

Proposition 5.4.10. Ifo = Iy orp= X x X, then I'(X,a,p) 2 T(Y, Z) for some sets
Y, Z with 4 CY.
Proof. Suppose that ¢ = Iy or p= X X A.

Case 1. ¢ = Iy. Then o = p. By Theorem 2.3.1, we obtain T(X, ¢, p) = T(X).
Let Y = Z = ¢. Then 7(Y, Z) = T(Y). Since ¢ = Iy, we deduce that [X| = |Ix| =
lo| = [Y|. Tlis implies that T(X) = 7'(Y) by Theorem 5.4.9.

Casc 2. p=X x X. Then o = p. Thus T(X,0,p) =T(X). Let ¥ = Z2 = Ix.
Then T(Y, Z) = T(Y). Since ¥ = Ix, |X| = |Ix

= |¥|. Hence T'(N') & T(Y). O

From the proof Theorem 5.4.1,if ¥ =0 = X xX or Z = p = Iy, then T(X,0,p)

does not necessarily isomorphic to 7(Y, 7). As we sce in the next example.

Example 5.4.11. Let X = {1,2,3}, 0 = X x X and X/p = {{1,2}, {3}}- Then

12 3 123 12 3

21(X:U=p}: y - 3 3
11 1 11 2 b2 01
12 3 12 3 123
211/ \ 122 2 1 2
1 2 3 12 3 123
2 2 1 2 2 2 3 3 3

IfY = ¢ and Z = p, then [Y] = 9 and |Z| = 5. It easy to check that [T(Y, Z)| > 10.
Hence T'(X,0,p) 2 T(Y, Z).



Example 5.4.12. Let X = {1,2,3}, X/o = {{1,2},{3}} and p = Ix. Then

1 2 3
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KY = ¢ and Z = p, then |Y| = b and |Z] = 3. Tt easy to check that |I'(Y, Z)| > 10.

Hence T(X,o,p) 2T(Y. Z).



CHAPTER VI

CONCLUSIONS

In this thesis we found that:

6.1 Generalization of semigroups of transformations

preserving equivalence relations

In this section, let o and p be equivalence relations on a nonempty set X with

p C o. We define a subsemigroup of 7'(X} as follows:
T(X,0,0) = {a € T(X): Vo,y € X, (z,y) € o implies (wa,ya) € p}.
Then we found that:

Lemma 1. Let o € T(X). Then a € T'(X, 7, p) if and only if for every B € X/o, there
exists B' € X/p such that Ba C B'. Consequently, for each A € X/o, the set Aalis

either § or a nuion of some g-classes.

Proposition 2. Let o € T'(X,0,p). Then « is a right zero element of T'(X, o, p) if and

only if « is constant.

Corollary 3. Let o and p be equivalence relations on X with p C o. Then T'(X, o, p) is

a right zero semigroup if and only if ¢ = X X X and p = Ix.

Theorem 4. Let a € 1'(X, o, p). Then a is regular of 1'(X, o, p) if and only if for every
A ¢ X/a, there exists B € X/p such that AnXa € Ba.

Corollary 5. Let o be a regular element of T(X, o, p). Then the following statements

hold.
(1) For every A € X/p, there exists B € X/p such that AN Xea C Ba.

(2) For every A € X/g, there exists B € X/o such that AN Xa € Ba.
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Theorem 6. Let « € 7'(X,a,p). Then « is lelt vegular of T'(X, o, p) il and only if for
every A € X/o, there exists B € X/p such that for each P € ma(a), za € P for some

€ B,

Theorem 7. Let o € T(X, 0, p). Then a is right regular of T'(X, 7, p} if and only if the

following statements hold.

(1) «

¥a 1s an injection.
(2) For every z,y € Xa, (za,ya) € o implies {z,7} € p.

Theorem 8. Let o &€ T'(X, s, p). Then a is completely regular of T'(X, o, p) if and only
if for every A € X/o, there exists B € X/p such that |[P N Ba| = |[PN Xa| =1 for all

P e mala).

Theorem 9. 7'(X,0,p) is a regular semigroup if and only if one of the following state-

ments holds.
(1) o=1Ix.
(2) p=XxX.
3y o=XxXand p=1Ix.

Theorem 10, T(X,o,p) is a left regular semigroup if and only if one of the following

statements holds.
(1) [Xj<z2
(2) c=XxXand p=1Iyx.

Theorem 11. 7'(X, o, p) is a right regnlar semigroup if and only if one of the following

statements holds.
(1) {X] <2

(2) c=XxXand p=1Iyx.
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Corollary 12. 7(X,a,p) is a completely regular semigroup if and only if one of the

following statements holds.

(1) Xl <2
(2) o =X xX.

Lemma 13, Let a, 8 € T(X, 0, p). Then the following statements are equivalent.
(1) o = A for some A € T(X,0,p).
(2) For every A € X/o, there exists B € X/p such that Aa € Bf.
(3) There exists op-admissible @ : w(a) —» 7(B) such that a. = @f,.

Theorem 14. Let o, 8 ¢ T(X, 0, p). Then the following statements are equivalent,
(1) (e, B) € L.

(2) Lither a = B or for every A € X/o, there exist B,C € X/p such that Ao €

BB and AB C Ca.

(3) Either o = f or there exists a (op)*-admissible bijection ¢ : n(a) — m(B) such

that a. = wf..

Corollary 15. Let a,3 € T(X,0,p) be such that (o, 8) € L. Then the following

statements hold.

(1) For every A € X/o, there exist 3,C € X/o such that Ao € B3 and A € Ca.
(2) For every A € X/p, there exist B,C € X/p such that Ac C B3 and Af C Cl.
(3) There is a o*-adinissible bijection ¢ @ (o) — 7(F) such that a. = ¢f..

{(4) There is a p*-admissible bijection ¢ : w(a) — 7(8) such that c. = ¢f,.

(5) Xa = XP.

Lemma 16, Let o, 8 € T(X,0,p). Then o = fu for some p € T(X,a,p) if and only if

the following statements hold.

(1) kerpp C kera.

(2) For every w,y € X, (z8,y8) € o implies (za,ya) € p.
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Theorem 17. Let o, f € T(X,a,p). Then (o, 3) € R on T'(X, o, p) if and only if either
o = 3 or the following statements hold.
(1} ker 3 = kera.
(2) For every @,y € X, (w8, yf) € o implics (za,ya) € p.
(3) For every a,y € X, (za,ya) € o implies (z8,y8) € p.

Lemma 18, Let o, 3 € T(X,0,p). Then a = Sy for some p € T(X, 0, p) it and only if

there exists a mapping ¢ : X§ — Xa satisfying
(1) « = Py and
(2) for cvery =,y € Xf3, (x,y) € o implies (zp,yp) € p.

Theorem 19, Let «, 3 € T(X,a,p). Then (v, ) € R on T(X,0,p) if and only if either

a = B or there exists a bijection ¢ @ X — Xa satisfying
(1) o= By, :
(2) for every m,y € X3, (z,y) € o implics (z¢, y@) € p and
(3) for every z,y € Xa, (z,y) € o implies (w2~ L,ye™) € p.

Lemma 20. Let a, 8 € T(X, 0, p). Then a = ABu for some A, u € T(X, 0, p) if and only

if there exists ¢ @ X3 — X satisfying
(1) for every m,y € X3, (=) € ¢ implies (wg,yp) € p and
(2) for every A € X/o, there exists B € X/p such that Aa C (Bf)yp.

Theorem 21. Let a, 8 € T(X,0,p). Then (o, 8) € J on T(X, 7, p)} if and only if either

« = 3 or there exist mappings ¢ : X3 — X and % : Xa — X satisfying
(1) for every z,y € X3, (z,y) € o implies (zp,y¢) € p,
(2) for every z,y € Xa, (z,y) € o implies (z,y) € p and

(3) for every A ¢ X/o, there exist B,C € X/p such that Aa C (BS)p and AS C
(Cayyp.
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Theorem 22. Let o, 3 € T(X,0,p). Then («,8) € D on 1(X,0,p) if and only if
either o = /4 or there exist a (op}*-admissible bijection ¢ : m(a} = 7{B) and a bijection

W X — X[ satisfying
(1) for every z,y € Xa, (z,y) ¢ o implies (x4, yi) € p,
(2) for every m,y € X, (x,y) € ¢ implies {zyp~! y™") € p and
(3) cwth = P

Lemma 23, Let o, 8 € T'(X,0,p). Suppose that o and # are inverses of each other.

Then the following statements hold.

(1) For evory A € m,(a}, there exists a unique B € X/p such that A C Bp and
B C Aot

(2) For every A € w,(a), there exists a unique B € X/o such that A C BA~! and
B C Ao L.

Theorem 24. Let a, 8 € T(X,0,p). Then the following statements are equivalent.
(1) « and g are inverses of each other.

(2) Both af and Bo ave idempotents and there is a bijection ¢ i wy(a} — mp(8)

satistying Uaf = Uwpp for all U € my{e) and Va = Ve la for all V ¢ m,(f).

(3) Both af and Ba are idempotents and there is a bijection ¥ : m5(a} — #5(8)

satisfying UafB = Uyg for all U € (o) and VBa = Vi la for all V € n,(8).

(4) For every A € X/p with A" = AN Xa # B, there exists B ¢ X/p with B' =
BN XpB # 0 such that 8|y : A’ = B and ¢|p : B’ = A’ are mutually inverse

bijections.

(5) For every A € X/o with A/ = AN Xa # 0, there exists B € X/o with B’ =
BN XA # 0 such that 8|y : A’ - B and a|pg : B = A’ are mutually inverse

bijections.

Theorem 25. T(X,a,p) is an inverse semigroup if and only if |X| = 1.
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Theorem 26. T(X,o, p) Is an E-inversive semigroup.

Theorem 27. [36] Suppose p = Ix. Let o, € T(X,0,p). Then (o, ) € L£L* on

T(X,o,p) if and only if either of the following statements holds:
(1) a, @ are not regular on X and Xa = XB.
(2) Xo=XpG.

Theorem 28. Suppose p # Iy. Let o, B € T(X,0,p). Then (o, 8) € L* on T(X, 0, p} if
and only if No = X 3.

Theorem 29. The semigroup T{X, o, p) is left abundant if and only if ¢ = p or ¢ =

X xX.

Theorem 30. Let a,8 ¢ T'(X,o,p). Then (a,8) € R* on T'(X,a,p) if and only if

ker o = ker #.

Theorem 31. The semigroup T(X, 0, p) is right abundant if and only if 1'(X,0,p) =
E(X,c) or T(X,0,p) = T{X) or the following statements hold:

(1) T(X,a0,p) =T(X,0) and
(2) o is a T-relation or 2-bounded.

Theorem 32, The semigroup T'(X, 0, p) is abundant if and enly if onc of the following:

statements holds.

(1) T(X,o,p) = B(X, X x X).

(2) T(X,0,p) =1T(X,0) and ¢ is a T-relation.
(3) T'(X,0,p) =T(X,0) and ¢ is 2-bounded.
(4) T(X,0,p)=T(X).

Theorem 33, The semigroup 7'(X, o, p) can be embeddable in 7°(Y, Z) for some sets Y,
Z with ZCY.

Corollary 34. If T(X,0, p) = T(Y, Z) for some scts ¥, Z with Z C Y, then T(X, o, p}

is a BQ-semigroup.
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Lemma 35. Let a € T(X,0,p). If for each A € X/o there exists B € X/o such that
AN Xa C Ba, then (a)p = (a)q.
Corollary 36. If ¢ = X x X, then (a)p = (o) for all o € T'(X, 0, p).

Theorem 37. T(X, o, p) is a B@Q-semigroup if and only if one of the following statements

holds.
(1) o =X x X.
(2) o =1Ix.
(3) p=X x X,
(4) p=Ix.
Corollary 38. If 1'(X, 0, p) 2 T(Y, Z) for some sets Y, Z with Z C Y, then
(1) =X x X or
(2) 0 =1y or
(3) p=XxXor
(4) p=Ix.

Proposition 89, If 0 = Iy or p = X x X, then T(X,0,p) = T(Y, Z)} for some sets Y,
Z with Z CY,

6.2 Semigroups of transformations that preserve double

direction equivalence

In this section, we let ¢ be an equivalence on a nonempty set X, Deng, Zeng

and Xu [32] introduced a subsemigroup of T'(X) defined by
T(X,0%) = {a e T(X):¥z,y € X, (2,y) € o if and only if (zo,ya) € o}.

Then we found that:
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Theorem 40. [32] Let o € T(X,0*}. Then o is regular of T'(X,¢*) if and only if for
every A€ X/o, ANXa #0.

Theorem 41. [50} Let o € T(X,0*). Then « is left regular of T(X, ™) if and only if
for every P € w(a), PN X # 0.

Theorem 42, {50] Let o € T(X,0*). Then « is right regular of T'(X,0¥) if and only if

the following statements hold.
(1) «|xq is an injection.

(2) If there exists A € X/o such that AN Xa® = @, then there exists an injection

p: {decXjo:AnXa? =0} » {de X/o: AnXa =0}

Theorem 43. [32] Let a € T(X,¢*). Then « is completely regular of T'(X,o*) if and

only if for every P € w(a), (P N Xa|=1.
Theorem 44. [32] T(X,¢*) is a regular semigroup if and only if X /o is finite.

Theorem 45. T(X,a*) is a left regular semigroup if and only if X /o is finite and o is

both a T-relation and 2-bounded.

Theorem 46, 7'(X,¢*) is a right regular semigroup if and only if X'/ is finite and o is

both a T-relation and 2-bounded.

Corollary 47. T(X,¢*) is a completely regular senrigroup if and only if X/o is finite

and ¢ is both a T-relation and 2-bounded.

Theorem 48, [32] Let o, 3 € T(X,0*). Then the following statements arc equivalent.
(1) (a,B8)€ LonT(X,0%).
(2) Xa=Xg.

(3} There exists a o*-admissible bijection ¢ : w(a) —» () such that . = ¢f3s.
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Theorem 49. [32] Let o, 8 € T(X,0*}). Then the following statements are equivalent.
1) {e,f) € Ron T(X,0*).
(2) kera = ker 3 and Z(a) = Z(3).

(3) There exists A € 7°(X,0*) such that Alxo : Xoo — X3 is a bijection and § = aA
and there exists p € T(X, 0%} such that glxg @ XB — Xa is a bijection and

a = Bu.
Theorem 50, (32] Let o, 8 € T(X,0*). Then the following statements are equivalent.
(1} (o, 8} € D on T(X,0%).

(2) |Z(e)} = |Z(8)} and there exists A € T(X,0*) such that Ajxg @ Xa = XPisa

bijection.
Theorem 51. [32] Let o, 8 € T{X,0*). Then the following statements are equivalent.
(1) {a,B) € J onT(X,0*).

(2) |Xa| = |XpB| and there exist A, p € T(X,0%), for every A ¢ X/o, Ao C BB and
AB C Cap for some B,C € X/o.

Corollary 52. Let a, 3 € T(X,0*). Then the following statements are equivalent.
(1) o and g are inverses of cach other.

(2) Both o and S are idempotents and there is a bijection ¢ : X/o — X/o satistying
Uaf = Uy and VBa = Vi ta for all U,V € X/o.

(3) For every A € X/o with A/ = AN Xo # 0, there exists B € X/o with B’ =
B XP # B such that o : A' = B and a|p : B’ = A’ are mutually inverse

bijections.
Theorem 53. T(X,c*) is an inverse semigroup if and only if X/ is finite and o = Iy.
Lemma 54. Let o € T(X,0*). If « is idempotent, then Aa C A for all A € X/a.

Theorem 55. Let o € T'(X,0*). Then « is E-inversive if and only if AN Xa # @ for
all A e X/o.



105

Corollary 56, Let o € T(X,0*). Then T(X,0*) is an E-inversive semigroup if and only

if T{X,c*) is a regular semigroup.

Theorem 57. [34] Let o, 8 € T{X,0*). Then the following statements hold.
(1) (o, B) € £* if and only if Xo = Xj.
(2) (o, B) € R* if and only if ker o = ker 3.

Theorem 58. [34] The follewing statements hold.
(1) The semigroup T(X, ™) is left abundant if and only if it is regular.
(2) The semigroup T'(X,c*) is right abundant.

(3} The semigroup T(X,c*) is abundant if and only if it is regular.

6.3 Semigroups of transformations preserving

an equivalence relation and a cross-section

In this section, let ¢ be an cquivalence relation on X and /7 a cross-section of
the partition X /o induced by o. Araijo and Konieczny [41] introduced a subsemigroup

of T(X) defined by
T(X,0,R) = {a € T(X) : Ra C R and Va,y € X, (z,y) € o implies (za,ya) € ¢}.
Then we found that:

Theorem 59. [42] Let o ¢ T(X, o, R). Then a is regular of 7(X, o, R) if and only if for
every A € X/o, there exists B € X/o such that AN Xa C Ba.

Theorem 60. Let o € T(X, 0, R). Then a is left regular of T(X, o, R) if and only if for
every A € X/o, there exists B € X /o such that for each P € wa(a), va € P for some

z € B.
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Theorem 61. Let o € T(X, 0, ). Then o is right regular of T(X, o, I?) if and only il

the following statements hold.

1) «

Xa I8 an injection.
(2) For every z,y € Xa, (za,ya) € o implies (,y) € 0.

Corollary 62. Let o € T'(X, o, ). Then « is completely regular of 7'(X, o, R) it and
only if for every A € X/a, there exists B € X/o such that |P N Ba| = |PN Xa| =1 for
all I’ € ma(a).

Theorem 63. [42] T{X, o, R) is a regular semigroup if and only if ¢ is 2-bounded or a

T-relation.

Theorem 64. T{X, o, R) is a left regular semigroup if and only if one of the following

statements holds.
(1) |X] <2
(2) |[Xj=3and |l =2

Theorem 65, T(X, o, B) is a right regular scmigroup if and only if onc of the following

statements holds.
(1) |X] 2.
(2) 1X| =38 and |R| =2.

Corollary 66. T(X,a,R) is a completely regular semigroup if and only if one of the

following statements holds.
(1) X =<2
(2) |X]|=3and |R| =2

Theorem 67. [42] Let o, 8 € T(X, 0, R). Then (a,8) € £ on T'(X, ¢, R) if and only if
for every A € X/a, there exist B,C € X /o such that Aa € Bf and A € Cor.

Theorem 68. [42] Let «, 8 ¢ T(X,0, R). Then {a,8) € R on T'(X,0, R) if and only if

ker o = ker 3.
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Theorem 69, [42] Let «, 3 € T(X, 0, R). Then (o, 8) € D on T'(X, ¢, R) if and only il
there exist a bijection ¢ : Xa — X3 satisfying
(1) (XanR)y C R and

(2) for every A € X/o, there exist B,C' € X/o such that {Aa)p C BB and AF C
(Cae.

Theorem 70. [42] Let o, 8 € T(X,0,R). Then {a,8) € J on T'(X,0, R} if and only if

there exist mappings @ : Xa —» X3 and 9 : X7 — Xa satisfying
(1) (XanR}pC R,
(2) for every A € X/o, there exist B,C' € X /o such that Af C (Ba)p C C,
(3) (Xan R)yp C R and
(4) for every A € X/o, there exist B,C' € X /o such that Ao C (BB) C C.
Corollary 71. Let a, 8 € T(X, 0, R}. Then the following statements are equivalent.
(1) « and g are inverses of each other.

(2) Both af and Ba are idempotents and there is a bijection ¢ : ny(a) — 7(8)

satisfying Uaf = Upp for all U € 5ig(a) and Vo =V o for all V € . (8).

(3) For every A € X/o with A/ = AN X« # 0, there exists B ¢ X/o with B’ =
BN XA # B such that gl : A” — B and a|p : B' - A’ are mutually inverse

bijections.
Theorem 72, T(X,o, 1) is an inverse semigroup il and only if |[X| £ 2 and [R| =1.
Theorem T3, T(X, o, R) is an E-inversive semigroup.

Theorem T4, Let o, 8 € T(X,0,R). Then (a,8) ¢ £* on T(X,0, /1) if and ouly if
Na= XS

Theorem 75. Every L*-class of 1'(X,0, ) contains idempotent, Consequently, the

semigroup T(X, o, R} is left abundant.



108
Theorem 76. Let a,8 € T(X,0,R). Then (e, ) € R* on T(X,0,R) if and only if
ker a = ker B.
Theorem 77. The semigroup 7'(X,a, ) is right abundant if and only if it is regular.

Theorem 78. {42] The semigroup T(X, o, R) is abundant if and only if it is regular.

6.4 Semigroups of transformations preserving

an equivalence relation and fix a cross-section

In this section, let o be an equivalence relation on X and R a cross-scction of

the partition X/e induced by o. We define a new subscmigroup of 7°(X, o) as follows:
Tr(X,0) = {a ¢ T(X): Ra = R and Yz,y € X, (z,y) € ¢ implies (va,ya) € a}.
Then we found that:

Theorem 79. Let a € Tr(X, o). Then a is regular of Tr(X, o) if and only if a|g is an

injection.

Theorem 80. Let « € Tr(X, o) be such that «|r is an injection, Then « is left regular

of Tr(X, o) if and only if for every P € w(a), PN X # §.

Theorem 81. Let o € Tr(X,a). Then a is right regular of Tr(X, o) if and only if a|xq

is an injection.

Corollary 82. Let a € Tr(X, o). Then « is completely regular of Tx(X, o) if and only

if for every P € w(a), [PNXa|=1.
Theorem 83. Tr(X, o) is a regular scmigroup if and only if R is finite.

Theorem 84. Let R be a finite set. Then TR(X, ) is a left regular semigroup if and

only if ¢ is a T-relation and 2-bounded.

Theorem 85, T'r(X, ) is a right regular semigroup if and only if R is finite and o is a

T-relation and 2-bounded.
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Corollary 86. Tx(X, o) is a completely regular semigroup if and only if R is finite and

¢ is a T-relation and 2-bounded.

Lemma 87. Let a, 8 € Tr(X,0). Then a = Bu for some p € Tr(X,0) it aud only if
ker 5 C kera.

Theorem 88. Tet «, 8 € Tr(X, o). Then (o, 8) € R on TR(X,0) if and only if kera =

ker 3.

Lemma 89, Let o and 3 be regular elements of Tr(X, o). Then the following statements

are equivalent.
(1) a = A8 for some A € TR(X, 7).
(2) For every A € X/o, there exists B € X/o such that Aa C Bf.
(3) Xa C Xp.

Theorem 90. Let o and B be regular elements of T»(X, o). Then the following state-

ments are equivalent.
(1) (a,p) € L.
(2) For every A ¢ X/a, there exist B,C € X/o such that Aa C B and A C Co.
(3) Xa=Xp.
Theorem 91. Tet a and 4 be regular elements of Tr(X, o). Then (&, 8) € D on Tr(X,06)
if and only if there is a bijection  : Xa — X3 satistying
(1) Ry =R and
(2) for every A € X/e, there exists B € X/o such that (Aa)p C Bf.
Theorem 92. If J is an arbitrary J-class in a semigroup Tr(X, o} containing a regular
element, then every element of J is regular.
Lemma 93. Let o and B be regular elements of Tr(X, o). Then o = ABu for some
M€ Tr(X, o) if and only if there is a mapping @ : X3 — Xa satisfying
(1) ¢lg: R — R is a bijection,
(2} for every @,y € X8, (z,y) € o implies (zp,yp) € o and

(3) for every A € X/o, there exists B € X/o such that Aa C (BS)e.
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Theorem 94. Let a and § be regular elements of Tr(X,0). Then («,3) € J on

Tr(X, o) if and only if there exist mappings ¢ : X8 — Xa and ¢ : Xa — X[ satistying
(1) @lr,¥|r: R -+ R are bijections,
(2) for every =,y € Xf3, (z,y) € o implies (z, yp) € o,
(3) for every z,y € Xa, (2,y) € o implies (w1, y3) € o and

(4) for every A € X/o, there exist B,C € X/o such that Aa C (Bf)p and AS &
(Ca).

Corollary 95. Let o, 8 € Tr(X, ). Then the following statements are equivalent.
(1) @ and 3 are inverses of each other.

(2) Both af and fa are idempotents and there is a bijection % : X Jo — X /o satisfying
UaB = U and VBa = Vi~ laforall U,V € X/o.

(3) For every A € X/o with &' = AN Xa, there exists B € X/o with B’ = BN Xf

such that Bla: A" — B’ and aip : B' = A’ are mutually inverse bijections.

Theorem 96. TR(X,r) is an inverse semigroup if and only if R is finite and ¢ is 2-

hounded.
Theorem 97. Let o € Tr(X,0). Then « is E-inversive if and only if a|g is an injection.

Corollary 98, T3;(X, o) is an E-inversive semigroup if and only if Tp(X, o) is a regular

seigroup.

Theorem 99. Let a, 8 € Tr(X,0). Then (a,f) € L* on Tx(X,0) if and only if Xa =
XB.

Theorem 100. Every L*-class of Tk(X, o) contains idempotent. Consequently, the

semigroup Tr(X, o) is left abundant.

Theorem 101, Let o, 8 € Tr(X,0). Then (a,8} € R* on Tx(X,0) if and only if

ker a0 = ker J.
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Lemma 102, Let o, 8 € T(X,0). If a is regular and (o, 3) € R* on Tr(X, g}, then 3

is regular.

Theorem 103. The semigroup TR(X,o) is right abundant if and only if Tr(X,o) is

regular.

Theorem 104, The semigroup Tr(X, ) is abundant if and only if Tr(X, ) is regular.-

6.5 Relationships between some subsemigroups of the trans-

formation semigroups

In this section, we found that

Theorem 105. Let ¢ and p be equivalence relations on a nonempty set X with p C o
and IR a cross-section of the partition X /o induced by ¢. Then the following statements

hold.
(1) T(X,0,p) = I5(X,0) if and ouly it p = Ix.
(2} T(X,0,p) =T(N,0) if and only if ¢ = p.
(3) T(X,0,p) =T(X,0*}ifand only if p =X x X.
(4) T(X,0,p) = T(X,0,R) it and only if o = Ix.
(5) T(X,0,p) = Tr(X,0) if and only if | X| = 1.
(6) T(X,o,p)=T(X)ifand only if ¢ = Iy or p= X X X.

Corollary 108. Let ¢ be an equivalence relation on a nonempty set X and R a cross-

section of the partition X /¢ induced by ¢. Then the following statements hold.
(1) T(X,0) = BE(X,0) if and only if o = Ix.
(2) T(X,0) =T(X,0*) f and only if o = X x X,
(3} T(X,0)=T(X,o,R)if and only if ¢ = I'x.

(4) T(X,0) = Tr(X,o) if and only if |X| = L.
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(6) T(X,o)=T(X)ifand only if e = [y or 0 = X X X.
(6) B(X,0)=T(X,0%) it and only if [X] = 1.

(7Y E(X,0) =T(X,0,R) if and only if o = Ix.

(8) B(X,0)=Tnp(X,0) if and only if {X]| =1

(9} E(X,0)=T(X) if and only if 0 = Ix.

Theorem 107. Let ¢ be an equivalence relation on a nonempty set X and R a cross-

section of the partition X /¢ induced by ¢. Then the following statements hold,
(1) T(X,0%) = T{X,0,R) it and only if | X| = 1.
(2) T(X,0*) = Tr(X,0) if and only if R is finite and ¢ = fx.
(3) T(X,0*)=T(X)if and only if 0 = X x X,

Theorem 108. Let ¢ be an equivalence relation on a nonempty set X and It a cross-

section of the partition X /o induced by ¢. Then the following statements hold.
(1) T(X,0,R) =Tr(X,0) if and only if 0 = X x X.
(2} T(X,o,R) =T(X) if and only if o = Ix.

(3) Tr(X,e) =T(X) if and only if | X| = L.
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